CN104495932A - Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide - Google Patents
Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide Download PDFInfo
- Publication number
- CN104495932A CN104495932A CN201410695183.3A CN201410695183A CN104495932A CN 104495932 A CN104495932 A CN 104495932A CN 201410695183 A CN201410695183 A CN 201410695183A CN 104495932 A CN104495932 A CN 104495932A
- Authority
- CN
- China
- Prior art keywords
- solid
- nano
- molybdenum trioxide
- chemical reaction
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G39/00—Compounds of molybdenum
- C01G39/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明的目的在于提供一种固相化学反应合成纳米氧化钼的制备方法,该方法采用温和可控的反应条件,简单易行、绿色环保的操作方法,经简单的固相化学反应便可得到纳米级的三氧化钼材料。本发明以固相化学反应为基础,采用常见易得的原料,通过简单的固-固化学反应得到纳米尺寸的前驱体,将前驱体煅烧得到纳米三氧化钼。此过程由于制备方法简单、操作简便、产品产率高、工艺流程短、设备简单、易于实现大批量生产等特点都使本发明具有极为广阔的实际应用前景。The object of the present invention is to provide a preparation method for synthesizing nano-molybdenum oxide by solid-phase chemical reaction. Nanoscale molybdenum trioxide material. The invention is based on the solid-phase chemical reaction, adopts common and easy-to-obtain raw materials, obtains a nano-sized precursor through a simple solid-solid chemical reaction, and calcines the precursor to obtain nano-molybdenum trioxide. Due to the characteristics of simple preparation method, convenient operation, high product yield, short process flow, simple equipment, and easy realization of mass production, the present invention has very broad practical application prospects.
Description
技术领域 technical field
本发明涉及一种固相化学反应合成纳米三氧化钼的方法。 The invention relates to a method for synthesizing nanomolybdenum trioxide by solid phase chemical reaction.
背景技术 Background technique
三氧化钼 (MoO3)为白色或苍黄色斜方晶体,常见的晶体结构有三种:单斜相(p-MoO3)、六方相(h-MoO3)和正交相(a-MoO3)。前二者为热力学介稳相,后者为室温下热力学稳定相。但上述三种相结构的基本组成单元均为畸变的[MoO6]八面体。其中稳定态MoO3(a-MoO3)的晶体结构属正交晶系,晶格参数a=0.395nrn,b=l.381nm,c=0.369nm。晶体中各个[MoO6]单元在一个方向上共边相连,在另一个方向上共顶点相连,形成一个二维无限伸展的平面层,该层呈双波状并垂直于b轴沿展。正交相MoO3独特的层状结构能增加活性位点并有利于气体分子的进入与脱附,并且这种层状结构在金属氧化物中是很少见的。 Molybdenum trioxide (MoO 3 ) is a white or pale yellow orthorhombic crystal. There are three common crystal structures: monoclinic phase (p-MoO 3 ), hexagonal phase (h-MoO 3 ) and orthorhombic phase (a-MoO 3 ). The former two are thermodynamic metastable phases, and the latter is a thermodynamically stable phase at room temperature. However, the basic units of the above three phase structures are distorted [MoO 6 ] octahedra. The crystal structure of stable MoO 3 (a-MoO 3 ) belongs to the orthorhombic system, and the lattice parameters a=0.395nrn, b=l.381nm, c=0.369nm. Each [MoO 6 ] unit in the crystal is connected with a common edge in one direction and a common vertex in another direction, forming a two-dimensional infinitely stretched planar layer, which is double-wave-shaped and extends perpendicular to the b-axis. The unique layered structure of orthorhombic MoO 3 can increase active sites and facilitate the entry and desorption of gas molecules, and this layered structure is rare in metal oxides.
纳米材料具有特殊的小尺寸效应、量子尺寸效应、宏观量子隧道效应、表面效应等物理效应,这些特殊效应使得纳米材料具有与常规尺寸材料不同的物理、化学性质,使得纳米材料在光学材料、气敏材料、电极材料、催化材料、磁性材料等领域具有广泛的应用前景。纳米级三氧化钼作为过渡金属的氧化物,相比于工业级三氧化钼,具有更强的催化活性、光电特性、耐蚀性等,更有利于其在催化材料、敏感材料、电池材料等方面的应用;另外纳米级三氧化钼因其在信息显示与储存、智能伪装等领域具有诱人的应用价值,也越来越受到人们的关注。 Nanomaterials have special physical effects such as small size effect, quantum size effect, macroscopic quantum tunneling effect, surface effect, etc. These special effects make nanomaterials have different physical and chemical properties from conventional size materials, making nanomaterials in optical materials, gas Sensitive materials, electrode materials, catalytic materials, magnetic materials and other fields have broad application prospects. Nano-scale molybdenum trioxide, as an oxide of transition metal, has stronger catalytic activity, photoelectric properties, corrosion resistance, etc. In addition, nano-scale molybdenum trioxide has attracted more and more attention because of its attractive application value in information display and storage, intelligent camouflage and other fields.
目前,纳米三氧化钼的合成方法主要有水热法、溶剂热法、溶胶-凝胶法、气相沉积法、模板法、化学沉淀法、离子交换法等方法。这些方法大多都合成过程复杂,成本高,实验条件要求苛刻,实现大规模工业生产存在较大困难;并且传统的高温固相法因耗能高对设备要求较高,也给进行大规模工业生产带来诸多不便以及困难。因此,选择一种简单可靠、工艺流程短,且绿色环保的制备方法来制备纳米三氧化钼具有十分重要的意义。固相化学合成法步骤简单,反应周期短且具有高选择性、高产率,对环境污染小等优点,已经成为获得纳米材料的一种简单方法。 At present, the synthesis methods of nanomolybdenum trioxide mainly include hydrothermal method, solvothermal method, sol-gel method, vapor deposition method, template method, chemical precipitation method, ion exchange method and other methods. Most of these methods have complicated synthesis process, high cost, harsh experimental conditions, and great difficulties in realizing large-scale industrial production; and the traditional high-temperature solid-phase method requires high equipment requirements due to high energy consumption, which is also difficult for large-scale industrial production. Bring a lot of inconvenience and difficulty. Therefore, it is of great significance to choose a simple, reliable, short process flow, and green and environmentally friendly preparation method to prepare nano-molybdenum trioxide. The solid-phase chemical synthesis method has the advantages of simple steps, short reaction cycle, high selectivity, high yield, and little environmental pollution. It has become a simple method to obtain nanomaterials.
发明内容 Contents of the invention
本发明的目的在于提供一种固相化学反应合成纳米三氧化钼的方法,该方法通过使用简单易得的原料,采用简便可行的操作方法,温和可控的反应条件,经固相化学反应合成出纳米三氧化钼。 The object of the present invention is to provide a method for synthesizing nano-molybdenum trioxide by solid-phase chemical reaction, which is synthesized by solid-phase chemical reaction by using simple and easy-to-obtain raw materials, adopting a simple and feasible operation method, and mild and controllable reaction conditions. Nanomolybdenum trioxide.
本发明用钼酸铵和有机酸作为反应物,在室温下通过固相化学反应合成纳米前驱体,再将前驱体进行煅烧即可得到纳米三氧化钼。 In the invention, ammonium molybdate and organic acid are used as reactants to synthesize a nano-precursor through solid-phase chemical reaction at room temperature, and then the precursor is calcined to obtain nano-molybdenum trioxide.
本发明所述的有机酸为草酸、苯甲酸、氨基乙酸和柠檬酸。与现有技术相比,本发明具有以下优点:采用廉价易得的原料,通过简单的研磨及煅烧过程,便可得到纳米三氧化钼。由于本发明制备方法简单、反应条件温和可控、产品产率高、环境友好、易于实现大批量生产等突出特点使得本发明具有极为广阔的应用前景。 The organic acid of the present invention is oxalic acid, benzoic acid, glycine and citric acid. Compared with the prior art, the present invention has the following advantages: the nanometer molybdenum trioxide can be obtained through simple grinding and calcination processes by using cheap and easy-to-obtain raw materials. Due to the outstanding features of the present invention, such as simple preparation method, mild and controllable reaction conditions, high product yield, environmental friendliness, and easy realization of mass production, the present invention has extremely broad application prospects.
附图说明 Description of drawings
图1为本发明第一实施例制备的正交相的纳米三氧化钼的粉末X 射线衍射图谱。(图中PDF#35-0609为正交相的三氧化钼的X 射线衍射数据)。 Fig. 1 is the powder X-ray diffraction spectrum of the nanomolybdenum trioxide of the orthorhombic phase that the first embodiment of the present invention prepares. (PDF#35-0609 in the figure is the X-ray diffraction data of orthorhombic molybdenum trioxide).
图2为本发明第一实施例制备的正交相的纳米三氧化钼的场发射扫描电子显微镜照片。 Fig. 2 is a field emission scanning electron micrograph of the orthorhombic nanomolybdenum trioxide prepared in the first embodiment of the present invention.
具体实施方式 Detailed ways
下面结合具体的实施例对本发明作进一步阐述。这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明记载的内容之后,基于本发明的原理对本发明所做出的各种改动或修改同样落入本发明权利要求书所限定的范围。 The present invention will be further elaborated below in conjunction with specific examples. These examples should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, various changes or modifications made to the present invention based on the principles of the present invention also fall within the scope defined by the claims of the present invention.
实施例一 : Embodiment one:
准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.03 mol研细的草酸,将该固相反应体系研磨30分钟后在室温下静置3天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol of ammonium molybdate and grind it in an agate mortar, then add 0.03 mol of finely ground oxalic acid, grind the solid phase reaction system for 30 minutes, let it stand at room temperature for 3 days, and then calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within 1 hour; and nano-molybdenum trioxide in stable orthorhombic phase can be obtained after calcination at 500°C for two hours.
实施例二 : Embodiment two:
准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.06 mol研细的苯甲酸,将该固相反应体系研磨40分钟后在室温下静置4天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol of ammonium molybdate and grind it in an agate mortar, then add 0.06 mol of finely ground benzoic acid, grind the solid phase reaction system for 40 minutes, let it stand at room temperature for 4 days, and then calcinate it at 300°C for two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.
实施例三 : Embodiment three:
准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.02 mol研细的柠檬酸,将该固相反应体系研磨50分钟后在室温下静置5天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol ammonium molybdate and grind it in an agate mortar, then add 0.02 mol ground citric acid, grind the solid phase reaction system for 50 minutes, let it stand at room temperature for 5 days, and then calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.
实施例四 : Embodiment four:
准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.03 mol研细的氨基乙酸,将该固相反应体系研磨50分钟后在室温下静置5天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol ammonium molybdate and grind it in an agate mortar, then add 0.03 mol ground glycine, grind the solid phase reaction system for 50 minutes, let it stand at room temperature for 5 days, and calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410695183.3A CN104495932A (en) | 2014-11-27 | 2014-11-27 | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410695183.3A CN104495932A (en) | 2014-11-27 | 2014-11-27 | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104495932A true CN104495932A (en) | 2015-04-08 |
Family
ID=52937412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410695183.3A Pending CN104495932A (en) | 2014-11-27 | 2014-11-27 | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104495932A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384194A (en) * | 2015-12-23 | 2016-03-09 | 新疆大学 | A method for synthesizing rare earth-doped nano-molybdenum trioxide gas-sensing materials by solid-state chemical reaction |
CN110217823A (en) * | 2019-05-27 | 2019-09-10 | 燕山大学 | Obtain the preparation method of the molybdenum trioxide of rhombic form and monoclinic form |
CN112076716A (en) * | 2020-09-04 | 2020-12-15 | 江西善纳新材料科技有限公司 | Composite phase nano molybdenum trioxide adsorbent and preparation method thereof |
JPWO2021060375A1 (en) * | 2019-09-24 | 2021-04-01 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102351250A (en) * | 2011-07-21 | 2012-02-15 | 北京化工大学 | One-dimensional molybdenum oxide nano rod gas-sensitive material, preparation method and application thereof |
