CN1911786A - Preparation method of mesopore metal oxide - Google Patents
Preparation method of mesopore metal oxide Download PDFInfo
- Publication number
- CN1911786A CN1911786A CN200610088467.1A CN200610088467A CN1911786A CN 1911786 A CN1911786 A CN 1911786A CN 200610088467 A CN200610088467 A CN 200610088467A CN 1911786 A CN1911786 A CN 1911786A
- Authority
- CN
- China
- Prior art keywords
- metal oxide
- metal
- oxide preparation
- preparation
- mesoporous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 20
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims abstract description 16
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000012153 distilled water Substances 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 7
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 5
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 5
- 229960001763 zinc sulfate Drugs 0.000 claims description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000000967 suction filtration Methods 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- -1 Xiao Suangu Chemical compound 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 150000003839 salts Chemical class 0.000 abstract description 7
- 230000035484 reaction time Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 239000011148 porous material Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 238000001354 calcination Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010189 synthetic method Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- 239000013335 mesoporous material Substances 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910016978 MnOx Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 102220500397 Neutral and basic amino acid transport protein rBAT_M41T_mutation Human genes 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N hydroquinone methyl ether Natural products COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
介孔金属氧化物的制备方法:将金属盐溶解在丙烯酸中,金属盐与丙烯酸的摩尔比为1∶0.1~10搅拌0.2-2h、分别抽滤,并用蒸馏水、酒精各洗1-3遍并干燥;将干燥粉末平铺在坩埚中,在马弗炉中分别在200-350℃温度焙烧3-8h,升温速率都是2-8℃/min。本发明反应时间短,制备周期短。The preparation method of mesoporous metal oxide: dissolve the metal salt in acrylic acid, the molar ratio of metal salt and acrylic acid is 1:0.1~10, stir for 0.2-2h, filter with suction respectively, and wash with distilled water and alcohol for 1-3 times respectively. Drying: spread the dry powder in a crucible, and bake in a muffle furnace at a temperature of 200-350°C for 3-8 hours, and the heating rate is 2-8°C/min. The invention has short reaction time and short preparation period.
Description
一、技术领域1. Technical field
本发明涉及一种介孔金属氧化物(其中包括CeO2,Nb2O5,Ta2O5,CuO,V2O5,NiO,ZnO,Fe2O3,Al2O3,TiO2,ZrO2,SnO2和SiO2)粉体材料的新型制备方法。The present invention relates to a mesoporous metal oxide (including CeO2, Nb 2 O 5 , Ta 2 O 5 , CuO, V 2 O 5 , NiO, ZnO, Fe 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , a new preparation method of SnO 2 and SiO 2 ) powder materials.
二、背景技术2. Background technology
纳米尺寸的材料在近些年已经成为众多科学和技术研究的课题,由于这些材料在不同领域的潜在应用,在这些研究中,由于它们的电学和磁学性质,金属氧化物的潜在应用受到更多的关注。Nanoscale materials have been the subject of numerous scientific and technological studies in recent years due to the potential applications of these materials in different fields, in which the potential applications of metal oxides have been more influenced by their electrical and magnetic properties. Much attention.
如Co3O4超细粉末还广泛应用于颜料、有色玻璃、磁性材料、陶瓷等方面,在电子工业中,要求其纯度高、粒度细、粒径分布范围窄、烧结活性好;在环保化学工程中,它是CO还原SO2、氨氧化、甲烷还原NO的最有效催化剂;在陶瓷功能材料中,广泛用于制造热敏和压敏电极、气敏传感器、磁性材料和锂离子正极材料。所有这些应用中,Co3O4的微观结构,如晶粒大小、分布范围、晶体形貌是影响和决定其性能的关键参数纳米Co3O4是红褐色的粉末,不溶于水,具有磁性。For example, Co 3 O 4 ultrafine powder is also widely used in pigments, colored glass, magnetic materials, ceramics, etc. In the electronics industry, it is required to have high purity, fine particle size, narrow particle size distribution range, and good sintering activity; in environmental protection chemistry In engineering, it is the most effective catalyst for CO reduction of SO 2 , ammonia oxidation, and methane reduction of NO; in ceramic functional materials, it is widely used in the manufacture of thermal and pressure sensitive electrodes, gas sensors, magnetic materials and lithium ion cathode materials. In all these applications, the microstructure of Co 3 O 4 , such as grain size, distribution range, and crystal morphology are key parameters that affect and determine its performance. Nano Co 3 O 4 is a reddish-brown powder, insoluble in water, and magnetic .
