[go: up one dir, main page]

CN1329111C - 使用橡胶印模的印刷方法 - Google Patents

使用橡胶印模的印刷方法 Download PDF

Info

Publication number
CN1329111C
CN1329111C CNB038213044A CN03821304A CN1329111C CN 1329111 C CN1329111 C CN 1329111C CN B038213044 A CNB038213044 A CN B038213044A CN 03821304 A CN03821304 A CN 03821304A CN 1329111 C CN1329111 C CN 1329111C
Authority
CN
China
Prior art keywords
die
medium
substrate
pattern
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038213044A
Other languages
English (en)
Other versions
CN1681581A (zh
Inventor
亚历山大·比奇
伊曼纽尔·德拉马切
布鲁诺·米歇尔
海因茨·施密德
海科·沃尔夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1681581A publication Critical patent/CN1681581A/zh
Application granted granted Critical
Publication of CN1329111C publication Critical patent/CN1329111C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41KSTAMPS; STAMPING OR NUMBERING APPARATUS OR DEVICES
    • B41K1/00Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor
    • B41K1/30Portable hand-operated devices without means for supporting or locating the articles to be stamped, i.e. hand stamps; Inking devices or other accessories therefor for offset or intaglio stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00382Stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/0074Biological products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/08Methods of screening libraries by measuring catalytic activity
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/18Libraries containing only inorganic compounds or inorganic materials
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/887Nanoimprint lithography, i.e. nanostamp

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Printing Methods (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种在第三介质存在下,用于将图样从弹性印模转移到衬底的方法。在印模和衬底之间实现邻近接触。将位于印模和衬底之间的第三介质层控制在预定的厚度。此外,还描述了用于实施本方法的印模。

Description

使用橡胶印模的印刷方法
本发明总体上涉及印刷领域,且具体地说涉及在第三介质存在下,用于将图样转移至衬底的方法和印模。
以刻有图样的表面来印刷油墨或其他材料的薄层是印刷工业中人们所熟知的技术。最初,开发印刷方法是为了实现信息的交换和存储,并用以适合人类视觉的要求。这典型地要求图样和上衬的准确度下至20μm,从而实现令人满意的复制。印刷方法已用于其他图样的形成。例如,凹版胶印已用于在陶瓷衬底上制造50μm宽的导线,及在低成本显示设备中形成薄膜晶体管的图样。胶印已用于宽度小至25μm的电容器和金属导线的制造。另外,在电子工业中,普遍使用丝网进行印刷电路板和集成电路封装的印刷。参见,例如,B.Michel等在IBM J.Res.Develop.45,697(2001)上发表的论文,其作为参考文献在此引入。
另一个常规的印刷方法称为柔性版印刷。在柔性版印刷中,将粘稠油墨印刷在例如多孔纸、可透塑料等可渗透材料上。柔性版印刷是一种轮转印刷方法,其涉及使用弹性浮雕影像印版,在材料上印刷图像,也就是说,这种情况下难以使用胶印或凹版印刷方法进行印刷。这种材料的实例包括卡纸、塑料膜和基片。因此,柔性版印刷广泛使用在包装领域中。通常地,在快速印刷操作中,由于不能足够快地去除粘稠油墨,因此,粘稠油墨防止了印模和衬底的直接接触。通常需要油墨厚层的转移。然而,这防止了更小的形体尺度的复制,形体尺度典型地小于20um。参见,例如,H.Kipphan著“Handbuchder Printmedien”,Springer Berlin,2000 and J.M.Adams,D.D.Faux和J.J.Rieber著“Printing Technology 4th Ed.”,Delamare Publishers,Albany,NY。
微接触印刷使用一种与柔性版印刷用印模相似的印模,但典型地将油墨单层转移到不渗透的表面上。一种更常规的称为软平版印刷的方法已经用来在一定范围的表面上印刷硫醇及其他化学药品。典型地,首先将在挥发性溶剂中的化学药品作为溶液或通过接触油墨衬垫施加到印模上。在着墨和干燥之后,在印模内部和表面上的分子为“干”态。分子通过机械接触进行转移。该印模典型地由聚(二甲基)硅氧烷(PDMS)形成。参见,例如,B.Michel等著“Printing meets lithography”,IBM,J.Res.Develop.45(5),697(2001)。
微接触法、软平版印刷和柔性版印刷涉及局部限定、在印模和衬底之间无真空的密切接触。这一般称为保形接触(conformal contact)。保形接触包括对于衬底形状的肉眼可见的适应和软聚合物层对于粗糙表面的微观上的适应。
微阵列技术预计可用来加速遗传分析。微阵列为附着于或放在玻璃片上的基因碎片或蛋白质的微型阵列。这些所谓的“生物芯片”可用于检查基因活性和识别基因突变。在微排列和荧光样品的序列中,典型地使用杂化反应。以类似的方式,可以通过蛋白质特定的捕集剂将蛋白质标记、病毒和蛋白质表达剖面检出。在反应后,以荧光检测器读取该芯片。该芯片上的荧光斑点强度得以量化。对用于制造微阵列的微阵列和技术的需求正在逐步增加。对于用来在生物芯片上形成生物分子图样的常规方法已有报道,例如,M.Schena著“Micro array Biochip Technology”,Eaton Publishing,Natick MA,(2000)。在第一种常规方法中,以化合物按照顺序方法对表面进行处理:以移液管机器人或毛细管印刷进行移取;通过喷墨的方法来分布液滴;或,以针式测位仪形成图样。在第二种常规方法中,通过分子并联在表面上形成图样,从而降低制造成本。微观流体网络、毛细管阵列印刷或微接触法可以用来实施第二种方法。
通过传统方法,不能实现所有的生物分子和水溶性催化剂的印刷,其难以复制且印刷结果不稳定。很难以高产率在大面积上重复印制同样的图样,特别是如果该分子需要永久水合。参见,例如,A.Bernard等著“Micro contactPrinting of Proteins”,Adv.Mater. 2000(12),1067(2000)。许多生物分子要求至少部分水合。而且,只有当用以提供流动性的液体存在时,许多生物学方法才能起作用。当在表面上,对分子以图样的方式有选择地实施化学反应时,希望能够在原位固定该分子以避免由于扩散而引起的图案模糊。因此,在催化剂印刷中,其有望用于束缚分子,以便使分子仅按照所需的位置到达表面。应该允许有限的流动性,以便使分子能够有效地起作用而不脱离。当浸于水层中时,生物分子优选与衬底接触以进行化学吸附反应。由于蛋白质的化学吸附反应不是选择性的且许多潜在的结合团可以存在于衬底上,因而对流动性的要求较低。对于分子-分子相互作用,需要对水合进行控制。一种不浸入水中且能防止干燥的方法可以在饱和空气中进行。在许多印刷操作中,这是有帮助的。然而,湿度水平难以调整。分子可以相互作用从而产生粘附力,其可以通过粘着传感器进行检测,如EP 0962759A1所述。例如,抗体及其匹配抗原可以相互作用。同样地,DNA低聚物可以与其互补低聚物进行杂化。
其它印刷技术包括紫外线(UV)平版印刷或UV-模制。在这种技术中,将形成有图样的底版压入液态预聚物中。然后,通过在紫外灯下曝光,固化并硬化该预聚物。参见,例如,M.Colburn等著“Patterning nonflat substrates witha low pressure,room temperature imprint process”,J.Vac.Sci.,Technol.B.6,2161(2001)。在脱模时,形成在该聚合物上的图样为底版的拷贝。然而,难以大面积地对这种聚合物进行位移以实现具有令人满意的清晰度的图样。通常留有残留层。利用具有同一图样的弹性体印模来代替玻璃,可以提供相似的复制,只是存在如下两个差别。实验表明,在印模的突起区域可以观察到局部圆盖-与捕集材料的突起相似,在该突起区域聚合物移向表面。其次,观察到从印模凹槽中模制的突起部分(feature)的厚度存在变化。典型地,各个突起部分的厚度小于其中心。低压深度与施加到印模上的负荷成正比。参见,例如,Bietsch和Michel著“Conformal contact and pattern stability of stampsused for soft lithography”,J.Appl.Phys. 88,4310(2000);Johnson著“ContactMechanics”,Cambridge  University Press,Cambridge(1985);及S.P.Timoshenko和J.N.Goodier著“Theory of Elasticity”,Mc-Graw-Hill,NewYork。该液体位移的公式可以由润滑理论导出。参见,例如,A.Cameron著“Basic Lubrication Theory”Wiley,New York(1981)。
在凝胶电泳中使用水凝胶。由于水凝胶柔软,它们还可作为用于生物分子印刷的印模材料。参见,例如,D.Brett等著Langmuir14,3971(1998)和Langmuir 16,9944(2000);M.A.Markowitz等著Appl.Biochem.andBiotechnol.68,57(1997)。水凝胶主要地由水组成,且水容易通过水凝胶基体进行扩散。因此,水凝胶避免了与PDMS基印刷有关的水合问题。然而,当暴露于水中或进行干燥时,水凝胶印模发生体积变化。而且,分子可以在印模的突起之间进行扩散。在斑点之间具有良好配准和分色的用于不同分子并行打印的水凝胶印模还有待证实。
在研究水平上已经证实,可以从具有催化剂的亲合力印模在衬底上印刷生物分子和从亲水PDMS印模在衬底上印刷亲水分子,但它们更难以在需要在大表面上进行表面转移的商业应用中获得使用。该困难的产生或者是由于在衬底上没有足够的需要水合、化学吸附或杂化的第三介质,或者是由于有太多防止密切接触和转移的第三介质。在这里,第三介质是一种介质的通称,其它组分在该介质中进行传输。根据本申请,第三介质可以为气体、水、溶剂或聚合物。参见,例如,A.Bernard等著“Affinity capture of proteins fromsolution and their dissociation by contact printing”,Nature B iotechnol. 19,866(2001)。
在不渗透衬底上进行的粘稠油墨胶印中,发现了润版液形式的第三介质。参见,例如,J.M.Adams,D.D.Faux和J.J.Rieber著“Printing Technology4th Ed.”Delamare Publishers,Albany,NY,1996。胶印典型地使用具有橡胶印刷面的印版滚筒。在施加油墨前,将表面润湿。将载有水的清洁剂薄层转移到印刷面。该清洁剂降低了在水中的表面张力。水层覆盖该表面,但可以通过施加具有图样的油墨来进行移动。在印刷方法中,水层提高了清晰度,其中在底版上的信息表现为润湿性图样。该水层防止了油墨对于疏油区的侵入或粘着。在从印刷面转移到纸时,纸的纤维网孔吸收水分并干燥。该过程在不渗透的材料上不能进行。在此情况下,印刷橡胶表面在水层上滑动且该图样被擦脏。对于该问题的常规解决办法是使待印表面粗糙,并使其变得亲水。通过控制水层的厚度,可以预防在大面积上的流体输送。这就避免了使用妨碍图片印刷的毛细管道。粗糙化还决定了渗滤通道中的流体阻力,并因此决定了印刷速度。粗糙化产生了峰和槽的随机分布。这些导致了在较大区域之间的无阻碍的渗透管路。然而,由于粗糙化还产生了许多不连接的毛细管路,因而该随机过程效率低。
第三介质还影响在例如空气的气体中,刚性物体和胶带之间的高速接触。气体可以在物体和带子之间产生相当大的压力。该压力使带子变形,以形成中央凹陷。该凹陷造成气袋的捕集。气穴防止了物体在后续工序中的精确坐标,例如半导体组件制造中的挑选和放置操作和磁盘读取/记录磁头等。随着半导体工艺从在单个芯片上制造全部处理器向在中间载体上装配亚-组件的方向发展,这种装配变得越来越重要。为了并联地装配和处理若干芯片,例如在倒装片焊接中典型地要求在胶带或衬垫上进行预-装配。
在第三介质中以化学方法刻有图样的表面上,微米尺度组件的自组装典型地为缓慢过程,其中颗粒充分地接近靶面,从而产生特定的分子或化学相互作用。典型地,该过程需要剧烈搅动以使颗粒在第三介质中充分扩散,从而在表面上与配对物建立联系。当不存在第三介质时,难以对颗粒进行分离。对于装配来说,希望在用来装配到较好的控制组件中的零件之间存在中间交互作用。合适的放置产生较强的交互作用,而不适当的放置将产生较弱的交互作用。对于更快速和更可预测的装配,将需要在第三介质中用于微米至毫米尺度颗粒的改善的接近方法。该第三介质对悬浮颗粒有帮助,否则其将受到重力的影响。
根据本发明,提供了一种在第三介质存在下,用于将图样从弹性印模转移到衬底的方法,该方法包括:将在印模和衬底之间的第三介质层控制在预定的厚度。
在本发明的优选实施方案中,该衬底为刚性。在本发明特别优选实施方案中,该衬底为不渗透的。第三介质可以包括一种或多种气体、水、溶剂、聚合物、乳液、溶胶-凝胶前体等。该控制可以包括通过第三介质可以渗透的印模基体,避开第三介质的捕集。可选择地,该控制可以包括在填充了第三介质的印模中形成一个纳米尺度的间隙。该控制优选地包括提供一种图样印模表面,其表面具有用以排出第三介质的通道。在本发明的一个优选实施方案中,该控制包括以一种与第三介质具有亲合力的组分来填充形成在印模上的通孔和凹槽。该组分具有亲水性。该组分包括一种凝胶。优选第三介质可以对该凝胶进行溶胀。该控制优选包括以第三介质对该凝胶进行溶胀,以在印模中形成突起。在本发明特别优选实施方案中,该控制包括在印模中提供一种突起和凹槽区域的阵列。该控制可以包括通过凹槽区域对过量的第三介质进行引导,使其远离印模表面。该阵列优选包括将微米尺度的图样细分为更小的结构。通过更小的排放通道使该更小的结构得以分开。优选将该更小的排放通道连接到较大的排放通道网络中。在位于印模和衬底表面之间的浅透镜状袋囊中对第三介质进行捕集。该控制包括在位于印模和衬底之间的袋囊中对第三介质进行捕集。印模中可以包含通道。以该通道限定印模和衬底之间的分子尺度的间隙。
本发明还扩展至:该方法来在表面上印刷生物分子中的用途;该方法在表面上印刷染料中的用途;该方法在表面上印刷催化剂中的用途;该方法在表面上印刷酸或碱中的用途;该方法在表面上印刷自由基引发剂中的用途;该方法在通过邻近(proximity)程度,以荧光共振转移来进行分子探测中的用途;该方法在反应物的提纯和浓缩中的用途;该方法在胶印法中的用途;或该方法在滚动接触法中的用途。
从另一个方面看本发明,提供了一种在第三介质存在下,用于将图样转移至衬底的印模,该印模包括接触面和形成在该接触面中的排放通道。
优选在表面上形成图样。该印模可以包括一种突起的阵列。图样可以包括一种细分为更小的结构的微米尺度的图样。排放通道优选在该更小的结构之间进行延伸。排放通道优选形成网络。
从再一个方面看本发明,提供了一种在第三介质存在下,用于将图样转移至衬底的印模,该印模包括一种可渗透的亲水基体。该印模可以包括有效的通孔。以一种可由第三介质渗透的材料来填充该通孔。该印模可以另外地或可选择地包括有效的凹槽。以一种可由第三介质渗透的材料来填充该凹槽。
在本发明的优选实施方案中,提供了一种用于控制两个物品接触的方法,该方法使在第三介质存在下,根据从印模至衬底的空间控制进行转移。在本发明特别优选实施方案中,提供了一种可以控制形成纳米尺度间隙的方法,该纳米尺度间隙由第三介质填充,在该第三介质中可以发生分子处理(molecular processes)。在本发明更优选实施方案中,提供了一种用于提供保形或邻近接触的方法,该接触由外力或在自组装中自然地引起。在本发明的优选实施方案中,提供了一种方法,其中通过控制物品近接至衬底,以生物分子或其它分子形成有图样的表面。
附图说明
参照附图,仅对本发明的优选实施方案通过实施例进行描述,其中:
图1A为印模向滑杆(slider bar)和插入的粘稠聚合物靠近的侧视图;
图1B至1E为压力作为印模横向位置和间隙高度的函数的曲线图;
图2A至2B为在第三介质以液态存在下,印模向衬底靠近的侧视图;
图2C显示印模与衬底接触的照片;
图3A至3H为当印模与衬底接触时,由印模上的四边形图样产生的干涉条纹的照片;
图4A至4D为实施本发明的印模横截面图;
图5A至5F为实施本发明的另一个印模的横截面图和平面图;
图6A至6C为粘接力传感器的横截面图;
图7A至7D为实施本发明的再一个印模的横截面图和平面图;
图8A和8B为具有浅通道的印模的横截面图;
图9为实施本发明的粘接垫横截面图;
图10A为印版滚筒的横截面图;
图10B为实施本发明的印版滚筒的横截面图;
图11A为印版滚筒侧视图;
图11B为实施本发明的印版滚筒的横截面图;
图12A为显示颗粒与具有图样的表面之间自发交互作用的方框图;和,
图12B为显示颗粒与未形成图样的表面之间自发交互作用的方框图。
具体实施方式
通过保形(conformal)或邻近接触,与从印模至固体不渗透衬底的印刷有关的问题源自例如溶剂的第三介质过量。由于过量的第三介质在印模和衬底之间形成间隙,从而防止了密切接触和转移。在间隙中填充了过量的第三介质,从而防止了保形接触。如果在衬底上缺少第三介质也会出现问题。接着,在衬底上的水合、化学吸附和/或杂化可受到不利的影响。例如,生物分子和化学反应通常需要例如溶剂的第三介质发挥作用。在第一种情况中,期望将第三介质的数量控制到良好限定的层厚度。在本发明的一个优选实施方案中,这可以通过在印模表面上提供排放通道而实现。在第二种情况中,期望向衬底提供数量受到控制的第三介质。在本发明的一个优选实施方案中,这可以通过可渗透的印模基体而实现。
通过考虑到平坦印模向平面的接近,可以进一步理解在第三介质存在下的物理下衬印刷。在压缩介质中,粘度η与间隙高度h和压力p的关系符合雷诺方程式(Reynold’s equation)。参见,例如,A.Cameron著“Basic LubricationTheory”,Wiley(New York 1981),Chapter 3.7。在下面的实施例中,使用一维模型。因此,将雷诺方程式简化为:
d dx ( h 3 η · d dx p ) : = 12 · d dr h - - - ( 1 )
其中,x为与表面平行的坐标且t为时间。该模型可用于拉长表面。在数据存储器领域的实例包括薄膜磁头滑块(slider)。这种滑块的典型尺寸为1.2mm×50mm。对于矩形的几何形状,压力可以以大约2的因数来减少。
如果印模和表面均为刚性,则h与x无关。关于p和h的微分方程式可解。因此,原点选在宽为w的表面的中间位置。
p ( x ) : = 3 2 · P · [ 1 - ( 2 · x w ) 2 ] - - - ( 2 )
图1A为印模2和滑块4的横截面,其中滑块4具有插入的第三介质8。图1B显示了一个抛物线状的压力分布图,其中最大量位于中间且在边缘处降至0。最大值是平均压力P的1.5倍。
在实际执行中,印模2或表面4为弹性。在弹性零件中,该前述的压力分布导致凹的弹性形变。这就可以形成在接触过程中捕集第三介质的袋囊。这些第三介质的捕集区域称为“薄饼(pancakes)”。基于由Bietsch和Michel所著“Conformal contact and pattern stability of stamps used for used for softlithography”J.Appl.Phys.88,4310(2000)导出的公式,可以由压力分布计算法向形变。对于滑块几何形状,在典型的杨氏模量为3MPa的有机硅弹性体中,1巴的平均压力可以导致高达10μm的凹陷。形变与杨氏模量成比例。硬质材料可以减少薄饼。在滑块加工的情况下,滑块4为刚性且印模2为弹性。
在接近过程中,压力和间隙高度紧密相关。这有两种情况。第一种情况是恒定载荷。第二种情况是恒速接近。
当施加恒定载荷时,恒压分布符合等式2。P为作用在表面4上的平均压力。然后,由等式1计算间隙高度。等式1为:
h : = η · w 2 2 · P · t - - - ( 3 )
通过计算可以对印模2排出第三介质8的速度作出估计。第三介质可以为粘稠预聚物、气体、水或溶剂。图1E显示在1巴载荷下,对于不同的粘度为100cP、1000cP和10000cP的液体,间隙高度的降低为时间的函数。该粘度是UV-可固化聚合材料的典型粘度。对于100cP的粘度,在1秒钟内可获得如1μm小的间隙。然而,对于10000cP的粘度更高的材料则需要100秒的时间。
