[go: up one dir, main page]

CN1778326A - Drugs to treat cardiovascular disease - Google Patents

Drugs to treat cardiovascular disease Download PDF

Info

Publication number
CN1778326A
CN1778326A CN 200410072937 CN200410072937A CN1778326A CN 1778326 A CN1778326 A CN 1778326A CN 200410072937 CN200410072937 CN 200410072937 CN 200410072937 A CN200410072937 A CN 200410072937A CN 1778326 A CN1778326 A CN 1778326A
Authority
CN
China
Prior art keywords
membrane
ultrafiltration
pressure
chinese medicine
medicine composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410072937
Other languages
Chinese (zh)
Other versions
CN1778326B (en
Inventor
李旭
郑永锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tasly Pharmaceutical Group Co Ltd
Original Assignee
Tianjin Tasly Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Tasly Pharmaceutical Co Ltd filed Critical Tianjin Tasly Pharmaceutical Co Ltd
Priority to CN 200410072937 priority Critical patent/CN1778326B/en
Publication of CN1778326A publication Critical patent/CN1778326A/en
Application granted granted Critical
Publication of CN1778326B publication Critical patent/CN1778326B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

A Chinese medicine for treating coronary heart disease is prepared from Chuan-xiong rhizome, notoginseng and dalbergia wood oil or storax is prepared through extracting the liquid extract from Chuan-xiong rhizome and notoginseng in water or alcohol, clarifying, ultrafiltering, concentrating, adding dalbergia wood oil or storax and shaping.

Description

治疗心血管疾病的药物Drugs to treat cardiovascular disease

技术领域technical field

本发明涉及一种应用超滤工艺制备的中药。具体而言,本发明涉及一种治疗心血管疾病的的中药组合物。The invention relates to a traditional Chinese medicine prepared by an ultrafiltration process. Specifically, the present invention relates to a traditional Chinese medicine composition for treating cardiovascular diseases.

背景技术Background technique

膜分离技术(Membrane Separation Technique)是一项新兴的高效分离技术,已被国际公认为20世纪末至21世纪中期最有发展前途的一项重大高新生产技术。超滤(Ultrafiltration,UF)技术是一种膜分离技术,其基本原理是利用膜孔选择性筛分性能,以分离、提纯和浓缩物质。超滤方法,是利用高分子材料制成的各向异性膜(即不对称膜)为过滤介质,在常温条件下,依靠一定的压力和流速,使溶液流经膜面,迫使低分子量物质透过膜,而使高分子物质被截留。Membrane separation technology (Membrane Separation Technique) is a new high-efficiency separation technology, which has been internationally recognized as the most promising high-tech production technology from the end of the 20th century to the middle of the 21st century. Ultrafiltration (UF) technology is a membrane separation technology whose basic principle is to use the selective screening performance of membrane pores to separate, purify and concentrate substances. The ultrafiltration method uses an anisotropic membrane (that is, an asymmetric membrane) made of polymer materials as the filter medium. Under normal temperature conditions, relying on a certain pressure and flow rate, the solution flows through the membrane surface, forcing low molecular weight substances to permeate. Through the membrane, the polymer substances are intercepted.

由于超滤方法为物理方法,具有不须反复加热,没有“相态”变化,破坏有效成分的可能性较其它通用方法为少,工艺流程短等特点,因而其应用于提取中药有效成分的研究日益活跃,部分产品已从实验室研究走向工业生产。解放军304医院王世岭等人用超滤法提取黄芩中有效成分黄芩甙,结果表明超滤法在产率、纯度方面均较常法为优,且一次超滤即可达到注射剂要求,不需再行精制,工艺简单,生产周期可缩短1~2倍(王世岭,郑殿宝“超滤法提取黄芩甙的初步考察”,中成药研究,1988(3):5)。王世岭等还进一步研究了超滤法提取黄芩甙的最佳工艺条件,实验结果证明选用适宜孔径(截留分子量为6000~10000)的超滤膜是提高黄芩甙收率和质量的关键,同时升高药液温度或降低浓度,严格控制pH值(酸化时pH=1.5,碱溶时pH=7.0),可显著提高超滤速度,获得最佳产出效果(王世岭,“超滤法一次提取黄芩甙的工艺研究”,中成药,1994,16(3):2)。许金林等将超滤法(聚砜膜,截留分子量6000)用于植酸的制备中,植酸得率为86.4%,比常规的植酸盐法提高12.6%,且超滤法所得植酸几乎不含无机磷,外观透明几近无色(许金林,许杰,汪远金“膜分离技术制备植酸的研究”,中国医药工业杂志,1994,25(4):150)。何昌生等应用超滤技术分离精制甜菊糖甙,采用超薄型板式超滤器和截留分子量为10000的醋酸纤维素膜(CA膜)对甜菊糖甙进行净化现场实验,其工艺流程合理可行。超滤器性能稳定,膜的脱色性能和除杂质效果良好,可较好地解决甜菊糖甙生产中常常出现的沉淀和灌封时起泡问题(何昌生,王炳南,朱姗姗“甜菊糖甙超滤的应用研究”,水处理技术,1994,20(2):89)。黄自强采用超滤膜(截留分子量为4000和10000的聚砜膜)精制油茶皂甙,与国内大都采用的漂白法、再结晶法、醇醚沉淀法及碱式盐沉淀法比较,超滤法流程简单,效率高,费用低,对除去粗油茶皂甙中的油脂、色素、糖类及其他亲水性强的杂质,都能达到预期效果(黄自强,“超滤膜法精制油茶皂甙初探”水处理技术,1995,21(2):99)。南京中医药大学郭立玮等比较研究了水醇法与超滤法澄清山茱萸制剂对其制剂所含成分的影响,结果证实超滤法对去除药液中糖类杂质更为有效,截留分子量为10000的超滤膜对马钱素(分子量为384)无明显影响,但截留分子量为1000的膜使马钱素损失50%左右(郭立玮,彭国平,潘扬等“水醇法与膜分离法精制含山茱萸中药制剂的比较研究”,中成药,1999,21(2):59)。王成章等采用超滤法(聚砜膜,截留分子量30000)和聚酰胺树脂吸附洗脱法对银杏叶的乙醇提取液进行分离、纯化,经高效液相色谱(HPLC)检测,银杏黄酮甙含量在45%左右,得率为0.5%~0.7%,较常规水蒸气蒸馏法、有机溶剂提取法为优,而且在超滤工艺中可减少废水排放,保护环境,降低生产成本,提高经济效益(王成章,郁青,谭卫红等“超滤在纯化银杏叶黄酮甙中的应用”,林业科技通讯,1997,(2):21)。Because the ultrafiltration method is a physical method, it has the characteristics of no need for repeated heating, no "phase state" change, less possibility of destroying active ingredients than other general methods, and short process flow, so it is applied to the research of extracting active ingredients of traditional Chinese medicine Increasingly active, some products have moved from laboratory research to industrial production. People's Liberation Army 304 Hospital Wang Shiling and others used ultrafiltration to extract the active ingredient baicalin in Scutellaria baicalensis. The results showed that the ultrafiltration method was superior to the conventional method in terms of yield and purity, and one ultrafiltration can meet the requirements of injections without further steps. Refined, simple process, the production cycle can be shortened by 1 to 2 times (Wang Shiling, Zheng Dianbao "A Preliminary Investigation on the Extraction of Baicalin by Ultrafiltration", Chinese Patent Medicine Research, 1988 (3): 5). Wang Shiling and others have further studied the optimal process conditions for extracting baicalin by ultrafiltration. The experimental results prove that the selection of an ultrafiltration membrane with a suitable pore size (molecular weight cut-off is 6000-10000) is the key to improving the yield and quality of baicalin. Liquid temperature or lower concentration, strictly control the pH value (pH=1.5 during acidification, pH=7.0 during alkali dissolution), can significantly improve the ultrafiltration speed, and obtain the best output effect (Wang Shiling, "One-time extraction of baicalin by ultrafiltration Technology Research", Chinese Patent Medicine, 1994, 16(3): 2). Xu Jinlin and others used the ultrafiltration method (polysulfone membrane, molecular weight cut-off 6000) in the preparation of phytic acid, and the yield of phytic acid was 86.4%, which was 12.6% higher than the conventional phytate method, and the phytic acid obtained by the ultrafiltration method was almost It does not contain inorganic phosphorus, and its appearance is transparent and almost colorless (Xu Jinlin, Xu Jie, Wang Yuanjin "Research on Preparation of Phytic Acid by Membrane Separation Technology", China Journal of Pharmaceutical Industry, 1994, 25(4): 150). He Changsheng and others applied ultrafiltration technology to separate and refine stevioside, and used ultra-thin plate ultrafilter and cellulose acetate membrane (CA membrane) with a molecular weight cut-off of 10,000 to carry out field experiments on the purification of stevioside. The process flow is reasonable and feasible. The performance of the ultrafilter is stable, the decolorization performance of the membrane and the effect of removing impurities are good, which can better solve the problems of precipitation and foaming during potting that often occur in the production of stevioside (He Changsheng, Wang Bingnan, Zhu Shanshan "Stevioside Application Research of Ultrafiltration", Water Treatment Technology, 1994, 20(2): 89). Huang Ziqiang used ultrafiltration membranes (polysulfone membranes with a molecular weight cut-off of 4000 and 10000) to refine camellia oleifera saponin, compared with the bleaching method, recrystallization method, alcohol ether precipitation method and alkaline salt precipitation method mostly used in China, the ultrafiltration process flow Simple, efficient, low cost, to remove grease, pigments, sugars and other highly hydrophilic impurities in the crude camellia saponin, all can achieve the expected effect (Huang Ziqiang, "Ultrafiltration membrane method refining camellia saponin preliminary research" water Process Technology, 1995, 21(2):99). Guo Liwei from Nanjing University of Traditional Chinese Medicine compared and studied the effects of water-alcohol method and ultrafiltration method on the clarification of Cornus officinalis preparations on the ingredients contained in the preparations. Ultrafiltration membrane has no obvious effect on loganin (molecular weight is 384), but the film with molecular weight cut-off is 1000 makes loganin loss about 50% (Guo Liwei, Peng Guoping, Pan Yang et al. A Comparative Study of Chinese Medicine Preparations from Cornus officinalis", Chinese Patent Medicine, 1999, 21(2): 59). Wang Chengzhang et al. used ultrafiltration (polysulfone membrane, molecular weight cut-off 30000) and polyamide resin adsorption elution method to separate and purify the ethanol extract of Ginkgo biloba leaves, and the content of ginkgo flavonoid glycosides was detected by high performance liquid chromatography (HPLC). At about 45%, the yield is 0.5% to 0.7%, which is superior to conventional steam distillation and organic solvent extraction, and can reduce waste water discharge in the ultrafiltration process, protect the environment, reduce production costs, and improve economic benefits ( Wang Chengzhang, Yu Qing, Tan Weihong, etc. "Application of Ultrafiltration in the Purification of Ginkgo Flavonoid Glycosides", Forestry Science and Technology Communication, 1997, (2): 21).

