CN104591722B - A kind of calcium-titanium ore type nano material and preparation method thereof - Google Patents
A kind of calcium-titanium ore type nano material and preparation method thereof Download PDFInfo
- Publication number
- CN104591722B CN104591722B CN201510002279.1A CN201510002279A CN104591722B CN 104591722 B CN104591722 B CN 104591722B CN 201510002279 A CN201510002279 A CN 201510002279A CN 104591722 B CN104591722 B CN 104591722B
- Authority
- CN
- China
- Prior art keywords
- solution
- perovskite
- minutes
- preparation
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种纳米材料,具体涉及一种钙钛矿型纳米材料及其制备方法。 The invention relates to a nano material, in particular to a perovskite nano material and a preparation method thereof.
背景技术 Background technique
钙钛矿型材料属于三方晶系,基本结构是ABO3(A和B代表阳离子,O代表氧离子)。至今为止,发现具有钙钛矿型结构的氧化物ABO3型化合物的三种离子半径满足下列关系:RA+RO=t·20.5(RB+RO)(一般情况下t=0.7~1.0)。由于钙钛矿型氧化物材料具有这种特殊的结构,使得钙钛矿型材料具有许多特殊的性质,如热电性能、超导性能、压电性能、光学性能、磁学性能等。实际应用中又可通过掺杂来改善钙钛矿型材料的性能,可以说钙钛矿型材料是一种极其重要的功能材料,应用范围很广,如催化、燃料电池、传感器、制动器、光微电机、存储器件、基体或基板、光电器件等方面。而纳米钙钛矿型材料又具有独特的纳米晶粒及高密度晶界特征以及由此而产生的表面效应、小尺寸效应和宏观量子隧道效应,使其在化学、力学、热学、磁学、光学、电学、声学等性能方面表现出一系列与普通多晶体和非晶态固体的本质差别。 Perovskite materials belong to the trigonal crystal system, and the basic structure is ABO 3 (A and B represent cations, and O represents oxygen ions). So far, it has been found that the three ionic radii of the oxide ABO 3 -type compound with a perovskite structure satisfy the following relationship: R A +R O =t 2 0.5 (R B +R O ) (generally t=0.7 ~1.0). Due to the special structure of perovskite oxide materials, perovskite materials have many special properties, such as thermoelectric properties, superconducting properties, piezoelectric properties, optical properties, magnetic properties, etc. In practical applications, the performance of perovskite materials can be improved by doping. It can be said that perovskite materials are extremely important functional materials with a wide range of applications, such as catalysis, fuel cells, sensors, brakes, light Micro motors, storage devices, substrates or substrates, optoelectronic devices, etc. Nano-perovskite materials have unique nano-grain and high-density grain boundary characteristics and the resulting surface effects, small-size effects and macroscopic quantum tunneling effects, making them widely used in chemistry, mechanics, heat, magnetism, Optical, electrical, acoustic and other properties show a series of essential differences from ordinary polycrystalline and amorphous solids.
中国专利CN103449536A公开了一种钙钛石型纳米Nd1-xMgxCoO3的制备方法,采用金属阳离子取代了钙钛矿ABO3型复合氧化物材料中起支撑结构骨架的A位金属离子,引起较大的晶格畸变,提高了其催化和化学等性能。 Chinese patent CN103449536A discloses a method for preparing perovskite-type nano-Nd 1-x Mg x CoO 3 , which uses metal cations to replace the A-site metal ions in the perovskite ABO 3 -type composite oxide material, which acts as a supporting structure. It causes larger lattice distortion and improves its catalytic and chemical properties.
发明内容 Contents of the invention
本发明的目的在于提供一种钙钛矿型纳米材料,分子式为(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3,式中x=0.1~0.4。 The object of the present invention is to provide a perovskite-type nano material with a molecular formula of (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 , where x=0.1~0.4.
本发明的另一目的还在于提供一种钙钛矿型纳米材料的制备方法,步骤简单、安全、无需大型特殊设备,投资少,生产成本较低,产品生产周期短,产物纯度高。 Another object of the present invention is to provide a method for preparing perovskite-type nanomaterials, which has simple and safe steps, does not require large-scale special equipment, requires less investment, lower production costs, short production cycle and high product purity.
为实现上述目的,本发明采用如下技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种钙钛矿型纳米材料,所述钙钛矿型纳米材料分子式为(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3,式中x=0.1~0.4。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 , where x=0.1-0.4.
一种上述的钙钛矿型纳米材料的制备方法,包括以下步骤: A preparation method of the above-mentioned perovskite nanomaterials, comprising the following steps:
(1)分别用蒸馏水溶解一定量的Nd(NO3 ) 3·6H2O、Ca(NO3)2·4H2O、La(NO3)3·6H2O、Co(NO3)3·6H2O、Fe2(SO4)3·9H2O,分别配制成Nd(NO3 ) 3、Ca(NO3)2、La(NO3)3、Co(NO3)3和Fe2(SO4)3浓度为0.2~0.5mol·L-1的溶液; (1) Dissolve a certain amount of Nd ( NO 3 ) 3 6H 2 O, Ca(NO 3 ) 2 4H 2 O, La(NO 3 ) 3 6H 2 O, Co(NO 3 ) 3 , respectively in distilled water 6H 2 O, Fe 2 (SO 4 ) 3 ·9H 2 O, respectively formulated as Nd ( NO 3 ) 3 , Ca(NO 3 ) 2 , La(NO 3 ) 3 , Co(NO 3 ) 3 and Fe 2 ( SO 4 ) 3 solution with a concentration of 0.2~0.5mol·L -1 ;
(2)根据(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3材料中金属元素比例,将步骤(1)一定量的Nd(NO3 ) 3、Ca(NO3)2、La(NO3)3、Co(NO3)3和Fe2(SO4)3溶液混合,超声分散8~15min,得到混合溶液A; (2) According to the proportion of metal elements in (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material, a certain amount of Nd ( NO 3 ) 3 , Ca(NO 3 ) 2 , La (NO 3 ) 3 , Co(NO 3 ) 3 and Fe 2 (SO 4 ) 3 solutions were mixed and ultrasonically dispersed for 8-15 minutes to obtain mixed solution A;
(3)将浓度为0.20~0.30mol·L-1KOH溶液和浓度为0.05~0.15mol·L-1K2CO3溶液按体积比为1~3:1混合,得到溶液B; (3) Mix the KOH solution with a concentration of 0.20~0.30mol L -1 and the solution with a concentration of 0.05~0.15mol L -1 K 2 CO 3 at a volume ratio of 1~3:1 to obtain solution B;
(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散30~60min,至溶液的pH值为10~11,接着离心分离3~5min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散10~20min后,再进行离心分离3~5min,如此反复3~5次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 30-60 minutes until the pH value of the solution is 10-11, then centrifuge for 3-5 minutes, collect the precipitate, and wash the precipitate with distilled water until it is washed to Suction filtration after neutralization, then dissolve the filter cake with ethanol, continue ultrasonic dispersion for 10-20 minutes, and then perform centrifugation for 3-5 minutes, and repeat this process for 3-5 times to obtain precipitated sample C;
(5)将沉淀样品C置于烘箱中于100~110℃条件下烘干12~24h,最后将烘干的物质充分研磨成粉状物,即得(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3(x=0.1~0.4)前驱体D,所述x=0.1~0.4; (5) Place the precipitated sample C in an oven and dry it at 100-110°C for 12-24 hours, and finally grind the dried material into powder to obtain (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 (x=0.1~0.4) precursor D, said x=0.1~0.4;
(6)将前驱体D置于电炉中,以5~10℃·min-1的升温速率加热至450~500℃保温1.0~3.0h后,再以3~6℃·min-1的升温速率继续加热至800~900℃保温2.0~4.0h后,自然降温冷却至室温,即得纳米(NdxCa1-x)0.1La0.9Co0.5Fe0.5O3材料,所述x=0.1~0.4。 (6) Put the precursor D in an electric furnace, heat it to 450-500 °C at a heating rate of 5-10 °C min Continue heating to 800-900°C for 2.0-4.0 hours, then naturally cool down to room temperature to obtain nanometer (Nd x Ca 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material, where x=0.1-0.4.
