[go: up one dir, main page]

CN104495932A - Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide - Google Patents

Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide Download PDF

Info

Publication number
CN104495932A
CN104495932A CN201410695183.3A CN201410695183A CN104495932A CN 104495932 A CN104495932 A CN 104495932A CN 201410695183 A CN201410695183 A CN 201410695183A CN 104495932 A CN104495932 A CN 104495932A
Authority
CN
China
Prior art keywords
solid
nano
molybdenum trioxide
chemical reaction
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410695183.3A
Other languages
Chinese (zh)
Inventor
贾殿赠
秦海钰
曹亚丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang University
Original Assignee
Xinjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang University filed Critical Xinjiang University
Priority to CN201410695183.3A priority Critical patent/CN104495932A/en
Publication of CN104495932A publication Critical patent/CN104495932A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的目的在于提供一种固相化学反应合成纳米氧化钼的制备方法,该方法采用温和可控的反应条件,简单易行、绿色环保的操作方法,经简单的固相化学反应便可得到纳米级的三氧化钼材料。本发明以固相化学反应为基础,采用常见易得的原料,通过简单的固-固化学反应得到纳米尺寸的前驱体,将前驱体煅烧得到纳米三氧化钼。此过程由于制备方法简单、操作简便、产品产率高、工艺流程短、设备简单、易于实现大批量生产等特点都使本发明具有极为广阔的实际应用前景。The object of the present invention is to provide a preparation method for synthesizing nano-molybdenum oxide by solid-phase chemical reaction. Nanoscale molybdenum trioxide material. The invention is based on the solid-phase chemical reaction, adopts common and easy-to-obtain raw materials, obtains a nano-sized precursor through a simple solid-solid chemical reaction, and calcines the precursor to obtain nano-molybdenum trioxide. Due to the characteristics of simple preparation method, convenient operation, high product yield, short process flow, simple equipment, and easy realization of mass production, the present invention has very broad practical application prospects.

Description

一种固相化学反应合成纳米三氧化钼的方法A method for synthesizing nanomolybdenum trioxide by solid phase chemical reaction

技术领域 technical field

本发明涉及一种固相化学反应合成纳米三氧化钼的方法。 The invention relates to a method for synthesizing nanomolybdenum trioxide by solid phase chemical reaction.

背景技术 Background technique

三氧化钼 (MoO3)为白色或苍黄色斜方晶体,常见的晶体结构有三种:单斜相(p-MoO3)、六方相(h-MoO3)和正交相(a-MoO3)。前二者为热力学介稳相,后者为室温下热力学稳定相。但上述三种相结构的基本组成单元均为畸变的[MoO6]八面体。其中稳定态MoO3(a-MoO3)的晶体结构属正交晶系,晶格参数a=0.395nrn,b=l.381nm,c=0.369nm。晶体中各个[MoO6]单元在一个方向上共边相连,在另一个方向上共顶点相连,形成一个二维无限伸展的平面层,该层呈双波状并垂直于b轴沿展。正交相MoO3独特的层状结构能增加活性位点并有利于气体分子的进入与脱附,并且这种层状结构在金属氧化物中是很少见的。 Molybdenum trioxide (MoO 3 ) is a white or pale yellow orthorhombic crystal. There are three common crystal structures: monoclinic phase (p-MoO 3 ), hexagonal phase (h-MoO 3 ) and orthorhombic phase (a-MoO 3 ). The former two are thermodynamic metastable phases, and the latter is a thermodynamically stable phase at room temperature. However, the basic units of the above three phase structures are distorted [MoO 6 ] octahedra. The crystal structure of stable MoO 3 (a-MoO 3 ) belongs to the orthorhombic system, and the lattice parameters a=0.395nrn, b=l.381nm, c=0.369nm. Each [MoO 6 ] unit in the crystal is connected with a common edge in one direction and a common vertex in another direction, forming a two-dimensional infinitely stretched planar layer, which is double-wave-shaped and extends perpendicular to the b-axis. The unique layered structure of orthorhombic MoO 3 can increase active sites and facilitate the entry and desorption of gas molecules, and this layered structure is rare in metal oxides.

纳米材料具有特殊的小尺寸效应、量子尺寸效应、宏观量子隧道效应、表面效应等物理效应,这些特殊效应使得纳米材料具有与常规尺寸材料不同的物理、化学性质,使得纳米材料在光学材料、气敏材料、电极材料、催化材料、磁性材料等领域具有广泛的应用前景。纳米级三氧化钼作为过渡金属的氧化物,相比于工业级三氧化钼,具有更强的催化活性、光电特性、耐蚀性等,更有利于其在催化材料、敏感材料、电池材料等方面的应用;另外纳米级三氧化钼因其在信息显示与储存、智能伪装等领域具有诱人的应用价值,也越来越受到人们的关注。 Nanomaterials have special physical effects such as small size effect, quantum size effect, macroscopic quantum tunneling effect, surface effect, etc. These special effects make nanomaterials have different physical and chemical properties from conventional size materials, making nanomaterials in optical materials, gas Sensitive materials, electrode materials, catalytic materials, magnetic materials and other fields have broad application prospects. Nano-scale molybdenum trioxide, as an oxide of transition metal, has stronger catalytic activity, photoelectric properties, corrosion resistance, etc. In addition, nano-scale molybdenum trioxide has attracted more and more attention because of its attractive application value in information display and storage, intelligent camouflage and other fields.

目前,纳米三氧化钼的合成方法主要有水热法、溶剂热法、溶胶-凝胶法、气相沉积法、模板法、化学沉淀法、离子交换法等方法。这些方法大多都合成过程复杂,成本高,实验条件要求苛刻,实现大规模工业生产存在较大困难;并且传统的高温固相法因耗能高对设备要求较高,也给进行大规模工业生产带来诸多不便以及困难。因此,选择一种简单可靠、工艺流程短,且绿色环保的制备方法来制备纳米三氧化钼具有十分重要的意义。固相化学合成法步骤简单,反应周期短且具有高选择性、高产率,对环境污染小等优点,已经成为获得纳米材料的一种简单方法。 At present, the synthesis methods of nanomolybdenum trioxide mainly include hydrothermal method, solvothermal method, sol-gel method, vapor deposition method, template method, chemical precipitation method, ion exchange method and other methods. Most of these methods have complicated synthesis process, high cost, harsh experimental conditions, and great difficulties in realizing large-scale industrial production; and the traditional high-temperature solid-phase method requires high equipment requirements due to high energy consumption, which is also difficult for large-scale industrial production. Bring a lot of inconvenience and difficulty. Therefore, it is of great significance to choose a simple, reliable, short process flow, and green and environmentally friendly preparation method to prepare nano-molybdenum trioxide. The solid-phase chemical synthesis method has the advantages of simple steps, short reaction cycle, high selectivity, high yield, and little environmental pollution. It has become a simple method to obtain nanomaterials.

发明内容 Contents of the invention

本发明的目的在于提供一种固相化学反应合成纳米三氧化钼的方法,该方法通过使用简单易得的原料,采用简便可行的操作方法,温和可控的反应条件,经固相化学反应合成出纳米三氧化钼。 The object of the present invention is to provide a method for synthesizing nano-molybdenum trioxide by solid-phase chemical reaction, which is synthesized by solid-phase chemical reaction by using simple and easy-to-obtain raw materials, adopting a simple and feasible operation method, and mild and controllable reaction conditions. Nanomolybdenum trioxide.

本发明用钼酸铵和有机酸作为反应物,在室温下通过固相化学反应合成纳米前驱体,再将前驱体进行煅烧即可得到纳米三氧化钼。 In the invention, ammonium molybdate and organic acid are used as reactants to synthesize a nano-precursor through solid-phase chemical reaction at room temperature, and then the precursor is calcined to obtain nano-molybdenum trioxide.

本发明所述的有机酸为草酸、苯甲酸、氨基乙酸和柠檬酸。与现有技术相比,本发明具有以下优点:采用廉价易得的原料,通过简单的研磨及煅烧过程,便可得到纳米三氧化钼。由于本发明制备方法简单、反应条件温和可控、产品产率高、环境友好、易于实现大批量生产等突出特点使得本发明具有极为广阔的应用前景。 The organic acid of the present invention is oxalic acid, benzoic acid, glycine and citric acid. Compared with the prior art, the present invention has the following advantages: the nanometer molybdenum trioxide can be obtained through simple grinding and calcination processes by using cheap and easy-to-obtain raw materials. Due to the outstanding features of the present invention, such as simple preparation method, mild and controllable reaction conditions, high product yield, environmental friendliness, and easy realization of mass production, the present invention has extremely broad application prospects.

附图说明 Description of drawings

图1为本发明第一实施例制备的正交相的纳米三氧化钼的粉末X 射线衍射图谱。(图中PDF#35-0609为正交相的三氧化钼的X 射线衍射数据)。 Fig. 1 is the powder X-ray diffraction spectrum of the nanomolybdenum trioxide of the orthorhombic phase that the first embodiment of the present invention prepares. (PDF#35-0609 in the figure is the X-ray diffraction data of orthorhombic molybdenum trioxide).

图2为本发明第一实施例制备的正交相的纳米三氧化钼的场发射扫描电子显微镜照片。 Fig. 2 is a field emission scanning electron micrograph of the orthorhombic nanomolybdenum trioxide prepared in the first embodiment of the present invention.

具体实施方式 Detailed ways

下面结合具体的实施例对本发明作进一步阐述。这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明记载的内容之后,基于本发明的原理对本发明所做出的各种改动或修改同样落入本发明权利要求书所限定的范围。 The present invention will be further elaborated below in conjunction with specific examples. These examples should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, various changes or modifications made to the present invention based on the principles of the present invention also fall within the scope defined by the claims of the present invention.

实施例一 : Embodiment one:

准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.03 mol研细的草酸,将该固相反应体系研磨30分钟后在室温下静置3天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol of ammonium molybdate and grind it in an agate mortar, then add 0.03 mol of finely ground oxalic acid, grind the solid phase reaction system for 30 minutes, let it stand at room temperature for 3 days, and then calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within 1 hour; and nano-molybdenum trioxide in stable orthorhombic phase can be obtained after calcination at 500°C for two hours.

实施例二 : Embodiment two:

准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.06 mol研细的苯甲酸,将该固相反应体系研磨40分钟后在室温下静置4天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol of ammonium molybdate and grind it in an agate mortar, then add 0.06 mol of finely ground benzoic acid, grind the solid phase reaction system for 40 minutes, let it stand at room temperature for 4 days, and then calcinate it at 300°C for two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.

实施例三 : Embodiment three:

准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.02 mol研细的柠檬酸,将该固相反应体系研磨50分钟后在室温下静置5天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol ammonium molybdate and grind it in an agate mortar, then add 0.02 mol ground citric acid, grind the solid phase reaction system for 50 minutes, let it stand at room temperature for 5 days, and then calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.

实施例四 : Embodiment four:

准确称量0.01 mol 钼酸铵置于玛瑙研钵中研细,再加入0.03 mol研细的氨基乙酸,将该固相反应体系研磨50分钟后在室温下静置5天后,在300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼;而在500℃下煅烧两小时后得到稳定的正交相的纳米三氧化钼。 Accurately weigh 0.01 mol ammonium molybdate and grind it in an agate mortar, then add 0.03 mol ground glycine, grind the solid phase reaction system for 50 minutes, let it stand at room temperature for 5 days, and calcinate two Nano-molybdenum trioxide in metastable monoclinic phase and hexagonal phase can be obtained within one hour; and stable orthorhombic nano-molybdenum trioxide can be obtained after calcination at 500°C for two hours.