超滤技术应用于中药制剂的生产虽有其独特的优点,但其推广应用的程度仍然十分有限,究其原因,尚存在以下问题:Although the application of ultrafiltration technology in the production of traditional Chinese medicine preparations has its unique advantages, the extent of its application is still very limited. The reason is that there are still the following problems:

(1)中草药成分复杂,特别是许多复方制剂,有效成分还未完全清楚,因此在将超滤技术应用于中草药制剂之前需要进行十分深入的研究。例如由于成分的复杂性,在未进行大量的药理和临床研究试验充分评价超滤对中药制剂中各成分的药效影响程度之前,不可能将超滤法应用于大多数中药制剂的生产。(1) The composition of Chinese herbal medicine is complex, especially in many compound preparations, the active ingredients have not been fully understood, so it needs to be thoroughly studied before applying ultrafiltration technology to Chinese herbal medicine preparations. For example, due to the complexity of the components, it is impossible to apply ultrafiltration to the production of most traditional Chinese medicine preparations before a large number of pharmacological and clinical research tests are conducted to fully evaluate the effect of ultrafiltration on the efficacy of each component in traditional Chinese medicine preparations.

(2)膜材料的品种少,膜孔径分布宽,性能欠稳定。在中药制剂生产中使用过的超滤膜材料有醋酸纤维素、聚丙烯腈、聚砜、磺化聚砜、聚砜酰胺等。按其对水的亲和性分类,大致可分为两类:疏水性膜材料和亲水性膜材料。醋酸纤维素、磺化聚砜等亲水性膜材料对溶质吸附少,截留分子量较小,但热稳定性差,机械强度、抗化学药品性、抗细菌侵蚀能力通常不高;聚砜等疏水性膜材,机械强度高,耐高温、耐溶剂、耐生物降解,但因分子链中含有大量疏水性基因或链节,并带有较多静电荷,因而膜透水速度低,抗污染能力较低。(2) There are few types of membrane materials, the membrane pore size distribution is wide, and the performance is not stable. The ultrafiltration membrane materials used in the production of traditional Chinese medicine preparations include cellulose acetate, polyacrylonitrile, polysulfone, sulfonated polysulfone, polysulfone amide, etc. According to its affinity to water, it can be roughly divided into two categories: hydrophobic membrane materials and hydrophilic membrane materials. Hydrophilic membrane materials such as cellulose acetate and sulfonated polysulfone have less adsorption of solutes and a smaller molecular weight cut-off, but poor thermal stability, mechanical strength, chemical resistance, and bacterial erosion resistance are usually not high; polysulfone and other hydrophobic Membrane material has high mechanical strength, high temperature resistance, solvent resistance, and biodegradation resistance, but because the molecular chain contains a large number of hydrophobic genes or chain links, and has a lot of electrostatic charges, the membrane has a low water permeability and low anti-pollution ability .

(3)膜的污染问题是阻碍超滤技术由实验室研究走向工业应用阶段的最大障碍。在中药制剂的超滤过程中,若药液预处理效果不佳时,膜面易污染,膜孔堵塞,使渗透通量即生产率下降,甚至不能正常工作,生产效率降低,成本上升,导致膜的使用寿命缩短。(3) Membrane fouling is the biggest obstacle preventing ultrafiltration technology from laboratory research to industrial application. In the ultrafiltration process of traditional Chinese medicine preparations, if the pretreatment effect of the liquid medicine is not good, the membrane surface will be easily polluted and the membrane pores will be blocked, which will reduce the permeation flux, that is, the productivity, or even fail to work normally, reduce the production efficiency, and increase the cost, resulting in membrane shortened service life.

(4)膜组件的选择方法尚未建立起来,超滤操作参数尚需优化。影响超滤效果的因素很多,包括膜组件的选择,工艺参数的确定及超滤器使用后的清洗方法等。因此适用于中药体系超滤用的超滤设备及操作工艺,有待进一步研究。(4) The selection method of membrane modules has not been established yet, and the operating parameters of ultrafiltration still need to be optimized. There are many factors that affect the effect of ultrafiltration, including the selection of membrane components, the determination of process parameters and the cleaning method of the ultrafilter after use. Therefore, the ultrafiltration equipment and operating technology suitable for ultrafiltration of traditional Chinese medicine systems need further research.

发明人经过长期不懈地努力,通过对大量实验数据进行分析,确定了合适的工艺操作条件,为利用超滤法进行本发明药物的工业化生产提供了具体的解决方案。After long-term and unremitting efforts, the inventor determined the appropriate process operating conditions by analyzing a large number of experimental data, and provided a specific solution for the industrial production of the drug of the present invention by ultrafiltration.

发明内容Contents of the invention

本发明的目的是提供一种杂质少、有效成分损失小的治疗心血管疾病的中药,它克服了现有技术的不足,解决了工业化生产超滤工艺条件可操作性的难题。The object of the present invention is to provide a traditional Chinese medicine for treating cardiovascular diseases with less impurities and less active ingredient loss, which overcomes the deficiencies of the prior art and solves the difficult problem of operability of industrial production ultrafiltration process conditions.

本发明是通过下述技术步骤实现的:以川芎、三七和降香油为原料药,按照以下步骤进行制备:The present invention is achieved through the following technical steps: using Rhizoma Chuanxiong, Panax notoginseng and Dalbergia oil as raw materials, it is prepared according to the following steps:

(1)将川芎、三七混合或单独制成水提液或醇提液;(1) Mix Rhizoma Chuanxiong and Panax notoginseng or make water extract or alcohol extract separately;

(2)对所述的提取液进行初步澄清处理;(2) Carry out preliminary clarification treatment to described extract;

(3)进一步对所述的提取液进行超滤处理;(3) further carry out ultrafiltration treatment to described extract;

(4)将超滤液浓缩,加入降香油,按常规方法制成制剂。(4) Concentrate the ultrafiltrate, add balsamic oil, and make a preparation according to a conventional method.

上述原料药的重量百分比为:川芎20%~97%,三七2%~79%,降香油0.2%~3%;优选为川芎63.0%%~94%,三七4.0%~35.0%,降香油0.5%~2.0%;更优选为川芎75.2%~90%,三七9%~23.5%,降香油0.5%~1.3%。川芎、三七、降香油的重量百分比之和为100%。The weight percent of above-mentioned crude drug is: Rhizoma Chuanxiong 20%~97%, Panax notoginseng 2%~79%, balm oil 0.2%~3%; Be preferably Chuanxiong 63.0%%~94%, Radix notoginseng 4.0%~35.0%. Sesame oil 0.5%-2.0%; more preferably Chuanxiong 75.2%-90%, Panax notoginseng 9%-23.5%, and balm oil 0.5%-1.3%. The sum of the percentages by weight of Rhizoma Chuanxiong, Panax notoginseng and balm oil is 100%.

上述原料降香可以用苏合香替换,即上述原料药可为川芎20%~97%,三七2%~79%,苏合香0.2%~3%;优选为川芎63.0%%~94%,三七4.0%~35.0%,苏合香0.5%~2.0%;更优选为川芎75.2%~90%,三七9%~23.5%,苏合香0.5%~1.3%。川芎、三七、苏合香的重量百分比之和为100%。The above-mentioned raw material Dalbergia can be replaced by Styrax, that is, the above-mentioned raw material can be Chuanxiong 20%-97%, Sanqi 2%-79%, Styrax 0.2%-3%; preferably Chuanxiong 63.0%%-94%, Sanqi 4.0% %~35.0%, styrax 0.5%~2.0%; more preferably Chuanxiong 75.2%~90%, Panax notoginseng 9%~23.5%, styrax 0.5%~1.3%. The sum of the percentages by weight of Chuanxiong, Panax notoginseng and Styrax is 100%.

本发明技术步骤(1)中,醇提液可为不同浓度的低级醇如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇等的提取液或其混合物的提取液。醇提液可不浓缩或适当浓缩后进行下一步的初步澄清处理。In the technical step (1) of the present invention, the alcohol extract can be lower alcohols of different concentrations such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, etc., or extracts of their mixtures. The alcohol extract can be subjected to the next preliminary clarification treatment without concentration or after proper concentration.