根据上述的钙钛矿型纳米材料的制备方法,步骤(5)所述的烘箱为鼓风干燥烘箱。 According to the above method for preparing perovskite-type nanomaterials, the oven described in step (5) is a blast drying oven.
根据上述的钙钛矿型纳米材料的制备方法,步骤(6)所述的纳米(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3材料粒径为80~120nm。 According to the above method for preparing perovskite nanomaterials, the particle size of the nano (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material in step (6) is 80-120 nm.
本发明的积极有益效果:Positive beneficial effect of the present invention:
(1)本发明采用其他金属阳离子取代了钙钛矿ABO3型复合氧化物材料中起主要支撑结构骨架的A位金属离子,引起较大的晶格畸变,提高了其催化和化学等性能;在A为取代的基础上,又采用其他过渡金属阳离子取代了起主要催化活性等功能的B位离子,制备出具有A位和B位取代的和具有混合价的结构的钙钛矿型材料,使得该材料体系能量更大,只需在较小的能量驱动下即可发生电子结构匹配上的转变,从而获得更优良的磁学、光学、电学、表面和催化等性能。 (1) The present invention uses other metal cations to replace the A-site metal ions in the perovskite ABO 3 type composite oxide material, which is the main support structure skeleton, causing larger lattice distortion and improving its catalytic and chemical properties; On the basis of substitution by A, other transition metal cations are used to replace the B-site ions that have the main catalytic activity and other functions, and a perovskite-type material with A-site and B-site substitutions and a mixed-valence structure is prepared. The energy of the material system is higher, and the transformation of electronic structure matching can occur only under the driving of a small energy, so as to obtain better magnetic, optical, electrical, surface and catalytic properties.
(2)本发明钙钛矿型纳米(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3材料采用A位和B位离子同时置换取代的氧化物钙钛矿材料,具有较大范围内调变和控制结构中的离子价态和晶体缺陷的特点,同时又可保持较好的热力学稳定性。 (2) The perovskite-type nano (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material of the present invention adopts an oxide perovskite material that is replaced by A-site and B-site ions at the same time, and has a large range Internal modulation and control of the ion valence state and crystal defect characteristics in the structure, while maintaining good thermodynamic stability.
(3)本发明所用原料来源广泛,价格低廉;本发明制备方法,操作简单方便、安全,设备少,投资小,容易生产;产品生产周期短,成本低,纯度高,粒径为80~120nm,结构稳定,耐化学腐蚀,具有较好的工业利用前景。 (3) The raw materials used in the present invention have a wide range of sources and low prices; the preparation method of the present invention is simple, convenient and safe to operate, requires less equipment, small investment, and is easy to produce; the product has a short production cycle, low cost, high purity, and a particle size of 80-120nm , stable structure, chemical corrosion resistance, and has good industrial application prospects.
附图说明 Description of drawings
图1为本发明实施例1钙钛矿型纳米材料的X射线衍射的XRD图谱; Fig. 1 is the XRD spectrum of the X-ray diffraction of the perovskite type nano material of the embodiment of the present invention 1;
图2为本发明实施例2钙钛矿型纳米材料的X射线衍射的XRD图谱; Fig. 2 is the XRD spectrum of the X-ray diffraction of the perovskite nanomaterial of embodiment 2 of the present invention;
图3为本发明实施例3钙钛矿型纳米材料的X射线衍射的XRD图谱。 FIG. 3 is an XRD pattern of X-ray diffraction of the perovskite nanomaterial of Example 3 of the present invention.
