CN1484319A - High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof - Google Patents
High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof Download PDFInfo
- Publication number
- CN1484319A CN1484319A CNA031344461A CN03134446A CN1484319A CN 1484319 A CN1484319 A CN 1484319A CN A031344461 A CNA031344461 A CN A031344461A CN 03134446 A CN03134446 A CN 03134446A CN 1484319 A CN1484319 A CN 1484319A
- Authority
- CN
- China
- Prior art keywords
- silicon
- chip
- high temperature
- measurement circuit
- temperature resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000007787 solid Substances 0.000 title description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 44
- 239000010703 silicon Substances 0.000 claims abstract description 44
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 23
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- 238000001020 plasma etching Methods 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 238000001947 vapour-phase growth Methods 0.000 claims 2
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000001459 lithography Methods 0.000 claims 1
- -1 oxygen ions Chemical class 0.000 claims 1
- FHUGMWWUMCDXBC-UHFFFAOYSA-N gold platinum titanium Chemical compound [Ti][Pt][Au] FHUGMWWUMCDXBC-UHFFFAOYSA-N 0.000 abstract description 9
- 238000006073 displacement reaction Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 230000001133 acceleration Effects 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000002955 isolation Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Landscapes
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明提供了耐高温固态压阻式平膜力敏芯片及其制作方法,经过SIMOX工艺在硅片下注入二氧化硅绝缘层,在硅面上光刻出四个电阻R1、R2、R3和R4,得到凸出于二氧化硅表面的硅面的“浮雕式”电阻测量电路,通过钛-铂-金梁式引线技术将电阻条连接成为惠斯登测量电路;该芯片的二氧化硅绝缘层将上层的单晶硅惠斯登测量电路与基底硅隔离开,避免了测量电路层与硅基底之间因环境温度升高而造成的漏电流,提高了耐高温性能,工作温度范围为-40~350℃,钛-铂-金梁式引线技术解决了力敏芯片的高温引线技术问题。该芯片可适用于耐高温环境的力、压力、位移、加速度、扭矩及流速等传感器。The invention provides a high-temperature-resistant solid-state piezoresistive flat-film force-sensitive chip and a manufacturing method thereof. A silicon dioxide insulating layer is injected under the silicon chip through the SIMOX process, and four resistors R 1 , R 2 , R 3 and R 4 , get a "relief" resistance measurement circuit protruding from the silicon surface of the silicon dioxide surface, and connect the resistance strips to form a Wheatstone measurement circuit through titanium-platinum-gold beam lead technology; the chip's The silicon dioxide insulating layer isolates the upper layer of monocrystalline silicon Wheatstone measurement circuit from the base silicon, avoiding the leakage current between the measurement circuit layer and the silicon base due to the increase in ambient temperature, and improving the high temperature resistance performance. The temperature range is -40 ~ 350 ℃, and the titanium-platinum-gold beam lead technology solves the high-temperature lead technology problem of force-sensitive chips. The chip can be applied to sensors for force, pressure, displacement, acceleration, torque and flow velocity in high temperature environments.
Description
技术领域technical field
本发明涉及一种耐高温传感器测量芯片及其制作方法,具体的说,涉及一种用于力敏传感器的固态压阻式平膜力敏芯片及其制作方法。The invention relates to a high-temperature-resistant sensor measuring chip and a manufacturing method thereof, in particular to a solid-state piezoresistive flat film force-sensing chip for a force-sensitive sensor and a manufacturing method thereof.
背景技术Background technique
目前,力敏传感器所用的测量元件有:单个金属应变片、桥式金属应变片、硅压阻桥式应变片及体硅固态压阻芯片。At present, the measuring elements used in force sensitive sensors include: single metal strain gauge, bridge metal strain gauge, silicon piezoresistive bridge strain gauge and bulk silicon solid piezoresistive chip.
现有传感器采用单个金属应变片作为测量元件时,常需要与其它单个应变片或外围电路相匹配才能构成测量单元,这样就存在着不一致性,从而导致零位输出过大,同时其测量精度和灵敏度较低。When the existing sensor uses a single metal strain gauge as a measuring element, it often needs to be matched with other single strain gauges or peripheral circuits to form a measuring unit, so there is inconsistency, which leads to excessive zero output, and its measurement accuracy and Less sensitive.
桥式金属应变片是把四个单个金属应变片作为惠斯登电桥上的四个电阻条的一种应变片,因金属应变效应,它存在着体积大、测量灵敏度低、零位误差大等缺点,不能对一些微小构件、微弱应变进行检测。The bridge metal strain gauge is a kind of strain gauge that uses four single metal strain gauges as four resistance bars on the Wheatstone bridge. Due to the metal strain effect, it has large volume, low measurement sensitivity, and large zero error. And other shortcomings, it cannot detect some tiny components and weak strains.
传统的体硅压力传感器芯片的惠斯登测量电桥的四个电阻条是利用硅平面离子注入工艺或硅平面扩散工艺,通过硅片表面的SiO2作为注入或扩散掩膜,把待掺杂的元素从SiO2掩膜窗口注入扩散到硅片内,在上层P型半导体电阻条与基底N型硅形成PN结。这种PN结结构的传感器工艺简单,适合在常温下工作,但当温度升高到120℃以上时,PN结漏电流很大,而使该种力敏芯片无法工作。The four resistive strips of the Wheatstone measurement bridge of the traditional bulk silicon pressure sensor chip use the silicon planar ion implantation process or the silicon planar diffusion process, and use the SiO2 on the surface of the silicon wafer as an implantation or diffusion mask to dope The elements are implanted and diffused into the silicon wafer from the SiO2 mask window, and a PN junction is formed between the upper P-type semiconductor resistance strip and the base N-type silicon. The sensor technology of this PN junction structure is simple and suitable for working at normal temperature, but when the temperature rises above 120°C, the leakage current of the PN junction is very large, which makes this kind of force sensitive chip unable to work.
发明内容Contents of the invention
本发明的目的在于提供一种用于耐高温固态压阻式平膜力敏传感器的测量芯片及其制作方法,以解决传统金属应变片体积过大、灵敏度低、零位误差大以及硅压阻桥式应变片的零位误差和温度漂移大的缺点。The purpose of the present invention is to provide a measurement chip for high temperature resistant solid-state piezoresistive flat-film force-sensitive sensor and its manufacturing method, so as to solve the problem of excessive volume, low sensitivity, large zero position error and silicon piezoresistive pressure of traditional metal strain gauges. The bridge strain gauge has the disadvantages of large zero error and large temperature drift.
为实现上述目的,本发明提供一种耐高温硅应变固态压阻式平膜力敏芯片及其制作方法,该力敏芯片是由在硅基底上加入0.3μm~0.4μm的二氧化硅隔离层,在二氧化硅隔离层上加入1.2μm~2μm硅测量电路层,以及在硅测量电路层上加入0.1μm~0.2μm氮化硅应力匹配层组成。在制作过程中,应用高能氧离子注入技术(SIMOX)在硅芯片表面下一定深度形成一定厚度的隔离层(SOI),在硅芯片表面上用气相淀积(CVD)技术外延一定厚度单晶硅,采用低压气相淀积(LPCVD)技术在已淀积的单晶硅层上外延一层应力匹配层氮化硅,在芯片表面上(001)晶面沿[110]晶向和[1 10]晶向光刻出惠斯登电桥的四个电阻R1、R2、R3和R4,再用等离子体刻蚀(RIE)技术刻掉电阻条图形以外的氮化硅和单晶硅,得到凸出芯片表面的电阻条的测量电路。通过钛-铂-金梁式引线方法将刻出的惠斯登电桥四个电阻R1、R2、R3和R4连接起来组成惠斯登测量电路,之后将传感器芯片的背面减薄,最后经过划片切片得到所设计的SOI耐高温固态压阻式平膜力敏芯片。In order to achieve the above object, the present invention provides a high-temperature-resistant silicon strain solid-state piezoresistive flat-film force-sensitive chip and a manufacturing method thereof. 1. Add a 1.2-2 μm silicon measurement circuit layer on the silicon dioxide isolation layer, and add a 0.1-0.2 μm silicon nitride stress matching layer on the silicon measurement circuit layer. In the production process, a certain thickness of isolation layer (SOI) is formed at a certain depth under the surface of the silicon chip by using high-energy oxygen ion implantation technology (SIMOX), and a certain thickness of monocrystalline silicon is epitaxy on the surface of the silicon chip by vapor deposition (CVD) technology. , using low-pressure vapor deposition (LPCVD) technology to epitaxially layer a layer of stress-matching silicon nitride on the deposited single-crystal silicon layer, on the chip surface (001) crystal plane along the [110] crystal direction and [1 10] The four resistors R 1 , R 2 , R 3 and R 4 of the Wheatstone bridge are lithographically etched, and then the silicon nitride and single crystal silicon other than the resistor strip pattern are etched away by plasma etching (RIE) technology , to obtain the measurement circuit of the resistive strip protruding from the surface of the chip. Connect the engraved Wheatstone bridge four resistors R 1 , R 2 , R 3 and R 4 through the titanium-platinum-gold beam lead method to form a Wheatstone measurement circuit, and then thin the backside of the sensor chip , and finally obtained the designed SOI high-temperature resistant solid-state piezoresistive flat-film force-sensing chip through dicing and slicing.
采用SIMOX技术形成的均匀一致的二氧化硅绝缘层,将上层的单晶硅惠斯登测量电路与基底硅隔离开,避免了测量电路层与硅基底之间因环境温度升高而造成的漏电流。采用钛-铂-金梁式引线技术,即与硅电阻条接触的金属为钛,中间的阻挡扩散金属为铂,外界梁金属为金,采用钛-铂-金梁式The uniform and consistent silicon dioxide insulating layer formed by SIMOX technology isolates the upper single crystal silicon Wheatstone measurement circuit from the base silicon, avoiding the leakage caused by the rise of ambient temperature between the measurement circuit layer and the silicon base current. Titanium-platinum-gold beam lead technology is adopted, that is, the metal in contact with the silicon resistance strip is titanium, the metal in the middle is platinum, and the metal of the outer beam is gold, and the titanium-platinum-gold beam type is adopted.
引线解决了力敏芯片的高温引线技术问题,因此由SOI耐高温固态压阻式平膜力敏芯片封装而成的传感器具有耐高温的特性。 该芯片的优点就在于能够保证较高测量灵敏度的同时,满足高温环境下的测量要求。The lead solves the high temperature lead technical problem of the force-sensitive chip, so the sensor packaged by the SOI high-temperature-resistant solid-state piezoresistive flat-film force-sensitive chip has the characteristics of high temperature resistance. The advantage of this chip is that it can meet the measurement requirements in high temperature environments while ensuring high measurement sensitivity.
附图说明Description of drawings
图1表示本发明硅隔离SOI微应变固态压阻传感器制作方法Fig. 1 shows silicon isolation SOI micro-strain solid-state piezoresistive sensor manufacturing method of the present invention
图2表示本发明所述的力敏芯片组成结构图,Fig. 2 shows the structural diagram of the force sensitive chip of the present invention,
其中图2(a)为力敏芯片的电路结构图;Wherein Fig. 2 (a) is the circuit structure diagram of force sensitive chip;
图2(b)为凸出于硅面的“浮雕式”电阻条测量电路;Figure 2(b) is the "relief" resistance strip measurement circuit protruding from the silicon surface;
图3表示本发明具体使用范围及方式,Fig. 3 represents the specific application range and the mode of the present invention,
其中图3(a)为力敏芯片使用在弹性梁上;Figure 3(a) shows that the force-sensitive chip is used on the elastic beam;
图3(b)为力敏芯片作用在弹性元件上。Figure 3(b) shows the force-sensitive chip acting on the elastic element.
具体实施方式Detailed ways
本发明通过实施例结合附图加以说明,并详述本发明的实施方案。The present invention is illustrated by examples with reference to the accompanying drawings, and details the implementation of the present invention.
参照图1,本发明是由在硅基底1上加入0.3μm~0.4μm的二氧化硅隔离层2,在二氧化硅隔离层2上加入1.2μm~2μm硅测量电路层3,以及在硅测量电路层3上加入0.1μm~0.2μm氮化硅应力匹配层4组成。With reference to Fig. 1, the present invention is to add the silicon dioxide isolation layer 2 of 0.3 μm~0.4 μm on silicon substrate 1, add 1.2 μm~2 μm silicon measurement circuit layer 3 on silicon dioxide isolation layer 2, and measure in silicon The circuit layer 3 is formed by adding a 0.1 μm-0.2 μm silicon nitride stress matching layer 4 .
本发明包括在一(001)晶面的硅膜的二氧化硅绝缘层2上布置四个电阻条,其中电阻条R1和R4沿着硅膜[110]晶向布置,电阻条R2和R3沿[1 10]晶向平行并列布置,惠斯登电桥结构呈蝶形。其中电阻条的宽度为10μm~20μm,电阻条长度为600μm~1200μm。The present invention includes arranging four resistance strips on the silicon dioxide insulating layer 2 of a silicon film of a (001) crystal plane, wherein the resistance strips R1 and R4 are arranged along the silicon film [110] crystal direction, and the resistance strip R2 Arranged parallel to R 3 along the [1 10] crystal direction, the Wheatstone bridge structure is butterfly-shaped. The width of the resistance strip is 10 μm-20 μm, and the length of the resistance strip is 600 μm-1200 μm.
电阻条R1和R2通过一公共的压焊块6连接,电阻条R3和R4通过一公共的压焊块7连接;压焊块5、8、9、10分别与电阻条R1、R4、R3和R2的另一端相连,压焊块的作用是实现芯片内与芯片外的引线。由电阻条R1、R2、R3和R4组成惠斯登测量电路时,压焊块5和9短接在一起至电源正极5V,压焊块4和10短接在一起与电源地连接,焊接块6和7为电桥的输出端。Resistance strips R 1 and R 2 are connected through a common
参照图2,说明本发明的耐高温固态压阻式平膜力敏芯片的制作方法With reference to Fig. 2, illustrate the manufacture method of high temperature resistant solid-state piezoresistive type flat film force sensitive chip of the present invention
1)、在N型(001)单晶硅片上,用高能氧离子注入(SIMOX)技术在硅表面0.1μm~0.2μm下形成约0.3μm~0.4μm厚的二氧化硅隔离层;1) On the N-type (001) single-crystal silicon wafer, use high-energy oxygen ion implantation (SIMOX) technology to form a silicon dioxide isolation layer with a thickness of about 0.3 μm to 0.4 μm below the silicon surface of 0.1 μm to 0.2 μm;
2)、在二氧化硅隔离层的硅表面用气相淀积技术淀积厚度约为1.2μm~2μm厚的单晶硅测量电路层;2) Deposit a single crystal silicon measurement circuit layer with a thickness of about 1.2 μm to 2 μm on the silicon surface of the silicon dioxide isolation layer by vapor deposition technology;
3)、用低压气相淀积(LPCVD)技术淀积0.1μm~0.2μm的一层应力匹配层氮化硅;3) Deposit a layer of silicon nitride with a stress matching layer of 0.1 μm to 0.2 μm by low-pressure vapor deposition (LPCVD);
4)、在(001)晶面沿[110]晶向和[1 10]晶向光刻出惠斯登电桥的四个电阻R1、R2、R3和R4,采用等离子体刻蚀(RIE)技术刻掉电阻条图形以外的氮化硅和单晶硅,得到凸出于硅面的“浮雕式”电阻条测量电路;4) On the (001) crystal plane, four resistors R 1 , R 2 , R 3 and R 4 of the Wheatstone bridge are photocut along the [110] crystal direction and [1 10] crystal direction. Etch (RIE) technology to carve away the silicon nitride and single crystal silicon other than the resistance strip pattern, and obtain the "relief type" resistance strip measurement circuit protruding from the silicon surface;
5)、通过钛-铂-金梁式引线工艺将四个电阻条连接起来组成惠斯登测量电路,5), through the titanium-platinum-gold beam lead process, the four resistance bars are connected to form a Wheatstone measurement circuit,
6)、为提高传感器芯片的测量灵敏度,传感器的背面减薄至0.18~0.2mm,经过 划片即得到所设计的SOI耐高温固态压阻式平膜力敏芯片。6) In order to improve the measurement sensitivity of the sensor chip, the back of the sensor is thinned to 0.18-0.2mm, and the designed SOI high-temperature-resistant solid-state piezoresistive flat-film force-sensing chip is obtained after dicing .
由于经过SIMOX工艺形成均匀一致的绝缘层二氧化硅,将上层的单晶硅惠斯登测量电路与基底硅隔离开,避免了测量电路层与硅基底之间因环境温度升高而造成的漏电流。为保证压焊块与电阻条之间有良好的欧姆接触和传感器芯片在高温环境下外引线的可靠性,压焊块采用钛-铂-金梁式引线技术,即与硅电阻条接触的金属为钛,钛与硅具有很小的接触电阻,容易形成良好的欧姆接触;中间的阻挡扩散金属为铂,具有好的抗腐蚀性;外界梁金属为金,因金梁容易键合,容易制造,且有较高的耐蚀性,钛-铂-金的厚度比为500∶500∶5000(单位),采用钛-铂-金梁式引线解决了力敏芯片的高温引线技术问题,所以由SOI耐高温固态压阻式平膜力敏芯片封装而成的传感器具有耐高温的特性。固态压阻式平膜力敏芯片的优点就在于在测量时能够保证较高灵敏度的同时,能够满足高温环境下的测量要求。Due to the formation of a uniform insulating layer of silicon dioxide through the SIMOX process, the upper layer of single crystal silicon Wheatstone measurement circuit is isolated from the substrate silicon, avoiding the leakage caused by the increase of ambient temperature between the measurement circuit layer and the silicon substrate. current. In order to ensure a good ohmic contact between the pad and the resistance strip and the reliability of the outer lead of the sensor chip in a high temperature environment, the pad adopts the titanium-platinum-gold beam lead technology, that is, the metal in contact with the silicon resistance strip Titanium, titanium and silicon have very small contact resistance, easy to form a good ohmic contact; the intermediate diffusion barrier metal is platinum, which has good corrosion resistance; the outer beam metal is gold, because gold beams are easy to bond and easy to manufacture , and has high corrosion resistance, the thickness ratio of titanium-platinum-gold is 500:500:5000 (unit ), the use of titanium-platinum-gold beam leads solves the technical problem of high-temperature lead wires for force-sensitive chips, so The sensor packaged by SOI high temperature resistant solid piezoresistive flat film force sensitive chip has the characteristics of high temperature resistance. The advantage of the solid-state piezoresistive flat-membrane force-sensing chip is that it can meet the measurement requirements in high-temperature environments while ensuring high sensitivity during measurement.
应用该力敏芯片可制作出多种不同作用机理上的传感器,如拉力、张力、位移、扭矩、压力等传感器,被测量体通过SOI硅力敏芯片可直接转换成电阻的变化,但要达到对被测量体方便而准确的检测,必须借助一定的弹性元件和电路形式,当应用平膜力敏芯片制作成拉力、张力、位移、扭矩、压力等传感器时,通常需要SOI耐高温固态压阻式平膜力敏芯片与金属弹性元件之间通过玻璃粉烧结等工艺固结在一起,其中金属弹性元件要求其热胀系数尽量与硅的一致,以减小热失配应力的影响,硅膜片上的受力沿晶向[110]或[1 10]方向,即SOI硅膜片(001)工作晶面上惠斯登电桥的两臂电阻R1、R4置于[110]晶向,另两臂电阻R2、R3置于[1 10]晶向。Using this force-sensitive chip can produce a variety of sensors with different mechanisms of action, such as tension, tension, displacement, torque, pressure and other sensors. The convenient and accurate detection of the measured body must rely on certain elastic elements and circuit forms. When using flat film force-sensitive chips to make sensors such as tension, tension, displacement, torque, and pressure, SOI high-temperature resistant solid-state piezoresistors are usually required. The flat-film force-sensitive chip and the metal elastic element are consolidated together by glass frit sintering and other processes. The metal elastic element requires its thermal expansion coefficient to be as consistent as possible with that of silicon to reduce the influence of thermal mismatch stress. Silicon film The force on the chip is along the crystal direction [110] or [1 10], that is, the two-arm resistors R 1 and R 4 of the Wheatstone bridge on the working crystal plane of the SOI silicon diaphragm (001) are placed on the [110] crystal direction, and the other two arm resistors R 2 and R 3 are placed in the [1 10] crystal direction.
参照图3(a),测量力、位移、加速度时,将本发明的力敏芯片11帖在悬臂梁12的一端,外界力、位移或加速度作用于传感器悬臂梁12的另一端,引起悬臂梁的变形,并在悬臂梁的表面产生一定的应变,SOI敏感元件11在恒定电源激励下,即可将此应变转换成一定的电压信号,达到测量力、位移、加速度的目的。With reference to Fig. 3 (a), when measuring force, displacement, acceleration, force-
参照图3(b),测量拉力、张力时,被测拉力、张力作用在弹性元件13上,使弹性元件13发生变形,在弹性元件表面产生相应的应变,SOI耐高温固态压阻式平膜力敏芯片11可将此应变转换成与之对应的电压信号,从而达到测量拉力、张力的目的。Referring to Figure 3(b), when measuring tension and tension, the measured tension and tension act on the
SOI耐高温固态压阻式平膜力敏芯片的电阻变化率ΔR/R的正负变化由应力差的正负变化来实现。对于R1、R4,纵向应力σl=σy,横向应力σt=σx;对于R2、R3,纵向应力σl=σx,横向应力σt=σy。纵向压阻系数πl=1/2π44,横向压阻系数πt=-1/2π44,发生应变时,惠斯登电桥上各电阻阻值变化率分别为:The positive and negative changes of the resistance change rate ΔR/R of the SOI high-temperature-resistant solid-state piezoresistive flat-film force-sensing chip are realized by the positive and negative changes of the stress difference. For R 1 and R 4 , the longitudinal stress σ l = σ y , the transverse stress σ t = σ x ; for R 2 and R 3 , the longitudinal stress σ l = σ x , and the transverse stress σ t = σ y . The longitudinal piezoresistive coefficient π l =1/2π 44 , the transverse piezoresistive coefficient π t =-1/2π 44 , when the strain occurs, the change rates of the resistance values of the Wheatstone bridges are respectively:
其中:σy,σx分别为弹性元件测量点处纵向和横向的应力。由四个凸出于硅面的“浮雕式”电阻组成的惠斯登电桥能灵敏地反映应力所导致地电阻变化;又能有效地消除扩散电阻本身的不均匀性及电阻温度系数的影响。Among them: σ y , σ x are the longitudinal and transverse stresses at the measuring point of the elastic element, respectively. The Wheatstone bridge composed of four "relief" resistors protruding from the silicon surface can sensitively reflect the resistance change caused by stress; it can also effectively eliminate the influence of the inhomogeneity of the diffusion resistance itself and the temperature coefficient of resistance .
以下是本发明经实施后得出的结果:SOI耐高温固态压阻式平膜力敏芯片的外形尺寸:2.0mm×2.0mm×0.18mm;灵敏度:≥0.1mv/με;应变极限:≥3000με;单个电阻条阻值:1200Ω;电源:5VDC;工作温度:-40~350℃;疲劳寿命:≥107次。The following are the results obtained after the implementation of the present invention: Outline dimensions of SOI high-temperature-resistant solid-state piezoresistive flat-film force-sensitive chip: 2.0mm×2.0mm×0.18mm; sensitivity: ≥0.1mv/με; strain limit: ≥3000με ;Single resistance bar resistance: 1200Ω; Power supply: 5VDC; Working temperature: -40~350℃; Fatigue life: ≥107 times.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031344461A CN1182587C (en) | 2003-07-31 | 2003-07-31 | High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031344461A CN1182587C (en) | 2003-07-31 | 2003-07-31 | High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1484319A true CN1484319A (en) | 2004-03-24 |
CN1182587C CN1182587C (en) | 2004-12-29 |
Family
ID=34154492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031344461A Expired - Fee Related CN1182587C (en) | 2003-07-31 | 2003-07-31 | High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1182587C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980695A (en) * | 2012-11-29 | 2013-03-20 | 北京大学 | MEMS (Micro Electro Mechanical System) piezoresistive type absolute pressure sensor based on SOI (Silicon on Insulator) silicon chip |
CN102980694A (en) * | 2012-11-29 | 2013-03-20 | 北京大学 | MEMS piezoresistive pressure transducer without strain membrane structure and manufacture method thereof |
CN103398806A (en) * | 2013-07-25 | 2013-11-20 | 清华大学 | Chip of 6H-SiC high-temperature pressure sensor |
CN111890249A (en) * | 2020-07-10 | 2020-11-06 | 东南大学 | A Chip Clamping Fixing and Chip Parallelism Measuring Structure for Ultrasonic Bonding |
CN112284605A (en) * | 2020-09-30 | 2021-01-29 | 西安交通大学 | Cross island beam membrane high-temperature micro-pressure sensor chip and preparation method thereof |
US20210039946A1 (en) * | 2019-08-08 | 2021-02-11 | Rohm Co., Ltd. | Mems sensor |
-
2003
- 2003-07-31 CN CNB031344461A patent/CN1182587C/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980695A (en) * | 2012-11-29 | 2013-03-20 | 北京大学 | MEMS (Micro Electro Mechanical System) piezoresistive type absolute pressure sensor based on SOI (Silicon on Insulator) silicon chip |
CN102980694A (en) * | 2012-11-29 | 2013-03-20 | 北京大学 | MEMS piezoresistive pressure transducer without strain membrane structure and manufacture method thereof |
CN102980694B (en) * | 2012-11-29 | 2015-07-29 | 北京大学 | Without the MEMS piezoresistive pressure transducer and preparation method thereof of strain films structure |
CN103398806A (en) * | 2013-07-25 | 2013-11-20 | 清华大学 | Chip of 6H-SiC high-temperature pressure sensor |
CN103398806B (en) * | 2013-07-25 | 2015-07-22 | 清华大学 | Chip of 6H-SiC high-temperature pressure sensor |
US20210039946A1 (en) * | 2019-08-08 | 2021-02-11 | Rohm Co., Ltd. | Mems sensor |
US11643324B2 (en) * | 2019-08-08 | 2023-05-09 | Rohm Co., Ltd. | MEMS sensor |
CN111890249A (en) * | 2020-07-10 | 2020-11-06 | 东南大学 | A Chip Clamping Fixing and Chip Parallelism Measuring Structure for Ultrasonic Bonding |
CN112284605A (en) * | 2020-09-30 | 2021-01-29 | 西安交通大学 | Cross island beam membrane high-temperature micro-pressure sensor chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1182587C (en) | 2004-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017028466A1 (en) | Mems strain gauge chip and manufacturing process therefor | |
US11226251B2 (en) | Method of making a dual-cavity pressure sensor die | |
CN100561156C (en) | The SOI complete silicon structure silicone-oil-filling high-temperature-resistance pressure sensor | |
US10768064B2 (en) | MEMS pressure gauge sensor and manufacturing method | |
US11255740B2 (en) | Pressure gauge chip and manufacturing process thereof | |
CN101672710B (en) | Beam membrane combined with micro pressure sensor | |
CN101266176A (en) | Silicon-on-insulator silicon-bonded high-temperature pressure sensor chip and manufacturing method | |
CN101271028A (en) | Pressure sensor chip and method based on silicon-silicon bonding and silicon-on-insulator | |
CN101108723A (en) | A method for manufacturing a silicon chip of an ultra-micro-pressure pressure sensor | |
CN112284607B (en) | A kind of cross island high temperature and corrosion resistant pressure sensor chip and preparation method | |
CN112362203A (en) | High-temperature pressure sensor chip suitable for various packaging modes and manufacturing method | |
CN1484319A (en) | High temperature resistant solid piezoresistive flat film force sensitive chip and manufacturing method thereof | |
CN101694409A (en) | Method for manufacturing all-silica pressure chips of SOI oil pressure sensor | |
JPH04178533A (en) | Semiconductor pressure sensor | |
CN102539063B (en) | High-pressure sensor chip with SOI (silicon on insulator) rectangular film structure | |
CN1128991C (en) | X-type silicon microstrain solid-state piezo-resistance sensor and its making technology | |
CN115824468A (en) | Small-range high-sensitivity pressure sensor chip based on SOI and preparation method | |
Wu et al. | The simulation, fabrication technology and characteristic research of micro-pressure sensor with isosceles trapezoidal beam-membrane | |
Guan et al. | A novel 0–3 kPa piezoresistive pressure sensor based on a Shuriken-structured diaphragm | |
JPH06213751A (en) | Semiconductor differential pressure sensor and differential pressure transmitter using the same | |
RU2818501C1 (en) | Integral pressure transducer | |
CN220056358U (en) | Ultralow pressure core body with stress buffer groove | |
CN112284606B (en) | A T-shaped cross-beam cross-island membrane pressure sensor chip and preparation method | |
CN115876378A (en) | Ultralow-pressure core body with stress buffer groove and preparation method thereof | |
CN113063529A (en) | Micromechanical resonant pressure sensor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: XI AN WEIBA INFORMATION MEASUREMENT AND CONTROL C Free format text: FORMER OWNER: XI AN COMMUNICATION UNIV. Effective date: 20071214 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20071214 Address after: Shaanxi city of Xi'an province Yan Cheung Road No. 99 Boyuan building Patentee after: Xi'an Winner Information Control Co., Ltd. Address before: No. 28, Xianning Road, Xi'an, Shaanxi Patentee before: Xi'an Jiaotong University |
|
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20041229 Termination date: 20120731 |