本发明技术步骤(2)中,初步的澄清处理可用一般的材料如纱布、丝绢等进行粗滤,也可用较专业的材料如陶瓷膜进行微滤,也可经高速离心后分取上清液,也可用絮凝剂如壳聚糖絮凝澄清剂、101果汁澄清剂、ZTC1+1天然澄清剂、蛋清絮凝剂等吸附澄清而除去药液中较大的悬浮颗粒,还可用醇沉法除去大部份杂质。既可单用上述澄清方法,也可联合应用,例如粗滤-吸附澄清,吸附澄清-高速离心,粗滤-微滤,粗滤-醇沉等。初步澄清处理的溶液可不浓缩或适当浓缩后进行下一步的超滤;优选不进行浓缩即进行下一步的超滤。In the technical step (2) of the present invention, preliminary clarification treatment can carry out rough filtration with general material such as gauze, silk silk etc., also can carry out microfiltration with more professional material such as ceramic membrane, also can get supernatant after high-speed centrifugation Liquid, also can use flocculant such as chitosan flocculation clarifier, 101 fruit juice clarifier, ZTC1+1 natural clarifier, egg white flocculant etc. Some impurities. The above clarification methods can be used alone or in combination, such as coarse filtration-adsorption clarification, adsorption clarification-high-speed centrifugation, coarse filtration-microfiltration, coarse filtration-alcohol precipitation, etc. The solution that has been preliminarily clarified can be subjected to the next step of ultrafiltration without concentration or after being properly concentrated; preferably, the next step of ultrafiltration is performed without concentration.

本发明技术步骤(3)中,超滤所用的超滤膜可为二醋酸纤维素膜(CA)、三醋酸纤维素膜(CTA)、氰乙基醋酸纤维素膜(CN-CA)、聚砜膜(PS)、磺化聚砜膜(SPS)、聚醚砜膜(PES)、磺化聚醚砜膜(SPES)、聚砜酰胺膜(PSA)、酚酞侧基聚芳砜膜(PDS)、聚偏氟乙烯膜(PVDF)、聚丙烯腈膜(PAN)、聚酰亚胺膜(N)、纤维素膜、甲基丙烯酸甲酯丙烯腈共聚物膜(MMA-AN)、聚丙烯腈/二醋酸纤维素(PAN/CA)共混膜,动态形成的超滤膜,以及上述膜的改性膜。优选为二醋酸纤维素膜(CA)、三醋酸纤维素膜(CTA)、聚砜膜(PS)、磺化聚砜膜(SPS)、聚醚砜膜(PES)、磺化聚醚砜膜(SPES)、聚砜酰胺膜(PSA),聚偏氟乙烯膜(PVDF)、聚丙烯腈膜(PAN)。In the technical step (3) of the present invention, the ultrafiltration membrane used for ultrafiltration can be cellulose diacetate membrane (CA), cellulose triacetate membrane (CTA), cyanoethyl cellulose acetate membrane (CN-CA), polyester Sulfone membrane (PS), sulfonated polysulfone membrane (SPS), polyethersulfone membrane (PES), sulfonated polyethersulfone membrane (SPES), polysulfone amide membrane (PSA), phenolphthalein side group polyarylsulfone membrane (PDS) ), polyvinylidene fluoride film (PVDF), polyacrylonitrile film (PAN), polyimide film (N), cellulose film, methyl methacrylate acrylonitrile copolymer film (MMA-AN), polypropylene Nitrile/cellulose diacetate (PAN/CA) blend membranes, dynamically formed ultrafiltration membranes, and modified membranes of the above membranes. Preferably cellulose diacetate membrane (CA), cellulose triacetate membrane (CTA), polysulfone membrane (PS), sulfonated polysulfone membrane (SPS), polyethersulfone membrane (PES), sulfonated polyethersulfone membrane (SPES), polysulfoneamide membrane (PSA), polyvinylidene fluoride membrane (PVDF), polyacrylonitrile membrane (PAN).

上述超滤膜的截留分子量一般为6000~80000,优选为10000~70000,最佳为20000~50000。The molecular weight cut-off of the ultrafiltration membrane is generally 6000-80000, preferably 10000-70000, most preferably 20000-50000.

超滤既可采用错流过滤,也可采用死端过滤,但优选错流过滤。Ultrafiltration can be either cross-flow filtration or dead-end filtration, but cross-flow filtration is preferred.

超滤工艺的操作条件如下:The operating conditions of the ultrafiltration process are as follows:

(1)超滤的进液口压力为0.1~0.5MPa,优选为0.1~0.35Mpa,最佳为0.25~0.35Mpa;超滤的出液口压力比进液口压力低0.5~0.25kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.1~0.2Mpa。(1) The inlet pressure of the ultrafiltration is 0.1-0.5MPa, preferably 0.1-0.35Mpa, and most preferably 0.25-0.35Mpa; the outlet pressure of the ultrafiltration is 0.5-0.25kPa lower than the inlet pressure. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.1-0.2Mpa.

(2)料液流速为1.0~4.0m/s,优选为2.0~3.0m/s。超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为1.0~2.0m/s。(2) The flow rate of the feed liquid is 1.0-4.0 m/s, preferably 2.0-3.0 m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unsteady flow in the membrane channel, and the flow velocity fluctuation difference is 1.0-2.0m/s.

(3)在超滤系统中间歇通入高压惰性气体如氮气,形成气液脉冲流,周期为0.5h~2h通气一次,每次1分钟。(3) In the ultrafiltration system, high-pressure inert gas such as nitrogen is fed intermittently to form a gas-liquid pulse flow, and the cycle is 0.5h-2h to ventilate once, each time for 1 minute.

(3)料液温度为15~50℃,优选为20~40℃。(3) The feed liquid temperature is 15-50°C, preferably 20-40°C.

(4)当料液原液被浓缩1/15~1/5时,再加水或稀醇溶液超滤1~2次;优选为当料液原液被浓缩1/12~1/8时,再加水或稀醇溶液超滤1~2次。(4) When the stock solution is concentrated by 1/15 to 1/5, add water or dilute alcohol solution for ultrafiltration 1 to 2 times; preferably when the stock solution is concentrated by 1/12 to 1/8, add water Or dilute alcohol solution ultrafiltration 1 to 2 times.

(5)料液的PH值控制在5~9,优选为6.0~7.5;(5) The pH value of the feed liquid is controlled at 5 to 9, preferably 6.0 to 7.5;

(6)反冲洗条件:反冲洗压力为0.15~2.5MPa,反冲洗周期为0.5~1.5h、反冲洗时间为1min~10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,一般是工作10~20min,反冲30sec~3min。(6) Backwashing conditions: Backwashing pressure is 0.15-2.5MPa, backwashing cycle is 0.5-1.5h, and backwashing time is 1min-10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time To carry out, generally work for 10 to 20 minutes, and recoil for 30 seconds to 3 minutes.

(7)化学清洗周期为0.5月~2月,化学清洗药剂一般为稀酸、稀碱、表面活性剂,优选为稀碱,例如0.5%~4.0%氢氧化钠,1.5%氢氧化钠和2%次氯酸钠的混合溶液等,pH值为10~12,清洗工作压力为0.05~1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。(7) The chemical cleaning period is 0.5 months to February. The chemical cleaning agents are generally dilute acids, dilute alkalis, and surfactants, preferably dilute alkalis, such as 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2 % sodium hypochlorite mixed solution, etc., the pH value is 10-12, and the cleaning working pressure is 0.05-1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

在超滤过程中,既可单独使用周期性压力波动或者周期性流量波动或者周期性通入惰性气体,也可联合使用,即周期性压力波动和周期性流量波动联合使用,或者周期性压力波动和周期性通入惰性气体联合使用,或者周期性流量波动和周期性通入惰性气体联合使用,或者三者一起联合使用。In the ultrafiltration process, periodic pressure fluctuations or periodic flow fluctuations or periodic inert gas injections can be used alone, or in combination, that is, periodic pressure fluctuations and periodic flow fluctuations are used in combination, or periodic pressure fluctuations It is used in combination with periodic inert gas injection, or in combination with periodic flow fluctuations and inert gas injection, or in combination with the three.

本发明技术步骤(4)中,将超滤液浓缩成浸膏后,再按常规方法制成制剂。例如,可以与任何一种或一种以上药剂学上辅料如淀粉、糊精、乳糖、微晶纤维素、羟丙甲基纤维素、聚乙二醇、硬脂酸镁、微粉硅胶、木糖醇、乳糖醇、葡萄糖、甘氨酸、甘露醇、甘氨酸等混合制成片剂、胶囊、颗粒剂、口服液、缓释制剂、控释制剂、凝胶剂、软膏剂、油膏剂、霜剂、栓剂、注射剂、粉针剂、贴剂、滴丸、混悬剂等等。In the technical step (4) of the present invention, after the ultrafiltrate is concentrated into an extract, the preparation is then prepared in a conventional manner. For example, it can be mixed with any one or more pharmaceutical excipients such as starch, dextrin, lactose, microcrystalline cellulose, hydroxypropylmethylcellulose, polyethylene glycol, magnesium stearate, micronized silica gel, xylose Alcohol, lactitol, glucose, glycine, mannitol, glycine, etc. are mixed to form tablets, capsules, granules, oral liquids, sustained-release preparations, controlled-release preparations, gels, ointments, ointments, creams, suppositories , injections, powder injections, patches, dripping pills, suspensions, etc.