在恒定接近速度的第二种情况中,当间隙高度减少时压力增大。这一效应取决于粘度、冲头(punch)的速度(v)和尺寸。
P : = 4 · η · v · w 2 h 3 - - - ( 4 )
其中,p为平均压力。图1C显示当第三介质为水且接近速度为10μm/s时,对于滑块来说,压力为间隙高度的函数。如果第三介质为空气,当速度为600μm/s时,该图表是正确的,其中,空气的粘度低60倍。在该实施例中,对于10μm的间隙宽度“w”,当该间隙减少到1μm以下时,压力从中等值(100Pa)增加到105Pa(=1巴)以上。
图1D显示压力对表面4大小的依赖关系。当间隙宽度为100nm时,在典型的1.2mm的滑块几何形状上,压力为50MPa,与此相比,在宽度为1μm的表面4上,压力减小到50帕斯卡。最大压力与印模或表面尺寸的负二次方成比例。
根据Bietsch和Michel所著“Conformal contact and pattern stability ofstamps used for soft lithography”J.Appl.Phys.88,4310(2000),印模在恒压下发生变形,形成所谓的“下垂(sagging)”剖面。图2A显示在例如水的第三介质16中,弹性体印模10接近衬底14的刚性表面12。在印模10的突起部分18和衬底14之间,对第三介质进行排出。参见图2A中箭头。当位于印模10和衬底14之间的间隙变得很小时,不能立刻对第三介质16进行排出。因此,在突起部分18的中心位置下面形成压力的最大值。参见图2A插图。压力使突起部分18的表面20发生弹性变形。当印模10与衬底14接触时,在各个突起部分18的下面,对第三介质的透镜-状袋囊21进行捕集。参见图2B。在该受到挤压的第三介质16中,剖面符合压力分布。再次参见图1B和2A。图2C显示在弹性亲水印模和刚性玻璃表面22之间的水薄饼照片。在该实施例中,印模具有以Sylgard184模制的大小为200μm的正方形突起24。以接近0.05巴的相对较低的压力,将该印模压到表面22上。这就产生了5000 Pax填充系数的载荷,其中填充系数以接触面积除以总面积来表示。出现牛顿环24形式的干涉条纹。根据牛顿环24和测定的1.3的折射率,可以对350nm的封闭水域16的最大厚度进行估计。该牛顿环24的弱定义不允许对与突起尺寸具有函数关系的厚度进行精确测定。为了更清晰地表示该效应,进行了以UV-可固化预聚物作为第三介质的实验。这些实验的结果概括在图3A至3H中。图3A至3H显示在大小为<20、20、60、100和200μm的二次图样上,干涉条纹的照片,其中术语“60/20微米”指以微米为单位的突起部分的宽度。在图3E和3G中,测定了弹性体突起的形变。图3E和3G显示了与图3F和3H相同的结构,但图3F和3H的视图更大。-将厚度作为图样尺寸的函数进行分析,显示在每微米的图样尺寸上,线性尺寸相关性具有接近于0的截距和4nm的斜率。这显示封闭层厚度与图样尺寸成线性比例。对捕集的第三介质和位于200μm正方形突起上的层进行比较,显示了因子3的差异。这归因于水和UV-可固化预聚物之间的粘度差异。基于这些结果,用于无水直接接触(例如,层<1nm)的印模应该具有小于1000nm的图样。另一方面,还可能选择较大的突起部分以形成具有限定厚度的间隙。基于这些结果,控制层在4nm的间隙上进行转移,例如,可以通过选择3μm的突起来实施,且在20nm上的图样转移可以通过选择250μm的突起来实施。
在流体网络中,流动阻力与最小通道尺寸的倒数和沟道长度成比例。毛细管作用力还与通道尺寸的倒数成比例。在流体力学中可以将网络按比例缩放至纳米尺度。然而,具有这些网络的图样受到表面和容积比例的限制。大的表面可以使分子溶解在液体中,从而与表面接触并发生反应。这就导致液体的消耗。因此,通过相对短的具有微米级尺度的通道,毛细管网络可以有效地形成图样。参见,例如,Delamarche等著“Microfluidic networks forchemical patteming of substrates:Design and application to bioassays”,J.Am.Chem.Soc. 120,500(1998)。当尺寸为纳米比例时,优选通过其它方式将分子置于预定位置。然而,网络仍然可以对流往不同区域和来自不同区域的流体进行引导。在不存在液体/空气接触面的浸没体系中,毛细管力并不重要。在这种情况下,流体阻力近似地与产物的沟道长度成正比且与归一化的通道尺寸成反比,(w+h/(w*h))2,其中w为通道宽度且h为通道高度。将支化流体网络按比例缩放到纳米比例,涉及具有不同数量级的通道:作为短通路的小尺寸通道;作为中间通路的中等尺寸通道;和作为长通路的大尺寸通道。在灌注体系或在微观至肉眼可见尺寸的排水系统中,将两层或三层适当尺寸的通道进行组合,可以从肉眼可见至微观地对流体进行引导。这与人体血液循环体系相似,其中一些嵌套的分系统用在各种尺度中,其包括从以米为单位的具有泵流量的动脉至以纳米为单位的细胞间隙。
有效的生物印刷和催化转化涉及清晰度和对位于印模和衬底之间的溶剂薄层的控制。然而,在常规体系中其不具有物理上的稳定性。参见,例如,A.Martin等著“Dewetting nucleation centers at soft interfaces”,Langmuir 17,6553(2001),描述了在弹性体表面上,亚稳定液膜的自发去湿。在本发明的第一个实施方案中,该问题以可渗透的印模基体,通过避免进行不希望的第三介质捕集而得以解决。在本发明的第二个实施方案中,该问题通过提供带有图样的印模表面而得以解决,该印模表面用以控制第三介质层的厚度并使过量介质通过排放通道排出。
在第二个实施方案的一个实施例中,在印模突起和衬底之间对第三介质层进行捕集。该第三介质用于进行分子沉淀和为催化反应提供环境。在第二个实施方案的另一个实施例中,提供了具有图样的印模表面,其中以凹槽来限定分子尺度的间隙。在预定位置,该间隙可以进行DNA低聚物和聚合酶链反应(PCR)的转移。在这两个实施例中,为了促进有效的交互作用,目标衬底优选在分子长度内。
参照图4A,在第一个实施方案的实施例中,印模26包括有效通孔28和凹槽30。参照图4B,以聚合物凝胶基体32填充通孔28和凹槽30,例如水或其它缓冲材料的第三介质可以渗透该聚合物凝胶基体。因此,在通孔28和凹槽30中形成栓塞。通过吸收第三介质,凝胶32溶胀至平衡状态,从而凝胶32突起超过印模26的表面33。该冲洗可以在100%蒸汽相环境中实施。然后,可以将印模26贮藏在这样的环境中以防止凝胶32的后继干燥。由于在印模26内的凝胶32放在另一个材料中,印模26的计量不受溶胀的影响。参照图4C,并具体地说为该图中的箭头,然后通过蜡纸34对凝胶32的突起进行有选择的编址并填充用以形成图样的分子。各个通孔28和凹槽30可以用不同的待转移分子进行加载。由于在通孔28和凹槽30中的凝胶32的栓塞受到隔离,因此,在邻接的栓塞之间没有发生相互扩散。具有10μm的通孔厚度和以1重量%的分子进行加载,在印模26中的贮藏材料的数量足够印刷几百个分子单层。参照图4D,将印模26与衬底36接触,以转移所需的数量的材料。印模26不必浸于液体中,从而降低了印刷复杂性。存储有第三介质的凝胶32使分子充分溶剂化,并且还提供了化学吸附反应所需的良好环境。凝胶32的渗透性使在印模26和衬底36之间所捕集的任何第三介质能够通过凝胶32进行排出。这就避免了第三介质使印模26和衬底36分开。不同通孔28和凹槽30的着墨可以通过顺序的方法来实施,例如移取、针定位或喷墨定位。基于流体网络的半-平行法还可以用于提供选择性编址。该实施方案的其它实施例可以仅包括通孔28。同样地,该实施方案的进一步实施例可以仅包括凹槽30。在印模26和衬底36之间捕集的第三介质没有附加层。然而,作为凝胶32主要组分的第三介质可以与衬底36接触。因此,不必对印模26和衬底36之间的间隙进行控制。印模的另一个应用是稀溶液浓缩和印刷的组合,其中该印模含有可由第三介质渗透的凝胶突起并且未完全溶胀。这一般用于分子探测并具体地说用于在极低浓度中进行污染物探测。污染物的实例包括金属离子,例如Pb2+,Hg2+,Zn2+等。在去除过程中,通过测定附着力而进行探测。其它探测方案是可能的。
参照图5A,在第二个实施方案的一个实施例中,亲水弹性体印模38具有一个突起46的阵列,该突起具有高填充系数。各个突出46细分为更小的突起40,突起40由凹槽42进行分离,在印刷与衬底51的亲水性表面50形成接触前,该凹槽42作为小通道来引导过量的第三介质离开。参照图5B,以方形、六角形或其它形状进行包装,更小的突起40可以为圆形、矩形或其它横截面。更小突起40的接触面积得以最大化,而同时留下更小的通道42以形成开链式网络。该较大的突起46通过较大的排放通道48来进行分离,该较大的排放通道与更小的排放通道相连。在一个优选实施例中,突起40大小为10μm且高为3μm。其它尺寸是可能的。图5C显示在第三介质41存在下,突起40向衬底51接近。图5D显示在位于突起40和衬底51之间的浅袋囊中,对第三介质进行局部捕集。袋囊52的大小可以为突起40的80%。袋囊52的深度与突起40尺寸的平方成正比。图5E显示附着于衬底51的分子43和在一个袋囊中附着于突起40的分子43。图5F显示附着于衬底51上的分子43和在一个袋囊中附着于突起40的分子43之间的相互作用。对于分子转移和化学吸附反应的受控执行,位于印模38和约为2nm的表面50之间的间隙通常是足够的。根据实验测定,突起尺寸和间隙宽度之间的比为750,因此1.5μm大小的图样是适合的。在印模38上提供排放通道的凹槽42互相连接,从而将第三介质排到较大的通道48中。在印模38上的不同的突起40可以通过选择性着墨,从而对不同的分子进行转移。例如机器人移取、针定位或喷墨定位的顺序方法,可用于这种着墨。涉及流体网络的半-平行法同样适用。
图6显示在第三介质103中,印模101和衬底102之间的粘合力为印模底层结构的函数。参照图6A,大表面不引起显著的分子间相互作用。参照图6B,介质(10μm)突起104引起小的相互作用力。参照图6C,小(<10μm)突起105显示出强相互作用。
参考图7A,在第二个实施方案的另一个实施例中,印模52形成于其中的具有浅延伸的并行通道54。通道54由插入壁53分隔。在操作准备中,在通道54上涂覆有特定的分子56。在操作中,通道54形成活性区,其中当印模52与衬底60接触时,在印模52上的分子56与位于衬底60的表面58上的分子56邻近。当在第三介质62存在下,印模52与衬底60发生接触时,位于印模52和衬底60上的分子56在各个通道54内相互作用。对于生物分子的相互作用,第三介质62可以为水或含有其它溶剂的水基溶液、缓冲离子、核苷和/或酶。由通道54确定第三介质62的层厚,使其具有足够的厚度以进行生化过程。印模52优选由弹性材料的薄层制造,以提供大面积分子接触面。施加外加载荷,从而使任何诱导下垂都充分地小,以在各个凹陷54中,提供基本上均一的间隙宽度。可以调整载荷以调节间隙。参照图7B,如果载荷太小,间隙可以太大,从而使在印模52上的分子和在衬底60上的分子之间不能发生相互作用。同样地,参照图7C,如果载荷太大,印模60发生倒塌且间隙可以太小,从而使在印模52上的分子和在衬底60上的分子之间不能发生相互作用。参照图7D,在一个特别优选实施例中,通过用于生产25mm生物芯片的接触平版印刷,在印模60上形成图样。通道54宽为4μm且隔板53长60μm、宽1μm、高25nm。通过40μm宽、40-μm深的排放通道57,对在印刷过程中被排出的过量的第三介质62进行收集,并通过一些毫米级的排放通道以肉眼可见的规模将其排出。由排放通道57限定印模的活性区,该印模充满了成组的更小的通道54。所需的通道高度取决于包括的分子并可以有变化,例如,高度可以由2nm至200nm。一般来说,如果分子长度为20nm,那么>20nm的通道就太大,而<5nm的通道就太小。排放通道57可以进行相对大的衬底60的印刷,而不限制有效填充系数。印模52可以由压缩模量为3Mpa的Sylgard184在底版上进行模制。底版可以通过平版印刷的方法进行制造,这种平版印刷方法例如投影平版印刷和电子束蚀刻。以大约3kPa的平均压力,将这样的印模52压在表面58上,其中该平均压力分布在印模52的整个区域上。在实施例中,排出过程需要大约10秒钟,在此期间,较大的通道57离开第三介质大于约70mm。图8A显示了4μm宽且初始为25nm高的通道54的高度方向的横剖面,该通道54由压缩模量为3Mpa的Sylgard184模制。在3000Pa的压力下,使通道54与衬底60进行接触。在边缘位置,通道54压缩至22nm,且在中间位置,通道54压缩至18nm。可以达到±10%的间隙宽度精确度。这与用于在低聚物上进行杂化的长度公差一致。为了将印模52调整为不同的分子间相互作用体系,可以通过变化载荷来调整通道54的宽度。例如,载荷减少至1500Pa,使最小通道宽度从18nm增加到22nm。在第二个实施例中,印模52包括10×10μm的活性区,各个活性区内有612μm长、200nm宽和25nm高的支承墙53,该支承墙53用来分离1800nm宽的浅通道和54.μmm深、8μm宽的排放通道57,这些通道用来将过量的第三介质,例如水,引导至印模52在周围±10mm的边界处。印模52可以由杨氏模量为3MPa的Sylgard184进行再次模制,并以分布在整个印模52上的5kPa平均压力将印模压在表面上。在选择的压力下,将过量水分排出至边界所需的时间也为10秒左右。图8B显示这种1800nm宽且初始为25nm高的通道54的高度方向上的横剖面。在本发明的一些实施方案中,可以使用除了Sylgard184以外、且可能更硬的材料。
参照图9,在本发明的另一个实施方案中,粘接垫68包括由排放通道72分隔的平面弹性体粘合剂突起70。当将平面物体74以高速放在衬垫68上时,通道72能够使例如空气的第三介质高速排出,在0.2μm或更大的间隙高度下,在第三介质中形成大于1巴的压力。突起70从弹性体层76延伸,该弹性体层由底板78进行支撑。弹性体层76可以为硅氧烷橡胶,例如聚(二甲基硅氧烷)。在去除机械应力后,材料松驰至其原来形状。以粘合剂或其它表面活化的方法可以增强表面的天然粘合剂特性。底板78为平面层,例如薄玻璃、金属、硅或聚合物,其使弹性体层76在原位精确定位并防止横向和纵向变形。衬垫68使部件74在同一平面上进行原位精确定位,这就能够使用精密机器人将该零件74转移至载体衬底或能够并行处理该零件74。通过剥离的方式,得以典型地从衬垫68上移除零件74,这就避免了零件74或衬垫68的潜在过载。这种过载可以发生在其它分离技术中,例如纵向牵引。实施例的一个应用是薄膜磁头滑块的。本滑块74的大小为典型的1×1mm2,并且可以通过机器人以10mm/s的垂直速度精确地放在衬底上。以10至20μm宽的弹性体突起70来实现该精密制品,且通过典型地1-5μm直径的排放通道76来进行分隔。通道76使空气能够排出,从而防止了在滑块74和衬垫76之间发生气袋的捕集。气压保持中等,仅在距离小于150nm处超过1巴。印模形变小。残存空气可忽略不计,且任何残余空气可以通过衬垫68快速消散。令人惊讶的是,对于少量气体来说,弹性体硅酮橡胶是可渗透的。没有排放通道76,当滑块74向衬垫68接近且距离小于2μm时,可以形成大于1巴的压力。然后,在滑块74下气袋得以捕集。气袋能够以无法预测的方式使衬垫68发生变形并造成纵向和/或横向变形。
在胶印法中,为了获得可靠的印刷反差,对水层的控制是重要的。专用的地形图样(topographic patterns)改善了对于油墨缓冲、水缓冲和液体的切向传输的控制。为了保持印刷反差,希望避免长距离的网络传输。图10A显示经随机研磨的印刷滚筒82的典型表面80侧视图。图10B为微结构表面84的剖面,其中渗透路径86经过处理。随着低-成本微结构化的出现,可以通过对良好限定的结构进行交换随机研磨,使印刷过程更为有效。该良好限定的微结构优化切向和轴向流动,且不降低填充系数。这对于在例如金属、玻璃或陶瓷的不渗透表面上的印刷操作是特别重要的,在这些不渗透表面上,过量的液体无法渗入或相反地离开印刷间隙。
如前述的地形图样对油墨缓冲、水缓冲和液体的切向传输提供了具有改善性的控制。在本发明的一种优选实施方案中,在一个接触面上形成小沟槽,从而形成连接的流体网孔。该网孔允许高的印刷速度,允许较大的着墨参数范围,允许较厚的印刷层,降低色彩混合对于印刷图样的依赖并简化了润版和着墨。用于控制水流的地形图样是重要的,这体现在例如生物芯片的图样制作以及从安装在滚筒上的印模进行印刷以形成滚动接触中。图11A显示脱离平滑递纸滚筒88的流体的流动阻力。该阻力由大箭头90代表。阻力由压力而产生。压力以类似的方式来提升滚筒88至车胎(car tyres)的水刨(aquaplaning)。图11B显示递纸滚筒92在液体中产生较小的压力,如较小的箭头96所示,该递纸滚筒具有圆周排列的排出图样94。因此,滚筒92对水刨的敏感较小。因此,可以获得较快的印刷速度。在滚动接触中,如果过量的介质仅部分地沿着滚筒周围,则可以对位于滚筒前面或侧面的第三介质进行排出。图11的右半部分显示位于滚筒表面和衬底89之间的间隙为与滚筒轴距离及其正切近似的函数。在图11A中,流体阻力高是由于剩余的间隙小。在图11B中,流体阻力较小是由于形成在圆筒92表面中的通道94。
在本发明的另一个实施方案中,使用特定的分子间相互作用的微米尺度颗粒110的自组装,涉及衬底表面111或者颗粒110的接触面112的图样,该颗粒110具有前述的结构。形成有图样的接触面112改善了粘合速度。此外,形成有图样的接触面112可以使未束缚或部分束缚的颗粒110更快地分离。这提高了自组装过程的整体速度,并且提高了在整个颗粒113上的相互作用的特异性,其中该颗粒113不具有形成有图样的表面112。图12A显示具有形成有图样的表面112的颗粒110的相互作用,具体地说是与表面111的相互作用。在图12B中,显示了表面111和颗粒113之间的较慢、较小的特定相互作用,其中该颗粒113不具有形成有图样的表面。接收面111可以形成有图样,从而代替颗粒110。

Claims (40)

1.在第三介质存在下将图样从弹性印模转移到衬底的方法,该方法包括:使印模与衬底接触,同时将位于印模和衬底之间的第三介质层控制在预定的厚度,并对过量的第三介质进行引导,使其远离印模表面,所述第三介质包括一种或多种气体、水、溶剂、聚合物、乳液、溶胶-凝胶前体。
2.权利要求1的方法,其中衬底为刚性。
3.权利要求1的方法,其中衬底是不渗透的。
4.权利要求1的方法,其中该控制包括通过印模基体对第三介质是可渗透的,来避开第三介质的捕集。
5.权利要求1的方法,其中该控制包括以过量的第三介质来填充印模中的纳米尺度间隙。
6.权利要求1的方法,其中该控制包括提供一种图样印模表面,其表面具有用以排出过量第三介质的通道。
7.权利要求1的方法,其中该控制包括以一种与第三介质具有亲合力的组分来填充形成在印模上的通孔和凹槽。
8.权利要求7的方法,其中该组分具有亲水性。
9.权利要求8的方法,其中该组分包括一种凝胶。
10.权利要求9的方法,其中第三介质可对该凝胶进行溶胀。
11.权利要求10的方法,其中该控制包括用第三介质对该凝胶进行溶胀,以在印模中形成突起。
12.权利要求1的方法,其中该控制包括在印模中提供一种突起和凹槽区域的阵列。
13.权利要求12的方法,其中通过凹槽区域对过量的第三介质进行引导,使其远离印模表面。
14.权利要求12的方法,其中该阵列包括将微米尺度的图样细分为更小的结构。
15.权利要求14的方法,其中通过更小的排放通道使该更小的结构得以分开。
16.权利要求15的方法,其中将该更小的排放通道连接到较大的排放通道网络中。
17.权利要求1的方法,其中在位于印模和衬底表面之间的浅透镜状袋囊中对过量的第三介质进行捕集。
18.权利要求1的方法,其中该控制包括在位于印模和衬底之间的袋囊中对过量的第三介质进行捕集。
19.权利要求1的方法,其中印模中包含通道。
20.权利要求19的方法,其中以该通道限定印模和衬底之间的分子尺度的间隙。
21.上述任何一项权利要求所述的方法在表面上印刷生物分子中的用途。
22.上述权利要求1至20中任何一项所述的方法在表面上印刷染料中的用途。
23.上述权利要求1至20中任何一项所述的方法在表面上印刷催化剂中的用途。
24.上述权利要求1至20中任何一项所述的方法在表面上印刷酸或碱中的用途。
25.上述权利要求1至20中任何一项所述的方法在表面上印刷自由基引发剂中的用途。
26.上述权利要求1至20中任何一项所述的方法在通过邻近程度,以荧光共振转移来进行分子探测中的用途。
27.上述权利要求1至20中任何一项所述的方法在反应物的提纯和浓缩中的用途。
28.上述权利要求1至20中任何一项所述的方法在胶印法中的用途。
29.上述权利要求1至20中任何一项所述的方法在滚动接触法中的用途。
30.在第三介质存在下用于将图样转移至衬底的印模,该印模包括接触面和形成在该接触面中的排放通道,该排放通道对过量的第三介质进行引导,使其远离印模表面,所述第三介质包括一种或多种气体、水、溶剂、聚合物、乳液、溶胶-凝胶前体。
31.权利要求30的印模,其中在表面上形成图样。
32.权利要求30的印模,其中该印模包括一种突起的阵列。
33.权利要求31的印模,其中图样包括一种细分为更小的结构的微米尺度的图样。
34.权利要求33的印模,其中排放通道在该更小的结构之间进行延伸。
35.权利要求30的印模,其中排放通道形成网络。
36.在第三介质存在下用于将图样转移至衬底的印模,该印模包括一种可渗透的亲水基体,该亲水基体对过量的第三介质进行引导,使其远离印模表面,所述第三介质包括一种或多种气体、水、溶剂、聚合物、乳液、溶胶-凝胶前体。
37.权利要求36的印模,其中该印模包括有效的通孔。
38.权利要求37的印模,其中以由第三介质可渗透的材料来填充该通孔。
39.权利要求36的印模,其中该印模包括有效的凹槽。
40.权利要求39的印模,其中以由第三介质可渗透的材料来填充该凹槽。
CNB038213044A 2002-09-09 2003-08-28 使用橡胶印模的印刷方法 Expired - Lifetime CN1329111C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02405777.0 2002-09-09
EP02405777 2002-09-09

Publications (2)

Publication Number Publication Date
CN1681581A CN1681581A (zh) 2005-10-12
CN1329111C true CN1329111C (zh) 2007-08-01

Family

ID=31970512

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038213044A Expired - Lifetime CN1329111C (zh) 2002-09-09 2003-08-28 使用橡胶印模的印刷方法

Country Status (6)

Country Link
US (5) US7434512B2 (zh)
EP (1) EP1558373B1 (zh)
CN (1) CN1329111C (zh)
AU (1) AU2003256008A1 (zh)
DE (1) DE60310443T2 (zh)
WO (1) WO2004022338A2 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1558373B1 (en) 2002-09-09 2006-12-13 International Business Machines Corporation Printing method using rubber stamp
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
EP1704585B1 (en) 2003-12-19 2017-03-15 The University Of North Carolina At Chapel Hill Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography
US7375012B2 (en) * 2005-02-28 2008-05-20 Pavel Kornilovich Method of forming multilayer film
DE102005036427A1 (de) * 2005-08-03 2007-02-08 Schott Ag Substrat, umfassend zumindest eine voll- oder teilflächige makrostrukturierte Schicht, Verfahren zu deren Herstellung und deren Verwendung
EP1782886A1 (en) * 2005-11-02 2007-05-09 Sony Deutschland GmbH A method of patterning molecules on a substrate using a micro-contact printing process
US20070266871A1 (en) * 2006-05-17 2007-11-22 Greta Wegner Diagnostic test media and methods for the manufacture thereof
WO2008011051A1 (en) * 2006-07-17 2008-01-24 Liquidia Technologies, Inc. Nanoparticle fabrication methods, systems, and materials
US20100151031A1 (en) * 2007-03-23 2010-06-17 Desimone Joseph M Discrete size and shape specific organic nanoparticles designed to elicit an immune response
FR2921002B1 (fr) * 2007-09-13 2010-11-12 Innopsys Procede de depot simultane d'un ensemble de motifs sur un substrat par un macro timbre
US8361371B2 (en) * 2008-02-08 2013-01-29 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
US8382858B2 (en) 2008-06-25 2013-02-26 University Of Massachusetts Nanoparticle-textured surfaces and related methods for selective adhesion, sensing and separation
JP2010009729A (ja) * 2008-06-30 2010-01-14 Toshiba Corp インプリント用スタンパ、インプリント用スタンパの製造方法、磁気記録媒体、磁気記録媒体の製造方法及び磁気ディスク装置
US7927976B2 (en) * 2008-07-23 2011-04-19 Semprius, Inc. Reinforced composite stamp for dry transfer printing of semiconductor elements
EP2351068B1 (en) * 2008-11-19 2020-11-04 X Display Company Technology Limited Printing semiconductor elements by shear-assisted elastomeric stamp transfer
US8261660B2 (en) * 2009-07-22 2012-09-11 Semprius, Inc. Vacuum coupled tool apparatus for dry transfer printing semiconductor elements
US9412727B2 (en) * 2011-09-20 2016-08-09 Semprius, Inc. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
JP6140966B2 (ja) 2011-10-14 2017-06-07 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
US9873276B2 (en) * 2013-11-06 2018-01-23 3M Innovative Properties Company Microcontact printing stamps with functional features
CN103753984B (zh) * 2014-01-25 2017-05-03 深圳清华大学研究院 印章、印章的制备方法以及液滴阵列的制备方法
US9550353B2 (en) 2014-07-20 2017-01-24 X-Celeprint Limited Apparatus and methods for micro-transfer-printing
US20160148631A1 (en) * 2014-11-26 2016-05-26 Seagate Technology Llc Slider with micro-patterned coating
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US10058890B1 (en) * 2015-11-20 2018-08-28 Seagate Technology Llc Methods of forming an air bearing surface on a slider and related sliders
CN108495472A (zh) * 2018-03-23 2018-09-04 上海量子绘景电子股份有限公司 一种基于凹版图形转移的线路板的制备方法
US20210008912A1 (en) * 2019-07-12 2021-01-14 Stampin' Up! Inc. Two-sided stamp
US11718115B2 (en) * 2019-11-27 2023-08-08 National Technology & Engineering Solutions Of Sandia, Llc Architected stamps for liquid transfer printing
US11062936B1 (en) 2019-12-19 2021-07-13 X Display Company Technology Limited Transfer stamps with multiple separate pedestals
CN114671398B (zh) * 2022-02-10 2025-03-14 江苏大学 一种表面微结构的液膜转印方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180239B1 (en) * 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US6399295B1 (en) * 1999-12-17 2002-06-04 Kimberly-Clark Worldwide, Inc. Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3403623A (en) * 1967-03-01 1968-10-01 William R. Blackwood Method and apparatus for marking symbols and other subject matter on charts, graphs and the like
DE3225483A1 (de) * 1981-11-17 1983-05-26 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur herstellung elektrisch leitfaehiger bereiche
DE3201065A1 (de) 1982-01-15 1983-07-28 Schwarzwälder Elektronik-Werke GmbH, 7730 Villingen-Schwenningen Verfahren zum bedrucken von schaltungsplatten
DE3207585C2 (de) 1982-03-03 1984-03-08 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur Herstellung elektrischer Verbindungen zwischen den beiden Oberflächen einer Leiterplatte
US4828386A (en) * 1987-06-19 1989-05-09 Pall Corporation Multiwell plates containing membrane inserts
JPH0462190A (ja) * 1990-06-26 1992-02-27 Toppan Printing Co Ltd 樹脂凸版及びその製造方法
US5900160A (en) * 1993-10-04 1999-05-04 President And Fellows Of Harvard College Methods of etching articles via microcontact printing
US6776094B1 (en) * 1993-10-04 2004-08-17 President & Fellows Of Harvard College Kit For Microcontact Printing
JPH07144364A (ja) * 1993-11-22 1995-06-06 Dainippon Printing Co Ltd エンボス版及びその製造方法
JPH0811207A (ja) * 1994-06-30 1996-01-16 Dainippon Printing Co Ltd エンボス版の製造方法
US5669303A (en) * 1996-03-04 1997-09-23 Motorola Apparatus and method for stamping a surface
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US5731152A (en) * 1996-05-13 1998-03-24 Motorola, Inc. Methods and systems for biological reagent placement
DE69824586T2 (de) * 1997-06-26 2005-06-23 PerSeptive Biosystems, Inc., Framingham Probenträger hoher dichte für die analyse biologischer proben
US5948621A (en) * 1997-09-30 1999-09-07 The United States Of America As Represented By The Secretary Of The Navy Direct molecular patterning using a micro-stamp gel
US6060256A (en) * 1997-12-16 2000-05-09 Kimberly-Clark Worldwide, Inc. Optical diffraction biosensor
US6089853A (en) * 1997-12-24 2000-07-18 International Business Machines Corporation Patterning device for patterning a substrate with patterning cavities fed by service cavities
DE69817329T2 (de) 1998-06-02 2004-06-09 International Business Machines Corp. Vorrichtung und Verfahren zur Identifikation einer Substanz durch Oberflächenwechselwirkungen
US6579673B2 (en) * 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
JP4394248B2 (ja) * 1999-04-23 2010-01-06 大日本印刷株式会社 賦型シート及びその製造方法
US6365059B1 (en) * 2000-04-28 2002-04-02 Alexander Pechenik Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate
US20020159918A1 (en) * 2000-06-25 2002-10-31 Fan-Gang Tseng Micro-fabricated stamp array for depositing biologic diagnostic testing samples on bio-bindable surface
WO2002014078A2 (en) * 2000-08-14 2002-02-21 Surface Logix, Inc. Deformable stamp for patterning three-dimensional surfaces
JP4580541B2 (ja) 2000-11-17 2010-11-17 大日本印刷株式会社 離型紙及びそれを用いて製造された合成皮革
NL1016779C2 (nl) * 2000-12-02 2002-06-04 Cornelis Johannes Maria V Rijn Matrijs, werkwijze voor het vervaardigen van precisieproducten met behulp van een matrijs, alsmede precisieproducten, in het bijzonder microzeven en membraanfilters, vervaardigd met een dergelijke matrijs.
US20020098618A1 (en) 2001-01-19 2002-07-25 Rogers John A. Method and apparatus for transferring a feature pattern from an inked surface to a substrate
US20030059344A1 (en) * 2001-09-24 2003-03-27 Brady Michael D. Pin plate for use in array printing and method for making the pin plate
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6936194B2 (en) * 2002-09-05 2005-08-30 Molecular Imprints, Inc. Functional patterning material for imprint lithography processes
EP1558373B1 (en) 2002-09-09 2006-12-13 International Business Machines Corporation Printing method using rubber stamp
EP1606834B1 (en) * 2003-03-27 2013-06-05 Korea Institute Of Machinery & Materials Uv nanoimprint lithography process using elementwise embossed stamp
DE10328730B4 (de) * 2003-06-25 2006-08-17 Micronas Gmbh Verfahren zum Herstellen eines Microarrays und Vorrichtung zum Versehen eines Trägers für ein Microarray mit Beschichtungsstoffen
US7114448B2 (en) * 2003-11-06 2006-10-03 Palo Alto Research Center, Incorporated Method for large-area patterning dissolved polymers by making use of an active stamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180239B1 (en) * 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US6399295B1 (en) * 1999-12-17 2002-06-04 Kimberly-Clark Worldwide, Inc. Use of wicking agent to eliminate wash steps for optical diffraction-based biosensors

Also Published As

Publication number Publication date
US20060096477A1 (en) 2006-05-11
EP1558373B1 (en) 2006-12-13
US8453569B2 (en) 2013-06-04
DE60310443T2 (de) 2007-10-11
US20120227601A1 (en) 2012-09-13
US20100180782A1 (en) 2010-07-22
EP1558373A2 (en) 2005-08-03
CN1681581A (zh) 2005-10-12
AU2003256008A8 (en) 2004-03-29
US8267011B2 (en) 2012-09-18
US20090038493A1 (en) 2009-02-12
WO2004022338A2 (en) 2004-03-18
US8336456B2 (en) 2012-12-25
US7891295B2 (en) 2011-02-22
US7434512B2 (en) 2008-10-14
AU2003256008A1 (en) 2004-03-29
WO2004022338A3 (en) 2004-07-01
US20110094404A1 (en) 2011-04-28
DE60310443D1 (de) 2007-01-25

Similar Documents

Publication Publication Date Title
CN1329111C (zh) 使用橡胶印模的印刷方法
Ruiz et al. Microcontact printing: A tool to pattern
CN104515737B (zh) 在微流体结构中产生化学物图案的方法
Whitesides et al. Soft lithography in biology and biochemistry
US6089853A (en) Patterning device for patterning a substrate with patterning cavities fed by service cavities
Bernard et al. Microcontact printing of proteins
Kim et al. Soft lithography for microfluidics: a review
US20060121141A1 (en) System for controlling a volume of material on a mold
US20080280785A1 (en) Fluidic nano/micro array chip and chipset thereof
You et al. Surface‐Tension‐Confined Microfluidics and Their Applications
US20050042866A1 (en) Method and coating apparatus for the manufacture of a microarray
Cheng et al. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape
US20120097058A1 (en) Multiplexed Biomolecule Arrays Made By Polymer Pen Lithography
EP1924360B1 (en) Chemical and biological detection arrays
EP1733229B1 (en) Patterning method for biosensor applications and devices comprising such patterns
JP2006515417A (ja) 選択的で位置合わせ不要な表面上の分子パターニング
US20080199371A1 (en) Microfluidic Device for Patterned Surface Modification
KR20200103958A (ko) 마이크로컨택트 프린팅 및 탈기-구동 흐름 유도 패터닝이 결합된 마이크로패터닝 방법, 및 이에 의하여 제작된 자가-조립식 단일층
Temiz et al. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists
Ho et al. Rapid microarray system for passive batch-filling and in-parallel-printing protein solutions
Tseng et al. A chip-based-instant protein micro array formation and detection system
Kim et al. Fabrication of biological arrays by unconventional lithographic methods
Tseng Nano/micro fluidic Systems: Design, Characterization, and Biomedical Applications
Pépin et al. Soft Lithography and
Aumond et al. Soft lithography and surface chemistry: enabling tools for new bioassays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070801

CX01 Expiry of patent term