Fe2O3是制造软磁铁氧体的主要原料之一,它在彩电、录相机、计算机、通讯设备等电子产品方面有着极为广泛的用途;α-Fe3O4亦可用于涂料行业,市场需求量很大。可以用做催化剂来产生清洁运输燃料,也可用来制作充电锂电池,在磁性探测领域也有重要的应用。Fe 2 O 3 is one of the main raw materials for making soft ferrite. It is widely used in electronic products such as color TVs, video cameras, computers, and communication equipment; α-Fe 3 O 4 can also be used in the coating industry, the market In great demand. It can be used as a catalyst to produce clean transportation fuel, and can also be used to make rechargeable lithium batteries. It also has important applications in the field of magnetic detection.
ZnO是一种具有六方结构的宽带隙半导体材料,室温下的禁带宽度为3.34eV,激子结合能高达60meV,是制备紫外光电子器件的优良材料,是重要的半导体材料,也是少数几种易于实现量子尺寸效应的氧化物半导体之一,已广泛用作光电池、陶瓷、压敏、传感器、催化剂、发光材料等。目前,随着氧化锌纳米制备技术的发展和低压高效荧光性能的发现,材料的应用又进一步扩展到滤光、化妆、平板显示等领域。这些应用皆与粒子尺寸及其性质密切相关。ZnO is a wide-bandgap semiconductor material with a hexagonal structure. The band gap at room temperature is 3.34eV, and the exciton binding energy is as high as 60meV. It is an excellent material for the preparation of ultraviolet optoelectronic devices and is an important semiconductor material. One of the oxide semiconductors that realize the quantum size effect, it has been widely used as photovoltaic cells, ceramics, pressure sensitive, sensors, catalysts, light-emitting materials, etc. At present, with the development of ZnO nano-preparation technology and the discovery of low-voltage high-efficiency fluorescent properties, the application of materials has further expanded to filter, makeup, flat panel display and other fields. These applications are closely related to particle size and its properties.
Al2O3,TiO2,ZrO2,SnO2和SiO2等材料在催化和传感器制造等诸方面都有着广阔的用途,而大比表面且具有均匀孔径分布的介孔材料有着广泛的应用。Materials such as Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 and SiO 2 are widely used in catalysis and sensor manufacturing, and mesoporous materials with large specific surface and uniform pore size distribution are widely used.