Claims (4)

1.一种固相化学反应合成纳米三氧化钼的方法,其包括以下步骤 :将钼酸铵和有机酸按照一定的化学计量比称量后,在室温条件下、玛瑙研钵中进行固相化学反应得到纳米尺寸的前驱体,再将前驱体在马弗炉中一定温度下进行煅烧得到纳米三氧化钼。 1. A method for synthesizing nanometer molybdenum trioxide by solid-phase chemical reaction, which comprises the following steps: after ammonium molybdate and organic acid are weighed according to a certain stoichiometric ratio, carry out solid phase under room temperature conditions and in an agate mortar Nano-sized precursors are obtained through chemical reactions, and then the precursors are calcined at a certain temperature in a muffle furnace to obtain nano-molybdenum trioxide. 2.按照权利要求 1 所述的一种固相化学反应合成纳米三氧化钼的方法,其特征在于:所使用的有机酸为草酸、苯甲酸、柠檬酸和氨基乙酸中的一种。 2. The method for synthesizing nanomolybdenum trioxide according to a kind of solid phase chemical reaction according to claim 1, is characterized in that: the organic acid used is one of oxalic acid, benzoic acid, citric acid and glycine. 3.按照权利要求 1 所述的一种固相化学反应合成纳米三氧化钼的方法,其特征在于:钼酸铵和有机酸的化学计量比是钼酸铵和草酸为 1:3、钼酸铵和苯甲酸为 1:6、钼酸铵和柠檬酸为 1:2、钼酸铵和氨基乙酸为 1:3。 3. according to the method for a kind of solid phase chemical reaction synthesis nano molybdenum trioxide described in claim 1, it is characterized in that: the stoichiometric ratio of ammonium molybdate and organic acid is that ammonium molybdate and oxalic acid are 1:3, molybdate Ammonium and Benzoic Acid 1:6, Ammonium Molybdate and Citric Acid 1:2, Ammonium Molybdate and Glycine 1:3. 4.按照权利要求 1 所述的一种固相化学反应合成纳米三氧化钼的方法,其特征在于:固相反应产物在马弗炉中300℃下煅烧两个小时得到介稳态的单斜相和六方相的纳米三氧化钼,而在马弗炉中500℃下煅烧两个小时得到稳定的正交相的纳米三氧化钼。 4. The method for synthesizing nanomolybdenum trioxide by solid-phase chemical reaction according to claim 1, characterized in that: the solid-phase reaction product is calcined in a muffle furnace at 300°C for two hours to obtain a metastable monoclinic phase and hexagonal phase of nano-molybdenum trioxide, and calcined at 500°C for two hours in a muffle furnace to obtain stable orthorhombic nano-molybdenum trioxide.
CN201410695183.3A 2014-11-27 2014-11-27 Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide Pending CN104495932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410695183.3A CN104495932A (en) 2014-11-27 2014-11-27 Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410695183.3A CN104495932A (en) 2014-11-27 2014-11-27 Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide

Publications (1)

Publication Number Publication Date
CN104495932A true CN104495932A (en) 2015-04-08

Family

ID=52937412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410695183.3A Pending CN104495932A (en) 2014-11-27 2014-11-27 Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide

Country Status (1)

Country Link
CN (1) CN104495932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384194A (en) * 2015-12-23 2016-03-09 新疆大学 A method for synthesizing rare earth-doped nano-molybdenum trioxide gas-sensing materials by solid-state chemical reaction
CN110217823A (en) * 2019-05-27 2019-09-10 燕山大学 Obtain the preparation method of the molybdenum trioxide of rhombic form and monoclinic form
CN112076716A (en) * 2020-09-04 2020-12-15 江西善纳新材料科技有限公司 Composite phase nano molybdenum trioxide adsorbent and preparation method thereof
JPWO2021060375A1 (en) * 2019-09-24 2021-04-01

