CN119300401A - Tunnel gate HEMT device, preparation method, chip and electronic device - Google Patents
Tunnel gate HEMT device, preparation method, chip and electronic device Download PDFInfo
- Publication number
- CN119300401A CN119300401A CN202411795296.0A CN202411795296A CN119300401A CN 119300401 A CN119300401 A CN 119300401A CN 202411795296 A CN202411795296 A CN 202411795296A CN 119300401 A CN119300401 A CN 119300401A
- Authority
- CN
- China
- Prior art keywords
- layer
- passivation
- gate
- gan
- tunneling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及半导体器件技术领域,特别是涉及一种隧穿栅HEMT器件、制备方法、芯片以及电子设备。The present application relates to the technical field of semiconductor devices, and in particular to a tunnel gate HEMT device, a preparation method, a chip and an electronic device.
背景技术Background Art
GaN作为第三代半导体的代表材料,具有高击穿电压、宽带隙和高电子迁移率等优点,使用其制备的高电子迁移率HEMT器件(High Electron Mobility Transistor,简称HEMT)相比于传统的Si基功率器件具有低成本高性能等优势,在高压大功率的电子电力应用中潜力巨大。As a representative material of the third-generation semiconductors, GaN has the advantages of high breakdown voltage, wide bandgap and high electron mobility. The High Electron Mobility Transistor (HEMT) device prepared using it has the advantages of low cost and high performance compared to traditional Si-based power devices, and has great potential in high-voltage and high-power electronic power applications.
目前,利用p-GaN帽层作为栅极来实现增强型器件的方案已经基本实现商业化,然而在实际应用中,采用的p-GaN栅极器件的栅极击穿电压不够高,在电路中的过冲信号容易烧毁器件,这很大程度的威胁了整个电路系统在开关过程中的可靠性。At present, the solution of using p-GaN cap layer as gate to realize enhancement mode device has been basically commercialized. However, in practical applications, the gate breakdown voltage of the p-GaN gate device used is not high enough, and the overshoot signal in the circuit can easily burn the device, which greatly threatens the reliability of the entire circuit system during the switching process.
发明内容Summary of the invention
本申请的目的是:提供一种隧穿栅HEMT器件、制备方法、芯片以及电子设备,以解决相关技术中,传统p-GaN栅极器件的栅极击穿电压不够高,容易被电路中的过冲信号烧毁的问题。The purpose of the present application is to provide a tunnel gate HEMT device, a preparation method, a chip and an electronic device to solve the problem in the related art that the gate breakdown voltage of a conventional p-GaN gate device is not high enough and is easily burned by an overshoot signal in the circuit.
为了实现上述目的,本申请提供以下技术方案:In order to achieve the above objectives, this application provides the following technical solutions:
第一方面,本申请提供一种隧穿栅HEMT器件,包括:In a first aspect, the present application provides a tunnel gate HEMT device, comprising:
衬底层,依次位于所述衬底层上的过渡层、缓冲层、沟道层和势垒层;A substrate layer, a transition layer, a buffer layer, a channel layer and a barrier layer sequentially disposed on the substrate layer;
p-GaN层,位于所述势垒层上;A p-GaN layer located on the barrier layer;
隔离结构,位于所述HEMT器件的侧壁,其中,所述隔离结构贯穿于所述势垒层和所述沟道层,且位于所述缓冲层上;an isolation structure, located on a sidewall of the HEMT device, wherein the isolation structure penetrates the barrier layer and the channel layer and is located on the buffer layer;
钝化层,位于所述p-GaN层的侧壁且在所述势垒层上,其中,所述钝化层的厚度范围为50 nm-400 nm,所述钝化层包括:第一钝化子层和第二钝化子层,所述第一钝化子层位于所述第二钝化子层的下方,所述第一钝化子层材料包括:AlN、SiON、SiN、AlON、Al2O3、HfO2、ZrO2和Y2O3中的至少一种,所述第二钝化子层材料包括:SiO2、SiN和SiON中的至少一种;a passivation layer, located on the side wall of the p-GaN layer and on the barrier layer, wherein the thickness of the passivation layer ranges from 50 nm to 400 nm, and the passivation layer comprises: a first passivation sublayer and a second passivation sublayer, the first passivation sublayer is located below the second passivation sublayer, the first passivation sublayer material comprises: at least one of AlN, SiON, SiN, AlON, Al 2 O 3 , HfO 2 , ZrO 2 and Y 2 O 3 , and the second passivation sublayer material comprises: at least one of SiO 2 , SiN and SiON;
隧穿层,位于所述钝化层的栅极开孔区域的底部和侧部,其中,所述隧穿层的厚度范围为0.5 nm-5 nm,所述隧穿层的材料包括:SiN、SiON、AlN、AlON和Al2O3中的至少一种;A tunneling layer, located at the bottom and side of the gate opening region of the passivation layer, wherein the thickness of the tunneling layer is in the range of 0.5 nm to 5 nm, and the material of the tunneling layer includes at least one of SiN, SiON, AlN, AlON and Al 2 O 3 ;
栅极,贯穿于所述钝化层,且位于所述隧穿层上;A gate, which penetrates the passivation layer and is located on the tunneling layer;
源极,位于所述p-GaN层的一侧,其中,所述源极贯穿于所述钝化层,且位于所述势垒层上;A source electrode, located on one side of the p-GaN layer, wherein the source electrode penetrates the passivation layer and is located on the barrier layer;
漏极,位于所述p-GaN层的另一侧,其中,所述漏极贯穿于所述钝化层,且位于所述势垒层上。A drain electrode is located on the other side of the p-GaN layer, wherein the drain electrode penetrates the passivation layer and is located on the barrier layer.
进一步地,所述p-GaN层的厚度范围为50 nm-500 nm;所述p-GaN层的Mg掺杂浓度范围为1018 cm-3-1020 cm-3。Furthermore, the thickness of the p-GaN layer is in the range of 50 nm-500 nm; and the Mg doping concentration of the p-GaN layer is in the range of 10 18 cm -3 -10 20 cm -3 .
进一步地,所述过渡层的厚度范围为10 nm-500 nm,所述过渡层的材料包括:AlN、AlGaN和GaN中的至少一种;所述缓冲层的厚度范围为300 nm-6000 nm,所述缓冲层的材料包括:高阻GaN和高阻AlGaN中的至少一种;所述沟道层的厚度范围为50 nm-500 nm,所述沟道层的材料包括:非故意掺杂GaN;所述势垒层的厚度范围为10 nm-40 nm,所述势垒层的材料包括:AlxGa1-xN,其中,x的取值范围为0.1-0.5。Further, the thickness range of the transition layer is 10 nm-500 nm, and the material of the transition layer includes: at least one of AlN, AlGaN and GaN; the thickness range of the buffer layer is 300 nm-6000 nm, and the material of the buffer layer includes: at least one of high-resistance GaN and high-resistance AlGaN; the thickness range of the channel layer is 50 nm-500 nm, and the material of the channel layer includes: unintentionally doped GaN; the thickness range of the barrier layer is 10 nm-40 nm, and the material of the barrier layer includes: Al x Ga 1-x N, wherein the value range of x is 0.1-0.5.
进一步地,所述隔离结构包括:台面隔离结构和离子注入结构中的任意一种。Furthermore, the isolation structure includes: any one of a mesa isolation structure and an ion implantation structure.
第二方面,本申请还提供一种隧穿栅HEMT器件的制备方法,包括:In a second aspect, the present application further provides a method for preparing a tunnel gate HEMT device, comprising:
提供一衬底层;providing a substrate layer;
在所述衬底层上依次生长过渡层、缓冲层、沟道层、势垒层和p-GaN层;Growing a transition layer, a buffer layer, a channel layer, a barrier layer and a p-GaN layer in sequence on the substrate layer;
在所述p-GaN层上表面依次沉积TiN金属和SiN介质形成TiN保护层和SiN保护层;Depositing TiN metal and SiN dielectric in sequence on the upper surface of the p-GaN layer to form a TiN protective layer and a SiN protective layer;
在所述SiN保护层的上表面,且在所述器件有源区外的位置形成隔离结构,其中,所述隔离结构贯穿于所述SiN保护层、所述TiN保护层、所述p-GaN层、所述势垒层和所述沟道层;An isolation structure is formed on the upper surface of the SiN protective layer and outside the active region of the device, wherein the isolation structure penetrates the SiN protective layer, the TiN protective layer, the p-GaN layer, the barrier layer and the channel layer;
在所述SiN保护层的上表面形成栅极区域,刻蚀掉所述栅极区域外的所述SiN保护层、所述TiN保护层和所述p-GaN层,刻蚀深度直至所述势垒层的上表面;forming a gate region on the upper surface of the SiN protective layer, and etching the SiN protective layer, the TiN protective layer and the p-GaN layer outside the gate region to a depth reaching the upper surface of the barrier layer;
采用湿法去除所述HEMT器件上表面的所述SiN保护层和所述TiN保护层;Removing the SiN protective layer and the TiN protective layer on the upper surface of the HEMT device by a wet method;
在所述势垒层的上表面、所述p-GaN层的上表面和所述p-GaN层侧壁沉积介质材料,形成钝化层,其中,所述钝化层的厚度范围为50 nm-400 nm,所述钝化层包括:第一钝化子层和第二钝化子层,所述第一钝化子层位于所述第二钝化子层的下方,所述第一钝化子层材料包括:AlN、SiON、SiN、AlON、Al2O3、HfO2、ZrO2和Y2O3中的至少一种,所述第二钝化子层材料包括:SiO2、SiN和SiON中的至少一种;A dielectric material is deposited on the upper surface of the barrier layer, the upper surface of the p-GaN layer and the sidewall of the p-GaN layer to form a passivation layer, wherein the thickness of the passivation layer ranges from 50 nm to 400 nm, and the passivation layer comprises: a first passivation sublayer and a second passivation sublayer, the first passivation sublayer is located below the second passivation sublayer, the material of the first passivation sublayer comprises: at least one of AlN, SiON, SiN, AlON, Al 2 O 3 , HfO 2 , ZrO 2 and Y 2 O 3 , and the material of the second passivation sublayer comprises: at least one of SiO 2 , SiN and SiON;
在所述栅极区域的钝化层上表面的形成栅极开孔区域,并刻蚀掉所述栅极开孔区域介质层直到所述p-GaN层的上表面,并且在所述栅极开孔区域的侧壁和底部沉积隧穿介质,形成隧穿层,其中,所述隧穿层的厚度范围为0.5 nm-5 nm,所述隧穿层的材料包括:SiN、SiON、AlN、AlON和Al2O3中的至少一种;A gate opening region is formed on the upper surface of the passivation layer in the gate region, and the dielectric layer in the gate opening region is etched away until the upper surface of the p-GaN layer, and a tunneling dielectric is deposited on the sidewall and bottom of the gate opening region to form a tunneling layer, wherein the thickness of the tunneling layer is in the range of 0.5 nm to 5 nm, and the material of the tunneling layer includes at least one of SiN, SiON, AlN, AlON and Al2O3 ;
在所述隧穿层上表面形成栅极金属区域,并沉积栅极金属形成栅极;forming a gate metal region on the upper surface of the tunneling layer, and depositing a gate metal to form a gate;
分别在所述钝化层上表面形成源极区域和漏极区域,对所述源极区域和所述漏极区域的钝化层进行刻蚀处理,刻蚀直到所述势垒层上表面,形成源极刻蚀区域和漏极刻蚀区域,在所述源极刻蚀区域和所述漏极刻蚀区域沉积金属形成源极和漏极。A source region and a drain region are respectively formed on the upper surface of the passivation layer, and the passivation layers of the source region and the drain region are etched until the upper surface of the barrier layer to form a source etching region and a drain etching region, and metal is deposited in the source etching region and the drain etching region to form a source and a drain.
进一步地,所述在所述衬底层上依次生长过渡层、缓冲层、沟道层、势垒层和p-GaN层,包括:Furthermore, the step of sequentially growing a transition layer, a buffer layer, a channel layer, a barrier layer and a p-GaN layer on the substrate layer comprises:
采用金属有机化学气相沉积工艺,在所述衬底层上依次生长过渡层、缓冲层、沟道层、势垒层和p-GaN层。A metal organic chemical vapor deposition process is adopted to sequentially grow a transition layer, a buffer layer, a channel layer, a barrier layer and a p-GaN layer on the substrate layer.
进一步地,所述在所述p-GaN层的上表面依次沉积TiN金属和SiN介质形成TiN保护层和SiN保护层,包括:Furthermore, the step of sequentially depositing TiN metal and SiN dielectric on the upper surface of the p-GaN layer to form a TiN protective layer and a SiN protective layer includes:
采用物理气相沉积工艺在所述p-GaN层的上表面沉积TiN金属,以形成TiN保护层;Depositing TiN metal on the upper surface of the p-GaN layer using a physical vapor deposition process to form a TiN protective layer;
采用化学气相沉积工艺在所述TiN保护层的上表层沉积SiN介质形成SiN保护层。A SiN medium is deposited on the upper surface of the TiN protective layer by using a chemical vapor deposition process to form a SiN protective layer.
进一步地,所述在所述势垒层的上表面、所述p-GaN层的上表面和所述p-GaN层侧壁沉积介质材料,形成钝化层,包括:Further, the step of depositing a dielectric material on the upper surface of the barrier layer, the upper surface of the p-GaN layer and the sidewall of the p-GaN layer to form a passivation layer includes:
采用等离子体增强原子层沉积工艺、原子层沉积工艺、等离子体增强化学气相沉积工艺和低压化学气相沉积工艺中的任意一种工艺,在所述势垒层的上表面、所述p-GaN层的上表面和所述p-GaN层侧壁沉积介质材料,形成钝化层。By using any one of a plasma enhanced atomic layer deposition process, an atomic layer deposition process, a plasma enhanced chemical vapor deposition process and a low pressure chemical vapor deposition process, a dielectric material is deposited on the upper surface of the barrier layer, the upper surface of the p-GaN layer and the side wall of the p-GaN layer to form a passivation layer.
进一步地,所述在所述栅极区域的钝化层上表面的形成栅极开孔区域,并刻蚀掉所述栅极开孔区域介质层直到所述p-GaN层的上表面,并且在所述栅极开孔区域的侧壁和底部沉积隧穿介质,形成隧穿层,包括:Furthermore, forming a gate opening region on the upper surface of the passivation layer in the gate region, etching the dielectric layer in the gate opening region until the upper surface of the p-GaN layer, and depositing a tunneling dielectric on the sidewall and bottom of the gate opening region to form a tunneling layer includes:
采用等离子体增强原子层沉积工艺、原子层沉积工艺、等离子体增强化学气相沉积工艺和低压化学气相沉积工艺中的任意一种工艺,在所述栅极区域的钝化层上表面的形成栅极开孔区域,并刻蚀掉所述栅极开孔区域介质层直到所述p-GaN层的上表面,并且在所述栅极开孔区域的侧壁和底部沉积隧穿介质,形成隧穿层。By adopting any one of plasma enhanced atomic layer deposition process, atomic layer deposition process, plasma enhanced chemical vapor deposition process and low pressure chemical vapor deposition process, a gate opening area is formed on the upper surface of the passivation layer in the gate area, and the dielectric layer in the gate opening area is etched away until the upper surface of the p-GaN layer, and a tunneling medium is deposited on the side wall and the bottom of the gate opening area to form a tunneling layer.
第三方面,本申请还提供一种芯片,所述芯片中包括:如上述中任一项所述的隧穿栅HEMT器件。In a third aspect, the present application further provides a chip, comprising: a tunneling gate HEMT device as described in any one of the above.
第四方面,本申请还提供一种电子设备,所述电子设备中包括:如上述的芯片。In a fourth aspect, the present application also provides an electronic device, which includes: the chip as described above.
本申请提供的一种隧穿栅HEMT器件、制备方法、芯片以及电子设备,其有益效果在于:The present application provides a tunnel gate HEMT device, a preparation method, a chip and an electronic device, which have the following beneficial effects:
1、本申请提供的隧穿栅极HEMT器件,通过在栅极开槽内部沉积一层薄介质作为隧穿层,薄介质隧穿层通过量子隧穿效应来控制电流传输,精确控制的沉积的薄介质层能够优化隧穿概率,使得在正常工作状态下,只有少量电子能够隧穿通过介质层,从而有效降低栅极漏电流。1. The tunneling gate HEMT device provided in the present application deposits a thin dielectric layer as a tunneling layer inside the gate groove. The thin dielectric tunneling layer controls current transmission through the quantum tunneling effect. The precisely controlled deposited thin dielectric layer can optimize the tunneling probability, so that under normal working conditions, only a small number of electrons can tunnel through the dielectric layer, thereby effectively reducing the gate leakage current.
2、本申请通过选择合适的介质材料和精确沉积的隧穿层可以改变器件的能带结构,增加电子从源极到漏极传输的势垒高度。当栅极电压未达到一定阈值时,电子很难越过这个势垒,从而提高了器件的阈值电压。这使得器件在较低的栅极电压下处于关断状态,增强了器件的开关特性。2. This application can change the energy band structure of the device by selecting appropriate dielectric materials and accurately deposited tunneling layers, increasing the barrier height for electrons to transfer from the source to the drain. When the gate voltage does not reach a certain threshold, it is difficult for electrons to cross this barrier, thereby increasing the threshold voltage of the device. This makes the device in the off state at a lower gate voltage, enhancing the switching characteristics of the device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本申请实施例一种隧穿栅HEMT器件的结构示意图;FIG1 is a schematic structural diagram of a tunnel gate HEMT device according to an embodiment of the present application;
图2a-图2i是本申请实施例一种隧穿栅HEMT器件的制备过程的细节示意图;2a-2i are detailed schematic diagrams of a preparation process of a tunnel gate HEMT device according to an embodiment of the present application;
图3是本申请实施例一种隧穿栅HEMT器件的制备方法的流程示意图;FIG3 is a schematic flow chart of a method for preparing a tunnel gate HEMT device according to an embodiment of the present application;
图4是本申请实施例提供的一种隧穿栅HEMT器件的栅极击穿电压实际测试结果示意图。FIG. 4 is a schematic diagram of actual test results of a gate breakdown voltage of a tunneling gate HEMT device provided in an embodiment of the present application.
附图标记:1、衬底层;2、过渡层;3、缓冲层;4、沟道层;5、势垒层;6、漏极;7、源极;8、隔离结构;91、p-GaN层;92、隧穿层; 93、栅极;94、TiN保护层;95、SiN保护层;100、钝化层;10、第一钝化子层;11、第二钝化子层。Figure numerals: 1, substrate layer; 2, transition layer; 3, buffer layer; 4, channel layer; 5, barrier layer; 6, drain; 7, source; 8, isolation structure; 91, p-GaN layer; 92, tunneling layer; 93, gate; 94, TiN protective layer; 95, SiN protective layer; 100, passivation layer; 10, first passivation sublayer; 11, second passivation sublayer.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when an element is referred to as being "fixed to" another element, it may be directly on the other element or there may be a central element. When an element is considered to be "connected to" another element, it may be directly connected to the other element or there may be a central element at the same time. In contrast, when an element is referred to as being "directly on" another element, there is no intermediate element. The terms "vertical", "horizontal", "left", "right" and similar expressions used herein are for illustrative purposes only.
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In this application, unless otherwise clearly specified and limited, the terms "installed", "connected", "connected", "fixed" and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood according to specific circumstances.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括:一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include: one or more of the features. In the description of this application, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
在本申请一个或多个实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请一个或多个实施例。在本申请一个或多个实施例中所使用的单数形式的“一种”、“所述”和“该”也旨在包括:多数形式,除非上下文清楚地表示其他含义。The terms used in one or more embodiments of the present application are only for the purpose of describing specific embodiments, and are not intended to limit one or more embodiments of the present application. The singular forms "a", "said" and "the" used in one or more embodiments of the present application are also intended to include: plural forms, unless the context clearly indicates other meanings.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在模板的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括:一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of the template are only for the purpose of describing specific embodiments and are not intended to limit this application. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
应当理解,尽管在本申请一个或多个实施例中可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请一个或多个实施例范围的情况下,第一也可以被称为第二,类似地,第二也可以被称为第一。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”。It should be understood that, although the terms first, second, etc. may be used to describe various information in one or more embodiments of the present application, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of one or more embodiments of the present application, the first may also be referred to as the second, and similarly, the second may also be referred to as the first. Depending on the context, the word "if" as used herein may be interpreted as "at the time of" or "when the time of".
目前,现有p-GaN栅极器件的栅极击穿电压不够高,很容易被电路中的过冲信号击穿,从而造成器件烧毁,这很大程度的威胁了整个电路系统在开关过程中的可靠性。At present, the gate breakdown voltage of existing p-GaN gate devices is not high enough, and they are easily broken down by overshoot signals in the circuit, causing the device to burn out, which greatly threatens the reliability of the entire circuit system during the switching process.
下面以具体的实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solution of the present application and how the technical solution of the present application solves the above-mentioned technical problems are described in detail below with specific embodiments. The following specific embodiments can be combined with each other, and the same or similar concepts or processes are not repeated in some embodiments. The embodiments of the present application will be described below in conjunction with the accompanying drawings.
请参考图1,本申请实施例提供一种隧穿栅HEMT器件,包括:衬底层1,依次位于所述衬底层1上的过渡层2、缓冲层3、沟道层4和势垒层5;p-GaN层91,位于所述势垒层5上;隔离结构8,位于所述HEMT器件的侧壁,其中,所述隔离结构8贯穿于所述势垒层5和所述沟道层4,且位于所述缓冲层3上;钝化层100,位于所述p-GaN层91的侧壁且在所述势垒层5上,其中,所述钝化层100的厚度范围为50 nm-400 nm,所述钝化层100包括:第一钝化子层10和第二钝化子层11,所述第一钝化子层10位于所述第二钝化子层11的下方,所述第一钝化子层10材料包括:AlN、SiON、SiN、AlON、Al2O3、HfO2、ZrO2和Y2O3中的至少一种,所述第二钝化子层11材料包括:SiO2、SiN和SiON的至少一种;隧穿层92,位于所述钝化层100的栅极开孔区域的底部和侧部,其中,所述隧穿层92的厚度范围为0.5 nm-5 nm,所述隧穿层92的材料包括:SiN、SiON、AlN、AlON和Al2O3中的至少一种;栅极93,贯穿于所述钝化层100,且位于所述隧穿层92上;源极7,位于所述p-GaN层91的一侧,其中,所述源极7贯穿于所述钝化层100,且位于所述势垒层5上;漏极6,位于所述p-GaN层91的另一侧,其中,所述漏极6贯穿于所述钝化层100,且位于所述势垒层5上。Referring to FIG. 1 , an embodiment of the present application provides a tunnel gate HEMT device, comprising: a substrate layer 1, a transition layer 2, a buffer layer 3, a channel layer 4 and a barrier layer 5 sequentially located on the substrate layer 1; a p-GaN layer 91 located on the barrier layer 5; an isolation structure 8 located on the side wall of the HEMT device, wherein the isolation structure 8 penetrates the barrier layer 5 and the channel layer 4 and is located on the buffer layer 3; a passivation layer 100 located on the side wall of the p-GaN layer 91 and on the barrier layer 5, wherein the thickness of the passivation layer 100 ranges from 50 nm to 400 nm, and the passivation layer 100 comprises: a first passivation sublayer 10 and a second passivation sublayer 11, wherein the first passivation sublayer 10 is located below the second passivation sublayer 11, and the material of the first passivation sublayer 10 comprises: AlN, SiON, SiN, AlON, Al 2 O 3 , HfO 2 , ZrO 2 and Y 2 O 3 , the material of the second passivation sublayer 11 includes: at least one of SiO 2 , SiN and SiON; a tunneling layer 92, located at the bottom and side of the gate opening area of the passivation layer 100, wherein the thickness of the tunneling layer 92 ranges from 0.5 nm to 5 nm, and the material of the tunneling layer 92 includes: at least one of SiN, SiON, AlN, AlON and Al 2 O 3 ; a gate 93, penetrating the passivation layer 100 and located on the tunneling layer 92; a source electrode 7, located on one side of the p-GaN layer 91, wherein the source electrode 7 penetrates the passivation layer 100 and is located on the barrier layer 5; a drain electrode 6, located on the other side of the p-GaN layer 91, wherein the drain electrode 6 penetrates the passivation layer 100 and is located on the barrier layer 5.
在上述方案中,通过在栅极93开槽内部沉积一层薄介质作为隧穿层92,薄介质隧穿层92通过量子隧穿效应来控制电流传输,精确控制的沉积的薄介质层能够优化隧穿概率,使得在正常工作状态下,只有少量电子能够隧穿通过钝化层100,从而有效降低栅极93漏电流。通过本申请,能够解决传统p-GaN栅极器件的栅极93击穿电压不够高,容易被电路中的过冲信号烧毁的问题。下面结合附图对上述的各个结构进行详细的介绍。In the above scheme, a thin dielectric layer is deposited inside the slot of the gate 93 as a tunneling layer 92. The thin dielectric tunneling layer 92 controls current transmission through the quantum tunneling effect. The precisely controlled deposited thin dielectric layer can optimize the tunneling probability, so that under normal working conditions, only a small number of electrons can tunnel through the passivation layer 100, thereby effectively reducing the leakage current of the gate 93. Through this application, the problem that the breakdown voltage of the gate 93 of the traditional p-GaN gate device is not high enough and is easily burned by the overshoot signal in the circuit can be solved. The above-mentioned structures are described in detail below in conjunction with the accompanying drawings.
如图1所示,提供一衬底层1,该衬底层1具体可以为蓝宝石衬底、Si衬底、SiC衬底、金刚石衬底、玻璃衬底、陶瓷衬底和聚合物衬底中的任意一种,作为HEMT器件的支撑结构和载体结构。如图1所示,在衬底层1上形成过渡层2、缓冲层3、沟道层4和势垒层5;在确定的过渡层2的材料时,过渡层2的材料可以为AlN、AlGaN和GaN中的至少一种。需要说明的是,过渡层2的厚度范围可以在10 nm-500 nm之间,以保证较好的调节衬底层1与缓冲层3之间的应力。As shown in FIG1 , a substrate layer 1 is provided, and the substrate layer 1 can be any one of a sapphire substrate, a Si substrate, a SiC substrate, a diamond substrate, a glass substrate, a ceramic substrate and a polymer substrate, as a support structure and carrier structure of the HEMT device. As shown in FIG1 , a transition layer 2, a buffer layer 3, a channel layer 4 and a barrier layer 5 are formed on the substrate layer 1; when determining the material of the transition layer 2, the material of the transition layer 2 can be at least one of AlN, AlGaN and GaN. It should be noted that the thickness of the transition layer 2 can range from 10 nm to 500 nm to ensure better regulation of the stress between the substrate layer 1 and the buffer layer 3.
请继续参阅图1,在过渡层2的上面还形成有缓冲层3、沟道层4和势垒层5,在确定缓冲层3的材料时,本实例中缓冲层3的材料可以是高阻GaN和高阻AlGaN中的至少一种,且可以将缓冲层3的厚度范围控制在300 nm-6000 nm,从而使得缓冲层3能够正常生长且不会被纵向击穿。Please continue to refer to Figure 1. A buffer layer 3, a channel layer 4 and a barrier layer 5 are also formed on the transition layer 2. When determining the material of the buffer layer 3, the material of the buffer layer 3 in this example can be at least one of high-resistance GaN and high-resistance AlGaN, and the thickness of the buffer layer 3 can be controlled in the range of 300 nm-6000 nm, so that the buffer layer 3 can grow normally and will not be longitudinally broken down.
请继续参阅图1,在缓冲层3上面还形成有沟道层4和和势垒层5,在确定沟道层4和势垒层5的材料时,本实施例中的沟道层4的材料可以是非故意掺杂GaN,势垒层5的材料可以为AlxGa1-xN,其中,x的取值范围为0.1-0.5。Please continue to refer to FIG. 1 . A channel layer 4 and a barrier layer 5 are formed on the buffer layer 3 . When determining the materials of the channel layer 4 and the barrier layer 5 , the material of the channel layer 4 in this embodiment may be unintentionally doped GaN, and the material of the barrier layer 5 may be Al x Ga 1-x N, where x ranges from 0.1 to 0.5.
需要说明的是,在本实施例中,可以将沟道层4的厚度范围控制在50 nm-500 nm之间,将势垒层5的厚度范围控制在10 nm-40 nm,以保证沟道层4和势垒层5能够共同配合,利用极化效应产生二维电子气(2DEG)。It should be noted that, in this embodiment, the thickness range of the channel layer 4 can be controlled between 50 nm and 500 nm, and the thickness range of the barrier layer 5 can be controlled between 10 nm and 40 nm, so as to ensure that the channel layer 4 and the barrier layer 5 can cooperate with each other to generate two-dimensional electron gas (2DEG) by utilizing the polarization effect.
可以理解的是,沟道层4为二维电子气(2DEG)的形成提供了一个合适的空间。由于极化效应,在 AlGaN 和 GaN 界面附近会产生一个很强的电场。这个电场会使 GaN 沟道层4中的电子被吸引到界面处。It can be understood that the channel layer 4 provides a suitable space for the formation of two-dimensional electron gas (2DEG). Due to the polarization effect, a strong electric field is generated near the interface between AlGaN and GaN. This electric field causes the electrons in the GaN channel layer 4 to be attracted to the interface.
势垒层5的存在对于 2DEG 的形成至关重要。由于 AlGaN 和 GaN 之间存在极化差异,在界面处会产生极化电荷。这些极化电荷在界面附近形成一个高电场区域,并且由于AlGaN 的带隙比 GaN 宽,在界面处形成了一个能量势垒。这个势垒能够有效地限制电子在垂直于界面方向的运动,将电子束缚在 GaN 沟道层4与 AlGaN 势垒层5的界面附近,使得电子只能在平行于界面的二维平面内运动,从而促进了 2DEG 的形成。同时,势垒层5也可以阻挡杂质等对沟道层4中2DEG的干扰,提高2DEG的稳定性和电学性能。The presence of the barrier layer 5 is crucial to the formation of 2DEG. Due to the polarization difference between AlGaN and GaN, polarization charges are generated at the interface. These polarization charges form a high electric field region near the interface, and because the band gap of AlGaN is wider than that of GaN, an energy barrier is formed at the interface. This barrier can effectively limit the movement of electrons in the direction perpendicular to the interface, confining electrons near the interface between the GaN channel layer 4 and the AlGaN barrier layer 5, so that electrons can only move in a two-dimensional plane parallel to the interface, thereby promoting the formation of 2DEG. At the same time, the barrier layer 5 can also block the interference of impurities and the like on the 2DEG in the channel layer 4, thereby improving the stability and electrical properties of 2DEG.
请继续参阅图1,在势垒层5的上方生长有p-GaN层91,在本实例中,p-GaN层91的中的Mg的掺杂浓度范围可以控制在1018 cm-3-1020 cm-3之间,p-GaN层91的厚度范围可以控制在50 nm-500 nm之间,以使得p-GaN层91能够耗尽栅极93下方的二维电子气。Please continue to refer to FIG. 1 . A p-GaN layer 91 is grown on the barrier layer 5 . In this example, the doping concentration range of Mg in the p-GaN layer 91 can be controlled between 10 18 cm -3 and 10 20 cm -3 , and the thickness range of the p-GaN layer 91 can be controlled between 50 nm and 500 nm, so that the p-GaN layer 91 can deplete the two-dimensional electron gas under the gate 93 .
请继续参阅图1,在HEMT器件的侧壁,还包括:隔离结构8,隔离结构8贯穿于所述势垒层5和所述沟道层4,且位于所述缓冲层3上,可以理解的是,通过在HEMT器件的侧壁设置隔离结构8,可以形成隔离区域和减少寄生效应。Please continue to refer to FIG. 1 . The sidewall of the HEMT device further includes an isolation structure 8 . The isolation structure 8 runs through the barrier layer 5 and the channel layer 4 and is located on the buffer layer 3 . It can be understood that by providing the isolation structure 8 on the sidewall of the HEMT device, an isolation region can be formed and parasitic effects can be reduced.
在某一具体实施例中,所述隔离结构8包括:台面隔离结构和离子注入结构中的任意一种。In a specific embodiment, the isolation structure 8 includes: any one of a mesa isolation structure and an ion implantation structure.
具体地,台面隔离结构是指在半导体器件制造过程中,通过刻蚀等工艺在器件的台面区域形成的一种隔离结构,用于实现不同器件区域之间的电隔离,减少漏电、串扰等问题,提高器件的性能和可靠性。Specifically, the mesa isolation structure refers to an isolation structure formed in the mesa area of the device through etching and other processes during the manufacturing process of semiconductor devices. It is used to achieve electrical isolation between different device areas, reduce leakage, crosstalk and other problems, and improve device performance and reliability.
离子注入结构是指利用离子注入机将杂质离子加速并注入到半导体材料中的一种掺杂结构。通过控制注入离子的种类、能量、剂量和角度等参数,可以精确地改变半导体材料的电学性质,如载流子浓度、导电类型等,从而实现对半导体器件性能的调控。Ion implantation structure refers to a doping structure that uses an ion implanter to accelerate and implant impurity ions into semiconductor materials. By controlling the type, energy, dose, angle and other parameters of the implanted ions, the electrical properties of semiconductor materials, such as carrier concentration, conductivity type, etc., can be precisely changed, thereby achieving regulation of semiconductor device performance.
请继续参阅图1,在所述p-GaN层91的侧壁且在所述势垒层5上还生长有钝化层100,可以理解的是,钝化层100可以改善HEMT器件的电学性能以及能够对器件的表面进行保护。Please continue to refer to FIG. 1 . A passivation layer 100 is grown on the sidewall of the p-GaN layer 91 and on the barrier layer 5 . It can be understood that the passivation layer 100 can improve the electrical performance of the HEMT device and protect the surface of the device.
具体地,在HEMT器件中,半导体表面和界面处的态密度对器件的电学性能有显著影响。钝化层100可以降低表面态和界面态的密度。当没有钝化层100时,表面态和界面态会捕获或释放载流子(电子或空穴),导致载流子散射增加,迁移率下降,严重影响器件的动态特性。例如,在 AlGaN/GaN HEMT 器件中,钝化层100可以填充表面和界面的缺陷,减少载流子在这些位置的非预期捕获和散射,从而提高电子迁移率,改善器件的跨导和输出电流等性能。Specifically, in HEMT devices, the density of states at the semiconductor surface and interface has a significant impact on the electrical properties of the device. The passivation layer 100 can reduce the density of surface states and interface states. When there is no passivation layer 100, the surface states and interface states will capture or release carriers (electrons or holes), resulting in increased carrier scattering and decreased mobility, which seriously affects the dynamic characteristics of the device. For example, in AlGaN/GaN HEMT devices, the passivation layer 100 can fill defects on the surface and interface, reduce the unintended capture and scattering of carriers at these locations, thereby increasing electron mobility and improving the device's transconductance and output current and other performance.
在器件工作过程中,电场在半导体材料内部以及表面和界面处的分布是很关键的。例如,在HEMT的栅极93附近,电场强度的变化会影响载流子的注入和输运。钝化层100的存在可以调节电场在表面的分布,使其更加均匀和平稳,避免电场集中导致的器件击穿等问题,同时也有利于提高器件的可靠性和稳定性。During the operation of the device, the distribution of the electric field inside the semiconductor material and on the surface and interface is critical. For example, near the gate 93 of the HEMT, the change in the electric field strength will affect the injection and transport of carriers. The presence of the passivation layer 100 can adjust the distribution of the electric field on the surface, making it more uniform and stable, avoiding problems such as device breakdown caused by electric field concentration, and is also conducive to improving the reliability and stability of the device.
请继续参阅图1,HEMT器件还包括:在所述钝化层100的栅极开孔区域的底部和侧部形成的隧穿层92,在本实施例中,隧穿层92的材料可以包括:SiN、SiON、AlN、AlON和Al2O3中的至少一种,隧穿层92的厚度范围可以控制0.5 nm-5 nm之间。Continuing to refer to FIG. 1 , the HEMT device further includes: a tunneling layer 92 formed at the bottom and side of the gate opening region of the passivation layer 100 . In the present embodiment, the material of the tunneling layer 92 may include: at least one of SiN, SiON, AlN, AlON and Al 2 O 3 . The thickness of the tunneling layer 92 may be controlled within a range of 0.5 nm to 5 nm.
请参阅图4,从图4中可以看出在增加隧穿层92后栅极93击穿电压逐渐增大,图4中的Schottky表示为肖特基接触。Please refer to FIG. 4 . It can be seen from FIG. 4 that after the tunneling layer 92 is added, the breakdown voltage of the gate 93 gradually increases. The Schottky in FIG. 4 represents a Schottky contact.
本申请提供的一种隧穿栅HEMT器件、制备方法、芯片以及电子设备,其有益效果在于:The present application provides a tunnel gate HEMT device, a preparation method, a chip and an electronic device, which have the following beneficial effects:
1、本申请提供的隧穿栅极HEMT器件,通过在栅极开槽内部沉积一层薄介质作为隧穿层92,隧穿层92通过量子隧穿效应来控制电流传输,精确控制的沉积的薄介质层能够优化隧穿概率,使得在正常工作状态下,只有少量电子能够隧穿通过介质层,从而有效降低栅极漏电流。1. The tunneling gate HEMT device provided in the present application deposits a thin dielectric layer as a tunneling layer 92 inside the gate groove. The tunneling layer 92 controls current transmission through the quantum tunneling effect. The precisely controlled deposited thin dielectric layer can optimize the tunneling probability, so that under normal working conditions, only a small number of electrons can tunnel through the dielectric layer, thereby effectively reducing the gate leakage current.
2、本申请通过选择合适的介质材料和精确沉积的隧穿层92可以改变器件的能带结构,使得栅金属、隧穿层92、p-GaN层91处的分压更大,(肖特基结变为MIS结)用于开启沟道(p-GaN、AlGaN和GaN)处的有效电压减小,因此需要更高的栅极电压才能打开沟道,从而提高了器件的阈值电压。2. The present application can change the energy band structure of the device by selecting suitable dielectric materials and a precisely deposited tunneling layer 92, so that the voltage division at the gate metal, tunneling layer 92, and p-GaN layer 91 is larger (the Schottky junction becomes a MIS junction), and the effective voltage for opening the channel (p-GaN, AlGaN, and GaN) is reduced, so a higher gate voltage is required to open the channel, thereby increasing the threshold voltage of the device.
请参阅图2a-2i以及图3,本申请还提供一种隧穿栅HEMT器件的制备方法,应用于制备上述的隧穿栅HEMT器件,至少包括如下步骤:Please refer to FIGS. 2a-2i and 3 . The present application also provides a method for preparing a tunnel gate HEMT device, which is applied to prepare the above-mentioned tunnel gate HEMT device and at least comprises the following steps:
S10、提供一衬底层1。S10, providing a substrate layer 1.
具体地,所述衬底层1可以为蓝宝石衬底、Si衬底、SiC衬底、金刚石衬底、玻璃衬底、陶瓷衬底、聚合物衬底中的任意一种。Specifically, the substrate layer 1 may be any one of a sapphire substrate, a Si substrate, a SiC substrate, a diamond substrate, a glass substrate, a ceramic substrate, and a polymer substrate.
S20、在所述衬底层1上依次生长过渡层2、缓冲层3、沟道层4、势垒层5和p-GaN层91。S20 , sequentially growing a transition layer 2 , a buffer layer 3 , a channel layer 4 , a barrier layer 5 and a p-GaN layer 91 on the substrate layer 1 .
具体地,请参阅图2a,在本实例中,采用金属有机化学气相沉积工艺,在所述衬底层1上依次生长过渡层2、缓冲层3、沟道层4、势垒层5和p-GaN层91。Specifically, referring to FIG. 2 a , in this example, a transition layer 2 , a buffer layer 3 , a channel layer 4 , a barrier layer 5 and a p-GaN layer 91 are sequentially grown on the substrate layer 1 by a metal organic chemical vapor deposition process.
在某一具体实施例中,采用采用金属有机化学气相沉积工艺,在衬底层1上依次生长厚度为10 nm-500 nm的过渡层2、厚度为300 nm-6000 nm的高阻AlGaN缓冲层3、厚度为50nm-500 nm的非故意掺杂GaN沟道层4、厚度为10 nm-40 nm的AlxGa1-xN势垒层5和厚度为50nm-500 nm、Mg掺杂浓度为1018 cm-3-1020 cm-3的p-GaN层91;其中,x的取值范围为0.1-0.5。In a specific embodiment, a transition layer 2 with a thickness of 10 nm-500 nm, a high-resistance AlGaN buffer layer 3 with a thickness of 300 nm-6000 nm, an unintentionally doped GaN channel layer 4 with a thickness of 50 nm-500 nm, an Al x Ga 1-x N barrier layer 5 with a thickness of 10 nm-40 nm, and a p-GaN layer 91 with a thickness of 50 nm-500 nm and a Mg doping concentration of 10 18 cm -3 -10 20 cm -3 are sequentially grown on a substrate layer 1 by using a metal organic chemical vapor deposition process; wherein the value range of x is 0.1-0.5.
S30、在所述p-GaN层91上表面依次沉积TiN金属和SiN介质形成TiN保护层94和SiN保护层95。S30 , depositing TiN metal and SiN dielectric in sequence on the upper surface of the p-GaN layer 91 to form a TiN protective layer 94 and a SiN protective layer 95 .
具体地,请参阅图2b,在p-GaN层91的后续刻蚀等工艺前首先对表面进行保护,防止表面收到污染。比如,采用离子注入生成隔离结构8时,HEMT器件的表面会被高能离子轰击导致粗糙,因此需要保护层来吸收表面的轰击,避免半导体表面受到损伤。另外,由于沉积SiN时通常采用SiH4作为源,这样在生长的时候就容易引入H,p-GaN中的Mg很容易被H钝化形成Mg-H络合物,影响器件性能,因此采用TiN作为中间层,隔断H的渗透。Specifically, please refer to FIG. 2b. Before the subsequent etching process of the p-GaN layer 91, the surface is first protected to prevent the surface from being contaminated. For example, when the isolation structure 8 is generated by ion implantation, the surface of the HEMT device will be bombarded by high-energy ions and become rough. Therefore, a protective layer is required to absorb the bombardment of the surface to prevent the semiconductor surface from being damaged. In addition, since SiH4 is usually used as a source when depositing SiN, H is easily introduced during growth. The Mg in p-GaN is easily passivated by H to form a Mg-H complex, which affects the device performance. Therefore, TiN is used as an intermediate layer to block the penetration of H.
在某一具体实施例中,采用物理气相沉积工艺在所述p-GaN层91的上表面沉积TiN金属,以形成TiN保护层94;采用化学气相沉积工艺在所述TiN保护层94的上表层沉积SiN介质形成SiN保护层95。In a specific embodiment, TiN metal is deposited on the upper surface of the p-GaN layer 91 by physical vapor deposition process to form a TiN protective layer 94 ; SiN dielectric is deposited on the upper surface of the TiN protective layer 94 by chemical vapor deposition process to form a SiN protective layer 95 .
S40、在所述SiN保护层95的上表面,且在所述HEMT器件有源区外的位置形成隔离结构8,其中,所述隔离结构8贯穿于所述SiN保护层95、所述TiN保护层94、所述p-GaN层91、所述势垒层5和所述沟道层4。S40, forming an isolation structure 8 on the upper surface of the SiN protection layer 95 and outside the active area of the HEMT device, wherein the isolation structure 8 penetrates the SiN protection layer 95, the TiN protection layer 94, the p-GaN layer 91, the barrier layer 5 and the channel layer 4.
具体地,在本实施例中,隔离结构8可以是台面隔离结构和离子注入结构中的任意一种,示例性的,以离子注入结构为例,请参阅图2c,利用等离子体注入工艺在钝化层100的上表面的两端分别注入N离子,形成N离子注入区,控制注入深度至缓冲层3的上表面,以实现平面器件隔离。Specifically, in this embodiment, the isolation structure 8 can be any one of a mesa isolation structure and an ion implantation structure. By way of example, taking the ion implantation structure as an example, please refer to FIG. 2c. N ions are implanted at both ends of the upper surface of the passivation layer 100 using a plasma implantation process to form an N ion implantation area. The implantation depth is controlled to the upper surface of the buffer layer 3 to achieve planar device isolation.
S50、在所述SiN保护层95的上表面形成栅极区域,刻蚀掉所述栅极区域外的所述SiN保护层95、所述TiN保护层94和所述p-GaN层91,刻蚀深度直至所述势垒层5的上表面。S50 , forming a gate region on the upper surface of the SiN protective layer 95 , etching away the SiN protective layer 95 , the TiN protective layer 94 and the p-GaN layer 91 outside the gate region, and etching to a depth reaching the upper surface of the barrier layer 5 .
具体地,请参阅图2d,在本实施例中,利用光刻显影技术,用光刻胶作为掩膜层在TiN保护层94的上表面形成栅极区域,刻蚀掉栅极区域外的SiN保护层95、TiN保护层94、p-GaN层91直至势垒层5的上表面。Specifically, please refer to Figure 2d. In this embodiment, photolithography and development technology are used to form a gate region on the upper surface of the TiN protective layer 94 using photoresist as a mask layer, and the SiN protective layer 95, TiN protective layer 94, and p-GaN layer 91 outside the gate region are etched away until the upper surface of the barrier layer 5.
S60、采用湿法去除所述HEMT器件上表面的所述SiN保护层95和所述TiN保护层94。S60 , removing the SiN protective layer 95 and the TiN protective layer 94 on the upper surface of the HEMT device by a wet method.
具体地,请参阅图2e,在本实施例中,利用无机溶液比如氢氟酸、BOE、腐蚀掉材料表面的SiN保护层95,用TMAH、SPM等溶液腐蚀掉表面的TiN保护层94,此步的目的主要是去除表面的保护层。Specifically, please refer to Figure 2e. In this embodiment, an inorganic solution such as hydrofluoric acid and BOE is used to etch away the SiN protective layer 95 on the surface of the material, and a solution such as TMAH and SPM is used to etch away the TiN protective layer 94 on the surface. The purpose of this step is mainly to remove the surface protective layer.
S70、在所述势垒层5的上表面、所述p-GaN层91的上表面和所述p-GaN层91侧壁沉积介质材料,形成钝化层100,其中,所述钝化层100的厚度范围为50 nm-400 nm,所述钝化层100包括:第一钝化子层10和第二钝化子层11,所述第一钝化子层10位于所述第二钝化子层11的下方,所述第一钝化子层10材料包括:AlN、SiON、SiN、AlON、Al2O3、HfO2、ZrO2和Y2O3中的至少一种,所述第二钝化子层11材料包括:SiO2、SiN和SiON中的至少一种。S70. Deposit a dielectric material on the upper surface of the barrier layer 5, the upper surface of the p-GaN layer 91 and the sidewall of the p-GaN layer 91 to form a passivation layer 100, wherein the thickness of the passivation layer 100 is in the range of 50 nm-400 nm, and the passivation layer 100 comprises: a first passivation sublayer 10 and a second passivation sublayer 11, the first passivation sublayer 10 is located below the second passivation sublayer 11, the material of the first passivation sublayer 10 comprises: at least one of AlN, SiON, SiN, AlON, Al 2 O 3 , HfO 2 , ZrO 2 and Y 2 O 3 , and the material of the second passivation sublayer 11 comprises: at least one of SiO 2 , SiN and SiON.
需要说明的是,在本实施例中的钝化层100可以为单层介质产生的钝化层,也可以是多种介质产生的多层钝化层,示例性的,以两层钝化层为例,请参阅图2f,在本实施例中,利用等离子体增强原子层沉积(PEALD)、原子层沉积(ALD)、等离子体增强化学气相沉积(PECVD)、低压力化学气相沉积(LPCVD)工艺中的任意一种工艺,在势垒层5的上表面及p-GaN层91和p-GaN层91侧壁沉积介质材料,形成厚度为10nm-50nm的第一钝化子层10,介质材料包括:AlN、SiON、SiN、AlON、Al2O3、HfO2、ZrO2和Y2O3中的至少一种,然后再沉积厚度为10nm-500 nm的第二钝化子层11,其中,介质材料包括:SiO2或SiN。It should be noted that the passivation layer 100 in the present embodiment can be a passivation layer produced by a single-layer dielectric, or a multi-layer passivation layer produced by multiple dielectrics. By way of example, taking two-layer passivation layers as an example, please refer to FIG. 2f. In the present embodiment, any one of plasma enhanced atomic layer deposition (PEALD), atomic layer deposition (ALD), plasma enhanced chemical vapor deposition (PECVD), and low pressure chemical vapor deposition (LPCVD) processes is used to deposit dielectric materials on the upper surface of the barrier layer 5 and the p-GaN layer 91 and the sidewalls of the p-GaN layer 91 to form a first passivation sublayer 10 with a thickness of 10nm-50nm, wherein the dielectric material includes at least one of AlN, SiON, SiN, AlON, Al2O3 , HfO2 , ZrO2 , and Y2O3 , and then a second passivation sublayer 11 with a thickness of 10nm -500nm is deposited, wherein the dielectric material includes SiO2 or SiN.
S80、在所述栅极区域的钝化层100上表面的形成栅极开孔区域,并刻蚀掉所述栅极开孔区域的钝化层100直到所述p-GaN层91的上表面,并且在所述栅极开孔区域的侧壁和底部沉积隧穿介质,形成隧穿层92,其中,所述隧穿层92的厚度范围为0.5 nm-5 nm,所述隧穿层92的材料包括:SiN、SiON、AlN、AlON和Al2O3中的至少一种。S80, forming a gate opening area on the upper surface of the passivation layer 100 in the gate area, and etching the passivation layer 100 in the gate opening area until the upper surface of the p-GaN layer 91, and depositing a tunneling medium on the sidewall and bottom of the gate opening area to form a tunneling layer 92, wherein the thickness of the tunneling layer 92 is in the range of 0.5 nm - 5 nm, and the material of the tunneling layer 92 includes: at least one of SiN, SiON, AlN, AlON and Al2O3 .
具体地,请参阅图2g,在本实施例中,利用光刻显影技术,用光刻胶作为掩膜层在p-GaN层91上的钝化层100的上表面形成栅极区域,刻蚀掉该栅极区域处的钝化层100直至p-GaN层91的上表面,并在p-GaN层91的上表面和钝化层100凹槽的侧面沉积隧穿介质形成隧穿层92。Specifically, referring to FIG. 2g , in this embodiment, a gate region is formed on the upper surface of the passivation layer 100 on the p-GaN layer 91 by using photolithography and development technology, using photoresist as a mask layer, and the passivation layer 100 at the gate region is etched away until the upper surface of the p-GaN layer 91 , and a tunneling medium is deposited on the upper surface of the p-GaN layer 91 and the side of the groove of the passivation layer 100 to form a tunneling layer 92.
在某一具体实施例中,采用等离子体增强原子层沉积工艺、原子层沉积工艺、等离子体增强化学气相沉积工艺和低压化学气相沉积工艺中的任意一种工艺,在所述栅极区域的钝化层100上表面的形成栅极开孔区域,并刻蚀掉所述栅极开孔区域介质层直到所述p-GaN层91的上表面,并且在所述栅极开孔区域的侧壁和底部沉积隧穿介质,形成隧穿层92。In a specific embodiment, any one of a plasma enhanced atomic layer deposition process, an atomic layer deposition process, a plasma enhanced chemical vapor deposition process and a low pressure chemical vapor deposition process is used to form a gate opening area on the upper surface of the passivation layer 100 in the gate area, and the dielectric layer in the gate opening area is etched away until the upper surface of the p-GaN layer 91, and a tunneling medium is deposited on the sidewalls and bottom of the gate opening area to form a tunneling layer 92.
S90、在所述隧穿层92上表面形成栅极金属区域,并沉积栅极金属形成栅极93。S90 , forming a gate metal region on the upper surface of the tunneling layer 92 , and depositing a gate metal to form a gate 93 .
具体地,请参阅图2h,在本实例中,利用光刻显影技术,用胶作为掩膜层在隧穿层92上形成栅极区域,利用磁控溅射或电子束蒸发技术沉积栅极金属。Specifically, referring to FIG. 2h, in this example, photolithography and development technology are used to form a gate region on the tunneling layer 92 using a photoresist as a mask layer, and magnetron sputtering or electron beam evaporation technology is used to deposit the gate metal.
S100、分别在所述钝化层100上表面形成源极区域和漏极区域,对所述源极区域和所述漏极区域的钝化层100进行刻蚀处理,刻蚀直到所述势垒层上表面,形成源极刻蚀区域和漏极刻蚀区域,在所述源极刻蚀区域和所述漏极刻蚀区域沉积金属形成源极7和漏极6。S100, forming a source region and a drain region on the upper surface of the passivation layer 100 respectively, etching the passivation layer 100 in the source region and the drain region until the upper surface of the barrier layer is reached to form a source etching region and a drain etching region, and depositing metal in the source etching region and the drain etching region to form a source 7 and a drain 6.
具体地,请参阅图2i,在本实施例中,光刻显影技术,用光刻胶作为掩膜层,分别在邻接隔离结构8的钝化层100的上表面形成漏极6区域和源极7区域,刻蚀掉该漏极6区域处的钝化层100,在势垒层5上沉积漏金属形成漏极6,同时,刻蚀掉源极7区域处的钝化层100、在势垒层5上沉积源金属形成源极7,最后对整个器件进行退火处理,实现源极7和漏极6的欧姆接触。Specifically, please refer to Figure 2i. In this embodiment, photolithography and development technology are used, with photoresist as a mask layer, to form a drain 6 region and a source 7 region on the upper surface of the passivation layer 100 adjacent to the isolation structure 8, respectively, and the passivation layer 100 at the drain 6 region is etched away, and a drain metal is deposited on the barrier layer 5 to form a drain 6. At the same time, the passivation layer 100 at the source 7 region is etched away, and a source metal is deposited on the barrier layer 5 to form a source 7. Finally, the entire device is annealed to achieve ohmic contact between the source 7 and the drain 6.
本申请还提供一种芯片,所述芯片中包括:如上述中任一项所述的隧穿栅HEMT器件。The present application also provides a chip, wherein the chip comprises: a tunneling gate HEMT device as described in any one of the above.
本申请还提供一种电子设备,所述电子设备中包括:如上述的芯片。The present application also provides an electronic device, which includes: the chip as described above.
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。In all examples shown and described herein, any specific values should be interpreted as merely exemplary and not as limiting, and thus other examples of the exemplary embodiments may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that similar reference numerals and letters denote similar items in the following drawings, and therefore, once an item is defined in one drawing, further definition and explanation thereof is not required in subsequent drawings.
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括:一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined as "first" and "second" may explicitly or implicitly include: one or more of the features. In the description of the present invention, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine different embodiments or examples described in this specification.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。The above description is only a specific implementation manner of the present application, but the protection scope of the present application is not limited thereto. Any technician familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411795296.0A CN119300401B (en) | 2024-12-09 | 2024-12-09 | Tunnel gate HEMT device, preparation method, chip and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411795296.0A CN119300401B (en) | 2024-12-09 | 2024-12-09 | Tunnel gate HEMT device, preparation method, chip and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN119300401A true CN119300401A (en) | 2025-01-10 |
CN119300401B CN119300401B (en) | 2025-04-04 |
Family
ID=94165658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411795296.0A Active CN119300401B (en) | 2024-12-09 | 2024-12-09 | Tunnel gate HEMT device, preparation method, chip and electronic device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN119300401B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881716A (en) * | 2012-09-27 | 2013-01-16 | 电子科技大学 | Field-induced tunneling enhanced HEMT (high electron mobility transistor) device |
CN107680998A (en) * | 2017-10-24 | 2018-02-09 | 江苏华功半导体有限公司 | A kind of GaN base p-type grid HFET devices and preparation method thereof |
CN113658856A (en) * | 2021-08-06 | 2021-11-16 | 西安电子科技大学广州研究院 | P-GaN gate enhanced HEMT device and preparation method thereof |
US20220157978A1 (en) * | 2020-11-13 | 2022-05-19 | National Sun Yat-Sen University | p-GaN HIGH ELECTRON MOBILITY TRANSISTOR |
CN114759085A (en) * | 2022-03-02 | 2022-07-15 | 山东大学 | InAlN/GaN MIS-HEMT based on ScAlN dielectric layer and preparation method thereof |
-
2024
- 2024-12-09 CN CN202411795296.0A patent/CN119300401B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881716A (en) * | 2012-09-27 | 2013-01-16 | 电子科技大学 | Field-induced tunneling enhanced HEMT (high electron mobility transistor) device |
CN107680998A (en) * | 2017-10-24 | 2018-02-09 | 江苏华功半导体有限公司 | A kind of GaN base p-type grid HFET devices and preparation method thereof |
US20220157978A1 (en) * | 2020-11-13 | 2022-05-19 | National Sun Yat-Sen University | p-GaN HIGH ELECTRON MOBILITY TRANSISTOR |
CN113658856A (en) * | 2021-08-06 | 2021-11-16 | 西安电子科技大学广州研究院 | P-GaN gate enhanced HEMT device and preparation method thereof |
CN114759085A (en) * | 2022-03-02 | 2022-07-15 | 山东大学 | InAlN/GaN MIS-HEMT based on ScAlN dielectric layer and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
罗俊等: "一种电介质/P-AlGaN叠栅增强型HEMT", 《微电子学》, vol. 49, no. 1, 28 February 2019 (2019-02-28), pages 119 - 124 * |
Also Published As
Publication number | Publication date |
---|---|
CN119300401B (en) | 2025-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN216354230U (en) | Semiconductor device and application thereof | |
CN108649071B (en) | Semiconductor devices and its manufacturing method | |
CN111223777B (en) | GaN-based HEMT device and manufacturing method thereof | |
JP5645766B2 (en) | Method for manufacturing GaN-based thin film transistors | |
CN109037326A (en) | A kind of enhanced HEMT device and preparation method thereof with p type buried layer structure | |
TW202044356A (en) | Manufacturing method of semiconductor device | |
CN113594232B (en) | An enhanced high-voltage HEMT device with a multi-finger buried gate structure and a method for preparing the same | |
CN114725022A (en) | A kind of preparation method of CMOS inverter based on GaOx-GaN | |
CN219832664U (en) | A high-performance p-GaN gate enhancement mode transistor based on oxygen treatment | |
CN111739801A (en) | A kind of preparation method of SOI-based p-GaN enhancement mode GaN power switching device | |
CN117542896A (en) | Vertical gallium nitride power transistor and manufacturing method thereof | |
CN117476460A (en) | Gallium nitride device preparation method and device based on grid terminal electric field regulation and control | |
CN119300401B (en) | Tunnel gate HEMT device, preparation method, chip and electronic device | |
CN117012829A (en) | High-thermal conductivity SiC substrate ring gate enhanced high Al component gallium nitride-based device and preparation method thereof | |
CN113540229B (en) | Semiconductor device and method for manufacturing the same | |
CN115732566A (en) | UMOSFET device and method for improving performance of UMOSFET device | |
CN115692184A (en) | P-AlGaN gate enhancement transistor based on selective wet etching process and preparation method | |
CN111739800B (en) | Preparation method of SOI-based concave gate enhanced GaN power switch device | |
CN108598154A (en) | Enhanced gallium nitride transistor and preparation method thereof | |
CN209199936U (en) | Group III-V semiconductor device with T-type grid | |
CN105185841A (en) | Field effect diode and manufacturing method therefor | |
CN117790563B (en) | An enhanced GaN high electron mobility transistor and a method for preparing the same | |
CN221596458U (en) | Enhancement type GaN HEMT device | |
CN119325270B (en) | Insulated gate MIS HEMT device, preparation method, chip and electronic device | |
CN114975101B (en) | A kind of GaN device and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |