CN108598154A - Enhanced gallium nitride transistor and preparation method thereof - Google Patents
Enhanced gallium nitride transistor and preparation method thereof Download PDFInfo
- Publication number
- CN108598154A CN108598154A CN201810507252.1A CN201810507252A CN108598154A CN 108598154 A CN108598154 A CN 108598154A CN 201810507252 A CN201810507252 A CN 201810507252A CN 108598154 A CN108598154 A CN 108598154A
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- metal layer
- gate
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims description 161
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 113
- 238000002360 preparation method Methods 0.000 title claims description 12
- 239000010410 layer Substances 0.000 claims description 190
- 229910052751 metal Inorganic materials 0.000 claims description 162
- 239000002184 metal Substances 0.000 claims description 162
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 68
- 150000002602 lanthanoids Chemical class 0.000 claims description 68
- 239000000758 substrate Substances 0.000 claims description 64
- 239000000463 material Substances 0.000 claims description 27
- 239000010931 gold Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 20
- 229910052737 gold Inorganic materials 0.000 claims description 20
- 239000010936 titanium Substances 0.000 claims description 19
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004332 silver Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 8
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 230000005533 two-dimensional electron gas Effects 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- -1 magnesium nitride Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种增强型氮化镓晶体管及其制备方法。该晶体管包括:基底,基底包括源区和漏区,以及位于源区和漏区之间的栅区;氮化镓调制栅,位于栅区,氮化镓调制栅包括掺杂P型离子的氮化镓材料;源极及漏极,源极位于源区,漏极位于漏区;栅极金属层,位于氮化镓调制栅的远离基底的表面上,栅极金属层至少包括镧系金属层,镧系金属层与氮化镓调制栅接触。本发明实施例提供的增强型氮化镓晶体管,通过在氮化镓调制栅远离基底的一侧设置镧系金属层,并使镧系金属层与氮化镓调制栅接触,在增强型氮化镓晶体管工作时,需要提供更高的电压才能使源极和漏极之间的沟道导通,因此,提高了增强型氮化镓晶体管的栅极阈值电压,减少了栅极漏电流。
The invention discloses an enhanced gallium nitride transistor and a preparation method thereof. The transistor includes: a substrate, the substrate includes a source region and a drain region, and a gate region located between the source region and the drain region; a gallium nitride modulation gate is located in the gate region, and the gallium nitride modulation gate includes nitrogen doped with P-type ions Gallium nitride material; source and drain, the source is located in the source region, and the drain is located in the drain region; the gate metal layer is located on the surface of the gallium nitride modulation gate away from the substrate, and the gate metal layer includes at least a lanthanide metal layer , the lanthanide metal layer is in contact with the gallium nitride modulation gate. In the enhancement mode gallium nitride transistor provided by the embodiment of the present invention, a lanthanide metal layer is arranged on the side of the gallium nitride modulation gate away from the substrate, and the lanthanide metal layer is in contact with the gallium nitride modulation gate. When the gallium transistor is working, a higher voltage needs to be provided to turn on the channel between the source and the drain. Therefore, the gate threshold voltage of the enhancement mode gallium nitride transistor is increased and the gate leakage current is reduced.
Description
技术领域technical field
本发明实施例涉及宽带系功率器件的制备技术领域,尤其涉及一种增强型氮化镓晶体管及其制备方法。Embodiments of the present invention relate to the technical field of preparation of broadband power devices, and in particular to an enhancement mode gallium nitride transistor and a preparation method thereof.
背景技术Background technique
氮化镓是一种半导体材料,具有禁带宽度大、电子饱和漂移速度高、击穿场强高以及导热性能好等特点,成为一种重要的第三代半导体材料。在电子器件领域,相比硅材料,氮化镓材料更适合于制造高温、高频、高压和大功率器件,具有很好的应用前景。Gallium nitride is a semiconductor material with the characteristics of large band gap, high electron saturation drift velocity, high breakdown field strength and good thermal conductivity, and has become an important third-generation semiconductor material. In the field of electronic devices, compared with silicon materials, gallium nitride materials are more suitable for manufacturing high-temperature, high-frequency, high-voltage and high-power devices, and have good application prospects.
为得到高温、高频、高压和大功率的氮化镓器件,首先需要制备出具有较高的栅极阈值电压的氮化镓高电子迁移率晶体管(Gallium Nitride High Electron MbilityTransistors,GaN HEMT)。对于传统的硅材料晶体管,常通过调节衬底的掺杂浓度来调整其栅极开启电压。但对于增强型氮化镓晶体管,导电沟道是由异质结形成二维电子气(Two-Dimensional Electron Gas,2DEG)形成的,因此无法通过掺杂调节栅极的阈值电压。In order to obtain high-temperature, high-frequency, high-voltage and high-power gallium nitride devices, it is first necessary to prepare gallium nitride high electron mobility transistors (Gallium Nitride High Electron Mbility Transistors, GaN HEMT) with a higher gate threshold voltage. For traditional silicon material transistors, the gate turn-on voltage is often adjusted by adjusting the doping concentration of the substrate. But for the enhancement-mode gallium nitride transistor, the conductive channel is formed by the heterojunction to form a two-dimensional electron gas (Two-Dimensional Electron Gas, 2DEG), so the threshold voltage of the gate cannot be adjusted by doping.
在现有技术中,常用的提高氮化镓晶体管的栅极阈值电压的方法有两种。一种是刻蚀栅槽,通过减少势垒层的厚度来降低导电沟道中的二维电子气密度,但这种方法会引入额外的刻蚀损伤,并且,这种方法只能将氮化镓器件的阈值电压提高到1V左右。In the prior art, there are two commonly used methods for increasing the gate threshold voltage of GaN transistors. One is to etch the gate trench to reduce the two-dimensional electron gas density in the conductive channel by reducing the thickness of the barrier layer, but this method will introduce additional etching damage, and this method can only reduce the gallium nitride The threshold voltage of the device is raised to around 1V.
发明内容Contents of the invention
本发明提供一种增强型氮化镓晶体管及其制备方法,以提高增强型氮化镓晶体管的开启电压,降低栅极漏电流。The invention provides an enhanced gallium nitride transistor and a preparation method thereof, so as to increase the turn-on voltage of the enhanced gallium nitride transistor and reduce gate leakage current.