-
2014
- 2014-11-27 CN CN201410695183.3A patent/CN104495932A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102351250A (en) * | 2011-07-21 | 2012-02-15 | 北京化工大学 | One-dimensional molybdenum oxide nano rod gas-sensitive material, preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
杨爽: ""三氧化钼一维纳米材料的制备、性能及器件研究"", 《全国优秀硕士学位论文全文数据库 工程科技I辑》, no. 6, 15 June 2014 (2014-06-15) * |
王晓毅: ""一维氧化钨和氧化钼的制备及应用研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 1, 15 December 2011 (2011-12-15) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384194A (en) * | 2015-12-23 | 2016-03-09 | 新疆大学 | A method for synthesizing rare earth-doped nano-molybdenum trioxide gas-sensing materials by solid-state chemical reaction |
CN110217823A (en) * | 2019-05-27 | 2019-09-10 | 燕山大学 | Obtain the preparation method of the molybdenum trioxide of rhombic form and monoclinic form |
CN110217823B (en) * | 2019-05-27 | 2020-04-21 | 燕山大学 | Obtain the preparation method of orthorhombic or monoclinic molybdenum trioxide |
JPWO2021060375A1 (en) * | 2019-09-24 | 2021-04-01 | ||
WO2021060375A1 (en) * | 2019-09-24 | 2021-04-01 | Dic株式会社 | Molybdenum trioxide powder and method for producing same |
JP7056807B2 (en) | 2019-09-24 | 2022-04-19 | Dic株式会社 | Molybdenum trioxide powder and its manufacturing method |
TWI815040B (en) * | 2019-09-24 | 2023-09-11 | 日商迪愛生股份有限公司 | Molybdenum trioxide powder and manufacturing method thereof |
CN112076716A (en) * | 2020-09-04 | 2020-12-15 | 江西善纳新材料科技有限公司 | Composite phase nano molybdenum trioxide adsorbent and preparation method thereof |
CN112076716B (en) * | 2020-09-04 | 2023-03-03 | 江西善纳新材料科技有限公司 | Composite phase nano molybdenum trioxide adsorbent and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103691421B (en) | A kind of CeVO 4micron ball photochemical catalyst and preparation method thereof | |
CN103359773B (en) | A kind of preparation method of zinc oxide nano rod | |
CN102259907A (en) | Porous zinc oxide nano material and preparation method thereof | |
CN103553140B (en) | Method for preparing lanthanum ferrite nanodisk | |
CN102010012B (en) | Method for preparing bismuth ferrite material by two-step solid-phase reaction | |
CN102602986A (en) | Preparation method of micronano stannic oxide porous rod with controllable shape | |
CN104129810A (en) | Preparation of Three-Dimensional Hierarchical Structure of La2O2CO3 in Pure Monoclinic Phase | |
Jadhav et al. | A low temperature route to prepare LaFeO3 and LaCoO3 | |
CN104495932A (en) | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide | |
CN102626615A (en) | Preparation method of tantalate photocatalytic material | |
CN102580709A (en) | Amorphous anatase nano titanium dioxide material and preparation method thereof | |
CN105060348A (en) | Method for preparing molybdenum disulfide nanosheet through solid-state chemical reaction | |
CN103466703B (en) | Bismuth titanate nanoneedle and preparation method thereof | |
CN103318954B (en) | Method for preparing sodium trititanate nanorods through solid-phase chemical reaction | |
CN105110381A (en) | A method for preparing nanoporous α-Fe2O3 | |
CN102651470B (en) | Method for preparing whisker shaped lithium titanate (Li4Ti5O12) by low-temperature solid phase method | |
CN104085925B (en) | A kind of preparation method of LATON Ca-Ti ore type nitrogen oxide powder | |
CN103466685A (en) | Solid-phase synthesis method for rare-earth-doped zinc oxide gas sensitive material | |
CN102557670A (en) | Preparation method of aluminum oxide and titanium oxide compound nanometer powder body | |
CN104591722B (en) | A kind of calcium-titanium ore type nano material and preparation method thereof | |
Portehault et al. | Evolution of nanostructured manganese (oxyhydr) oxides in water through MnO4− reduction | |
CN104071845A (en) | Preparation method for SLTON perovskite NOx powder | |
CN103466688A (en) | Method for preparing ZnS nanosheet | |
CN100372759C (en) | Preparation method of mesoporous metal oxide | |
CN103427076B (en) | A method for preparing TiO2-B nanomaterials by solid phase chemical reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150408 |