实验例  本发明药物治疗冠心病心绞痛临床观察Experimental Example Clinical Observation on Drug Treatment of Coronary Heart Disease Angina Pectoris by the Present Invention

1资料与方法1 Materials and methods

1.1病例选择:124例患者均符合1993年卫生部药政局《新药临床研究指导原则》中冠心病心绞痛的诊断标准,并符合1979年WHO制定的冠心病诊断标准。所有病例均为每周发作2次以上的冠心病稳定型劳累性心绞痛患者。排除不稳定型心绞痛、心肌梗死、其它心脏病、合并中度以上高血压[血压>24/14kPa(1kPa=7.5mmHg)]心肺功能严重障碍、重度心律失常、重度神经官能症、更年期综合症及妊娠、哺乳期妇女。1.1 Case selection: All 124 patients met the diagnostic criteria for coronary heart disease and angina pectoris in the "Guiding Principles for Clinical Research of New Drugs" issued by the Ministry of Health's Drug Administration in 1993, and also met the diagnostic criteria for coronary heart disease formulated by WHO in 1979. All cases were patients with stable exertional angina pectoris with coronary heart disease more than 2 times a week. Unstable angina, myocardial infarction, other heart diseases, combined with moderate or above hypertension [blood pressure > 24/14kPa (1kPa=7.5mmHg)] severe cardiopulmonary dysfunction, severe arrhythmia, severe neurosis, menopausal syndrome and Pregnant and lactating women.

124例患者为两院住院及门诊病人,住院与门诊患者比为3:2。所有病例随机分为2组。治疗组84例,男52例,女32例,年龄43岁~78岁,平均63±12岁;病程1年~12年,平均4.3±1.2年。对照组40例,男24例,女16例,年龄39岁~76岁,平均61±11岁;病程1年~15年,平均4.6±1.6年。2组患者的年龄、性别、病程等资料均无显著性差异(P均>0.05),具有可比性。124 patients were inpatients and outpatients in the two hospitals, and the ratio of inpatients to outpatients was 3:2. All cases were randomly divided into 2 groups. The treatment group consisted of 84 cases, including 52 males and 32 females, aged 43 to 78 years, with an average of 63±12 years; the course of disease was 1 to 12 years, with an average of 4.3±1.2 years. The control group consisted of 40 cases, including 24 males and 16 females, aged 39 to 76 years, with an average of 61±11 years; the course of disease was 1 to 15 years, with an average of 4.6±1.6 years. There was no significant difference in the age, gender, course of disease and other data of the two groups of patients (all P>0.05), which were comparable.

1.2治疗方法:治疗组口服本发明药物,每次3粒,每日3次;对照组口服地奥心血康,每次0.2g,每日3次。2组疗程均为4周。2组患者治疗前均停服其它心血管药物(包括扩血管药、抗血小扳药及降血脂等药物)1周;治疗期间发生心绞痛可服硝酸甘油并做好用药剂量和次数的记录。1.2 Treatment method: the treatment group took the medicine of the present invention orally, 3 capsules each time, 3 times a day; the control group took Di'ao Xinxuekang orally, 0.2 g each time, 3 times a day. The course of treatment for both groups was 4 weeks. Patients in both groups stopped taking other cardiovascular drugs (including vasodilators, antiplatelet drugs, and blood lipid-lowering drugs) for 1 week before treatment; nitroglycerin could be taken if angina occurred during treatment, and the dosage and frequency of medication were recorded.

1.3观察项目1.3 Observation items

1.3.1详细记录患者心绞痛发作的频率、部位、程度、持续时间、硝酸甘油用量、心率及血压。1.3.1 Record the frequency, location, degree, duration, dosage of nitroglycerin, heart rate and blood pressure of patients with angina pectoris in detail.

1.3.2用药前后做常规12导联心电图,以ST段下降导联数(NST)和ST段压低总和(∑ST)表示心肌缺血的范围和程度,以心率(HR)、收缩压(SBP)2项乘积(RPP)代表心肌耗氧的程度即心肌耗氧指数。1.3.2 Do routine 12-lead electrocardiograms before and after medication, the range and degree of myocardial ischemia are indicated by the number of descending ST-segment leads (NST) and the sum of ST-segment depression (∑ST), and heart rate (HR), systolic blood pressure (SBP) ) 2 product (RPP) represents the degree of myocardial oxygen consumption, that is, myocardial oxygen consumption index.

1.3.3治疗前后抽空腹静脉血检测血液流变学指标(项目包括全血粘度、红细胞比容和红细胞聚集指数)、血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDLC)、载脂蛋白(ApoA1、ApoB),同时做肝功能、肾功能、血、尿常规化验。1.3.3 Take fasting venous blood before and after treatment to detect blood rheology indicators (items include whole blood viscosity, hematocrit and erythrocyte aggregation index), serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDLC), apolipoprotein (ApoA1, ApoB), and liver function, kidney function, blood and urine routine tests at the same time.

1.4疗效标淮1.4 Curative effect standard

1.4.1心绞痛疗效:显效:心绞痛发作次数减少80%以上,硝酸甘油消耗量减少80%以上或同等劳累程度不引起心绞痛;有效:心绞痛发作次数及硝酸甘油消耗量均减少50%~80%;无效:心绞痛发作次数及硝酸甘油消耗量减少不足50%;加重:心绞痛发作次数、程度及持续时间、硝酸甘油消耗量增加。1.4.1 Curative effect on angina pectoris: markedly effective: the number of angina pectoris attacks is reduced by more than 80%, the consumption of nitroglycerin is reduced by more than 80% or the same level of exertion does not cause angina pectoris; effective: the number of angina pectoris attacks and the consumption of nitroglycerin are reduced by 50% to 80%; Ineffective: the number of angina pectoris attacks and the consumption of nitroglycerin are reduced by less than 50%; exacerbation: the number, degree and duration of angina pectoris attacks, and the consumption of nitroglycerin increase.

1.4.2心电图疗效:显效:静息心电图恢复正常;有效:静息心电图缺血性ST段下移治疗后回升1.5mm以上或主要导联T波倒置变浅达50%以上,或T波平坦转直立;无效:静息心电图与治疗前基本相同;加重:静息心电图ST段较治疗前下降≥0.5mm,主要T波加深≥50%或直立T波变为平坦,或平坦T波转为倒置。1.4.2 Efficacy of ECG: markedly effective: the resting ECG returns to normal; effective: the resting ECG ischemic ST-segment depression rises by more than 1.5mm after treatment or the T wave inversion of the main lead becomes shallower by more than 50%, or the T wave is flat Turn upright; invalid: the resting electrocardiogram is basically the same as before treatment; aggravation: the resting electrocardiogram ST segment drops ≥ 0.5 mm compared with before treatment, the main T wave deepens ≥ 50% or the upright T wave becomes flat, or the flat T wave turns into inverted.

1.5统计学处理:计量资料用均数±标准差( x±s)表示,采用t检验;计数资料用x2检验,P<0.05为差异有显著性。1.5 Statistical processing: The measurement data are represented by mean ± standard deviation (x ± s), and the t test is used; the count data are used by the x 2 test, and P < 0.05 indicates a significant difference.

2结果2 results

2.1心绞痛疗效2.1 Curative effect of angina pectoris

2.1.12组患者治疗后心绞痛症状的疗效比较见表12.1.12 The curative effect comparison of angina pectoris symptoms after treatment in patients in the 12 groups is shown in Table 1

            表1  2组患者治疗后心绞痛症状的疗效比较   组别   例数   显效   有效   无效   显效率(%)   有效率(%)   治疗组对照组x值   8440   6118   1813   59   72.6245.008.94   94.0577.507.41 Table 1 Comparison of curative effect of angina pectoris symptoms after treatment in the two groups group Number of cases markedly effective efficient invalid Significant efficiency (%) Efficient(%) X value of treatment group and control group 8440 6118 1813 59 72.6245.008.94 94.0577.507.41

  P值 P value   <0.0005 <0.0005   <0.01 <0.01

2.1.22组患者治疗前后心绞痛发作频率、持续时间及硝酸甘油用量的比较见表2。2.1. The comparison of angina pectoris attack frequency, duration and nitroglycerin dosage before and after treatment in group 22 is shown in Table 2.

表2  2组患者治疗菌后小绞痛发作频率持续时间及硝酸甘油用量的比较( x±s)   组别   例数(n)   心绞痛发作频率(次/d)   心绞痛持续时间(min)   硝酸甘油用量(片/d)   治疗组对照组   治疗前治疗后治疗前治疗后   84844040   2.02±1.340.51±0.263,4)1.81±0.921.25±0.641)   10.52±2.642.33±1.092,4)11.37±2.926.74±1.382)   1.87±1.060.32±0.263,4)1.78±0.921.23±0.741) Table 2 Comparison of the frequency, duration and dosage of nitroglycerin after the treatment of postbacterial colic between the two groups of patients (x±s) group Number of cases (n) Angina attack frequency (times/d) Angina pectoris duration (min) Dosage of nitroglycerin (tablet/d) Treatment group Control group before treatment after treatment before treatment after treatment 84844040 2.02±1.340.51± 0.263,4) 1.81±0.921.25±0.641 ) 10.52±2.642.33±1.092 , 4) 11.37±2.926.74±1.382 ) 1.87±1.060.32± 0.263,4) 1.78±0.921.23±0.741 )

注:与本组治疗前比较1)P<0.05,2)P<0.01,3)P<0.001;与对照组治疗后比较:4)P<0.01Note: Compared with this group before treatment 1) P<0.05, 2) P<0.01, 3) P<0.001; compared with the control group after treatment: 4) P<0.01

2.2心电图疗效2.2 The curative effect of electrocardiogram

2.2.12组患者治疗后心电疗效比较见表3。2.2.12 The comparison of electrocardiographic efficacy after treatment is shown in Table 3.