第一方面,本发明实施例提供了一种增强型氮化镓晶体管,包括:In a first aspect, an embodiment of the present invention provides an enhancement mode gallium nitride transistor, including:
基底,所述基底包括源区和漏区,以及位于所述源区和所述漏区之间的栅区;a substrate comprising a source region and a drain region, and a gate region between the source region and the drain region;
氮化镓调制栅,位于所述栅区,所述氮化镓调制栅包括掺杂P型离子的氮化镓材料;a gallium nitride modulation gate located in the gate region, the gallium nitride modulation gate comprising a gallium nitride material doped with p-type ions;
源极及漏极,所述源极位于所述源区,所述漏极位于所述漏区;a source and a drain, the source is located in the source region, and the drain is located in the drain region;
栅极金属层,位于所述氮化镓调制栅的远离所述基底的表面上,所述栅极金属层至少包括镧系金属层,所述镧系金属层与所述氮化镓调制栅接触。a gate metal layer located on the surface of the gallium nitride modulation gate away from the substrate, the gate metal layer at least includes a lanthanide metal layer, and the lanthanide metal layer is in contact with the gallium nitride modulation gate .
进一步地,所述栅极金属层还包括帽层金属保护层,所述帽层金属保护层位于所述镧系金属层远离所述基底的一侧。Further, the gate metal layer further includes a cap metal protection layer, and the cap metal protection layer is located on a side of the lanthanide metal layer away from the substrate.
进一步地,所述帽层金属保护层的材料包括金、银、铜或钛。Further, the material of the cap metal protection layer includes gold, silver, copper or titanium.
进一步地,所述镧系金属层的厚度大于5nm。Further, the thickness of the lanthanide metal layer is greater than 5 nm.
进一步地,所述帽层金属保护层的厚度大于或等于40nm。Further, the thickness of the cap metal protection layer is greater than or equal to 40nm.
进一步地,所述氮化镓调制栅的P型离子掺杂浓度为1×1017cm-3-1×1019cm-3。Further, the P-type ion doping concentration of the gallium nitride modulation gate is 1×10 17 cm -3 -1×10 19 cm -3 .
第二方面,本发明实施例还提供了一种增强型氮化镓晶体管的制备方法,该制备方法包括:In the second aspect, the embodiment of the present invention also provides a method for manufacturing an enhancement mode gallium nitride transistor, the method comprising:
提供P型氮化镓外延片,其中,所述P型氮化镓外延片包括基底和位于所述基底之上的氮化镓调制层,所述基底包括多个晶体管单元,每个所述晶体管单元包括源区和漏区,以及位于所述源区和所述漏区之间的栅区,所述氮化镓调制层包括掺杂P型离子的氮化镓材料;A P-type gallium nitride epitaxial wafer is provided, wherein the P-type gallium nitride epitaxial wafer includes a substrate and a gallium nitride modulation layer on the substrate, the substrate includes a plurality of transistor units, each of the transistors The unit includes a source region and a drain region, and a gate region located between the source region and the drain region, and the gallium nitride modulation layer includes a gallium nitride material doped with P-type ions;
刻蚀所述氮化镓调制层,在所述栅区形成氮化镓调制栅;Etching the gallium nitride modulation layer to form a gallium nitride modulation gate in the gate region;
刻蚀所述晶体管单元相邻区域的部分基底,以进行漏电隔离,限定出多个所述增强型氮化镓晶体管;Etching a part of the base of the adjacent region of the transistor unit to perform leakage isolation to define a plurality of enhancement mode gallium nitride transistors;
在所述源区形成源极并在所述漏区形成漏极;forming a source in the source region and forming a drain in the drain region;
在所述氮化镓调制栅的远离所述基底的表面上形成栅极金属层,所述栅极金属层至少包括镧系金属层,所述镧系金属层与所述氮化镓调制栅接触。A gate metal layer is formed on the surface of the gallium nitride modulation gate away from the substrate, the gate metal layer at least includes a lanthanide metal layer, and the lanthanide metal layer is in contact with the gallium nitride modulation gate .
进一步地,在所述氮化镓调制栅的远离所述基底的表面上形成栅极金属层,包括:Further, a gate metal layer is formed on the surface of the gallium nitride modulation gate far away from the substrate, including:
采用磁控溅射法在所述氮化镓调制栅的远离所述基底的表面沉积所述镧系金属层;Depositing the lanthanide metal layer on the surface of the gallium nitride modulation grid far away from the substrate by magnetron sputtering;
在所述镧系金属层上原位沉积帽层金属保护层。A cap metal protection layer is deposited in-situ on the lanthanide metal layer.
进一步地,所述帽层金属保护层的材料包括金、银、铜或钛。Further, the material of the cap metal protection layer includes gold, silver, copper or titanium.
进一步地,所述镧系金属层的厚度大于5nm。Further, the thickness of the lanthanide metal layer is greater than 5 nm.
本发明实施例提供的增强型氮化镓晶体管,通过在氮化镓调制栅远离基底的一侧设置镧系金属层,并使镧系金属层与氮化镓调制栅接触,在增强型氮化镓晶体管工作时,需要提供更高的电压才能使源极和漏极之间的沟道导通,因此,提高了增强型氮化镓晶体管的栅极阈值电压,减少了栅极漏电流。In the enhancement mode gallium nitride transistor provided by the embodiment of the present invention, a lanthanide metal layer is arranged on the side of the gallium nitride modulation gate away from the substrate, and the lanthanide metal layer is in contact with the gallium nitride modulation gate. When the gallium transistor is working, a higher voltage needs to be provided to turn on the channel between the source and the drain. Therefore, the gate threshold voltage of the enhancement mode gallium nitride transistor is increased and the gate leakage current is reduced.