具体实施方式 detailed description
下面结合一些具体实施例对本发明进一步说明。 The present invention will be further described below in conjunction with some specific examples.
实施例1 Example 1
一种钙钛矿型纳米材料,所述钙钛矿型纳米材料分子式为(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3,式中x=0.4。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 , where x=0.4.
上述钙钛矿型纳米(Ca0.4Nd0.6)0.1La0.9Co0.5Fe0.5O3材料的制备方法,包括以下步骤: The preparation method of the perovskite nanometer (Ca 0.4 Nd 0.6 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material comprises the following steps:
(1)称量21.9120g的Nd(NO3 ) 3·6H2O、11.8075g的Ca(NO3)2·4H2O、21.6500g的La(NO3)3·6H2O、17.6500g的Co(NO3)3·6H2O、28.1005g的Fe2(SO4)3·9H2O,然后分别加入一定量的蒸馏水分别配制成浓度为0.5mol·L-1的Nd(NO3 ) 3、Ca(NO3)2、La(NO3)3、Co(NO3)3和Fe2(SO4)3溶液; (1) Weigh 21.9120g of Nd ( NO 3 ) 3 6H 2 O, 11.8075g of Ca(NO 3 ) 2 4H 2 O, 21.6500g of La(NO 3 ) 3 6H 2 O, 17.6500g Co(NO 3 ) 3 ·6H 2 O, 28.1005g of Fe 2 (SO 4 ) 3 ·9H 2 O, and then add a certain amount of distilled water to prepare Nd ( NO 3 ) with a concentration of 0.5mol·L -1 3. Ca(NO 3 ) 2 , La(NO 3 ) 3 , Co(NO 3 ) 3 and Fe 2 (SO 4 ) 3 solutions;
(2)根据(Ca0.4Nd0.6)0.1La0.9Co0.5Fe0.5O3材料中金属元素化学计量比(Ca:Nd:La:Co:Fe=0.04:0.06:0.9:0.5:0.5),分别将上述步骤(1)所得4ml的Ca(NO3)2溶液、6ml的Nd(NO3 ) 3溶液、90ml的La(NO3)3溶液、50ml的Co(NO3)3溶液、25ml的Fe2(SO4)3溶液混合,超声分散混合10min后得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in (Ca 0.4 Nd 0.6 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material (Ca: Nd: La: Co: Fe = 0.04: 0.06: 0.9: 0.5: 0.5), respectively 4ml of Ca(NO 3 ) 2 solution, 6ml of Nd ( NO 3 ) 3 solution, 90ml of La(NO 3 ) 3 solution, 50ml of Co(NO 3 ) 3 solution, 25ml of Fe 2 solution obtained in the above step (1) (SO 4 ) 3 solutions were mixed and ultrasonically dispersed and mixed for 10 minutes to obtain a mixed solution A;
(3)将0.30mol·L-1的KOH溶液和浓度为0.15mol·L-1的K2CO3的溶液按体积比为2:1混合,得到溶液B; (3) Mix 0.30 mol L -1 KOH solution and 0.15 mol L -1 K 2 CO 3 solution at a volume ratio of 2:1 to obtain solution B;
(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散60min,至溶液的pH值为10,接着离心分离5min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散20min后,再进行离心分离5min,如此反复3次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 60 minutes, until the pH value of the solution is 10, then centrifuge for 5 minutes, collect the precipitate, wash the precipitate with distilled water until it is neutral, and then filter it with suction. Then dissolve the filter cake with ethanol, continue to ultrasonically disperse for 20 minutes, and then perform centrifugation for 5 minutes, and repeat this 3 times to obtain precipitated sample C;
(5)将沉淀样品C置于烘箱中于110℃条件下烘干20h,最后将烘干的物质充分研磨成粉状物,即得((Ca0.4Nd0.6)0.1La0.9Co0.5Fe0.5O3前驱体D; (5) Place the precipitated sample C in an oven and dry it at 110°C for 20 hours, and finally grind the dried material into a powder to obtain ((Ca 0.4 Nd 0.6 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 precursor D;
(6)将前驱体D置于电炉中,以5℃·min-1的升温速率加热至500℃保温3h后,再以 (6) Place the precursor D in an electric furnace, heat it to 500 °C at a heating rate of 5 °C min -1 for 3 h, and then
3℃·min-1的升温速率继续加热至800℃保温2.0h后,自然降温冷却至室温,即得纳米(Ca0.4Nd0.6)0.1La0.9Co0.5Fe0.5O3材料。 Continue heating at a heating rate of 3°C·min -1 to 800°C for 2.0 hours, then cool down to room temperature naturally to obtain nanometer (Ca 0.4 Nd 0.6 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 materials.