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351250A (en) * 2011-07-21 2012-02-15 北京化工大学 One-dimensional molybdenum oxide nano rod gas-sensitive material, preparation method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351250A (en) * 2011-07-21 2012-02-15 北京化工大学 One-dimensional molybdenum oxide nano rod gas-sensitive material, preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨爽: ""三氧化钼一维纳米材料的制备、性能及器件研究"", 《全国优秀硕士学位论文全文数据库 工程科技I辑》, no. 6, 15 June 2014 (2014-06-15) *
王晓毅: ""一维氧化钨和氧化钼的制备及应用研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 1, 15 December 2011 (2011-12-15) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384194A (en) * 2015-12-23 2016-03-09 新疆大学 A method for synthesizing rare earth-doped nano-molybdenum trioxide gas-sensing materials by solid-state chemical reaction
CN110217823A (en) * 2019-05-27 2019-09-10 燕山大学 Obtain the preparation method of the molybdenum trioxide of rhombic form and monoclinic form
CN110217823B (en) * 2019-05-27 2020-04-21 燕山大学 Obtain the preparation method of orthorhombic or monoclinic molybdenum trioxide
JPWO2021060375A1 (en) * 2019-09-24 2021-04-01
WO2021060375A1 (en) * 2019-09-24 2021-04-01 Dic株式会社 Molybdenum trioxide powder and method for producing same
JP7056807B2 (en) 2019-09-24 2022-04-19 Dic株式会社 Molybdenum trioxide powder and its manufacturing method
TWI815040B (en) * 2019-09-24 2023-09-11 日商迪愛生股份有限公司 Molybdenum trioxide powder and manufacturing method thereof
CN112076716A (en) * 2020-09-04 2020-12-15 江西善纳新材料科技有限公司 Composite phase nano molybdenum trioxide adsorbent and preparation method thereof
CN112076716B (en) * 2020-09-04 2023-03-03 江西善纳新材料科技有限公司 Composite phase nano molybdenum trioxide adsorbent and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103691421B (en) A kind of CeVO 4micron ball photochemical catalyst and preparation method thereof
CN103359773B (en) A kind of preparation method of zinc oxide nano rod
CN102259907A (en) Porous zinc oxide nano material and preparation method thereof
CN103553140B (en) Method for preparing lanthanum ferrite nanodisk
CN102010012B (en) Method for preparing bismuth ferrite material by two-step solid-phase reaction
CN102602986A (en) Preparation method of micronano stannic oxide porous rod with controllable shape
CN104129810A (en) Preparation of Three-Dimensional Hierarchical Structure of La2O2CO3 in Pure Monoclinic Phase
Jadhav et al. A low temperature route to prepare LaFeO3 and LaCoO3
CN104495932A (en) Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide
CN102626615A (en) Preparation method of tantalate photocatalytic material
CN102580709A (en) Amorphous anatase nano titanium dioxide material and preparation method thereof
CN105060348A (en) Method for preparing molybdenum disulfide nanosheet through solid-state chemical reaction
CN103466703B (en) Bismuth titanate nanoneedle and preparation method thereof
CN103318954B (en) Method for preparing sodium trititanate nanorods through solid-phase chemical reaction
CN105110381A (en) A method for preparing nanoporous α-Fe2O3
CN102651470B (en) Method for preparing whisker shaped lithium titanate (Li4Ti5O12) by low-temperature solid phase method
CN104085925B (en) A kind of preparation method of LATON Ca-Ti ore type nitrogen oxide powder
CN103466685A (en) Solid-phase synthesis method for rare-earth-doped zinc oxide gas sensitive material
CN102557670A (en) Preparation method of aluminum oxide and titanium oxide compound nanometer powder body
CN104591722B (en) A kind of calcium-titanium ore type nano material and preparation method thereof
Portehault et al. Evolution of nanostructured manganese (oxyhydr) oxides in water through MnO4− reduction
CN104071845A (en) Preparation method for SLTON perovskite NOx powder
CN103466688A (en) Method for preparing ZnS nanosheet
CN100372759C (en) Preparation method of mesoporous metal oxide
CN103427076B (en) A method for preparing TiO2-B nanomaterials by solid phase chemical reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150408