附图说明Description of drawings
图1是本发明实施例提供的增强型氮化镓晶体管的结构示意图;FIG. 1 is a schematic structural diagram of an enhancement mode gallium nitride transistor provided by an embodiment of the present invention;
图2是本发明实施例提供的另一增强型氮化镓晶体管的结构示意图;FIG. 2 is a schematic structural diagram of another enhancement mode gallium nitride transistor provided by an embodiment of the present invention;
图3是本发明实施例提供的又一增强型氮化镓晶体管的结构示意图;FIG. 3 is a schematic structural diagram of another enhancement mode gallium nitride transistor provided by an embodiment of the present invention;
图4是本发明实施例提供的栅极金属层分别包括金属镧或金属镍时氮化镓控制栅的阈值电压的示意图;4 is a schematic diagram of the threshold voltage of the gallium nitride control gate when the gate metal layer respectively includes metal lanthanum or metal nickel provided by an embodiment of the present invention;
图5是本发明实施例提供的栅极金属层分别包括金属镧或金属镍时的栅极漏电流的示意图;5 is a schematic diagram of the gate leakage current when the gate metal layer respectively includes metal lanthanum or metal nickel provided by an embodiment of the present invention;
图6是本发明实施例提供的增强型氮化镓晶体管的制备方法的流程图;FIG. 6 is a flow chart of a method for fabricating an enhancement mode gallium nitride transistor according to an embodiment of the present invention;
图7是本发明实施例提供的步骤10对应的晶体管的结构示意图;FIG. 7 is a schematic structural diagram of a transistor corresponding to step 10 provided by the embodiment of the present invention;
图8是本发明实施例提供的步骤20对应的晶体管的结构示意图;FIG. 8 is a schematic structural diagram of a transistor corresponding to step 20 provided by an embodiment of the present invention;
图9是本发明实施例提供的步骤30对应的晶体管的结构示意图;FIG. 9 is a schematic structural diagram of a transistor corresponding to step 30 provided by an embodiment of the present invention;
图10是本发明实施例提供的步骤40对应的晶体管的结构示意图;FIG. 10 is a schematic structural diagram of a transistor corresponding to step 40 provided by an embodiment of the present invention;
图11是本发明实施例提供的步骤50对应的晶体管的结构示意图。FIG. 11 is a schematic structural diagram of a transistor corresponding to step 50 provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.
图1是本发明实施例提供的增强型氮化镓晶体管的结构示意图。可选地,请参考图1,该增强型氮化镓晶体管包括:基底100,基底100包括源区和漏区,以及位于源区和漏区之间的栅区;氮化镓调制栅101,位于栅区,氮化镓调制栅101包括掺杂P型离子的氮化镓材料;源极103及漏极104,源极103位于源区,漏极104位于漏区;栅极金属层102,位于氮化镓调制栅101的远离基底100的表面上,栅极金属层102至少包括镧系金属层112,镧系金属层112与氮化镓调制栅101接触。FIG. 1 is a schematic structural diagram of an enhancement mode gallium nitride transistor provided by an embodiment of the present invention. Optionally, please refer to FIG. 1, the enhancement mode gallium nitride transistor includes: a substrate 100, the substrate 100 includes a source region and a drain region, and a gate region located between the source region and the drain region; a gallium nitride modulation gate 101, Located in the gate area, the gallium nitride modulation gate 101 includes gallium nitride material doped with P-type ions; the source electrode 103 and the drain electrode 104, the source electrode 103 is located in the source area, and the drain electrode 104 is located in the drain area; the gate metal layer 102, Located on the surface of the GaN modulation gate 101 away from the substrate 100 , the gate metal layer 102 includes at least a lanthanide metal layer 112 , and the lanthanide metal layer 112 is in contact with the GaN modulation gate 101 .
具体地,当半导体材料的功函数的数值与金属材料的费米能级的数值不同时,二者接触会形成金半接触势垒,并且,半导体材料的功函数的数值与金属材料的费米能级的数值的差值越大,形成的金半接触势垒越大。氮化镓调制栅101为半导体材料,栅极金属层102为金属材料,一般来说,氮化镓调制栅101的功函数不同于栅极金属层102的费米能级,因此,氮化镓调制栅101和栅极金属层102接触会产生金半接触势垒。并且,在其他条件(包括氮化镓调制栅101的掺杂浓度)确定的情况下,金半接触势垒越大,增强型氮化镓晶体管的栅极阈值电压越高。Specifically, when the value of the work function of the semiconductor material is different from the value of the Fermi level of the metal material, the contact between the two will form a gold half-contact barrier, and the value of the work function of the semiconductor material is different from the Fermi level of the metal material. The greater the difference in the values of the energy levels, the greater the gold half-contact potential barrier formed. The gallium nitride modulation gate 101 is a semiconductor material, and the gate metal layer 102 is a metal material. Generally speaking, the work function of the gallium nitride modulation gate 101 is different from the Fermi level of the gate metal layer 102. Therefore, the gallium nitride The contact between the modulation gate 101 and the gate metal layer 102 will generate a gold half-contact barrier. Moreover, when other conditions (including the doping concentration of the GaN modulation gate 101 ) are determined, the larger the gold half-contact barrier, the higher the gate threshold voltage of the enhancement GaN transistor.
对于增强型氮化镓晶体管,当施加于栅极金属层102的实际电压大于阈值电压时,源极103和漏极104之间的沟道导通,晶体管才能开始工作。对于增强型氮化镓晶体管,当与氮化镓调制栅101接触的栅极金属层102为镧系金属材料时,可以使增强型氮化镓晶体管形成更高的阈值电压。这是由于,与其它金属材料相比,镧系金属的功函数较小,通常只有3.5eV左右,因此,镧系金属层112与氮化镓调制栅101接触可以形成更高的金半接触势垒,以及较高的栅极阈值电压。因此,在增强型氮化镓晶体管工作时,需要对氮化镓调制栅101施加较高的电压才可以使源极103和漏极104之间的沟道导通。由于增强型氮化镓晶体管的阈值电压升高,在晶体管工作时,需要对氮化镓调制栅101施加更大的电压,这导致沟道中的载流子进入栅极金属层102的难度提高,因而可以减少栅极漏电流。For the enhancement mode gallium nitride transistor, when the actual voltage applied to the gate metal layer 102 is greater than the threshold voltage, the channel between the source 103 and the drain 104 is turned on, and the transistor can start to work. For the enhancement mode GaN transistor, when the gate metal layer 102 in contact with the GaN modulation gate 101 is a lanthanide metal material, a higher threshold voltage of the enhancement mode GaN transistor can be formed. This is because, compared with other metal materials, the work function of the lanthanide metal is smaller, usually only about 3.5eV, therefore, the contact between the lanthanide metal layer 112 and the GaN modulation gate 101 can form a higher gold half-contact potential barrier, and a higher gate threshold voltage. Therefore, when the enhancement mode GaN transistor is working, a higher voltage needs to be applied to the GaN modulation gate 101 to make the channel between the source 103 and the drain 104 conduct. Since the threshold voltage of the enhancement-mode gallium nitride transistor increases, a larger voltage needs to be applied to the gallium nitride modulation gate 101 when the transistor is working, which makes it more difficult for carriers in the channel to enter the gate metal layer 102, Thus, gate leakage current can be reduced.
本实施例提供的增强型氮化镓晶体管,通过在氮化镓调制栅远离基底的一侧设置镧系金属层,并使镧系金属层与氮化镓调制栅接触,在增强型氮化镓晶体管工作时,需要提供更高的电压才能使源极和漏极之间的沟道导通,因此,提高了增强型氮化镓晶体管的栅极阈值电压,减少了栅极漏电流。In the enhancement mode gallium nitride transistor provided in this embodiment, a lanthanide metal layer is arranged on the side of the gallium nitride modulation gate away from the substrate, and the lanthanide metal layer is in contact with the gallium nitride modulation gate. When the transistor is working, a higher voltage needs to be provided to turn on the channel between the source and the drain. Therefore, the gate threshold voltage of the enhancement-mode gallium nitride transistor is increased and the gate leakage current is reduced.
图2是本发明实施例提供的另一增强型氮化镓晶体管的结构示意图。可选地,请参考图1和图2,增强型氮化镓晶体管的基底100可以包括势垒层105、沟道层106和衬底层107;其中,势垒层105位于沟道层106和氮化镓调制栅101之间。势垒层105的材料可以为铝镓氮,沟道层106的材料可以为氮化镓。势垒层105和沟道层106接触可以形成异质结结构,在势垒层105和沟道层106的接触面靠近沟道层106的一侧形成二维电子气,二维电子气相当于增强型氮化镓晶体管的导电沟道,二维电子气中的电子在晶体管的源极103和漏极104之间定向移动时形成电流。由于氮化镓调制栅101的存在,会耗尽与氮化镓调制栅101的对应位置的二维电子气,形成常关型晶体管,其中,对应位置是指氮化镓调制栅101在基底100方向上的投影与二维电子气在基底100方向上的投影重合的位置。FIG. 2 is a schematic structural diagram of another enhancement mode gallium nitride transistor provided by an embodiment of the present invention. Optionally, please refer to FIG. 1 and FIG. 2, the substrate 100 of the enhancement mode gallium nitride transistor may include a barrier layer 105, a channel layer 106 and a substrate layer 107; wherein, the barrier layer 105 is located between the channel layer 106 and the nitrogen Between GaN modulation gates 101. The material of the barrier layer 105 may be AlGaN, and the material of the channel layer 106 may be GaN. The contact between the barrier layer 105 and the channel layer 106 can form a heterojunction structure, and a two-dimensional electron gas is formed on the side of the contact surface of the barrier layer 105 and the channel layer 106 close to the channel layer 106, and the two-dimensional electron gas is equivalent to In the conduction channel of the enhancement mode gallium nitride transistor, electrons in the two-dimensional electron gas form a current when they move directionally between the source 103 and the drain 104 of the transistor. Due to the existence of the gallium nitride modulation gate 101, the two-dimensional electron gas at the corresponding position of the gallium nitride modulation gate 101 will be exhausted to form a normally-off transistor, wherein the corresponding position means that the gallium nitride modulation gate 101 is on the substrate 100 The position where the projection in the direction coincides with the projection of the two-dimensional electron gas in the direction of the substrate 100 .
图3是本发明实施例提供的又一增强型氮化镓晶体管的结构示意图。可选地,请参考图3,衬底层107还可以包括依次层叠的衬底137、成核层127和缓冲层117,其中,缓冲层117位于沟道层106和成核层127之间。衬底137可以为硅衬底,由于硅衬底与氮化镓的晶格结构不同,因此,为保证沟道层106的晶格质量,可以在衬底137上先后生长成核层127和缓冲层117,沟道层106与缓冲层117的晶格匹配度远高于沟道层106与硅衬底的晶格匹配程度,因此,在缓冲层117上生长沟道层106,可以提高沟道层106的晶格生长质量,进而保证二维电子气的形成。可选地,缓冲层117和成核层127均可以为氮化镓材料,其中,缓冲层117为晶体氮化镓结构。FIG. 3 is a schematic structural diagram of another enhancement mode gallium nitride transistor provided by an embodiment of the present invention. Optionally, referring to FIG. 3 , the substrate layer 107 may further include a substrate 137 , a nucleation layer 127 and a buffer layer 117 stacked in sequence, wherein the buffer layer 117 is located between the channel layer 106 and the nucleation layer 127 . The substrate 137 may be a silicon substrate. Since the lattice structure of the silicon substrate is different from that of gallium nitride, in order to ensure the lattice quality of the channel layer 106, the nucleation layer 127 and buffer layer 127 may be successively grown on the substrate 137. layer 117, the lattice matching degree of the channel layer 106 and the buffer layer 117 is much higher than the lattice matching degree of the channel layer 106 and the silicon substrate, therefore, growing the channel layer 106 on the buffer layer 117 can improve the channel The lattice growth quality of layer 106 ensures the formation of two-dimensional electron gas. Optionally, both the buffer layer 117 and the nucleation layer 127 may be GaN material, wherein the buffer layer 117 is a crystalline GaN structure.
可选地,请继续参考图2,栅极金属层102还包括帽层金属保护层122,帽层金属保护层122位于镧系金属层112远离基底100的一侧。具体地,帽层金属保护层122可以用于保护镧系金属层112。镧系金属层112容易被氧化,在镧系金属层112远离基底100的一侧设置帽层金属保护层122,可以保护镧系金属层112,避免镧系金属层被氧化。Optionally, please continue to refer to FIG. 2 , the gate metal layer 102 further includes a cap metal protection layer 122 , and the cap metal protection layer 122 is located on a side of the lanthanide metal layer 112 away from the substrate 100 . Specifically, the cap metal protection layer 122 can be used to protect the lanthanide metal layer 112 . The lanthanide metal layer 112 is easily oxidized, and a cap metal protection layer 122 is provided on the side of the lanthanide metal layer 112 away from the substrate 100 to protect the lanthanide metal layer 112 and prevent the lanthanide metal layer from being oxidized.
可选地,帽层金属保护层122的材料包括金、银、铜或钛。具体地,帽层金属保护层122是栅极金属层102的一部分,需要具备良好的导电能力,因此,可选金、银、铜或钛等材料。需要说明的是,本实施例提供的帽层金属保护层122包括但不限于金、银、铜或钛材料。Optionally, the material of the cap metal protection layer 122 includes gold, silver, copper or titanium. Specifically, the cap metal protection layer 122 is a part of the gate metal layer 102 and needs to have good electrical conductivity. Therefore, materials such as gold, silver, copper, or titanium can be selected. It should be noted that the cap metal protection layer 122 provided in this embodiment includes but not limited to gold, silver, copper or titanium materials.
可选地,镧系金属层112的厚度大于5nm。具体地,如果镧系金属层112的厚度太小,则镧系金属层112不能很好地起到提高阈值电压的作用,示例性地,如果镧系金属层112的厚度为1nm,对应的镧系金属层112的厚度仅为几个镧原子的厚度,因此,帽层金属保护层122中的自由电子容易穿过镧系金属层112与氮化镓调制栅101发生作用,相当于部分帽层金属保护层122与氮化镓调制栅101接触,导致晶体管的阈值电压降低。考虑到晶体管在实际应用中的结构,镧系金属层122的厚度通常不大于50nm;但需要说明的是,在实际应用中,可以根据需要设置镧系金属层122的厚度,本实施例不作具体限制。Optionally, the thickness of the lanthanide metal layer 112 is greater than 5 nm. Specifically, if the thickness of the lanthanide metal layer 112 is too small, the lanthanide metal layer 112 cannot play a good role in raising the threshold voltage. For example, if the thickness of the lanthanide metal layer 112 is 1 nm, the corresponding lanthanide The thickness of the metal layer 112 is only a few lanthanum atoms. Therefore, the free electrons in the cap metal protection layer 122 can easily pass through the metal layer 112 to interact with the gallium nitride modulation gate 101, which is equivalent to a part of the cap layer. The metal protection layer 122 is in contact with the GaN modulation gate 101, resulting in lowering of the threshold voltage of the transistor. Considering the structure of the transistor in practical applications, the thickness of the lanthanide metal layer 122 is usually not greater than 50nm; but it should be noted that in practical applications, the thickness of the lanthanide metal layer 122 can be set as required, and this embodiment does not make specific limit.
可选地,帽层金属保护层122的厚度大于或等于40nm。具体地,一方面,帽层金属保护层122是栅极金属层102的一部分,需要具备较好的导电能力,因此需要设置适当的厚度;另一方面,帽层金属保护层122用于保护镧系金属层112不被氧化,因此,帽层金属保护层122需要能够充分覆盖镧系金属层112,因此,帽层金属保护层122的厚度不可以过小。需要说明的是,在实际应用中,可以根据需要设置帽层保护金属层122的厚度,本实施例不作具体限制。Optionally, the cap metal protection layer 122 has a thickness greater than or equal to 40 nm. Specifically, on the one hand, the capping metal protection layer 122 is a part of the gate metal layer 102, and needs to have good electrical conductivity, so an appropriate thickness needs to be set; on the other hand, the capping metal protection layer 122 is used to protect the lanthanum The metal series metal layer 112 is not oxidized, therefore, the capping metal protection layer 122 needs to be able to fully cover the lanthanide metal layer 112, and therefore, the thickness of the capping metal protection layer 122 cannot be too small. It should be noted that, in practical applications, the thickness of the cap protection metal layer 122 can be set according to needs, which is not specifically limited in this embodiment.
示例性地,栅极金属层102可以为La/Ti结构,即,镧系金属层112为金属镧,帽层金属保护层122为金属钛,且金属镧的厚度可以为20nm,而金属钛的厚度为100nm。20nm厚的镧系金属层112与氮化镓调制栅101接触,可以较好地形成金半接触,相对较薄的镧系金属层112还可以降低制备成本。相比金或银,金属钛的成本更低,更适合采用磁控溅射法制备帽层金属保护层122,100nm的厚度可以使帽层金属保护层122较好地保护镧系金属层112不被氧化,同时又具有较好的导电能力。Exemplarily, the gate metal layer 102 may have a La/Ti structure, that is, the lanthanide metal layer 112 is metal lanthanum, the cap metal protection layer 122 is metal titanium, and the thickness of the metal lanthanum can be 20 nm, and the metal titanium The thickness is 100nm. The lanthanide metal layer 112 with a thickness of 20nm is in contact with the GaN modulation gate 101, which can form a gold half-contact well, and the relatively thin lanthanide metal layer 112 can also reduce the manufacturing cost. Compared with gold or silver, the cost of metal titanium is lower, and it is more suitable to prepare the cap metal protective layer 122 by magnetron sputtering. The thickness of 100nm can make the cap metal protective layer 122 better protect the lanthanide metal layer 112 from It is oxidized and has good electrical conductivity.
可选地,氮化镓调制栅101的P型离子掺杂浓度为1×1017cm-3-1×1019cm-3。具体地,为了使氮化镓调制栅101可以耗尽与氮化镓调制栅101对应位置的二维电子气并形成常关型的增强型氮化镓晶体管,氮化镓调制栅101中需要具备足够数量的空穴,因此氮化镓调制栅101需要具有较高的掺杂浓度。如果氮化镓调制栅101掺杂浓度过低,则无法耗尽对应位置的二维电子气。但是如果氮化镓调制栅101掺杂浓度过大,一方面杂质原子会破坏氮化镓调制栅101的晶格结构,破坏二维电子气结构,降低增强型氮化镓晶体管的高频特性;另一方面,过高的掺杂浓度还会导致镧系金属层112和氮化镓调至层101由金半接触变为欧姆接触,镧系金属层112和氮化镓调制层101无法产生电压降,在不利于提高阈值电压。Optionally, the P-type ion doping concentration of the gallium nitride modulation gate 101 is 1×10 17 cm −3 to 1×10 19 cm −3 . Specifically, in order to make the GaN modulation gate 101 deplete the two-dimensional electron gas corresponding to the GaN modulation gate 101 and form a normally-off enhancement mode GaN transistor, the GaN modulation gate 101 needs to have A sufficient number of holes, so the GaN modulation gate 101 needs to have a higher doping concentration. If the doping concentration of the GaN modulation gate 101 is too low, the two-dimensional electron gas at the corresponding position cannot be depleted. However, if the doping concentration of the GaN modulation gate 101 is too high, on the one hand, impurity atoms will destroy the lattice structure of the GaN modulation gate 101, destroy the two-dimensional electron gas structure, and reduce the high-frequency characteristics of the enhancement mode GaN transistor; On the other hand, too high doping concentration will also cause the lanthanide metal layer 112 and the gallium nitride modulation layer 101 to change from a gold half-contact to an ohmic contact, and the lanthanide metal layer 112 and the gallium nitride modulation layer 101 cannot generate voltage. drop, at the detriment of raising the threshold voltage.
可选地,源极103和/或漏极104均可以为Ti/Al/Ti/Au结构其中Ti层与基底100接触,Au层远离基底100;并且,在Ti/Al/Ti/Au结构中,各层的厚度依次为20nm、110nm、40nm和50nm。可选地,源极103和漏极104还可以为其他结构,本实施例不作具体限制。Optionally, both the source electrode 103 and/or the drain electrode 104 can have a Ti/Al/Ti/Au structure, wherein the Ti layer is in contact with the substrate 100, and the Au layer is away from the substrate 100; and, in the Ti/Al/Ti/Au structure , the thickness of each layer is 20nm, 110nm, 40nm and 50nm in turn. Optionally, the source 103 and the drain 104 may also have other structures, which are not specifically limited in this embodiment.
可选地,对于本征的氮化镓材料,通常具有N型半导体的特性,为了将氮化镓调制栅101转化成P型,需要掺入二价的元素。示例性地,可以选择掺杂镁元素,这是由于,镁的原子半径小于镓,掺杂工艺相对容易完成,并且,氮化镁也是宽禁带半导体材料,掺杂镁元素有利于保持氮化镓的宽带隙特性。需要说明的是,在形成P型氮化镓调制栅101时,还可以选择其他掺杂元素,本实施例不作具体限制。Optionally, the intrinsic GaN material generally has the characteristics of an N-type semiconductor, and in order to convert the GaN modulation gate 101 into a P-type, divalent elements need to be doped. For example, you can choose to dope magnesium, because the atomic radius of magnesium is smaller than that of gallium, the doping process is relatively easy to complete, and magnesium nitride is also a wide bandgap semiconductor material, doping magnesium is beneficial to maintain the nitride Gallium's wide bandgap properties. It should be noted that, when forming the P-type GaN modulation gate 101 , other doping elements can also be selected, which is not specifically limited in this embodiment.
图4是本发明实施例提供的栅极金属层分别包括金属镧或金属镍时氮化镓控制栅的阈值电压的示意图,图5是本发明实施例提供的栅极金属层分别包括金属镧或金属镍时的栅极漏电流的示意图。可选地,请参考图1、图4和图5,为保证测试结果的可靠性,在氮化镓调制栅101远离基底100的一侧形成金属镍时,金属镍的制备工艺与镧系金属层112的制备工艺相同。分析测试结果可知,当把镧系金属层112替换成金属镍时,增强型氮化镓晶体管的阈值电压明显减小;同时,当对增强型氮化镓晶体管施加相同的电压时,包括镧系金属层112的晶体管的栅极漏电流小于包括金属镍的晶体管的栅极漏电流。可见,采用包括镧系金属层112的栅极金属层102与氮化镓调制栅101形成金半接触,可以提高增强型氮化镓晶体管的阈值电压,减小增强型氮化镓晶体管的漏电流。4 is a schematic diagram of the threshold voltage of the gallium nitride control gate when the gate metal layer respectively includes metal lanthanum or metal nickel provided by the embodiment of the present invention. FIG. Schematic diagram of gate leakage current for nickel metal. Optionally, please refer to FIG. 1, FIG. 4 and FIG. 5. In order to ensure the reliability of the test results, when metal nickel is formed on the side of the gallium nitride modulation gate 101 away from the substrate 100, the preparation process of the metal nickel is the same as that of the lanthanide metal. The preparation process of layer 112 is the same. Analysis of test results shows that when the lanthanide metal layer 112 is replaced by metal nickel, the threshold voltage of the enhancement-mode GaN transistor is significantly reduced; at the same time, when the same voltage is applied to the enhancement-mode GaN transistor, the lanthanide The gate leakage current of the transistor of the metal layer 112 is smaller than that of the transistor including the metal nickel. It can be seen that using the gate metal layer 102 including the lanthanide metal layer 112 to form a gold half-contact with the GaN modulation gate 101 can increase the threshold voltage of the enhancement-mode GaN transistor and reduce the leakage current of the enhancement-mode GaN transistor .
本实施例还提供了一种增强型氮化镓晶体管的制备方法。图6是本发明实施例提供的增强型氮化镓晶体管的制备方法的流程图,该制备方法具体包括:This embodiment also provides a method for manufacturing an enhancement-mode gallium nitride transistor. Fig. 6 is a flow chart of a method for manufacturing an enhancement-mode gallium nitride transistor provided in an embodiment of the present invention, and the method specifically includes:
步骤10、提供P型氮化镓外延片,其中,P型氮化镓外延片包括基底和位于基底之上的氮化镓调制层,基底包括多个晶体管单元,每个晶体管单元包括源区和漏区,以及位于源区和漏区之间的栅区,氮化镓调制层包括掺杂P型离子的氮化镓材料。Step 10, providing a P-type GaN epitaxial wafer, wherein the P-type GaN epitaxial wafer includes a substrate and a GaN modulation layer on the substrate, the substrate includes a plurality of transistor units, and each transistor unit includes a source region and a The drain region, and the gate region located between the source region and the drain region, the gallium nitride modulation layer includes gallium nitride material doped with P-type ions.
图7是本发明实施例提供的步骤10对应的晶体管的结构示意图。可选地,请参考图7,氮化镓调制层111用于在后续工艺中形成氮化镓调制栅,基底100经后续的刻蚀工艺处理后可以限定出多个晶体管单元。需要说明的是,在基底100上形成氮化镓调制层111时,可以采用多种制备工艺,本实施例不作具体限制。FIG. 7 is a schematic structural diagram of a transistor corresponding to step 10 provided by an embodiment of the present invention. Optionally, referring to FIG. 7 , the GaN modulation layer 111 is used to form a GaN modulation gate in a subsequent process, and the substrate 100 can define a plurality of transistor units after a subsequent etching process. It should be noted that when forming the gallium nitride modulation layer 111 on the substrate 100, various preparation processes may be used, which are not specifically limited in this embodiment.
步骤20、刻蚀氮化镓调制层,在栅区形成氮化镓调制栅。Step 20, etching the GaN modulation layer to form a GaN modulation gate in the gate area.
图8是本发明实施例提供的步骤20对应的晶体管的结构示意图。可选地,请参考图8,经过刻蚀工艺后,可以在基底100的一侧形成多个氮化镓调制栅101。FIG. 8 is a schematic structural diagram of a transistor corresponding to step 20 provided by an embodiment of the present invention. Optionally, please refer to FIG. 8 , after an etching process, a plurality of GaN modulation gates 101 may be formed on one side of the substrate 100 .
步骤30、刻蚀晶体管单元相邻区域的部分基底,以进行漏电隔离,限定出多个增强型氮化镓晶体管。Step 30 , etching a part of the base of the adjacent area of the transistor unit for leakage isolation, and defining a plurality of enhancement mode gallium nitride transistors.
图9是本发明实施例提供的步骤30对应的晶体管的结构示意图。可选地,请参考图9,通过刻蚀基底100,可以限定出多个晶体管,每个晶体管包括一个氮化镓调制栅101,晶体管的个数与氮化镓调制栅101的个数相同。FIG. 9 is a schematic structural diagram of a transistor corresponding to step 30 provided by the embodiment of the present invention. Optionally, please refer to FIG. 9 , by etching the substrate 100 , a plurality of transistors can be defined, each transistor includes a GaN modulation gate 101 , and the number of transistors is the same as the number of GaN modulation gates 101 .
步骤40、在源区形成源极并在漏区形成漏极。Step 40 , forming a source in the source region and forming a drain in the drain region.
图10是本发明实施例提供的步骤40对应的晶体管的结构示意图。可选地,请参考图10,源极103和漏极104分别位于氮化镓调制栅101的两侧。在形成源极103和漏极104时,首先在基底100靠近源极和漏极的一侧的表面涂布光刻胶,图案化光刻胶,并采用电子束蒸发法在源区和漏区分别沉积形成源极103和漏极104。源极103和漏极104可以为相同或不同的组份。示例性地,如果采用双层胶剥离工艺图案化光刻胶,则可以采用以4000转/秒的速度,在基底靠近源极103和漏极104的一侧的涂布双层剥离光刻胶。需要说明的是,本实施例对形成源极103和漏极104的方法,以及图案化光刻胶等方法不作具体限制。FIG. 10 is a schematic structural diagram of a transistor corresponding to step 40 provided by the embodiment of the present invention. Optionally, referring to FIG. 10 , the source 103 and the drain 104 are respectively located on two sides of the GaN modulation gate 101 . When forming the source electrode 103 and the drain electrode 104, firstly, the photoresist is coated on the surface of the substrate 100 near the source electrode and the drain electrode, the photoresist is patterned, and the source region and the drain region are formed by electron beam evaporation. The source electrode 103 and the drain electrode 104 are deposited and formed respectively. The source 103 and drain 104 can be of the same or different compositions. Exemplarily, if the photoresist is patterned using a double-layer adhesive stripping process, a double-layer stripping photoresist coated on the side of the substrate close to the source electrode 103 and the drain electrode 104 can be used at a speed of 4000 rpm. . It should be noted that this embodiment does not specifically limit the method of forming the source electrode 103 and the drain electrode 104 , and methods such as patterning photoresist.
可选地,在形成源极103和漏极104后,可以对增强型氮化镓晶体管进行快速退火处理,退火的温度为850℃,退火时间为45s。快速退火处理有助于源极103以及漏极104与基底100形成较好的欧姆接触。Optionally, after the source 103 and the drain 104 are formed, the enhancement mode gallium nitride transistor may be subjected to rapid annealing, the annealing temperature is 850° C., and the annealing time is 45s. The rapid annealing treatment helps the source 103 and the drain 104 to form better ohmic contact with the substrate 100 .
步骤50、在氮化镓调制栅的远离基底的表面上形成栅极金属层,栅极金属层至少包括镧系金属层,镧系金属层与氮化镓调制栅接触。Step 50 , forming a gate metal layer on the surface of the GaN modulation gate away from the substrate, the gate metal layer at least includes a lanthanide metal layer, and the lanthanide metal layer is in contact with the GaN modulation gate.
图11是本发明实施例提供的步骤50对应的晶体管的结构示意图。可选地,请参考图11,在形成栅极金属层102时,需要首先在氮化镓调制栅101的远离基底100的表面上沉积镧系金属层112,然后在镧系金属层112上形成一层保护结构。FIG. 11 is a schematic structural diagram of a transistor corresponding to step 50 provided by an embodiment of the present invention. Optionally, referring to FIG. 11 , when forming the gate metal layer 102 , it is necessary to first deposit a lanthanide metal layer 112 on the surface of the gallium nitride modulation gate 101 away from the substrate 100 , and then form a metal layer 112 on the lanthanide metal layer 112 A layer of protective structure.
可选地,在氮化镓调制栅的远离基底的表面上形成栅极金属层,包括:采用磁控溅射法在氮化镓调制栅的远离基底的表面沉积镧系金属层;在镧系金属层上原位沉积帽层金属保护层。具体地,在沉积镧系金属层和帽层金属保护层之前,需要在氮化镓调制栅远离基底的一侧涂布光刻胶,涂布光刻胶以及图案化光刻胶时可以采用与步骤40中的相同工艺步骤,也可以不同工艺。图案化光刻胶后,将带有光刻胶图案的晶体管置于磁控溅射设备的真空腔中,采用磁控溅射法沉积镧系金属层;在沉积完成镧系金属层后,保持晶体管在真空腔中的位置不变,通过调节靶位,使用其他金属靶在镧系金属层上形成帽层金属保护层。由于采用原位沉积法沉积帽层金属保护层,可以保证帽层金属保护层精准覆盖镧系金属层,保证栅极金属层的质量。Optionally, forming a gate metal layer on the surface of the gallium nitride modulation gate far away from the substrate includes: depositing a lanthanide metal layer on the surface of the gallium nitride modulation gate far from the substrate by using magnetron sputtering; A cap metal protection layer is deposited in-situ on the metal layer. Specifically, before depositing the lanthanide metal layer and the cap metal protection layer, it is necessary to coat the photoresist on the side of the gallium nitride modulation gate away from the substrate, and the photoresist can be coated and patterned with the same The same process steps in step 40 may also be performed in different processes. After patterning the photoresist, the transistor with the photoresist pattern is placed in the vacuum chamber of the magnetron sputtering equipment, and the lanthanide metal layer is deposited by the magnetron sputtering method; after the deposition of the lanthanide metal layer is completed, keep The position of the transistor in the vacuum chamber remains unchanged, and other metal targets are used to form a cap metal protection layer on the lanthanide metal layer by adjusting the target position. Since the in-situ deposition method is used to deposit the cap metal protective layer, it can ensure that the cap metal protective layer accurately covers the lanthanide metal layer, thereby ensuring the quality of the gate metal layer.
需要说明的是,在溅射形成镧系金属层和帽层金属保护层时,需要采用对准工艺,为保证对准的精度,在磁控溅射的过程中,需要保持氮化镓调制栅远离基底一侧的光刻胶存在。因此,本实施例最终形成镧系金属层和帽层金属保护层在基底的延伸方向上的尺寸均小于氮化镓控制栅在基底的延伸方向的尺寸。为提高晶体管的性质,在磁控溅射前,应尽可能地减小图案化以后的光刻胶的厚度,以尽可能地使镧系金属层和帽层金属保护层在基底的延伸方向上的尺寸,接近氮化镓控制栅在基底的延伸方向的尺寸。可以理解的是,在理想状态下,镧系金属层和帽层金属保护层在基底的延伸方向上的尺寸,应该无限接近氮化镓控制栅在基底的延伸方向的尺寸。It should be noted that when forming the lanthanide metal layer and cap metal protective layer by sputtering, an alignment process needs to be adopted. In order to ensure the accuracy of the alignment, it is necessary to keep the gallium nitride modulation gate Photoresist exists on the side away from the substrate. Therefore, in this embodiment, the dimensions of the lanthanide metal layer and the capping metal protection layer in the extending direction of the substrate are both smaller than the dimension of the gallium nitride control gate in the extending direction of the substrate. In order to improve the properties of the transistor, before magnetron sputtering, the thickness of the photoresist after patterning should be reduced as much as possible, so that the lanthanide metal layer and the cap metal protective layer are as far as possible in the direction of extension of the substrate. The size is close to the size of the gallium nitride control gate in the extending direction of the substrate. It can be understood that, in an ideal state, the dimensions of the lanthanide metal layer and the cap metal protective layer in the direction of extension of the substrate should be infinitely close to the dimension of the gallium nitride control gate in the direction of extension of the substrate.
可选地,在完成增强型氮化镓晶体管的制备工作后,还可以采用探针台对样品进行电学测试。Optionally, after the preparation of the enhancement mode gallium nitride transistor is completed, a probe station can also be used to conduct an electrical test on the sample.
可选地,帽层金属保护层的材料包括金、银、铜或钛。具体地,金、银、铜或钛均为良导体材料,可以满足栅极金属层的导电需求,同时能够保护镧系金属层不被氧化。需要说明的是,本实施例提供的帽层金属保护层包括但不限于金、银、铜或钛材料。Optionally, the material of the cap metal protection layer includes gold, silver, copper or titanium. Specifically, gold, silver, copper or titanium are all good conductor materials, which can meet the conductive requirements of the gate metal layer, and can protect the lanthanide metal layer from oxidation. It should be noted that the cap metal protection layer provided in this embodiment includes but is not limited to gold, silver, copper or titanium materials.
可选地,镧系金属层的厚度大于5nm。具体地,为了达到明显提高阈值电压的目的,镧系金属层的厚度不能太小。Optionally, the thickness of the lanthanide metal layer is greater than 5 nm. Specifically, in order to significantly increase the threshold voltage, the thickness of the lanthanide metal layer cannot be too small.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810507252.1A CN108598154A (en) | 2018-05-24 | 2018-05-24 | Enhanced gallium nitride transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810507252.1A CN108598154A (en) | 2018-05-24 | 2018-05-24 | Enhanced gallium nitride transistor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108598154A true CN108598154A (en) | 2018-09-28 |
Family
ID=63628987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810507252.1A Pending CN108598154A (en) | 2018-05-24 | 2018-05-24 | Enhanced gallium nitride transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108598154A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109817710A (en) * | 2018-12-29 | 2019-05-28 | 英诺赛科(珠海)科技有限公司 | High electron mobility transistor and method of making the same |
CN111029404A (en) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | P-GaN/AlGaN/GaN enhancement device based on fin-shaped gate structure and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103151374A (en) * | 2011-12-07 | 2013-06-12 | 三星电子株式会社 | High electron mobility transistor |
-
2018
- 2018-05-24 CN CN201810507252.1A patent/CN108598154A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103151374A (en) * | 2011-12-07 | 2013-06-12 | 三星电子株式会社 | High electron mobility transistor |
Non-Patent Citations (1)
Title |
---|
GIUSEPPE GRECO ET AL: "Review of technology for normally-off HEMTs with p-GaN gate", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111029404A (en) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | P-GaN/AlGaN/GaN enhancement device based on fin-shaped gate structure and manufacturing method thereof |
CN109817710A (en) * | 2018-12-29 | 2019-05-28 | 英诺赛科(珠海)科技有限公司 | High electron mobility transistor and method of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110190116B (en) | High-threshold-voltage normally-off high-electron-mobility transistor and preparation method thereof | |
CN107946358A (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and its manufacturing method | |
CN108305834B (en) | A kind of preparation method of enhancement mode gallium nitride field effect device | |
CN104701359B (en) | Vertical stratification AlGaN/GaN HEMT devices and preparation method thereof | |
CN109524460B (en) | High Hole Mobility Transistor | |
CN107706241A (en) | A kind of normally-off GaNMOSFET structures at high quality MOS interfaces and preparation method thereof | |
WO2020107754A1 (en) | Epitaxial layer structure for increasing threshold voltage of gan-enhanced mosfet and device fabrication method | |
CN104638010A (en) | Transversely turned-on GaN normally closed MISFET (Metal-insulator-semiconductor Field Effect Transistor) device and manufacturing method thereof | |
JP2016174140A (en) | High electron mobility transistor device and manufacturing method thereof | |
TWI701835B (en) | High electron mobility transistor | |
KR20180059334A (en) | Compound semiconductor device and method for manufacutring the same | |
CN109950323B (en) | Polarized superjunction III-nitride diode device and method of making the same | |
CN115410922A (en) | A vertical gallium oxide transistor and its preparation method | |
CN108878509B (en) | Gallium nitride transistor and method for manufacturing same | |
CN113594232B (en) | An enhanced high-voltage HEMT device with a multi-finger buried gate structure and a method for preparing the same | |
KR101172857B1 (en) | Enhancement normally off nitride smiconductor device and manufacturing method thereof | |
CN108598154A (en) | Enhanced gallium nitride transistor and preparation method thereof | |
CN114725022A (en) | A kind of preparation method of CMOS inverter based on GaOx-GaN | |
CN112018177B (en) | Full-vertical Si-based GaN UMOSFET power device and preparation method thereof | |
CN112201689B (en) | Field effect transistor based on III-nitride heterojunction and preparation method thereof | |
CN110504297B (en) | Two-dimensional material transistor, fabrication method and application based on two-dimensional electron gas control back gate | |
CN207664049U (en) | A kind of normally-off GaNMOSFET structures at the interfaces high quality MOS | |
CN113451129B (en) | High electron mobility transistor and preparation method thereof | |
CN110676166B (en) | FinFET enhancement mode device with P-GaN cap layer and fabrication method | |
Perozek et al. | Small-Signal, High Frequency Performance of Vertical GaN FinFETs with f max= 5.9 GHz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210429 Address after: Room 901-9024, Hengqin international business center, no.3000 Huandao East Road, Hengqin New District, Zhuhai, Guangdong 519000 Applicant after: Zhuhai GA Future Technology Co.,Ltd. Address before: 1088 No. 518000 Guangdong city of Shenzhen province Nanshan District Xili Xueyuan Road Applicant before: Southern University of Science and Technology |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180928 |
|
RJ01 | Rejection of invention patent application after publication |