从图1可以看出,产物(Ca0.4Nd0.6)0.1La0.9Co0.5Fe0.5O3钙钛矿材料的纯度高,为单一钙钛矿晶相,平均粒径为80nm,原料转化率为99%。 It can be seen from Figure 1 that the product (Ca 0.4 Nd 0.6 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 perovskite material has high purity, is a single perovskite crystal phase, the average particle size is 80nm, and the conversion rate of raw materials is 99% %.
实施例2Example 2
一种钙钛矿型纳米材料,所述钙钛矿型纳米材料分子式为(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3,式中x=0.3。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 , where x=0.3.
上述钙钛矿型纳米(Ca0.3Nd0.7)0.1La0.9Co0.5Fe0.5O3材料的制备方法,包括以下步骤: The preparation method of the perovskite nanometer (Ca 0.3 Nd 0.7 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material comprises the following steps:
(1)首先称量17.5296g的Nd(NO3)3·6H2O、9.4460g的Ca(NO3)2·4H2O、17.3200g的La(NO3)3·6H2O、14.1200g的Co(NO3)3·6H2O、22.4804g的Fe2(SO4)3·9H2O,然后分别加入一定量的蒸馏水分别配制成浓度为0.4mol·L-1的Nd(NO3 ) 3、Ca(NO3)2、La(NO3)3、Co(NO3)3和Fe2(SO4)3溶液; (1) First weigh 17.5296g of Nd(NO 3 ) 3 ·6H 2 O, 9.4460g of Ca(NO 3 ) 2 ·4H 2 O, 17.3200g of La(NO 3 ) 3 ·6H 2 O, 14.1200g Co(NO 3 ) 3 ·6H 2 O, 22.4804g of Fe 2 (SO 4 ) 3 ·9H 2 O, and then add a certain amount of distilled water to prepare Nd ( NO 3 ) 3 , Ca(NO 3 ) 2 , La(NO 3 ) 3 , Co(NO 3 ) 3 and Fe 2 (SO 4 ) 3 solutions;
(2)根据(Ca0.3Nd0.7)0.1La0.9Co0.5Fe0.5O3材料中金属元素化学计量比(Ca:Nd:La:Co:Fe=0.03:0.07:0.9:0.5:0.5),分别将上述步骤(1)所得3ml的Ca(NO3)2溶液、7ml的Nd(NO3)3溶液、90ml的La(NO3)3溶液、50ml的Co(NO3)3溶液、25ml的Fe2(SO4)3溶液)混合,超声分散混合8min,得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in (Ca 0.3 Nd 0.7 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material (Ca: Nd: La: Co: Fe = 0.03: 0.07: 0.9: 0.5: 0.5), respectively The above step (1) obtained 3ml of Ca(NO 3 ) 2 solution, 7ml of Nd(NO 3 ) 3 solution, 90ml of La(NO 3 ) 3 solution, 50ml of Co(NO 3 ) 3 solution, 25ml of Fe 2 (SO 4 ) 3 solution) were mixed, and ultrasonically dispersed and mixed for 8 minutes to obtain a mixed solution A;
(3)将0.20mol·L-1的KOH与0.05mol·L-1的K2CO3的体积比为3:1混合,得到溶液B; (3) Mix 0.20 mol L -1 KOH and 0.05 mol L -1 K 2 CO 3 at a volume ratio of 3:1 to obtain solution B;