制备金属氧化物的介孔结构(20-150)会带给这些氧化物材料特殊的性质。这种孔状结构大幅度的增加了金属氧化物的表面积。而这些金属氧化物的表面往往是催化反应发生的场所,从而在孔与孔之间显著的改变材料的电学,磁学和光学性质。介孔结构的硅,硅酸铝,磷酸铝和相关材料已经被很好的制得。然而,合成金属氧化物的介孔结构要困难的多。因为对于氧化物材料,因受限于金属离子复杂的水解化学及相应氧化物的众多物相,进展相对缓慢。一些初创的工作取得了一些成功,像Nb2O5,TiO2,ZrO2,WO3,和MnOx,使用了表面活化剂,包括配位辅助的表面活化剂。1992年,利用模板法合成M41S系列有序介孔SiO2材料的研究工作被报道出来,此后多种材料(TiO2、Nb2O5、Tb2O5、ZrO2、V2O5等)的介孔结构都相继被合成出来。介孔材料具有较大的比表面积,均匀的孔径及规则的孔道分布,使其在催化应用上具有普通材料无法比拟的优势。使得催化材料在应用上更趋于现实。然而传统的介孔合成方法较为繁琐,合成周期也较长,传统使用表面活性剂等也较为昂贵。The mesoporous structure (20-150 Å) of the metal oxides is produced to give these oxide materials special properties. This porous structure greatly increases the surface area of the metal oxide. The surface of these metal oxides is often the site of catalytic reactions, which significantly change the electrical, magnetic and optical properties of the material from pore to pore. Mesoporous silicon, aluminosilicates, aluminophosphates and related materials have been well prepared. However, synthesizing mesoporous structures of metal oxides is much more difficult. Because for oxide materials, due to the complex hydrolysis chemistry of metal ions and the numerous phases of corresponding oxides, the progress is relatively slow. Some initial work has achieved some success, like Nb 2 O 5 , TiO 2 , ZrO 2 , WO 3 , and MnOx, using surfactants, including coordination-assisted surfactants. In 1992, the research work on synthesizing M41S series of ordered mesoporous SiO 2 materials by the template method was reported. Since then, various materials (TiO 2 , Nb 2 O 5 , Tb 2 O 5 , ZrO 2 , V 2 O 5 , etc.) Mesoporous structures have been synthesized successively. Mesoporous materials have large specific surface area, uniform pore size and regular pore distribution, so that they have incomparable advantages in catalytic applications. It makes the application of catalytic materials more realistic. However, the traditional mesoporous synthesis method is more cumbersome, the synthesis cycle is longer, and the traditional use of surfactants is also more expensive.
杨儒;刘建红;李敏申请的中国专利“介孔稀土氧化物的制备方法”(专利号02158777.9)涉及一种介孔稀土氧化物的制备方法,包括凝胶制备、溶剂置换及焙烧过程。将带有结晶水的稀土强酸盐溶解于去离子水配成溶液,再分别加入水溶性高分子或水溶性有机醇和有机胺作为混合模板剂,在高速搅拌条件下,与稀土强酸盐溶形成螯合体,以氨水、尿素和尿素衍生物为沉淀剂,均匀沉淀反应生成稀土元素氢氧化物介孔中间相,反应完全后,产物经陈化、去离子水洗涤,无水乙醇置换、干燥、焙烧,得介孔稀土氧化物粉体。其方法中不使用丙烯酸,本发明与之并无矛盾。Yang Ru; Liu Jianhong; Li Min applied for the Chinese patent "Preparation Method of Mesoporous Rare Earth Oxide" (Patent No. 02158777.9), which involves a preparation method of mesoporous rare earth oxide, including gel preparation, solvent replacement and roasting process. Dissolve rare earth strong salts with crystal water in deionized water to form a solution, then add water-soluble polymers or water-soluble organic alcohols and organic amines as mixed templates, and dissolve them with rare earth strong salts under high-speed stirring Form a chelate body, use ammonia water, urea and urea derivatives as precipitants, uniformly precipitate and react to form a rare earth element hydroxide mesoporous mesophase, after the reaction is complete, the product is aged, washed with deionized water, replaced with anhydrous ethanol, and dried and roasting to obtain mesoporous rare earth oxide powder. Acrylic acid is not used in its process, and the present invention is not inconsistent with it.
张金龙;袁帅;盛巧蓉;陈锋;田宝柱;孙健的中国专利申请“一种制备二氧化钛介孔材料的方法”(专利号200410025753.4)采用嵌段共聚物为模板,采用溶胶凝胶法制备二氧化钛介孔材料,其发明必须使用嵌段共聚物,本发明与之没有冲突。Zhang Jinlong; Yuan Shuai; Sheng Qiaorong; Chen Feng; Tian Baozhu; Sun Jian's Chinese patent application "a method for preparing titanium dioxide mesoporous materials" (patent number 200410025753.4) uses block copolymers as templates and prepares titanium dioxide mesoporous materials by sol-gel method material, whose invention must use block copolymers, the present invention does not conflict with it.
孙印勇;原利娜;肖丰收的中国专利“具有高比表面积介孔超强酸材料及制备方法”(专利号02132454.9)具有高比表面积介孔超强酸材料及制备方法属于无机化学与物理化学领域。这些超强酸材料由硫化的金属氧化物MXOY/SO42-组成,M=Zr4+,Fe3+,Ti4+,Sn4+等,它们的比表面积在150~200m2/g,介孔变化范围为20nm~200nm。其制备方法是先将金属氧化物的可溶性盐在表面活性剂的存在下加水搅拌均匀,在30~80℃放置0.5~500小时,然后滴加氨水水解使溶液pH值为7~10,得到前驱体,再经老化、硫化、煅烧制得超强酸材料。本发明不需要溶胶凝胶过程,而是将加入丙烯酸瞬间形成的沉淀进行煅烧,与之没有冲突。Sun Yinyong; Yuan Lina; Xiao Fengshou's Chinese patent "Mesoporous superacid material with high specific surface area and preparation method" (Patent No. 02132454.9) Mesoporous superacid material with high specific surface area and preparation method belong to the field of inorganic chemistry and physical chemistry. These superacid materials are composed of sulfurized metal oxides MXOY/SO42-, M=Zr4+, Fe3+, Ti4+, Sn4+, etc. Their specific surface area is 150-200m2/g, and the range of mesopores is 20nm-200nm. Its preparation method is to add water and stir the soluble salt of metal oxide in the presence of surfactant, and place it at 30-80°C for 0.5-500 hours, then add ammonia water to hydrolyze the solution to make the pH value of the solution 7-10, and obtain the precursor body, and then aged, vulcanized, and calcined to obtain a superacid material. The present invention does not need the sol-gel process, but the precipitate formed instantly after adding acrylic acid is calcined, and there is no conflict with it.
三、发明内容3. Contents of the invention
本发明目的是:开发出一种系列制备介孔金属氧化物粉体材料的方法,这种方法方便,快速,成本低,通用性强。所得到的介孔材料孔道尺寸3nm~10nm,孔径分布狭窄,呈蠕虫状无序孔道结构。The object of the present invention is to develop a series of methods for preparing mesoporous metal oxide powder materials, which are convenient, fast, low in cost and strong in versatility. The obtained mesoporous material has a pore size of 3 nm to 10 nm, a narrow pore size distribution, and a worm-like disordered pore structure.
本发明目的还在于:针对传统合成方法的缺点,在合成工作上改进和摸索,提出一种简单、高效、快捷、廉价的合成方法。The object of the present invention is also to: aim at the shortcoming of traditional synthetic method, improve and explore on synthetic work, propose a kind of simple, efficient, fast, cheap synthetic method.
本发明的技术解决方案是:介孔金属氧化物的制备方法:具体实验步骤即包括具体工艺过程为:The technical solution of the present invention is: the preparation method of mesoporous metal oxide: the specific experimental steps promptly include specific process as:
1将金属盐(包括硝酸盐,氯化物和硫酸盐等金属盐)溶解在丙烯酸、丁烯酸以及其他的烯酸的水溶液中,金属盐与丙烯酸或其他的烯酸的摩尔比(化学计量比)为1∶0.1~10在烧杯中搅拌均匀。1 Dissolve metal salts (including metal salts such as nitrates, chlorides, and sulfates) in aqueous solutions of acrylic acid, crotonic acid, and other enoic acids. The molar ratio of metal salts to acrylic acid or other enoic acids (stoichiometric ratio ) is 1:0.1~10 and stir evenly in a beaker.
2将烧杯分别搅拌0.2-2h。2 Stir the beakers separately for 0.2-2h.
3分别抽滤,并用蒸馏水、酒精各洗1-3遍,干燥。3 Suction filtration respectively, wash with distilled water and alcohol 1-3 times respectively, and dry.
4将干燥粉末平铺在坩埚中,在马弗炉中分别在一定200-350℃温度焙烧3-8h,升温速率都是2-8℃/min。4 Spread the dried powder in a crucible, and bake in a muffle furnace at a temperature of 200-350°C for 3-8 hours, and the heating rate is 2-8°C/min.
5本发明干燥时放在50-80℃的烘箱中烘2-5个小时再进入马弗炉中焙烧。5. When the present invention is dried, it is placed in an oven at 50-80° C. for 2-5 hours and then baked in a muffle furnace.
6本发明制备过程中可以进行加热或者调解溶液的PH值。6. During the preparation process of the present invention, heating or adjusting the pH value of the solution can be carried out.
本发明还包括,将烧杯放入超声清洗器中超声处理3-15min再进行水洗抽滤。The present invention also includes putting the beaker into an ultrasonic cleaner for ultrasonic treatment for 3-15 minutes, and then performing water washing and suction filtration.
所述金属盐包括四氯化钛、硝酸钴、硫酸锌、硫酸铝、Zn、Sn、Si、Nb、Ti、Zr、W、Mn、V、Ni、Al的硫酸盐或硝酸盐,即包括过渡金属、Nb、Ti、Zr、W或V的硫酸盐或硝酸盐。The metal salts include sulfates or nitrates of titanium tetrachloride, cobalt nitrate, zinc sulfate, aluminum sulfate, Zn, Sn, Si, Nb, Ti, Zr, W, Mn, V, Ni, Al, including transition Sulfate or nitrate of metal, Nb, Ti, Zr, W or V.
本发明方法不是用昂贵的金属醇盐,而是使用成本低廉的硝酸盐、硫酸盐或者氯化物作为前驱体。The method of the invention does not use expensive metal alkoxides, but uses low-cost nitrates, sulfates or chlorides as precursors.
其次,本发明方法不使用传统的昂贵的表面活性剂作为络合剂,而是使用较为廉价的工业原料丙烯酸。Secondly, the method of the present invention does not use traditional expensive surfactants as complexing agents, but uses relatively cheap industrial raw material acrylic acid.
第三,制备时间由传统方法的几十小时至几天缩减到几个小时,大大加快了生产周期。Third, the preparation time is reduced from tens of hours to several days in traditional methods to several hours, which greatly speeds up the production cycle.
第四,本方法使用范围较广,对于传统的合成方法,合成CeO2,Nb2O5,Ta2O5,CuO,V2O5,NiO,ZnO,Fe2O3,Al2O3,TiO2,ZrO2,SnO2和SiO2)必须选择不同的表面活性剂(如阳离子表面活性剂和阴离子表面活性剂等等),而本发明方法可以只使用一种类型的表面活性剂。Fourth, this method has a wide range of applications. For traditional synthesis methods, CeO 2 , Nb 2 O 5 , Ta 2 O 5 , CuO, V 2 O 5 , NiO, ZnO, Fe 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 and SiO 2 ) must select different surfactants (such as cationic surfactant and anionic surfactant, etc.), but the method of the present invention can only use one type of surfactant.
第五,本发明不需要溶胶凝胶过程,而是将加入丙烯酸以及其他有机酸形成的沉淀进行煅烧,这是与其它方法本质不同之处。Fifth, the present invention does not require a sol-gel process, but calcines the precipitate formed by adding acrylic acid and other organic acids, which is essentially different from other methods.
本发明的特点是:The features of the present invention are:
1、反应时间短,制备周期短。本方法的原料的混合过程和反应过程的时间都比较短,反应时间一般不超过5个小时。1. The reaction time is short and the preparation cycle is short. The time of the mixing process of the raw materials and the reaction process of the method is relatively short, and the reaction time is generally not more than 5 hours.
2、成本低廉。本发明所采用的原料价格较为低廉,生产设备要求非常简单,不涉及高压釜等成本较高的设备,大规模生产的成本较为低廉。2. Low cost. The price of raw materials adopted in the present invention is relatively low, and the requirements for production equipment are very simple, no high-cost equipment such as an autoclave is involved, and the cost of large-scale production is relatively low.
3、对环境的污染较少,除丙烯酸外本方法不涉及其它有机溶剂的使用,而丙烯酸基本完全参加反应,不会产生废水和废渣。3. The pollution to the environment is less, and the method does not involve the use of other organic solvents except acrylic acid, and acrylic acid basically completely participates in the reaction, and no waste water and waste residue will be generated.
4、可以合成多种介孔金属氧化物,具有较好的通用性。本方法可以合成Nb2O5,Ta2O5,CuO,V2O5,NiO,ZnO,Fe2O3,Al2O3,TiO2,ZrO2,SnO2和SiO2等多种介孔金属氧化物。4. A variety of mesoporous metal oxides can be synthesized, which has good versatility. This method can synthesize Nb 2 O 5 , Ta 2 O 5 , CuO, V 2 O 5 , NiO, ZnO, Fe 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 and SiO 2 etc. porous metal oxides.
四、附图说明4. Description of drawings
图1是实施例1的产品的XRD图,Fig. 1 is the XRD figure of the product of
图2是实施例1的产品的孔径分布曲线;Fig. 2 is the pore size distribution curve of the product of
五.具体实施方式5. Specific implementation
实施例1:化学计量比为1∶1的硝酸钴与丙烯酸在烧杯中混合十分钟,所得沉淀过滤,洗涤,装入粘土坩埚,放置于马弗炉中,经过300摄氏度五个小时的煅烧取出,得到的产品适当研磨即可得到介孔Co4O3。增加丙烯酸的用量,使化学计量比为1∶3和1∶5时具有相同的结果。Example 1: Cobalt nitrate and acrylic acid with a stoichiometric ratio of 1:1 were mixed in a beaker for ten minutes, and the resulting precipitate was filtered, washed, put into a clay crucible, placed in a muffle furnace, and taken out after calcination at 300 degrees Celsius for five hours. , the obtained product can be properly ground to obtain mesoporous Co 4 O 3 . Increasing the amount of acrylic acid yielded the same results for stoichiometric ratios of 1:3 and 1:5.
实施例2:化学计量比为1∶2的三氯化铝与丙烯酸在烧杯中混合十分钟,所得沉淀过滤,洗涤,装入粘土坩埚,放置于马弗炉中,经过300摄氏度五个小时的煅烧取出,得到的产品适当研磨即可得到介孔Al2O3,升温速率5或8℃/min无显著区别。硫酸铝、硫酸锌或硫酸亚铁用上述工艺相应得到介孔Al2O3,、介孔ZnO、介孔Fe2O3。Example 2: The stoichiometric ratio of aluminum trichloride and acrylic acid of 1:2 was mixed in a beaker for ten minutes, and the resulting precipitate was filtered, washed, packed into a clay crucible, placed in a muffle furnace, and heated at 300 degrees Celsius for five hours. After calcination and removal, the obtained product can be properly ground to obtain mesoporous Al 2 O 3 , and there is no significant difference in the heating rate of 5 or 8°C/min. Aluminum sulfate, zinc sulfate or ferrous sulfate can be used to obtain mesoporous Al 2 O 3 , mesoporous ZnO, and mesoporous Fe 2 O 3 by the above process.
实施例3:化学计量比为1∶9的四氯化钛与丙烯酸在烧杯中混合十分钟,所得沉淀过滤,洗涤,装入粘土坩埚,放置于马弗炉中经过300或350摄氏度五个或三个小时的煅烧取出,得到的产品适当研磨即可得到介孔TiO2,,升温速率3-8℃/min无显著区别。丁烯酸的物质的量同丙烯酸的量,如上述条件也可以得到介孔TiO2。Example 3: Titanium tetrachloride and acrylic acid with a stoichiometric ratio of 1:9 were mixed in a beaker for ten minutes, and the resulting precipitate was filtered, washed, packed into a clay crucible, and placed in a muffle furnace for five or five minutes at 300 or 350 degrees Celsius. After three hours of calcination, the obtained product can be properly ground to obtain mesoporous TiO 2 , and there is no significant difference in the heating rate of 3-8°C/min. The amount of crotonic acid is the same as that of acrylic acid, and mesoporous TiO 2 can also be obtained under the above conditions.
硝酸钴、硫酸锌或硫酸铝为原料得到介孔氧化钴、氧化锌或三氧化二铝。但马弗炉中的锻烧温度不同,分别经过300、320或350摄氏度四个小时锻烧。以硫酸镍为原料时同硫酸锌的条件。Cobalt nitrate, zinc sulfate or aluminum sulfate are used as raw materials to obtain mesoporous cobalt oxide, zinc oxide or aluminum oxide. However, the calcination temperature in the muffle furnace is different, and the calcination is performed at 300, 320 or 350 degrees Celsius for four hours. When nickel sulfate is used as raw material, the conditions are the same as zinc sulfate.
根据上述结果,本发明的这种制备介孔金属氧化物合成方法应用范围比较广。通过控制反应条件,经过简单的煅烧就可以从相应的氧化物得到硫化物,反应条件简单,成本低廉,反应速度快,不需要复杂的反应设备,投资较少,有很大的应用前景,相对于传统的合成方法有很大的优势。According to the above results, the synthetic method for preparing mesoporous metal oxides of the present invention has a wide range of applications. By controlling the reaction conditions, sulfides can be obtained from the corresponding oxides through simple calcination, the reaction conditions are simple, the cost is low, the reaction speed is fast, no complicated reaction equipment is required, the investment is small, and there is a great application prospect. It has great advantages over traditional synthetic methods.
反应时适当添加阻聚剂0.5-2%,常用如甲基氢醌或对苯二酚。During the reaction, add 0.5-2% polymerization inhibitor appropriately, commonly used such as methyl hydroquinone or hydroquinone.
其它金属的实施例:如上述条件,硝酸锶或硫酸锶、硫酸锰、硫酸锆、Sn、V、Nb、W的实施例同实施例3的结果。The embodiment of other metals: as above-mentioned conditions, the result of the embodiment of strontium nitrate or strontium sulfate, manganese sulfate, zirconium sulfate, Sn, V, Nb, W is the same as embodiment 3.
图1是实施例1的产品的XRD图,通过与Co3O4(PDF file number 76-1802)的标准图谱相比较,可以发现所制备的Co3O4已经成相,并无其它杂质。Figure 1 is the XRD pattern of the product of Example 1. By comparing it with the standard spectrum of Co 3 O 4 (PDF file number 76-1802), it can be found that the prepared Co 3 O 4 has been phased and has no other impurities.
图2是实施例1的产品的孔径分布曲线,从中可以看出所得到产品的孔径分布范围较窄,在7-12nm之间。Fig. 2 is the pore size distribution curve of the product of Example 1, from which it can be seen that the pore size distribution range of the obtained product is relatively narrow, between 7-12nm.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100884671A CN100372759C (en) | 2006-08-25 | 2006-08-25 | Preparation method of mesoporous metal oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100884671A CN100372759C (en) | 2006-08-25 | 2006-08-25 | Preparation method of mesoporous metal oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1911786A true CN1911786A (en) | 2007-02-14 |
CN100372759C CN100372759C (en) | 2008-03-05 |
Family
ID=37720886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100884671A Expired - Fee Related CN100372759C (en) | 2006-08-25 | 2006-08-25 | Preparation method of mesoporous metal oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100372759C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101434384A (en) * | 2007-11-13 | 2009-05-20 | 科学与工业研究委员会 | Process for preparing of nanowires of metal oxides with dopants in lower valence state |
CN102169987A (en) * | 2011-01-14 | 2011-08-31 | 南京大学 | Graphene-supported porous nickel oxide and preparation method thereof, and application of graphene-supported porous nickel oxide in lithium ion battery anode material |
CN109266341A (en) * | 2018-09-28 | 2019-01-25 | 东北大学 | A kind of method of electrochemical modification embedded photoluminescent material |
CN115745015A (en) * | 2023-01-07 | 2023-03-07 | 山东泰和科技股份有限公司 | Magnetic nanoscale Co 3 O 4 Material, preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1198759C (en) * | 2002-06-16 | 2005-04-27 | 吉林大学 | Mesoporous structure oxide material with high specific surface area and preparation method thereof |
CN1239393C (en) * | 2002-12-27 | 2006-02-01 | 北京化工大学 | Method for preparing mesoporous rare-earth oxide |
DE102004020767A1 (en) * | 2004-04-27 | 2005-11-24 | Basf Ag | Surface-modified metal oxides, process for their preparation and their use in cosmetic preparations |
CN1296284C (en) * | 2004-08-09 | 2007-01-24 | 武汉大学 | Process for preparing nano metal oxide material |
-
2006
- 2006-08-25 CN CNB2006100884671A patent/CN100372759C/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101434384A (en) * | 2007-11-13 | 2009-05-20 | 科学与工业研究委员会 | Process for preparing of nanowires of metal oxides with dopants in lower valence state |
CN102169987A (en) * | 2011-01-14 | 2011-08-31 | 南京大学 | Graphene-supported porous nickel oxide and preparation method thereof, and application of graphene-supported porous nickel oxide in lithium ion battery anode material |
CN102169987B (en) * | 2011-01-14 | 2014-12-24 | 南京大学 | Graphene-supported porous nickel oxide and preparation method thereof, and application of graphene-supported porous nickel oxide in lithium ion battery anode material |
CN109266341A (en) * | 2018-09-28 | 2019-01-25 | 东北大学 | A kind of method of electrochemical modification embedded photoluminescent material |
CN109266341B (en) * | 2018-09-28 | 2020-03-31 | 东北大学 | A method of electrochemically modifying photoluminescent materials |
CN115745015A (en) * | 2023-01-07 | 2023-03-07 | 山东泰和科技股份有限公司 | Magnetic nanoscale Co 3 O 4 Material, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100372759C (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101219908B (en) | Multi-component metal oxide semiconductor mesoporous material and synthesizing method thereof | |
CN100503450C (en) | A kind of preparation method of high-purity nano zirconia powder | |
CN1260133C (en) | Method for preparing nano tin-oxide powder | |
CN106563437A (en) | Dy-containing nano lamellar structure complex photocatalyst and preparation method thereof | |
Nishio et al. | Sol-gel processing of thin films with metal salts | |
CN102515268B (en) | Preparation method of high-dispersion titanium dioxide nanopowder | |
CN101049952A (en) | Powder of rare-earth oxides with high apparent density and low specific surface area, and preparation method | |
CN100372759C (en) | Preparation method of mesoporous metal oxide | |
CN1274600C (en) | Method for preparing topographic controlled bismuth oxide poxder | |
Wang et al. | The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature | |
CN105727922B (en) | A kind of Li adulterates SrTiO3The preparation method and product of ten octahedron nanometer particles | |
CN102963925B (en) | Method for preparing nanometer n-zinc titanate spinel by virtue of taking zinc-titanium hydrotalcite as precursor | |
CN1259240C (en) | Method for preparing nanometer metal oxides by direct liquid phase precipitation | |
CN100339307C (en) | Method of synthetizing superfine powder of aluminum titanate | |
CN1269739C (en) | Method for preparing pale-antimony mixed nano tin-oxide powder | |
CN104495932A (en) | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide | |
CN1546370A (en) | A kind of reduction nitriding preparation method of cubic phase nano zirconium nitride powder | |
CN1264754C (en) | Preparation method of nanometer rutile type titanium dioxide | |
CN112723409A (en) | SrTiO3Method for preparing polyhedron | |
CN103449511A (en) | Strontium titanate submicron crystal and preparation method thereof | |
CN104591722B (en) | A kind of calcium-titanium ore type nano material and preparation method thereof | |
CN1752016A (en) | A kind of novel nano-titanium dioxide powder preparation method | |
CN1634802A (en) | Preparation of Magnesium Aluminum Spinel Nano Powders by Co-precipitation | |
CN102874870B (en) | A low-temperature preparation of LaAlO3-BiAlO3 snowflake-like nanopowder | |
CN1789131A (en) | Method for preparing nano-magnesia by utilizing self-spreading sol-gel method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |