CN1945862A - Semiconductor LED structure with high extracting efficiency and its preparing method - Google Patents
Semiconductor LED structure with high extracting efficiency and its preparing method Download PDFInfo
- Publication number
- CN1945862A CN1945862A CNA2006101140809A CN200610114080A CN1945862A CN 1945862 A CN1945862 A CN 1945862A CN A2006101140809 A CNA2006101140809 A CN A2006101140809A CN 200610114080 A CN200610114080 A CN 200610114080A CN 1945862 A CN1945862 A CN 1945862A
- Authority
- CN
- China
- Prior art keywords
- electrode
- led
- coating
- epitaxial wafer
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title description 14
- 239000000463 material Substances 0.000 claims abstract description 34
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- 238000004070 electrodeposition Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 17
- 238000002310 reflectometry Methods 0.000 abstract description 7
- 238000000605 extraction Methods 0.000 abstract description 6
- 230000005693 optoelectronics Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 26
- 239000010410 layer Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
高提取效率的半导体发光二极管结构及其制备方法属于光电子器件制造技术领域,适合于多种波长的半导体LED。现有LED虽然内量子效率高,但是外量子效率很低,只有很少的一部分光子能够从LED出射。本发明提出在LED外延片上生长ITO透明导电膜与SixNy介质膜组成的复合增透膜结构,ITO透明导电膜的光学厚度为二分之一LED发射波长的整数倍,SixNy介质膜的光学厚度为四分之一LED发射波长的奇数倍,SixNy介质膜的折射率是LED外延片最上层半导体材料的折射率的开方。这种设计能够在实现好的电流扩展的同时,将界面反射率降到最低来实现最佳增透作用,极大的提高外量子效率,使得光强增加了130%以上。
A semiconductor light-emitting diode structure with high extraction efficiency and a preparation method thereof belong to the technical field of optoelectronic device manufacturing, and are suitable for semiconductor LEDs of various wavelengths. Although the existing LED has high internal quantum efficiency, its external quantum efficiency is very low, and only a small part of photons can be emitted from the LED. The present invention proposes to grow a compound anti-reflection film structure composed of ITO transparent conductive film and Six N y dielectric film on the LED epitaxial wafer. The optical thickness of the ITO transparent conductive film is an integral multiple of half of the LED emission wavelength, and Six N y The optical thickness of the dielectric film is an odd multiple of a quarter of the LED emission wavelength, and the refractive index of the Six N y dielectric film is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer. This design can achieve good current expansion while minimizing the interface reflectivity to achieve the best anti-reflection effect, greatly improving the external quantum efficiency, and increasing the light intensity by more than 130%.
Description
一.技术领域1. Technical field
本发明属于光电子器件制造技术领域,涉及一种提高半导体发光二极管(LED)提取效率的结构和制备方法,适合于多种波长(红光、蓝光、绿光等)的半导体LED。The invention belongs to the technical field of optoelectronic device manufacturing, and relates to a structure and a preparation method for improving the extraction efficiency of semiconductor light-emitting diodes (LEDs), which are suitable for semiconductor LEDs with various wavelengths (red light, blue light, green light, etc.).
二.背景技术2. Background technology
半导体发光二极管是一种节能、环保和长寿命的发光器件。LED能耗为白炽灯的10%,荧光灯的50%。LED采用固体封装,结构牢固,寿命达10万小时,是荧光灯的10倍,白炽灯的100倍。在环保方面,用LED替代白炽灯或荧光灯,无需使用玻璃真空封装,无毒气和汞的污染。并且用途广泛,可以应用到日常生活中的各项用品,如各种家电的指示灯或光源等。近年来更由于多色彩及高亮度化的发展趋势,应用在城市景观照明、道路和交通指示、室内外装饰照明、全彩大屏幕显示、汽车车灯等领域。Semiconductor light-emitting diodes are energy-saving, environmentally friendly and long-life light-emitting devices. LED energy consumption is 10% of incandescent lamps and 50% of fluorescent lamps. LED adopts solid packaging, firm structure, life span of 100,000 hours, 10 times that of fluorescent lamps and 100 times that of incandescent lamps. In terms of environmental protection, replacing incandescent or fluorescent lamps with LEDs does not require the use of glass vacuum packaging, and there is no pollution of toxic gas and mercury. And it has a wide range of uses, and can be applied to various articles in daily life, such as indicator lights or light sources of various home appliances. In recent years, due to the development trend of multi-color and high brightness, it has been applied in urban landscape lighting, road and traffic instructions, indoor and outdoor decorative lighting, full-color large-screen display, car lights and other fields.
为了获得高亮度的发光二极管,关键是要提高器件的外量子效率。然而芯片的n型电极是面电极,比上电极要大的多,所以在正向偏置时,注入的载流子不可能像在金属中那样很快扩展均匀,而是向半导体材料内呈辐射状扩展,如果电流扩展不好,注入的电流主要集中在电极下方,这样就使得在电极下方有源区发出的大量光子被电极的阻挡,不能出射而损失在LED内部。另外,制备发光二极管的半导体材料与空气的折射率差值大,导致光的出射角度小且界面反射率高。当光入射到折射率为n1和n2两种物质的界面上时,入射角θ1和折射角θ2遵守斯涅耳定则,即n1sinθ1=n2sinθ2。发光二极管的半导体材料的折射率很高,例如可取n1=3.6,n2为空气,这种晶体与空气交界的临界角为θ1=sin-1(1/n1)≈16.2°,入射角大于临界角时形成全反射。就在4π立体角内各项均匀发射的复合发光而言,临界角内的光只占
三.发明内容3. Contents of the invention
本发明的目的是提出在LED外延片上生长ITO透明导电膜与SixNy介质膜组成的复合增透膜结构,在实现好的电流扩展的同时,能够将界面反射率降到最低来实现最佳增透作用,从而极大的提高外量子效率。The purpose of the present invention is to propose a composite anti-reflection film structure composed of ITO transparent conductive film and Six Ny dielectric film grown on the LED epitaxial wafer, while achieving good current expansion, the interface reflectivity can be reduced to the lowest to achieve the best Excellent anti-reflection effect, thereby greatly improving the external quantum efficiency.
虽然单层的铟锡氧化物(ITO)透明导电膜可以实现电流扩展作用,但是很难实现最佳的增透效果。理想的单层增透膜的条件是,膜层的光学厚度为四分之一波长的奇数倍,其折射率为入射介质和基片折射率乘积的平方根。ITO透明导电膜的折射率为1.7左右,如果入射介质是空气,空气的折射率为1,由此可知,只有当基底材料为2.89,且ITO透明导电膜的光学厚度为四分一波长的奇数倍时,才能够达到最佳的增透效果。但是红光发光二极管的表面的半导体材料的折射率大约为3.5左右,因此为了在实现好的电流扩展作用的同时,达到最佳的增透效果,我们设计了在薄GaP层上制备由ITO透明导电膜和SixNy介质膜所形成的复合增透膜来提高发光二极管的提取效率。设计ITO透明导电膜的光学厚度为二分之一LED发射波长的整数倍,SixNy介质膜的光学厚度为四分之一LED发射波长的奇数倍,SixNy介质膜的折射率是LED外延片最上层半导体材料的折射率的开方。当一种膜层的光学厚度为二分之一波长的整数倍时,这种膜层将成为虚设层,也就是说,对于中心波长的反射率毫无影响,在ITO膜不能做为最佳增透膜的情况下时,我们将其的光学厚度设计为二分之一波长的整数倍,使其对于生长上ITO膜的发光二极管的发射波长的反射率不起任何影响,然后使用等离子体增强化学气相沉积(PECVD)设备在ITO上再生长一层SixNy介质膜(非晶膜),使其的折射率为ITO透明导电膜下面半导体材料折射率的平方根,光学厚度为四分之一波长的奇数倍。使用PECVD设备通过调节生长参数来得到所需要的SixNy介质膜的折射率。当工艺参数确定后,生长速度基本保持不变,可以通过控制生长时间来控制SixNy介质膜的物理厚度。这种方法工艺简单,容易实施。Although a single layer of indium tin oxide (ITO) transparent conductive film can achieve the current spreading effect, it is difficult to achieve the best anti-reflection effect. The condition of an ideal single-layer anti-reflection coating is that the optical thickness of the coating layer is an odd multiple of a quarter wavelength, and its refractive index is the square root of the product of the refractive index of the incident medium and the substrate. The refractive index of the ITO transparent conductive film is about 1.7. If the incident medium is air, the refractive index of the air is 1. It can be seen that only when the base material is 2.89 and the optical thickness of the ITO transparent conductive film is an odd multiple of a quarter wavelength , in order to achieve the best anti-reflection effect. However, the refractive index of the semiconductor material on the surface of the red light-emitting diode is about 3.5. Therefore, in order to achieve the best anti-reflection effect while achieving a good current spreading effect, we designed a thin GaP layer prepared by ITO transparent The composite anti-reflection film formed by the conductive film and the Six Ny dielectric film can improve the extraction efficiency of the light emitting diode. The optical thickness of the ITO transparent conductive film is designed to be an integer multiple of half the LED emission wavelength, the optical thickness of the Six N y dielectric film is an odd multiple of a quarter of the LED emission wavelength, and the refractive index of the Six N y dielectric film is It is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer. When the optical thickness of a film layer is an integer multiple of one-half wavelength, this film layer will become a dummy layer, that is, it has no effect on the reflectivity of the central wavelength, and the ITO film cannot be used as the best In the case of the anti-reflection coating, we design its optical thickness to be an integer multiple of half the wavelength, so that it has no effect on the reflectivity of the emission wavelength of the light-emitting diode on which the ITO film is grown, and then use the plasma Enhanced chemical vapor deposition (PECVD) equipment re-grows a layer of Si x N y dielectric film (amorphous film) on ITO, so that its refractive index is the square root of the refractive index of the semiconductor material under the ITO transparent conductive film, and the optical thickness is quarter an odd multiple of one of the wavelengths. The required refractive index of the Six N y dielectric film is obtained by adjusting growth parameters using PECVD equipment. When the process parameters are determined, the growth rate remains basically unchanged, and the physical thickness of the Six N y dielectric film can be controlled by controlling the growth time. This method has a simple process and is easy to implement.
LED的外延片基本结构是在衬底8上依次生长N型半导体7,多量子阱有源区6,P型半导体5,GaP层4。我们设计的ITO透明导电膜与SixNy介质膜组成的复合增透膜生长在外延片最上层的半导体表面上。设计ITO透明导电膜3的光学厚度为二分之一LED发射波长的整数倍,SixNy介质膜2的光学厚度为四分之一LED发射波长的奇数倍,SixNy介质膜2的折射率是LED外延片最上层半导体材料的折射率的开方。The basic structure of the epitaxial wafer of the LED is to grow N-type semiconductor 7 , multi-quantum well active region 6 , P-type semiconductor 5 , and GaP layer 4 on the substrate 8 in sequence. The composite anti-reflection film composed of ITO transparent conductive film and Six N y dielectric film designed by us is grown on the uppermost semiconductor surface of the epitaxial wafer. The optical thickness of the ITO transparent conductive film 3 is designed to be an integer multiple of 1/2 of the LED emission wavelength, the optical thickness of the Six N y dielectric film 2 is an odd multiple of a quarter of the LED emission wavelength, and the Six N y dielectric film 2 The refractive index is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer.
本发明提供了一种高提取效率的半导体发光二极管结构,包括LED外延片,其特征是在LED外延片的最上层半导体材料表面上依次生长光学厚度为1/2波长整数倍的ITO透明导电膜3和光学厚度为1/4波长奇数倍的SixNy介质膜2,并且SixNy介质膜2的折射率为LED外延片最上层半导体材料的折射率的开方,P电极1的底部与ITO透明导电膜3直接接触,P电极1的侧壁与SixNy介质膜2直接接触。The invention provides a semiconductor light-emitting diode structure with high extraction efficiency, including an LED epitaxial wafer, which is characterized in that an ITO transparent conductive film with an optical thickness of an integral multiple of 1/2 wavelength is sequentially grown on the surface of the uppermost semiconductor material of the LED epitaxial wafer 3 and the Six N y dielectric film 2 whose optical thickness is an odd multiple of 1/4 wavelength, and the refractive index of the Six N y dielectric film 2 is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer, and the P electrode 1 The bottom is in direct contact with the ITO transparent conductive film 3 , and the sidewall of the P electrode 1 is in direct contact with the Six Ny dielectric film 2 .
本发明的特点在于它采用如下的工艺过程:The present invention is characterized in that it adopts following technological process:
1)制备LED外延片;1) Prepare LED epitaxial wafers;
2)在LED外延片的最上层半导体材料表面上生长光学厚度为二分之一LED发射波长整数倍的ITO透明导电膜3,能够很好的实现电流扩展作用;2) On the surface of the uppermost semiconductor material of the LED epitaxial wafer, grow an ITO transparent conductive film 3 whose optical thickness is an integral multiple of 1/2 the LED emission wavelength, which can well realize the current spreading effect;
3)在ITO透明导电膜3上,使用等离子体增强气相化学沉积法(PECVD)制备SixNy介质膜2,使用硅烷和氮气制备SixNy介质膜2,其光学厚度为四分之一LED发射波长的奇数倍,折射率为LED外延片最上层半导体材料的折射率的开方,SixNy介质膜2与ITO透明导电膜3共同作用形成复合增透膜,能够实现最佳增透效果;3) On the ITO transparent conductive film 3, the Six N y dielectric film 2 was prepared by plasma enhanced vapor phase chemical deposition (PECVD), and the Six N y dielectric film 2 was prepared by using silane and nitrogen, and its optical thickness was 1/4 An odd multiple of the LED emission wavelength, the refractive index is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer, and the Six Ny dielectric film 2 and the ITO transparent conductive film 3 work together to form a composite anti-reflection film, which can achieve the best Anti-reflection effect;
4)P电极1的制备:在SixNy介质膜2表面甩胶、光刻、显影,腐蚀掉电极位置的SixNy介质膜2,然后在上面蒸发金属电极,超声剥离,只留下电极位置的金属形成P电极1,使得P电极1的底部与ITO透明导电膜3直接接触,P电极1的侧壁与SixNy介质膜2直接接触;4) Preparation of the P electrode 1: Spray glue on the surface of the Six N y dielectric film 2, photolithography, and develop, etch the Six N y dielectric film 2 at the electrode position, then evaporate the metal electrode on it, and ultrasonically peel it off, leaving only The metal at the lower electrode position forms the P electrode 1, so that the bottom of the P electrode 1 is in direct contact with the ITO transparent conductive film 3, and the sidewall of the P electrode 1 is in direct contact with the Six N y dielectric film 2;
5)然后将LED外延片的衬底8减薄,在衬底8上蒸金属形成N电极9;5) Then the substrate 8 of the LED epitaxial wafer is thinned, and metal is evaporated on the substrate 8 to form an N electrode 9;
6)解理。6) Cleavage.
这种ITO透明导电膜3与SixNy介质膜2组成的复合增透膜结构不仅适用于红光LED,而且也适用于蓝光和绿光的GaN基的LED,在GaN基LED上起到好的电流扩展作用的同时能够达到最佳的增透效果。对于GaN基LED,由于制备GaN衬底非常困难,所以通常采用在蓝宝石作为衬底,然后再在蓝宝石衬底上依次生长GaN缓冲层,N型GaN材料,多量子有源区,P型GaN材料。由于蓝宝石衬底导电性和导热性差,N型电极和P型电极都是制备在上表面。ITO透明导电膜用于GaN基LED的电流扩展层时,光学厚度同样是二分之一的LED发射波长的整数倍。然后在ITO上面生长SixNy介质膜2,光学厚度是四分之一的LED发射波长的奇数倍,SixNy介质膜2的折射率则是GaN基LED的P型半导体材料折射率的平方根。GaN基蓝光、绿光的LED与红光LED相比,虽然制备LED外延片材料和器件的制备工艺过程不同,但是在LED外延片上生长ITO透明导电膜3与SixNy介质膜2组成的复合增透膜结构的设计原则是一致的。设计ITO透明导电膜3的光学厚度为二分之一LED发射波长的整数倍,SixNy介质膜2的光学厚度为四分之一LED发射波长的奇数倍,SixNy介质膜2的折射率是LED外延片最上层半导体材料的折射率的开方。可以采用如下过程制备GaN基LED器件:GaN基LED外延片先用ITO蒸发系统在LED外延片的最上层的半导体材料上蒸发光学厚度是二分之一LED发射波长的整数倍的ITO透明导电膜,然后通常以光刻胶或者SiO2为掩膜,采用ICP刻蚀法依次刻蚀P型GaN半导体材料,多量子有源区,一直到N型GaN材料,然后分别在N型GaN材料和P型GaN材料上分别制备N电极和P电极,再生长SixNy介质膜2,光学厚度是四分之一的LED发射波长的奇数倍,SixNy介质膜2的折射率则是GaN基LED外延片最上层半导体材料的折射率的开方。然后采用光刻腐蚀的方法,将N电极和P电极的位置暴露出来。P电极的底部与ITO透明导电膜直接接触,P电极的侧壁与SixNy介质膜2直接接触。N电极与LED侧壁不接触,N电极的底部与N型GaN半导体材料直接接触。The composite anti-reflection film structure composed of ITO transparent conductive film 3 and Six Ny dielectric film 2 is not only suitable for red LEDs, but also for blue and green GaN-based LEDs. It plays an important role in GaN-based LEDs. Good current expansion effect can achieve the best anti-reflection effect at the same time. For GaN-based LEDs, because it is very difficult to prepare GaN substrates, sapphire is usually used as the substrate, and then GaN buffer layers, N-type GaN materials, multi-quantum active regions, and P-type GaN materials are grown sequentially on the sapphire substrates. . Due to the poor conductivity and thermal conductivity of the sapphire substrate, both the N-type electrode and the P-type electrode are prepared on the upper surface. When the ITO transparent conductive film is used for the current spreading layer of GaN-based LEDs, the optical thickness is also an integer multiple of half of the LED emission wavelength. Then grow a Six Ny dielectric film 2 on the ITO, the optical thickness is an odd multiple of a quarter of the LED emission wavelength, and the refractive index of the Six Ny dielectric film 2 is the refractive index of the P-type semiconductor material of the GaN-based LED square root of . GaN-based blue and green LEDs are compared with red LEDs. Although the preparation process of LED epitaxial wafer materials and devices is different, the ITO transparent conductive film 3 and Six N y dielectric film 2 are grown on the LED epitaxial wafer. The design principles of the composite AR coating structure are the same. The optical thickness of the ITO transparent conductive film 3 is designed to be an integer multiple of 1/2 of the LED emission wavelength, the optical thickness of the Six N y dielectric film 2 is an odd multiple of a quarter of the LED emission wavelength, and the Six N y dielectric film 2 The refractive index is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer. GaN-based LED devices can be prepared by the following process: GaN-based LED epitaxial wafers are first evaporated on the uppermost semiconductor material of the LED epitaxial wafers with an ITO evaporation system, and an ITO transparent conductive film whose optical thickness is an integer multiple of 1/2 the LED emission wavelength , and then usually use photoresist or SiO 2 as a mask, and use ICP etching to etch the P-type GaN semiconductor material in sequence, the multi-quantum active region, until the N-type GaN material, and then respectively in the N-type GaN material and P The N electrode and the P electrode are respectively prepared on the GaN-type GaN material , and the Six N y dielectric film 2 is grown again. The root of the refractive index of the uppermost semiconductor material of the base LED epitaxial wafer. Then photolithography is used to expose the positions of the N electrode and the P electrode. The bottom of the P electrode is in direct contact with the ITO transparent conductive film, and the sidewall of the P electrode is in direct contact with the Six Ny dielectric film 2 . The N electrode is not in contact with the side wall of the LED, and the bottom of the N electrode is in direct contact with the N-type GaN semiconductor material.
ITO透明导电膜3和SixNy介质膜2在可见光和近红外范围内都有很高的透过率,光电子发光器件的半导体材料与空气折射率的差值是导致产生界面反射率的根源,因此为了减少界面反射率,达到最佳增透效果,这种复合增透膜也适用于其它光电子发光器件,用于减少表面反射率,提高光输出。这种复合增透膜的设计原则也是相同的,ITO透明导电膜3的光学厚度为二分之一LED发射波长的整数倍,SixNy介质膜2的光学厚度为四分之一LED发射波长的奇数倍,SixNy介质膜2的折射率是光电子发光器件外延片最上层半导体材料的折射率的开方。Both the ITO transparent conductive film 3 and the Six Ny dielectric film 2 have high transmittance in the visible and near-infrared ranges, and the difference in the refractive index between the semiconductor material of the optoelectronic light-emitting device and air is the root cause of the interface reflectance , so in order to reduce the interface reflectivity and achieve the best antireflection effect, this composite antireflection coating is also suitable for other optoelectronic light-emitting devices to reduce surface reflectivity and improve light output. The design principle of this composite anti-reflection film is also the same. The optical thickness of the ITO transparent conductive film 3 is an integer multiple of 1/2 of the LED emission wavelength, and the optical thickness of the Six N y dielectric film 2 is 1/4 of the LED emission wavelength. An odd multiple of the wavelength, the refractive index of the Six Ny dielectric film 2 is the square root of the refractive index of the uppermost semiconductor material of the epitaxial wafer of the optoelectronic light-emitting device.
上述发明的结构设计及工艺方法具有以下优点:The structural design and process method of the above invention have the following advantages:
1)采用光学厚度为二分之一LED发射波长的整数倍的ITO透明导电膜3能够很好的实现电流扩展作用;1) The use of ITO transparent conductive film 3 whose optical thickness is an integral multiple of 1/2 of the LED emission wavelength can well realize the current expansion effect;
2)采用的SixNy介质膜2的折射率LED外延片最上层半导体材料的折射率的开方,光学厚度为四分之一LED发射波长的奇数倍,能够和ITO透明导电膜3组合形成复合增透膜达到最佳的增透效果;2) The refractive index of the Six Ny dielectric film 2 used is the root of the refractive index of the uppermost semiconductor material of the LED epitaxial wafer, and the optical thickness is an odd multiple of a quarter of the LED emission wavelength, which can be combined with the ITO transparent conductive film 3 Form a composite anti-reflection film to achieve the best anti-reflection effect;
3)使用PECVD制备SixNy介质膜2,可以通过调节生长工艺参数灵活的将SixNy介质膜2的折射率调整到所需要的数值,容易实施;3) Using PECVD to prepare the Six N y dielectric film 2, the refractive index of the Six N y dielectric film 2 can be flexibly adjusted to the required value by adjusting the growth process parameters, which is easy to implement;
4)采用ITO透明导电膜3和SixNy介质2膜形成的复合膜能够能够很好的实现电流扩展并且达到最佳的增透效果,理论上可以将表面反射率降为0,提高LED的光提取效率,在器件上生长ITO透明导电膜3与SixNy介质膜2形成的复合增透膜后,光强能够提高130%以上。4) The composite film formed by ITO transparent conductive film 3 and Six N y dielectric 2 film can well realize current expansion and achieve the best anti-reflection effect. In theory, the surface reflectance can be reduced to 0, and the LED can be improved. The light extraction efficiency is high. After growing the composite anti-reflection film formed by the ITO transparent conductive film 3 and the Six Ny dielectric film 2 on the device, the light intensity can be increased by more than 130%.