(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散50min,至溶液的pH值为11,接着离心分离4min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散15min后,再进行离心分离4min,如此反复4次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 50 minutes, until the pH value of the solution is 11, then centrifuge for 4 minutes, collect the precipitate, wash the precipitate with distilled water until it is neutral, and then filter it with suction. Then dissolve the filter cake with ethanol, continue to ultrasonically disperse for 15 minutes, and then perform centrifugation for 4 minutes, and repeat this 4 times to obtain precipitated sample C;
(5)将沉淀样品C置于鼓风烘箱中于100℃条件下烘干12h,最后将烘干的物质充分研磨成粉状物,即得(Ca0.3Nd0.7)0.1La0.9Co0.5Fe0.5O3前驱体D; (5) Place the precipitated sample C in a blast oven and dry it at 100°C for 12 hours, and finally grind the dried material into a powder to obtain (Ca 0.3 Nd 0.7 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O precursor D ;
(6)将前驱体D置于电炉中,以8℃·min-1的升温速率加热至450℃保温2h后,再以4℃·min-1的升温速率继续加热至820℃保温4.0h后,自然降温冷却至室温,即得纳米(Ca0.3Nd0.7)0.1La0.9Co0.5Fe0.5O3材料。 (6) Put the precursor D in an electric furnace, heat it to 450°C at a heating rate of 8°C min -1 and keep it for 2h, then continue heating to 820°C at a heating rate of 4°C min -1 for 4.0h , and naturally cooled down to room temperature to obtain nanometer (Ca 0.3 Nd 0.7 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material.
从图2可以看出,产物(Ca0.3Nd0.7)0.1La0.9Co0.5Fe0.5O3钙钛矿材料的纯度高,为单一钙钛矿晶相,平均粒径为100nm,原料转化率为100%。 It can be seen from Fig. 2 that the product (Ca 0.3 Nd 0.7 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 perovskite material has high purity and is a single perovskite crystal phase with an average particle size of 100nm and a raw material conversion rate of 100 %.
实施例3Example 3
一种钙钛矿型纳米材料,所述钙钛矿型纳米材料分子式为(CaxNd1-x)0.1La0.9Co0.5Fe0.5O3,式中x=0.1。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is (Ca x Nd 1-x ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 , where x=0.1.
上述钙钛矿型纳米(Ca0.1Nd0.9)0.1La0.9Co0.5Fe0.5O3材料的制备方法,包括以下步骤: The preparation method of the perovskite nanometer (Ca 0.1 Nd 0.9 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material comprises the following steps:
(1)首先称量17.5296g的Nd(NO3 ) 3·6H2O、9.4460g的Ca(NO3)2·4H2O、17.3200g的La(NO3)3·6H2O、14.1200g的Co(NO3)3·6H2O、22.4804g的Fe2(SO4)3·9H2O,然后分别加入一定量的蒸馏水分别配制成浓度为0.2mol·L-1的Nd(NO3 ) 3、Ca(NO3)2、La(NO3)3、Co(NO3)3和Fe2(SO4)3溶液; (1) First weigh 17.5296g of Nd ( NO 3 ) 3 ·6H 2 O, 9.4460g of Ca(NO 3 ) 2 ·4H 2 O, 17.3200g of La(NO 3 ) 3 ·6H 2 O, 14.1200g Co(NO 3 ) 3 ·6H 2 O, 22.4804g of Fe 2 (SO 4 ) 3 ·9H 2 O, and then add a certain amount of distilled water to prepare Nd ( NO 3 ) 3 , Ca(NO 3 ) 2 , La(NO 3 ) 3 , Co(NO 3 ) 3 and Fe 2 (SO 4 ) 3 solutions;
(2)根据(Ca0.1Nd0.9)0.1La0.9Co0.5Fe0.5O3材料中金属元素化学计量比(Ca:Nd:La:Co:Fe=0.01:0.09:0.9:0.5:0.5),分别将上述步骤(1)所得2ml的Ca(NO3)2溶液、18ml的Nd(NO3)3溶液、180ml的La(NO3)3溶液、100ml的Co(NO3)3溶液、50ml的Fe2(SO4)3溶液混合,超声分散15min,得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in (Ca 0.1 Nd 0.9 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material (Ca: Nd: La: Co: Fe = 0.01: 0.09: 0.9: 0.5: 0.5), respectively The above step (1) obtained 2ml of Ca(NO 3 ) 2 solution, 18ml of Nd(NO 3 ) 3 solution, 180ml of La(NO 3 ) 3 solution, 100ml of Co(NO 3 ) 3 solution, 50ml of Fe 2 (SO 4 ) 3 solutions were mixed and ultrasonically dispersed for 15 minutes to obtain a mixed solution A;
(3)将0.20mol·L-1的KOH与0.10mol·L-1的K2CO3的体积比为1:1混合,得到溶液B; (3) Mix 0.20 mol L -1 KOH and 0.10 mol L -1 K 2 CO 3 at a volume ratio of 1:1 to obtain solution B;
(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散30min,至溶液的pH值为11,接着离心分离3min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散10min后,再进行离心分离3min,如此反复5次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 30 minutes, until the pH value of the solution is 11, then centrifuge for 3 minutes, collect the precipitate, wash the precipitate with distilled water until it is neutral, and then filter it with suction. Then dissolve the filter cake with ethanol, continue to ultrasonically disperse for 10 minutes, and then perform centrifugation for 3 minutes, and repeat this 5 times to obtain precipitated sample C;
(5)将沉淀样品C置于鼓风烘箱中于110℃条件下烘干24h,最后将烘干的物质充分研磨成粉状物,即得(Ca0.1Nd0.9)0.1La0.9Co0.5Fe0.5O3前驱体D; (5) Place the precipitated sample C in a blast oven and dry it at 110°C for 24 hours, and finally grind the dried material into a powder to obtain (Ca 0.1 Nd 0.9 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O precursor D ;
(6)将前驱体D置于电炉中,以10℃·min-1的升温速率加热至460℃保温1h后,再以6℃·min-1的升温速率继续加热至900℃保温3.0h后,自然降温冷却至室温,即得纳米(Ca0.1Nd0.9)0.1La0.9Co0.5Fe0.5O3材料。 (6) Put the precursor D in an electric furnace, heat it to 460°C at a heating rate of 10°C min -1 and keep it for 1h, then continue heating to 900°C at a heating rate of 6°C min -1 for 3.0h , and naturally cooled down to room temperature to obtain a nanometer (Ca 0.1 Nd 0.9 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 material.