                      表3  2组患者治疗后心电疗效比较   组别   例数   显效   有效   无效   显效率(%)   有效率(%)   治疗组对照组X2值P值   8440   389   1612   3019   45.2322.505.95<0.005   64.2952.501.57<0.05 Table 3 Comparison of ECG efficacy after treatment in the two groups group Number of cases markedly effective efficient invalid Significant efficiency (%) Efficient(%) Treatment group Control group X 2 value P value 8440 389 1612 3019 45.2322.505.95<0.005 64.2952.501.57<0.05

2.2.22组患者治疗前后心电图∑ST、NST、HR、SBP、RPP的比较见表4。2.2. The comparison of electrocardiogram ∑ST, NST, HR, SBP, RPP before and after treatment in the 22 groups is shown in Table 4.

2.32组患者治疗前后血液流变学指标的变化比较见表52. Comparison of changes in hemorheology indicators before and after treatment in group 32 patients is shown in Table 5

2.42组患者治疗前后血脂的变化比较见表62. The comparison of changes in blood lipids before and after treatment in the 42 groups of patients is shown in Table 6

            表4  2组患者治疗后∑ST,NST,HR,SBP和RPP的比较( x±s)   组别   例数(n)   ∑ST(min)   NST(个)   HR(次/min)   SBP(kPa)   RPP   治疗组对照组   治疗前治疗后治疗前治疗后   84844040   2.6±1.31.0±0.92,4)2.5±1.21.9±1.01)   3.5±1.52.1±1.32,4)3.3±1.52.6±1.414)   79±1477±1179±1276±9   16±315±517±316±4   1412±2101309±1811,3)1448±1571405±145 Table 4 Comparison of ∑ST, NST, HR, SBP and RPP after treatment in the two groups of patients (x±s) group Number of cases (n) ∑ST(min) NST(pcs) HR(time/min) SBP(kPa) RPP Treatment group Control group before treatment after treatment before treatment after treatment 84844040 2.6±1.31.0± 0.92,4) 2.5±1.21.9±1.01 ) 3.5±1.52.1±1.3 2, 4) 3.3±1.52.6±1.4 14) 79±1477±1179±1276±9 16±315±517±316±4 1412±2101309±181 1, 3) 1448±1571405±145

注:与本组治疗前比较:1)P<0.05,2)P<0.01;与对照组治疗后比较:3)P<0.05,4)P<0.01Note: Compared with this group before treatment: 1) P<0.05, 2) P<0.01; compared with the control group after treatment: 3) P<0.05, 4) P<0.01

             表5  2组患者治疗前后血液流变学指标变化比较( x±s)   组别   例数(n)   全血比粘度   80s-1   20s-1   红细胞比容   红细胞聚集指数   治疗组对照组   治疗前治疗后治疗前治疗后   84844040   6.02±1.854.57±2.362,3)6.25±1.754.86±2.281)   7.32±3.364.96±1.822,3)6.38±2.986.14±1.69   0.51±0.050.42±0.041,3)0.52±0.040.48±0.03   9.53±2.467.35±1.672,4)9.26±2.588.42±2.262) Table 5 Comparison of changes in hemorheology indexes before and after treatment in the two groups of patients (x±s) group Number of cases (n) whole blood specific viscosity 80s-1 20s-1 Hematocrit erythrocyte aggregation index Treatment group Control group before treatment after treatment before treatment after treatment 84844040 6.02±1.854.57±2.362,3 ) 6.25±1.754.86±2.281 ) 7.32±3.364.96±1.82 2,3) 6.38±2.986.14±1.69 0.51±0.050.42± 0.041,3) 0.52±0.040.48±0.03 9.53±2.467.35±1.672,4 ) 9.26±2.588.42±2.262 )

注:与本组治疗前比较:1)P<0.05,2)P<0.01;与对照组治疗后比较:3)P<0.05,4)P<0.01Note: Compared with this group before treatment: 1) P<0.05, 2) P<0.01; compared with the control group after treatment: 3) P<0.05, 4) P<0.01

                    表6  2组患者治疗前后血脂的变化比较( x±s)   组别   例数   TC(mol/L)   TG(mmol/L)   HDLC(mmol/L)   ApoA1(g/L)  hpoB(g/L)   治疗组对照组   治疗前治疗后治疗前治疗后   84844040   6.56±0.725.58+0.622,4)6.72±1.046.48±1.231)   2.32±0.671.91±0.352,4)2.38±0.512.09±0.721)   0.78±0.321.15±0.141,3)0.83±0.251.01±0.18   1.25±0.161.47±0.181,31.32±0.171.43±0.151)  1.57±0.481.04±0.431,3)1.47±0.421.25±0.47 Table 6 Comparison of changes in blood lipids before and after treatment in the two groups (x±s) group Number of cases TC (mol/L) TG (mmol/L) HDLC(mmol/L) ApoA1 (g/L) hpoB (g/L) Treatment group Control group before treatment after treatment before treatment after treatment 84844040 6.56±0.725.58+0.62 2, 4) 6.72±1.046.48±1.23 1) 2.32±0.671.91± 0.352,4) 2.38±0.512.09±0.721 ) 0.78±0.321.15± 0.141,3) 0.83±0.251.01±0.18 1.25±0.161.47± 0.181,3 1.32±0.171.43±0.151 ) 1.57±0.481.04± 0.431,3) 1.47±0.421.25±0.47

注:与本组治疗前比较:1)P<0.05,2)P<0.01;与对照组治疗后比较:3)P<0.05,4)P<0.01Note: Compared with this group before treatment: 1) P<0.05, 2) P<0.01; compared with the control group after treatment: 3) P<0.05, 4) P<0.01

具体实施方式Detailed ways

以下结合实施例对本发明作进一步的阐述。这些实施例仅用于例举的目的,而不是以任何方式限制本发明。The present invention will be further elaborated below in conjunction with embodiment. These examples are for illustrative purposes only and do not limit the invention in any way.

实施例一Embodiment one

原料药采用川芎450g、三七141g、降香油8g。The raw materials are 450g of Rhizoma Chuanxiong, 141g of Panax notoginseng, and 8g of balsamic oil.

用乙醇提取川芎得到川芎的乙醇提取液,用纱布将此提取液过滤,收集滤液。滤液用截留分子量为6000的二醋酸纤维素膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.1Mpa,超滤的出液口压力比进液口压力低0.5kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.1Mpa。料液流速为1.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为1.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为0.5h通气一次,每次1分钟。料液温度为15℃,当料液原液被浓缩1/15时,再加水或稀醇溶液超滤1次,料液的PH值控制在5。反冲洗压力为0.15MPa,反冲洗周期为0.5h、反冲洗时间为1min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作10min,反冲30sec。化学清洗周期为0.5月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为0.05MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Extract the Rhizoma Chuanxiong with ethanol to obtain the ethanol extract of Rhizoma Chuanxiong, filter the extract with gauze, and collect the filtrate. The filtrate was ultrafiltered with a cellulose diacetate membrane with a molecular weight cut-off of 6000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.1Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.5kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are used, and the pressure fluctuation difference is 0.1Mpa. The flow rate of the feed liquid is 1.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 1.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 0.5h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 15°C. When the original feed liquid is concentrated by 1/15, add water or dilute alcohol solution for ultrafiltration once, and the pH value of the feed liquid is controlled at 5. The backwash pressure is 0.15MPa, the backwash cycle is 0.5h, and the backwash time is 1min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 10min, recoil for 30sec. The chemical cleaning cycle is 0.5 months, the chemical cleaning agent is a mixed solution of 0.5%-4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10-12, and the cleaning working pressure is 0.05MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,干燥,制成颗粒,喷入降香油,与上述颗粒混均,压制成1000片,包糖衣,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Grind Panax notoginseng into fine powder, mix with Chuanxiong extract, dry, make granules, spray with balm oil, mix with the above granules, press into 1000 tablets, coat with sugar, and get ready.

实施例二Embodiment two

原料药采用川芎558g、三七34g、降香油8g。The raw materials are Chuanxiong 558g, Panax notoginseng 34g, and balsamic oil 8g.

用70%乙醇提取川芎,得到川芎提取液,用陶瓷膜进行微滤,收集滤液。滤液用截留分子量为80000的聚砜膜进行超滤,过滤方式采用死端过滤。超滤工艺的操作条件为:超滤的进液口压力为0.5Mpa,超滤的出液口压力比进液口压力低0.25kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为4.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为50℃,当料液原液被浓缩1/5时,再加水或稀醇溶液超滤2次,料液的PH值控制在9。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Ligusticum chuanxiong was extracted with 70% ethanol to obtain the extract of Ligusticum chuanxiong, which was micro-filtered with a ceramic membrane and the filtrate was collected. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 80,000, and the filtration method was dead-end filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.5Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.25kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 4.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 50°C. When the raw liquid of the feed liquid is concentrated by 1/5, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 9. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,干燥,制成颗粒,喷入降香油,与上述颗粒混均,加3%聚维酮乙醇溶液制软材,过18目筛制颗粒,60℃干燥30~45分钟,整粒,加入滑石粉,混匀,充于胶囊中,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Grind Panax notoginseng into fine powder, mix with Chuanxiong extract, dry, make granules, spray into balsamic oil, mix with the above granules, add 3% povidone ethanol solution to make soft material, pass through 18-mesh sieve to make granules , dried at 60°C for 30-45 minutes, granulated, added with talcum powder, mixed evenly, filled in capsules, and obtained.

实施例三Embodiment Three

原料药采用川芎360g、三七232g、降香油8g。The raw materials are chuanxiong 360g, notoginseng 232g, and balsamic oil 8g.

用乙醇提取川芎得到川芎的乙醇提取液,将此提取液高速离心后分取上清液。将此液体用截留分子量为50000的聚砜膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.35Mpa,超滤的出液口压力比进液口压力低0.20kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为3.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为40℃,当料液原液被浓缩1/8时,再加水或稀醇溶液超滤2次,料液的PH值控制在7.5。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Ligusticum chuanxiong is extracted with ethanol to obtain the ethanol extract of Rhizoma chuanxiong, the extract is centrifuged at high speed and the supernatant is collected. The liquid is ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 50,000, and the filtration method adopts cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.35Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.20kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 3.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating or unstable flows in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 40°C. When the original feed liquid is concentrated by 1/8, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 7.5. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,干燥,制成颗粒,喷入降香油,与上述颗粒混均,压制成1000片,或包糖衣,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Grind Panax notoginseng into fine powder, mix with Chuanxiong extract, dry, make granules, spray with baldwood oil, mix with the above granules, press into 1000 tablets, or coat with sugar.

实施例四Embodiment Four

原料药采用川芎500克,三七94克,降香油6克。The raw materials are 500 grams of Rhizoma Chuanxiong, 94 grams of Panax notoginseng, and 6 grams of balsamic oil.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为6000的二醋酸纤维素膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.1Mpa,超滤的出液口压力比进液口压力低0.5kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.1Mpa。料液流速为1.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为1.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为0.5h通气一次,每次1分钟。料液温度为15℃,当料液原液被浓缩1/15时,再加水或稀醇溶液超滤1次,料液的PH值控制在5。反冲洗压力为0.15MPa,反冲洗周期为0.5h、反冲洗时间为1min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作10min,反冲30sec。化学清洗周期为0.5月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为0.05MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a cellulose diacetate membrane with a molecular weight cut-off of 6000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.1Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.5kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are used, and the pressure fluctuation difference is 0.1Mpa. The flow rate of the feed liquid is 1.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 1.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 0.5h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 15°C. When the original feed liquid is concentrated by 1/15, add water or dilute alcohol solution for ultrafiltration once, and the pH value of the feed liquid is controlled at 5. The backwash pressure is 0.15MPa, the backwash cycle is 0.5h, and the backwash time is 1min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 10min, recoil for 30sec. The chemical cleaning cycle is 0.5 months, the chemical cleaning agent is a mixed solution of 0.5%-4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10-12, and the cleaning working pressure is 0.05MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,喷入降香油,混合均匀,在间歇式流化床内与乳糖流化,干燥,制成颗粒,即得。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32 to 1.40 (55° C.), spray it with balm oil, mix evenly, fluidize with lactose in a batch fluidized bed, dry, and make granules, namely have to.

实施例五Embodiment five

原料药采用川芎290克,三七306克,降香油6克。The raw materials are 290 grams of Rhizoma Chuanxiong, 306 grams of Panax notoginseng, and 6 grams of balsamic oil.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为80000的聚砜膜进行超滤,过滤方式采用死端过滤。超滤工艺的操作条件为:超滤的进液口压力为0.5Mpa,超滤的出液口压力比进液口压力低0.25kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为4.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为50℃,当料液原液被浓缩1/5时,再加水或稀醇溶液超滤2次,料液的PH值控制在9。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 80,000, and the filtration method was dead-end filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.5Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.25kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 4.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 50°C. When the raw liquid of the feed liquid is concentrated by 1/5, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 9. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,将此浸膏与适量的硬脂酸镁混合均匀,喷入降香油,与上述颗粒混均,压制成片,包薄膜衣。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32 to 1.40 (55°C), mix the extract with an appropriate amount of magnesium stearate, spray it with balm oil, mix it with the above granules, and press it into Tablets, film-coated.

实施例六Embodiment six

原料药采用川芎210克,三七380克,降香油4克。The raw materials are 210 grams of Rhizoma Chuanxiong, 380 grams of Panax notoginseng, and 4 grams of balsamic oil.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为50000的聚砜膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.35Mpa,超滤的出液口压力比进液口压力低0.20kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为3.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为40℃,当料液原液被浓缩1/8时,再加水或稀醇溶液超滤2次,料液的PH值控制在7.5。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 50,000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.35Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.20kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 3.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating or unstable flows in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 40°C. When the original feed liquid is concentrated by 1/8, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 7.5. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,将此浸膏与适量的硬脂酸镁混合均匀,喷入降香油,与上述颗粒混均,压制成片剂。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32 to 1.40 (55°C), mix the extract with an appropriate amount of magnesium stearate, spray it with balm oil, mix it with the above granules, and press it into tablet.

实施例七Embodiment seven

原料药采用川芎450g、三七141g、苏合香8g。The raw materials are Chuanxiong 450g, Panax notoginseng 141g and Styrax 8g.

用乙醇提取川芎得到川芎的乙醇提取液,用纱布将此提取液过滤,收集滤液。滤液用截留分子量为6000的二醋酸纤维素膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.1Mpa,超滤的出液口压力比进液口压力低0.5kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.1Mpa。料液流速为1.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为1.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为0.5h通气一次,每次1分钟。料液温度为15℃,当料液原液被浓缩1/15时,再加水或稀醇溶液超滤1次,料液的PH值控制在5。反冲洗压力为0.15MPa,反冲洗周期为0.5h、反冲洗时间为1min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作10min,反冲30sec。化学清洗周期为0.5月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为0.05MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Extract the Rhizoma Chuanxiong with ethanol to obtain the ethanol extract of Rhizoma Chuanxiong, filter the extract with gauze, and collect the filtrate. The filtrate was ultrafiltered with a cellulose diacetate membrane with a molecular weight cut-off of 6000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.1Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.5kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are used, and the pressure fluctuation difference is 0.1Mpa. The flow rate of the feed liquid is 1.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 1.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 0.5h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 15°C. When the original feed liquid is concentrated by 1/15, add water or dilute alcohol solution for ultrafiltration once, and the pH value of the feed liquid is controlled at 5. The backwash pressure is 0.15MPa, the backwash cycle is 0.5h, and the backwash time is 1min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 10min, recoil for 30sec. The chemical cleaning cycle is 0.5 months, the chemical cleaning agent is a mixed solution of 0.5%-4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10-12, and the cleaning working pressure is 0.05MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,干燥,制成颗粒,加入苏合香,混均,压制成1000片,包糖衣,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Crush Panax notoginseng into fine powder, mix with Chuanxiong extract, dry, make granules, add Styrax, mix well, press into 1000 tablets, and coat with sugar.

实施例八Embodiment eight

原料药采用川芎558g、三七34g、苏合香8g。The raw materials are Chuanxiong 558g, Panax notoginseng 34g and Styrax 8g.

用乙醇提取川芎得到川芎的乙醇提取液,用陶瓷膜进行微滤,收集滤液。滤液用截留分子量为80000的聚砜膜进行超滤,过滤方式采用死端过滤。超滤工艺的操作条件为:超滤的进液口压力为0.5Mpa,超滤的出液口压力比进液口压力低0.25kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为4.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为50℃,当料液原液被浓缩1/5时,再加水或稀醇溶液超滤2次,料液的PH值控制在9。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Rhizoma Chuanxiong was extracted with ethanol to obtain ethanol extract of Rhizoma Chuanxiong, microfiltration was performed with a ceramic membrane, and the filtrate was collected. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 80,000, and the filtration method was dead-end filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.5Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.25kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 4.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 50°C. When the raw liquid of the feed liquid is concentrated by 1/5, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 9. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,将苏合香研细,与上述颗粒混均,加3%聚维酮乙醇溶液制软材,过18目筛制颗粒,60℃干燥30~45分钟,整粒,加入滑石粉,混匀,充于胶囊中,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Crush Panax notoginseng into fine powder, mix with Chuanxiong extract, grind styrax into fine powder, mix with the above granules, add 3% povidone ethanol solution to make soft material, pass through 18-mesh sieve to make granules, and dry at 60°C for 30~ After 45 minutes, whole grains, add talcum powder, mix well, fill in capsules, and get ready.

实施例九Embodiment nine

原料药采用川芎360g、三七232g、苏合香8g。The raw materials are Chuanxiong 360g, Panax notoginseng 232g and Styrax 8g.

用乙醇提取川芎得到川芎的乙醇提取液,将此提取液高速离心后分取上清液。将此液体用截留分子量为50000的聚砜膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.35Mpa,超滤的出液口压力比进液口压力低0.20kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为3.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为40℃,当料液原液被浓缩1/8时,再加水或稀醇溶液超滤2次,料液的PH值控制在7.5。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Ligusticum chuanxiong is extracted with ethanol to obtain the ethanol extract of Rhizoma chuanxiong, the extract is centrifuged at high speed and the supernatant is collected. The liquid is ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 50,000, and the filtration method adopts cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.35Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.20kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 3.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating or unstable flows in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 40°C. When the original feed liquid is concentrated by 1/8, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 7.5. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.35~1.39(55℃)的川芎浸膏。将三七粉碎成细粉,与川芎浸膏拌均,干燥,制成颗粒,加入苏合香,混均,压制成1000片,或包糖衣,即得。Concentrating the ultrafiltrate to obtain Chuanxiong extract with a relative density of 1.35-1.39 (55° C.). Crush Panax notoginseng into fine powder, mix with Chuanxiong extract, dry, make granules, add Styrax, mix well, press into 1000 tablets, or coat with sugar, that is.

实施例十Embodiment ten

原料药采用川芎500克,三七94.克,苏合香6克。The raw materials are 500 grams of Rhizoma Chuanxiong, 94 grams of Panax notoginseng, and 6 grams of Styrax storax.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为6000的二醋酸纤维素膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.1Mpa,超滤的出液口压力比进液口压力低0.5kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.1Mpa。料液流速为1.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为1.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为0.5h通气一次,每次1分钟。料液温度为15℃,当料液原液被浓缩1/15时,再加水或稀醇溶液超滤1次,料液的PH值控制在5。反冲洗压力为0.15MPa,反冲洗周期为0.5h、反冲洗时间为1min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作10min,反冲30sec。化学清洗周期为0.5月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为0.05MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a cellulose diacetate membrane with a molecular weight cut-off of 6000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.1Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.5kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are used, and the pressure fluctuation difference is 0.1Mpa. The flow rate of the feed liquid is 1.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 1.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 0.5h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 15°C. When the original feed liquid is concentrated by 1/15, add water or dilute alcohol solution for ultrafiltration once, and the pH value of the feed liquid is controlled at 5. The backwash pressure is 0.15MPa, the backwash cycle is 0.5h, and the backwash time is 1min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 10min, recoil for 30sec. The chemical cleaning cycle is 0.5 months, the chemical cleaning agent is a mixed solution of 0.5%-4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10-12, and the cleaning working pressure is 0.05MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,加入苏合香,混合均匀,在间歇式流化床内与乳糖流化,干燥,制成颗粒,即得。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32-1.40 (55° C.), add styrax, mix evenly, fluidize with lactose in a batch fluidized bed, dry, and make granules.

实施例十一Embodiment Eleven

原料药采用丹参290克,三七306克,苏合香6克。290 grams of salvia miltiorrhiza, 306 grams of notoginseng and 6 grams of storax are used as raw materials.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为80000的聚砜膜进行超滤,过滤方式采用死端过滤。超滤工艺的操作条件为:超滤的进液口压力为0.5Mpa,超滤的出液口压力比进液口压力低0.25kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为4.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为50℃,当料液原液被浓缩1/5时,再加水或稀醇溶液超滤2次,料液的PH值控制在9。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 80,000, and the filtration method was dead-end filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.5Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.25kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 4.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating flow or unstable flow in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 50°C. When the raw liquid of the feed liquid is concentrated by 1/5, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 9. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,加入苏合香,再加甘露醇30g、依地酸钙钠5g、蒸馏水5ml,上述组分混匀后,冷冻干燥,分装,即得。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32-1.40 (55°C), add styrax, add 30 g of mannitol, 5 g of calcium sodium edetate, and 5 ml of distilled water, mix the above components, and freeze Dry, sub-package, that is.

实施例十二Embodiment 12

原料药采用川芎210克,三七380克,苏合香4克。The raw materials are 210 grams of Rhizoma Chuanxiong, 380 grams of Panax notoginseng, and 4 grams of storax.

将粗粉碎的川芎、三七药材至提取罐中,加5倍量水,煎煮2小时,滤过,滤渣进行第二次提取,加入4倍量水,煎1小时,滤过,滤渣弃去,合并滤液。滤液用截留分子量为50000的聚砜膜进行超滤,过滤方式采用错流过滤。超滤工艺的操作条件为:超滤的进液口压力为0.35Mpa,超滤的出液口压力比进液口压力低0.20kPa。超滤初期采用较低压力,然后慢慢升压;在超滤过程中,采用周期性压力波动,压力波动差为0.2Mpa。料液流速为3.0m/s,超滤过程中,采用周期性流量波动以便在膜通道内产生脉动流或不稳定流,流速波动差为2.0m/s,在超滤系统中间歇通入氮气,形成气液脉冲流,周期为2h通气一次,每次1分钟。料液温度为40℃,当料液原液被浓缩1/8时,再加水或稀醇溶液超滤2次,料液的PH值控制在7.5。反冲洗压力为2.5MPa,反冲洗周期为1.5h、反冲洗时间为10min。当将超滤组件并联使用交替反冲的方法时,其中一套或几套进行正常的超滤并分流出一部分滤液来反冲另一套或几套组件的超滤膜,间隔一段时间后交换进行,工作20min,反冲3min。化学清洗周期为2个月,化学清洗药剂为0.5%~4.0%氢氧化钠、1.5%氢氧化钠和2%次氯酸钠的混合溶液,pH值为10~12,清洗工作压力为1.0MPa。在用化学清洗剂清洗之后,再用水冲洗至近中性。Put the coarsely crushed Ligusticum chuanxiong and Panax notoginseng into the extraction tank, add 5 times the amount of water, decoct for 2 hours, filter, and extract the filter residue for the second time, add 4 times the amount of water, fry for 1 hour, filter, and discard the filter residue To, combine the filtrates. The filtrate was ultrafiltered with a polysulfone membrane with a molecular weight cut-off of 50,000, and the filtration method was cross-flow filtration. The operating conditions of the ultrafiltration process are: the pressure of the liquid inlet of the ultrafiltration is 0.35Mpa, and the pressure of the liquid outlet of the ultrafiltration is 0.20kPa lower than the pressure of the liquid inlet. In the initial stage of ultrafiltration, a lower pressure is used, and then the pressure is gradually increased; in the process of ultrafiltration, periodic pressure fluctuations are adopted, and the pressure fluctuation difference is 0.2Mpa. The flow rate of the feed liquid is 3.0m/s. During the ultrafiltration process, periodic flow fluctuations are used to generate pulsating or unstable flows in the membrane channel. The difference in flow rate fluctuations is 2.0m/s. Nitrogen is intermittently fed into the ultrafiltration system , to form a gas-liquid pulse flow, and the period is 2h to ventilate once, each time for 1 minute. The temperature of the feed liquid is 40°C. When the original feed liquid is concentrated by 1/8, add water or dilute alcohol solution for ultrafiltration twice, and the pH value of the feed liquid is controlled at 7.5. The backwash pressure is 2.5MPa, the backwash cycle is 1.5h, and the backwash time is 10min. When the ultrafiltration modules are connected in parallel to use the method of alternate backflushing, one or several sets perform normal ultrafiltration and part of the filtrate is flowed out to backwash the ultrafiltration membrane of another set or several sets of components, and exchange after a period of time Carry out, work for 20 minutes, recoil for 3 minutes. The chemical cleaning cycle is 2 months, the chemical cleaning agent is a mixed solution of 0.5% to 4.0% sodium hydroxide, 1.5% sodium hydroxide and 2% sodium hypochlorite, the pH value is 10 to 12, and the cleaning working pressure is 1.0MPa. After cleaning with chemical cleaners, rinse with water until nearly neutral.

将所述的超滤液浓缩得到相对密度为1.32~1.40(55℃)的浸膏,将此浸膏与适量的硬脂酸镁混合均匀,加入苏合香,混均,压制成片剂。Concentrate the ultrafiltrate to obtain an extract with a relative density of 1.32-1.40 (55° C.), mix the extract with an appropriate amount of magnesium stearate, add styrax, mix evenly, and press into tablets.

Claims (14)

1.一种治疗冠心病心绞痛的中药组合物,其特征在于它是由以下重量百分比的原料制备而成:1. a Chinese medicine composition for the treatment of coronary heart disease angina pectoris, is characterized in that it is prepared from by the raw material of following percentage by weight: 川芎20%~97%,Chuanxiong 20%~97%, 三七2%~79%,Panax notoginseng 2%~79%, 降香油或苏合香0.2%~3%。Falling oil or styrax 0.2% to 3%. 2.如权利要求1所述的中药组合物,其特征在于所述的原料的重量百分比为:2. Chinese medicine composition as claimed in claim 1, is characterized in that the weight percent of described raw material is: 川芎63.0%%~94%,Chuanxiong 63.0%%~94%, 三七4.0%~35.0%,Panax notoginseng 4.0%~35.0%, 降香油或苏合香0.5%~2.0%。Falling oil or styrax 0.5% to 2.0%. 3.如权利要求2所述的中药组合物,其特征在于所述的原料的重量百分比为:3. Chinese medicine composition as claimed in claim 2 is characterized in that the weight percent of described raw material is: 川芎75.2%~90%,Chuanxiong 75.2% ~ 90%, 三七9%~23.5%,Notoginseng 9%~23.5%, 降香油或苏合香0.5%~1.3%。Falling oil or styrax 0.5% to 1.3%. 4.如权利要求1~3任一所述的中药组合物,其特征在于它可由如下步骤制备而成:4. The traditional Chinese medicine composition according to any one of claims 1 to 3, characterized in that it can be prepared by the following steps: (a)将川芎、三七混合或单独制成水提液或醇提液;(a) mixing Rhizoma Chuanxiong and Panax notoginseng or separately making water extract or alcohol extract; (b)对所述的提取液进行初步澄清处理;(b) Carrying out preliminary clarification treatment to the extract; (c)进一步对所述的提取液进行超滤处理;(c) further carrying out ultrafiltration to the extract; (d)将超滤液浓缩,加入降香油或苏合香,按常规方法制成制剂。(d) Concentrate the ultrafiltrate, add balsamic oil or styrax, and make a preparation according to a conventional method. 5.如权利要求4所述的中药组合物,其特征在于所述的醇提液为选自以下的低级醇或其混合物的提取液:甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇。5. Chinese medicine composition as claimed in claim 4, it is characterized in that described ethanol extract is the extract of lower alcohol or its mixture selected from following: methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol alcohol, isobutanol. 6.如权利要求4所述的中药组合物,其特征在所述的醇提液为乙醇提取液。6. The Chinese medicine composition as claimed in claim 4, characterized in that said alcohol extract is an ethanol extract. 7.如权利要求4所述的中药组合物,其特征在所述步骤(a)得到的是川芎的乙醇提取液。7. The Chinese medicine composition as claimed in claim 4, characterized in that what is obtained in said step (a) is the ethanol extract of Rhizoma Chuanxiong. 8.如权利要求4所述的中药组合物,其特征在所述步骤(a)得到的是川芎和三七混合制成的水提取液。8. The Chinese medicine composition as claimed in claim 4, characterized in that what is obtained in the step (a) is the water extract prepared by mixing Rhizoma Chuanxiong and Radix Notoginseng. 9.如权利要求4所述的中药组合物,其特征在于所述的初步澄清处理为粗滤-吸附澄清、吸附澄清-高速离心、粗滤-微滤或粗滤-醇沉。9. The traditional Chinese medicine composition according to claim 4, characterized in that the preliminary clarification treatment is coarse filtration-adsorption clarification, adsorption clarification-high-speed centrifugation, coarse filtration-microfiltration or coarse filtration-alcohol precipitation. 10.如权利要求4所述的中药组合物,其特征在于所述超滤处理所用的超滤膜选自:二醋酸纤维素膜、三醋酸纤维素膜、氰乙基醋酸纤维素膜、聚砜膜、磺化聚砜膜、聚醚砜膜、磺化聚醚砜膜、聚砜酰胺膜、酚酞侧基聚芳砜膜、聚偏氟乙烯膜、聚丙烯腈膜、聚酰亚胺膜、纤维素膜、甲基丙烯酸甲酯-丙烯腈共聚物膜、聚丙烯腈/二醋酸纤维素共混膜,动态形成的超滤膜,以及上述膜的改性膜;其超滤膜的截留分子量为6000~80000。10. The Chinese medicine composition as claimed in claim 4, wherein the ultrafiltration membrane used in the ultrafiltration treatment is selected from the group consisting of: cellulose diacetate membrane, cellulose triacetate membrane, cyanoethyl cellulose acetate membrane, polyester Sulfone membrane, sulfonated polysulfone membrane, polyethersulfone membrane, sulfonated polyethersulfone membrane, polysulfone amide membrane, polyarylsulfone membrane with phenolphthalein side group, polyvinylidene fluoride membrane, polyacrylonitrile membrane, polyimide membrane , cellulose membrane, methyl methacrylate-acrylonitrile copolymer membrane, polyacrylonitrile/cellulose diacetate blend membrane, dynamically formed ultrafiltration membrane, and the modified membrane of the above membrane; the cut-off of the ultrafiltration membrane The molecular weight is 6000-80000. 11.如权利要求10所述的中药组合物,其特征在于所述超滤膜选自:二醋酸纤维素膜、三醋酸纤维素膜、聚砜膜、磺化聚砜膜、聚醚砜膜、磺化聚醚砜膜、聚砜酰胺膜,聚偏氟乙烯膜、聚丙烯腈膜;其超滤膜的截留分子量为10000~70000。11. The Chinese medicine composition according to claim 10, wherein the ultrafiltration membrane is selected from the group consisting of: cellulose diacetate membrane, cellulose triacetate membrane, polysulfone membrane, sulfonated polysulfone membrane, polyethersulfone membrane , Sulfonated polyethersulfone membrane, polysulfoneamide membrane, polyvinylidene fluoride membrane, polyacrylonitrile membrane; the molecular weight cut-off of the ultrafiltration membrane is 10,000-70,000. 12.如权利要求4所述的中药组合物,其特征在于所述超滤处理的操作工艺条件如下:超滤的进液口压力为0.1~0.5MPa,超滤的出液口压力比进液口压力低0.25~0.5kPa;料液温度为15~50℃;料液的pH值控制在5~9;当料液原液被浓缩1/15~1/5时,再加水或稀醇溶液超滤1~2次。12. The traditional Chinese medicine composition as claimed in claim 4, characterized in that the operating conditions of the ultrafiltration treatment are as follows: the pressure of the liquid inlet of the ultrafiltration is 0.1 to 0.5 MPa, and the pressure of the liquid outlet of the ultrafiltration is higher than that of the liquid inlet. The outlet pressure is 0.25-0.5kPa lower; the temperature of the feed liquid is 15-50°C; the pH value of the feed liquid is controlled at 5-9; Filter 1-2 times. 13.如权利要求12所述的中药组合物,其特征在于,在所述超滤的过程中单独或者联合采用下述方法:周期性压力波动、周期性流量波动、间歇地通入惰性气体;其中周期性压力波动的压力波动差为0.1~0.2Mpa,周期性流量波动的流速波动差为1.0~2.0米/秒,间歇地通入惰性气体为0.5小时~2小时通气一次,每次1分钟。13. The traditional Chinese medicine composition as claimed in claim 12, characterized in that, in the process of the ultrafiltration, the following methods are used alone or in combination: periodic pressure fluctuations, periodic flow fluctuations, intermittently feeding inert gas; Among them, the pressure fluctuation difference of the periodic pressure fluctuation is 0.1-0.2Mpa, the flow velocity fluctuation difference of the periodic flow fluctuation is 1.0-2.0 m/s, and the inert gas is intermittently injected once every 0.5-2 hours, each time for 1 minute . 14.如权利要求4所述的中药组合物,其特征在于所述制剂含有任何一种或一种以上选自以下的药剂学辅料:淀粉、糊精、乳糖、微晶纤维素、羟丙甲基纤维素、聚乙二醇、硬脂酸镁、微粉硅胶、木糖醇、乳糖醇、葡萄糖、甘氨酸、甘露醇、甘氨酸。14. The traditional Chinese medicine composition as claimed in claim 4, characterized in that the preparation contains any one or more pharmaceutical excipients selected from the following: starch, dextrin, lactose, microcrystalline cellulose, hypromellose Cellulose, Polyethylene Glycol, Magnesium Stearate, Micronized Silica Gel, Xylitol, Lactitol, Glucose, Glycine, Mannitol, Glycine.
CN 200410072937 2004-11-26 2004-11-26 Medicine for treating cardiovascular disease Expired - Lifetime CN1778326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410072937 CN1778326B (en) 2004-11-26 2004-11-26 Medicine for treating cardiovascular disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410072937 CN1778326B (en) 2004-11-26 2004-11-26 Medicine for treating cardiovascular disease

Publications (2)

Publication Number Publication Date
CN1778326A true CN1778326A (en) 2006-05-31
CN1778326B CN1778326B (en) 2010-08-25

Family

ID=36768863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410072937 Expired - Lifetime CN1778326B (en) 2004-11-26 2004-11-26 Medicine for treating cardiovascular disease

Country Status (1)

Country Link
CN (1) CN1778326B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362084A (en) * 2001-01-08 2002-08-07 杨孟君 Nano coronary heart disease treating red sage medicine and its preparation
CN1470255A (en) * 2002-07-22 2004-01-28 王智民 Preparation extracted from the root of red-rooted solvia and pseudo-ginseng and its compound preparation and medical use

Also Published As

Publication number Publication date
CN1778326B (en) 2010-08-25

Similar Documents

Publication Publication Date Title
CN1778340A (en) A kind of traditional Chinese medicine composition for treating coronary heart disease angina pectoris
CN1778335A (en) A kind of traditional Chinese medicine for treating angina pectoris of coronary heart disease
CN1813900A (en) Kadsura longipedunculata lignin extract and its preparing method and use
CN1778326A (en) Drugs to treat cardiovascular disease
CN1778333B (en) Traditional Chinese Medicine for Treating Angina Pectoris of Coronary Heart Disease
CN1778343B (en) A drug drop pill for treating coronary heart disease
CN1778322B (en) A drug for the treatment of cardiovascular disease
CN1778338B (en) Chinese medicine composition for treating coronary heart disease and angina cordis
CN1778352B (en) Chinese medicine composition for treating cardiovascular disease
CN1778334B (en) Chinese Medicine Dropping Pills for Treating Angina Pectoris of Coronary Heart Disease
CN1778337B (en) A kind of preparation method of compound salvia miltiorrhiza tablet
CN1778344B (en) drugs for coronary heart disease
CN1778341B (en) A drug drop pill for treating angina pectoris of coronary heart disease
CN1778353B (en) A kind of traditional Chinese medicine dripping pill for treating cardiovascular disease
CN1778342A (en) A kind of traditional Chinese medicine composition for treating coronary heart disease
CN1778346B (en) A drug for treating coronary heart disease
CN1778345A (en) Chinese Medicine Dropping Pills for Treating Coronary Heart Disease
CN1778354B (en) Chinese medicine dropping ball for coronary heart disease and angina cordis
CN1778339A (en) Drug drop pills for treating angina pectoris of coronary heart disease
CN1778336A (en) A kind of preparation method of compound danshen dripping pill
CN1778327B (en) Drug dripping pills for the treatment of cardiovascular diseases
CN1778323A (en) A drug drop pill for treating cardiovascular disease
CN1778347B (en) A kind of traditional Chinese medicine dripping pill for treating coronary heart disease
CN101084993B (en) Medicinal composition containing dalbergia and storax, preparation method and preparation
CN1751704A (en) Traditional Chinese medicine injection contg. red-rooted salvia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: TASLY PHARMACEUTICAL GROUP CO., LTD.

Free format text: FORMER NAME: TIANJIN TASLY PHARMACEUTICAL CO., LTD.

CP01 Change in the name or title of a patent holder

Address after: 300402 Tianjin City, Beichen science and Technology Park of Beichen Xinyi Road Liaohe Road No. 1 white

Patentee after: TASLY PHARMACEUTICAL GROUP Co.,Ltd.

Address before: 300402 Tianjin City, Beichen science and Technology Park of Beichen Xinyi Road Liaohe Road No. 1 white

Patentee before: TIANJIN TASLY PHARMACEUTICAL Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 300402 Tianjin City, Beichen science and Technology Park of Beichen Xinyi Road Liaohe Road No. 1 white

Patentee after: TASLY PHARMACEUTICAL GROUP Co.,Ltd.

Address before: 300402 Tianjin City, Beichen science and Technology Park of Beichen Xinyi Road Liaohe Road No. 1 white

Patentee before: TASLY PHARMACEUTICAL GROUP Co.,Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100825