四.附图说明4. Description of drawings
图1为带有ITO透明导电膜与SixNy介质膜构成的复合增透膜的LED的剖面图1-P电极,2-SixNy介质膜,3-ITO透明导电膜,4-GaP层,5-P型半导体,6-多量子阱有源区,7-N型半导体,8-衬底,9-N电极;Figure 1 is a cross-sectional view of an LED with a composite anti-reflection film composed of an ITO transparent conductive film and a Six N y dielectric film. 1-P electrode, 2- Six N y dielectric film, 3-ITO transparent conductive film, 4- GaP layer, 5-P-type semiconductor, 6-multiple quantum well active region, 7-N-type semiconductor, 8-substrate, 9-N electrode;
五.具体实施方式5. Specific implementation
对比例:Comparative example:
1)制备红光LED外延片,即在衬底8上依次生长N型半导体7,多量子阱有源区6,P型半导体5,GaP层4;1) Prepare a red LED epitaxial wafer, that is, grow an N-type semiconductor 7, a multi-quantum well active region 6, a P-type semiconductor 5, and a GaP layer 4 sequentially on a substrate 8;
2)P电极1的制备:将用丙酮和无水乙醇以及去离子水清洗带有50nm GaP层4的样品放入到金属电极溅射系统腔室内,溅射AuZnAu,然后用光刻胶做保护,用金属腐蚀液将P电极1以外的部分腐蚀掉,只留下电极位置的金属形成P电极1;2) Preparation of P electrode 1: Clean the sample with 50nm GaP layer 4 with acetone, absolute ethanol and deionized water, put it into the metal electrode sputtering system chamber, sputter AuZnAu, and then protect it with photoresist , using a metal corrosion solution to corrode the part other than the P electrode 1, leaving only the metal at the electrode position to form the P electrode 1;
3)然后将衬底8减薄,在衬底8上蒸发金属AuGeNi形成N电极9;3) Then substrate 8 is thinned, and metal AuGeNi is evaporated on substrate 8 to form N electrode 9;
4)解理。4) Cleavage.
使用光强测试设备对只有50nmGaP的8支管芯进行测试。在20mA恒流下,电压平均值为2.22V,光强平均值为49mcd。Only 8 tube cores of 50nmGaP are tested using light intensity testing equipment. Under the constant current of 20mA, the average voltage is 2.22V, and the average light intensity is 49mcd.
实施例:Example:
1)制备红光LED外延片,即在衬底8上依次生长N型半导体7,多量子阱有源区6,P型半导体5,GaP层4,该LED外延片的最上层半导体材料即为GaP层4;1) Preparing a red LED epitaxial wafer, that is, growing an N-type semiconductor 7, a multi-quantum well active region 6, a P-type semiconductor 5, and a GaP layer 4 sequentially on a substrate 8, and the uppermost semiconductor material of the LED epitaxial wafer is GaP layer 4;
2)将用丙酮和无水乙醇以及去离子水清洗过的样品放入到ITO电子束蒸发台,在GaP层4上生长光学厚度为1/2波长的ITO透明导电膜3,生长温度为190℃,氧流量为3sccm,蒸发速率为0.2nm/s;(在实际的制备过程中,根据自己设备的情况,可以灵活调整生长温度、氧流量等这些生长工艺参数,制备出所需要的ITO透明导电膜3);2) Put the sample cleaned with acetone, absolute ethanol and deionized water into the ITO electron beam evaporation station, grow an ITO transparent conductive film 3 with an optical thickness of 1/2 wavelength on the GaP layer 4, and the growth temperature is 190 ℃, the oxygen flow rate is 3sccm, and the evaporation rate is 0.2nm/s; (In the actual preparation process, according to the conditions of your own equipment, you can flexibly adjust the growth process parameters such as growth temperature and oxygen flow rate to prepare the required ITO transparent conductive film3);
3)使用PECVD设备在ITO透明导电膜3上生长SixNy介质膜2:沉积温度为300℃,13.56MHz高频激励源功率为20W,通入纯度为5%的硅烷和高纯氮气,它们的流量分别为30sccm,900sccm,生长的SixNy介质膜2光学厚度为四分之一LED发射波长,折射率为GaP层4折射率的开方,即85nm厚的折射率为1.82的SixNy介质膜2;(在使用PECVD制备介质膜的过程中,可以灵活调整温度,气体流量,高频激励源功率等这些生长工艺参数,制备出所需要的SixNy介质膜2);3) Using PECVD equipment to grow Six Ny dielectric film 2 on the ITO transparent conductive film 3: the deposition temperature is 300°C, the power of the 13.56MHz high-frequency excitation source is 20W, and silane and high-purity nitrogen gas with a purity of 5% are introduced, Their flows are 30sccm and 900sccm respectively, and the optical thickness of the grown Six Ny dielectric film 2 is a quarter of the LED emission wavelength. Six N y dielectric film 2; (In the process of preparing dielectric film by PECVD, the growth process parameters such as temperature, gas flow rate, and high-frequency excitation source power can be flexibly adjusted to prepare the required Six N y dielectric film 2) ;
4)P电极1的制备:在SixNy介质膜2上甩胶、光刻、显影,腐蚀掉电极位置的SixNy介质膜2,然后在上面蒸发金属电极Cr/Au,超声剥离,只留下电极位置的金属形成P电极1,使得P电极1的底部与ITO透明导电膜3直接接触,P电极1的侧壁与SixNy介质膜2直接接触;4) Preparation of P electrode 1: Spin glue, photolithography, and develop on the Six N y dielectric film 2, etch the Six N y dielectric film 2 at the electrode position, then evaporate the metal electrode Cr/Au on it, and ultrasonically peel it off , leaving only the metal at the electrode position to form the P electrode 1, so that the bottom of the P electrode 1 is in direct contact with the ITO transparent conductive film 3, and the sidewall of the P electrode 1 is in direct contact with the Six N y dielectric film 2;
5)然后将衬底8减薄,在衬底8蒸金属AuGeNi形成N电极9;5) Then the substrate 8 is thinned, and the metal AuGeNi is steamed on the substrate 8 to form an N electrode 9;
6)解理。6) Cleavage.
使用光强测试设备对50nmGaP层4上生长光学厚度为1/2波长的ITO透明导电膜和光学厚度为四分之一LED发射波长的SixNy介质膜的8支管芯进行了测试。在20mA恒流下,电压平均值为1.94V,光强为118.6mcd.,与只有50nmGaP的LED相比,光强提高了142%,电压降低了12.6%。这说明该种设计和工艺过程在提高LED光输出的同时,器件的电特性没有变坏。Using the light intensity test equipment, 8 tube cores grown on the 50nm GaP layer 4 with an ITO transparent conductive film with an optical thickness of 1/2 wavelength and a Six N y dielectric film with an optical thickness of 1/4 the LED emission wavelength were tested. Under 20mA constant current, the average voltage is 1.94V, and the light intensity is 118.6mcd. Compared with the LED with only 50nmGaP, the light intensity is increased by 142%, and the voltage is reduced by 12.6%. This shows that the design and process improve the light output of the LED without deteriorating the electrical characteristics of the device.
本领域的人员都知道,制备蓝光、绿光LED外延片的材料和红光LED外延片的不同。蓝、绿光LED器件上制备ITO透明导电膜3与SixNy介质膜2形成的复合增透膜的设计原则一致,都是在结构LED外延片的最上层半导体材料上生长ITO透明导电膜和SixNy介质膜2,并且制备在蓝光、绿光LED上的ITO透明导电膜和SixNy介质膜2的工艺方法一致。Those skilled in the art know that the materials used to prepare blue and green LED epitaxial wafers are different from those of red LED epitaxial wafers. The design principles of the ITO transparent conductive film 3 and the composite anti-reflection film formed by the Six N y dielectric film 2 on the blue and green LED devices are consistent, and the ITO transparent conductive film is grown on the uppermost semiconductor material of the structured LED epitaxial wafer. It is the same as the Six N y dielectric film 2, and the process of preparing the ITO transparent conductive film and the Six N y dielectric film 2 on the blue and green LEDs is the same.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101140809A CN100375304C (en) | 2006-10-27 | 2006-10-27 | High extraction efficiency semiconductor light-emitting diode structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101140809A CN100375304C (en) | 2006-10-27 | 2006-10-27 | High extraction efficiency semiconductor light-emitting diode structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1945862A true CN1945862A (en) | 2007-04-11 |
CN100375304C CN100375304C (en) | 2008-03-12 |
Family
ID=38045141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101140809A Expired - Fee Related CN100375304C (en) | 2006-10-27 | 2006-10-27 | High extraction efficiency semiconductor light-emitting diode structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100375304C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102280551A (en) * | 2010-06-08 | 2011-12-14 | 鸿富锦精密工业(深圳)有限公司 | Light emitting diode and manufacturing method thereof |
CN102280552A (en) * | 2010-06-14 | 2011-12-14 | 鸿富锦精密工业(深圳)有限公司 | Light emitting diode crystal grain and manufacture method thereof |
CN106025012A (en) * | 2016-07-26 | 2016-10-12 | 湘能华磊光电股份有限公司 | Preparation method of LED chip and LED chip prepared by adopting method |
CN114497325A (en) * | 2022-01-14 | 2022-05-13 | 武汉大学 | Quantum dot embedded full-color Micro-LED display chip and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720585B1 (en) * | 2001-01-16 | 2004-04-13 | Optical Communication Products, Inc. | Low thermal impedance DBR for optoelectronic devices |
JP2003107241A (en) * | 2001-09-28 | 2003-04-09 | Nagoya Industrial Science Research Inst | Multi-layered reflecting film |
-
2006
- 2006-10-27 CN CNB2006101140809A patent/CN100375304C/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102280551A (en) * | 2010-06-08 | 2011-12-14 | 鸿富锦精密工业(深圳)有限公司 | Light emitting diode and manufacturing method thereof |
CN102280551B (en) * | 2010-06-08 | 2015-08-05 | 鸿富锦精密工业(深圳)有限公司 | Light-emitting diode and manufacture method thereof |
CN102280552A (en) * | 2010-06-14 | 2011-12-14 | 鸿富锦精密工业(深圳)有限公司 | Light emitting diode crystal grain and manufacture method thereof |
CN102280552B (en) * | 2010-06-14 | 2015-06-03 | 鸿富锦精密工业(深圳)有限公司 | Light emitting diode crystal grain and manufacture method thereof |
CN106025012A (en) * | 2016-07-26 | 2016-10-12 | 湘能华磊光电股份有限公司 | Preparation method of LED chip and LED chip prepared by adopting method |
CN114497325A (en) * | 2022-01-14 | 2022-05-13 | 武汉大学 | Quantum dot embedded full-color Micro-LED display chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100375304C (en) | 2008-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7704764B2 (en) | Fabrication method of GaN power LEDs with electrodes formed by composite optical coatings | |
CN101814562B (en) | A low-cost light-emitting diode with two-dimensional photonic crystals | |
CN104882523A (en) | GaN-based light-emitting diode chip with gradually-changed refractive index of passivation layer, and manufacturing method of GaN-based light-emitting diode chip | |
CN100479207C (en) | LED with high light extracting efficiency and preparing method thereof | |
CN100375304C (en) | High extraction efficiency semiconductor light-emitting diode structure and preparation method thereof | |
CN106784218B (en) | LED chip and manufacturing method thereof | |
CN106549087A (en) | A kind of preparation method of high brightness LED chip | |
US20240222546A1 (en) | Manufacturing method for high-voltage led chip | |
CN105449059A (en) | GaN-based LED chip with current-expanding antireflection film layers, and preparation method for GaN-based LED chip | |
CN102064250B (en) | Substrate-glaring SiC substrate vertical structure light-emitting tube and preparation method thereof | |
CN103972350B (en) | LED (light-emitting diode) chip with novel structure and production method thereof | |
CN1881624A (en) | Light-emitting diode and its preparation method | |
CN102651438A (en) | Substrate, preparation method thereof and chip with substrate | |
CN106531869A (en) | Convex type LED chip structure and manufacturing method thereof | |
CN2881964Y (en) | A light-emitting diode with high light extraction efficiency | |
CN108231967B (en) | Light-emitting diode, preparation method thereof, and lighting device | |
CN201060868Y (en) | High Extraction Efficiency Semiconductor Light-Emitting Diode Structure | |
CN110246934A (en) | The production method and light-emitting diode chip for backlight unit of light-emitting diode chip for backlight unit | |
CN202523712U (en) | Array type true color light emitting diode chip | |
CN103296046B (en) | A kind of LED | |
CN101060150A (en) | A LED manufactured on the SiC substrate | |
CN102064251B (en) | High-power SiC substrate vertical structure light-emitting diode and preparation method thereof | |
CN103682006A (en) | LED (light emitting diode) structure and manufacturing method thereof | |
CN203218311U (en) | A power LED chip with N-type transparent electrode structure | |
CN106057998A (en) | GaAs-based light emitting diode chip possessing current blocking layer and current extension layer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: BEIJING TAISHIXINGUANG SCIENCE CO., LTD. Free format text: FORMER OWNER: BEIJING POLYTECHNIC UNIV. Effective date: 20081024 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20081024 Address after: Branch of Beijing economic and Technological Development Zone two Beijing street, No. 4 Building 2 layer in the south of 1-4 Patentee after: Beijing TimesLED Technology Co.,Ltd. Address before: No. 100 Ping Park, Beijing, Chaoyang District Patentee before: Beijing University of Technology |
|
C56 | Change in the name or address of the patentee | ||
CP03 | Change of name, title or address |
Address after: No. 1 North Ze street, Beijing Economic Development Zone, Beijing Patentee after: Beijing TimesLED Technology Co.,Ltd. Address before: Branch of Beijing economic and Technological Development Zone two Beijing street, No. 4 Building 2 layer in the south of 1-4 Patentee before: Beijing TimesLED Technology Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080312 Termination date: 20151027 |
|
EXPY | Termination of patent right or utility model |