从图3可以看出,产物(Ca0.1Nd0.9)0.1La0.9Co0.5Fe0.5O3钙钛矿材料的纯度很高,为单一钙钛矿晶相,平均粒径为120nm,原料转化率为99%。 It can be seen from Figure 3 that the product (Ca 0.1 Nd 0.9 ) 0.1 La 0.9 Co 0.5 Fe 0.5 O 3 perovskite material has a high purity and is a single perovskite crystal phase with an average particle size of 120nm and a raw material conversion rate of 99%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510002279.1A CN104591722B (en) | 2015-01-05 | 2015-01-05 | A kind of calcium-titanium ore type nano material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510002279.1A CN104591722B (en) | 2015-01-05 | 2015-01-05 | A kind of calcium-titanium ore type nano material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104591722A CN104591722A (en) | 2015-05-06 |
CN104591722B true CN104591722B (en) | 2016-06-08 |
Family
ID=53117834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510002279.1A Expired - Fee Related CN104591722B (en) | 2015-01-05 | 2015-01-05 | A kind of calcium-titanium ore type nano material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104591722B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107857301A (en) * | 2017-11-09 | 2018-03-30 | 东南大学 | A kind of calcium swage Ca2Fe2O5Method for preparing catalyst |
CN112844391A (en) * | 2021-01-13 | 2021-05-28 | 宁夏大学 | Perovskite type multi-metal composite oxygen carrier and preparation method thereof |
CN114011425B (en) * | 2021-12-08 | 2023-12-05 | 湘潭大学 | A bifunctional catalyst and its preparation method and application and application method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101746834B (en) * | 2009-12-19 | 2012-08-01 | 山西大学 | Preparation method of perovskite composite oxide La1-xCaxFeO3 ultrafine powder |
CN102142564B (en) * | 2011-02-24 | 2014-04-02 | 安徽工业大学 | LaFeO3-based anode materials for sulfur-oxygen fuel cells |
JP2012227142A (en) * | 2011-04-19 | 2012-11-15 | Samsung Electronics Co Ltd | Positive electrode material for fuel cell, positive electrode for fuel cell including the same, and solid oxide fuel cell |
CN103449536B (en) * | 2013-08-30 | 2015-01-21 | 华北水利水电大学 | Preparation method of perovskite nanometer Nd1-xMgxCoO3 |
-
2015
- 2015-01-05 CN CN201510002279.1A patent/CN104591722B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104591722A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Synthesis and characterization of single-crystalline alkali titanate nanowires | |
CN101597086A (en) | Method for preparing nano-manganese dioxide of different crystal forms in low-temperature acid solution | |
CN103553140B (en) | Method for preparing lanthanum ferrite nanodisk | |
CN102602986A (en) | Preparation method of micronano stannic oxide porous rod with controllable shape | |
CN102826593A (en) | Preparation method for indium oxide nanometer material | |
CN102219254A (en) | Preparation method of zinc oxide nanorod | |
CN104148047A (en) | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst | |
CN103387261A (en) | Anatase titanium dioxide nano-rods and preparation method thereof | |
CN104591722B (en) | A kind of calcium-titanium ore type nano material and preparation method thereof | |
CN102153142A (en) | Molybdenum trioxide nanosheet and preparation method thereof | |
CN104192890B (en) | A kind of method preparing carbon doping zinc-oxide nano column | |
CN104556217B (en) | A method for preparing divalent metal titanate microspheres | |
CN104591302B (en) | A kind of calcium-titanium ore type nano material and preparation method thereof | |
CN102219263B (en) | Method for preparing Gamma-MnOOH nanometer rod | |
CN106268895A (en) | A kind of preparation method of iron sesquioxide bismuthyl carbonate composite photo-catalyst | |
CN104085925B (en) | A kind of preparation method of LATON Ca-Ti ore type nitrogen oxide powder | |
CN106167276A (en) | A kind of preparation method of laminated perovskite type nano material | |
CN103613123B (en) | Method for preparing monodisperse stannic oxide nanocrystalline particles | |
CN104528841A (en) | A method and application of ultrasonic-microwave hydrothermal method for preparing nanometer Co2(OH)3Cl gas-sensing material | |
CN102936031B (en) | Room temperature quick preparation method of nano-zinc oxide mesocrystal | |
CN102897723A (en) | Hydrothermal method for preparing selenium-copper-based nano-crystals | |
CN102923669A (en) | Benzoic acid-intercalated laminated transition metal hydroxide one-dimensional nano material with reversible transition structure and preparation method thereof | |
CN104495932A (en) | Method for solid-phase chemical reaction synthesis of nano molybdenum trioxide | |
CN104195642B (en) | A kind of method for preparing single crystal BiFeO3 nano sheet | |
CN100534904C (en) | Method for preparing nano Al2O3 adopting salt-melting calcination process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160608 Termination date: 20170105 |