CN118475138A - N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof - Google Patents
N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof Download PDFInfo
- Publication number
- CN118475138A CN118475138A CN202410926535.5A CN202410926535A CN118475138A CN 118475138 A CN118475138 A CN 118475138A CN 202410926535 A CN202410926535 A CN 202410926535A CN 118475138 A CN118475138 A CN 118475138A
- Authority
- CN
- China
- Prior art keywords
- pbs
- quantum dot
- film
- transport layer
- edt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000002096 quantum dot Substances 0.000 claims abstract description 131
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 238000010521 absorption reaction Methods 0.000 claims abstract description 83
- 239000011521 glass Substances 0.000 claims abstract description 74
- 239000003446 ligand Substances 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000005525 hole transport Effects 0.000 claims abstract description 36
- 239000007790 solid phase Substances 0.000 claims abstract description 12
- 239000007791 liquid phase Substances 0.000 claims abstract description 9
- 239000010408 film Substances 0.000 claims description 129
- 239000010409 thin film Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N acetonitrile Substances CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 23
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 claims description 21
- 239000003495 polar organic solvent Substances 0.000 claims description 18
- 229910052736 halogen Inorganic materials 0.000 claims description 16
- -1 halogen ion Chemical class 0.000 claims description 16
- 238000002207 thermal evaporation Methods 0.000 claims description 15
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 13
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 13
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 13
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000005642 Oleic acid Substances 0.000 claims description 13
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 13
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 12
- 238000004528 spin coating Methods 0.000 claims description 10
- 239000012046 mixed solvent Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000003586 protic polar solvent Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 25
- 238000000151 deposition Methods 0.000 abstract description 9
- 229910052959 stibnite Inorganic materials 0.000 abstract description 9
- 230000003595 spectral effect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 34
- 239000011787 zinc oxide Substances 0.000 description 17
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 14
- 230000007547 defect Effects 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 238000005118 spray pyrolysis Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- NPNMHHNXCILFEF-UHFFFAOYSA-N [F].[Sn]=O Chemical compound [F].[Sn]=O NPNMHHNXCILFEF-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000004298 light response Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000005289 physical deposition Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000012984 biological imaging Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种n‑i‑p‑i‑n型可见‑红外双波段光电探测器及其制备方法,属于光电探测技术领域。该方法包括:在衬底上生长TiO2薄膜作为第一电子传输层;在第一电子传输层上生长Sb2S3薄膜作为第一本征吸收层;基于固相配体交换法在第一本征吸收层上形成PbS‑EDT量子点薄膜作为空穴传输层;基于液相配体交换法在空穴传输层上形成PbS‑IBr量子点薄膜作为第二本征吸收层;第二本征吸收层上沉积ZnO薄膜作为第二电子传输层;暴露部分导电玻璃衬底,制备分别接触第二电子传输层和衬底的两组金属电极。本发明实现了在单个器件中进行电压偏置调节切换的可见与红外双波段光电探测,极大地扩宽了光谱探测范围及其应用领域。
The present invention discloses a n‑i‑p‑i‑n type visible‑infrared dual-band photodetector and a preparation method thereof, and belongs to the field of photoelectric detection technology. The method comprises: growing a TiO2 film on a substrate as a first electron transport layer; growing a Sb2S3 film on the first electron transport layer as a first intrinsic absorption layer; forming a PbS‑EDT quantum dot film on the first intrinsic absorption layer as a hole transport layer based on a solid phase ligand exchange method; forming a PbS‑IBr quantum dot film on the hole transport layer as a second intrinsic absorption layer based on a liquid phase ligand exchange method; depositing a ZnO film on the second intrinsic absorption layer as a second electron transport layer; exposing a portion of a conductive glass substrate to prepare two groups of metal electrodes contacting the second electron transport layer and the substrate, respectively. The present invention realizes visible and infrared dual-band photoelectric detection with voltage bias adjustment switching in a single device, which greatly broadens the spectral detection range and its application field.
Description
技术领域Technical Field
本发明属于光电探测技术领域,特别涉及一种n-i-p-i-n型可见-红外双波段光电探测器及其制备方法。The present invention belongs to the technical field of photoelectric detection, and in particular relates to an n-i-p-i-n type visible-infrared dual-band photoelectric detector and a preparation method thereof.
背景技术Background Art
可见光和红外光双波段光电探测器在信号检测、生物成像、光通信和安全监测等方面具有非常广阔的应用前景。目前,硅基光电探测器作为可见光和近红外波段探测器件的主力军,具有效率高、功耗低等优点,被广泛使用在各领域。Visible light and infrared dual-band photodetectors have very broad application prospects in signal detection, biological imaging, optical communications and security monitoring. At present, silicon-based photodetectors, as the main force of visible light and near-infrared band detection devices, have the advantages of high efficiency and low power consumption and are widely used in various fields.
然而,硅的带隙宽度约为1.1eV,对于小于1.1eV的光子能量不能被硅吸收,导致硅基探测器在近中红外的光吸收基本为零,极大地限制了硅基探测器在波长大于1100nm的近红外及中远红外波段的发展。况且,目前市场上现有的硅基探测器主要进行单波段光谱探测,在宽波段探测中具有局限性,限制了其在一些领域的应用。当面对窄带隙探测和多色成像等新需求时,硅基探测器往往需要通过集成滤光片、额外的光学接口以及复杂的结构设计来实现探测功能,进而降低了光电探测成像阵列的分辨率。However, the bandgap width of silicon is about 1.1eV, and photon energy less than 1.1eV cannot be absorbed by silicon, resulting in essentially zero light absorption of silicon-based detectors in the near- and mid-infrared bands, which greatly limits the development of silicon-based detectors in the near-infrared and mid- and far-infrared bands with wavelengths greater than 1100nm. Moreover, the existing silicon-based detectors on the market mainly perform single-band spectral detection, which has limitations in wide-band detection, limiting their application in some fields. When faced with new demands such as narrow bandgap detection and multi-color imaging, silicon-based detectors often need to integrate filters, additional optical interfaces, and complex structural designs to achieve detection functions, thereby reducing the resolution of photoelectric detection imaging arrays.
相比于硅基探测器的不足,近年来,量子点材料由于具有量子限域效应、多激子产生效应、薄膜制备多样化、成本低廉、适应于柔性基底等优点,进而被广泛应用于光电探测和太阳能电池领域。硫化铅胶体量子点(PbS CQDs)可以在溶液合成过程中对其尺寸进行调控,使其吸收带边在400nm~3000nm范围内进行调节,覆盖了整个短波红外区域,此外PbSCQDs具有较高的吸收系数,因此常用来作为红外器件的吸光层。目前,尽管有一些关于PbSCQDs近红外光电探测器的报道,但都是单一吸光层的策略,这些光电探测器件对于各种波段的光响应和实现可切换的光检测是具有挑战性的。Compared with the shortcomings of silicon-based detectors, quantum dot materials have been widely used in the field of photoelectric detection and solar cells in recent years due to their advantages such as quantum confinement effect, multi-exciton generation effect, diversified film preparation, low cost, and adaptability to flexible substrates. Lead sulfide colloidal quantum dots (PbS CQDs) can be sized and regulated during solution synthesis so that their absorption band edge can be adjusted within the range of 400nm~3000nm, covering the entire short-wave infrared region. In addition, PbSCQDs have a high absorption coefficient and are therefore often used as the light-absorbing layer of infrared devices. At present, although there are some reports on PbSCQDs near-infrared photodetectors, they are all single-light-absorbing layer strategies. It is challenging for these photodetection devices to respond to light in various bands and achieve switchable light detection.
相比之下,基于多种光敏材料的策略吸引了越来越多的关注,因为它们能够通过施加不同的偏置电压来选择性地激活其中一个光响应通道,从而在单个器件中实现可切换的双波段光电检测。In contrast, strategies based on multiple photosensitive materials have attracted increasing attention because they can selectively activate one of the photoresponsive channels by applying different bias voltages, thus achieving switchable dual-band photodetection in a single device.
综合上述现有技术中的不足,亟需开发一种可电压偏置调节的多种光敏材料组合的新型可见光-红外双波段光电探测器。In view of the above-mentioned deficiencies in the prior art, there is an urgent need to develop a new visible light-infrared dual-band photodetector that is a combination of multiple photosensitive materials with adjustable voltage bias.
发明内容Summary of the invention
鉴于此,本发明目的在于提供一种n-i-p-i-n型可见-红外双波段光电探测器及其制备方法,旨在解决背景技术当中的至少一个技术问题。In view of this, the object of the present invention is to provide an n-i-p-i-n type visible-infrared dual-band photoelectric detector and a preparation method thereof, aiming to solve at least one technical problem among the background technology.
本发明是这样实现的:The present invention is achieved in that:
本发明第一方面提供一种n-i-p-i-n型可见-红外双波段光电探测器,该光电探测器采用基于两种光敏材料构成的垂直型n-i-p-i-n结构;The first aspect of the present invention provides an n-i-p-i-n type visible-infrared dual-band photodetector, which adopts a vertical n-i-p-i-n structure based on two photosensitive materials;
所述光电探测器包括:The photodetector comprises:
衬底;substrate;
在所述衬底上依次生长的第一电子传输层、由可见光敏材料制成的第一本征吸收层、空穴传输层、由红外光敏材料制成的第二本征吸收层以及第二电子传输层;A first electron transport layer, a first intrinsic absorption layer made of a visible light-sensitive material, a hole transport layer, a second intrinsic absorption layer made of an infrared light-sensitive material, and a second electron transport layer are sequentially grown on the substrate;
接触所述第二电子传输层的第一金属电极以及接触所述衬底的第二金属电极。A first metal electrode contacts the second electron transport layer and a second metal electrode contacts the substrate.
优选地,衬底采用导电玻璃衬底;Preferably, the substrate is a conductive glass substrate;
所述第一电子传输层采用TiO2薄膜;The first electron transport layer is a TiO2 thin film;
所述第一本征吸收层采用由可见光敏材料制成的Sb2S3薄膜;The first intrinsic absorption layer is a Sb 2 S 3 thin film made of visible light sensitive material;
所述空穴传输层采用PbS-EDT量子点薄膜;The hole transport layer adopts PbS-EDT quantum dot film;
所述第二本征吸收层采用由红外光敏材料制成的PbS-IBr量子点薄膜;The second intrinsic absorption layer is a PbS-IBr quantum dot film made of infrared photosensitive material;
所述第二电子传输层采用ZnO薄膜;The second electron transport layer is made of ZnO thin film;
所述第一金属电极和第二金属电极的材料选自金、铝或钛。The materials of the first metal electrode and the second metal electrode are selected from gold, aluminum or titanium.
本发明第二方面提供上述n-i-p-i-n型可见-红外双波段光电探测器的制备方法,包括如下步骤:The second aspect of the present invention provides a method for preparing the above-mentioned n-i-p-i-n type visible-infrared dual-band photoelectric detector, comprising the following steps:
提供一导电玻璃衬底;Providing a conductive glass substrate;
在导电玻璃衬底上生长TiO2薄膜,作为第一电子传输层;Growing a TiO2 thin film on a conductive glass substrate as the first electron transport layer;
在第一电子传输层上生长形成Sb2S3薄膜,作为用于吸收可见光的第一本征吸收层;Growing a Sb 2 S 3 thin film on the first electron transport layer as a first intrinsic absorption layer for absorbing visible light;
基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜,作为空穴传输层;A PbS-EDT quantum dot film is formed on the first intrinsic absorption layer based on a solid phase ligand exchange method as a hole transport layer;
基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜,作为用于吸收红外光的第二本征吸收层;Based on the liquid phase ligand exchange method, a PbS-IBr quantum dot film is formed on the hole transport layer as a second intrinsic absorption layer for absorbing infrared light;
第二本征吸收层上沉积ZnO薄膜,作为第二电子传输层;A ZnO film is deposited on the second intrinsic absorption layer as a second electron transport layer;
暴露部分导电玻璃衬底,制备两组金属电极,其中所述第一金属电极接触所述第二电子传输层;所述第二金属电极接触所述导电玻璃衬底。A portion of the conductive glass substrate is exposed to prepare two groups of metal electrodes, wherein the first metal electrode contacts the second electron transport layer; and the second metal electrode contacts the conductive glass substrate.
优选地,所述固相配体交换法为:在第一本征吸收层上旋涂量子点PbS溶液形成PbS薄膜,将EDT配体溶液滴加至PbS薄膜上进行配体交换形成PbS-EDT量子点薄膜。Preferably, the solid phase ligand exchange method is: spin coating a quantum dot PbS solution on the first intrinsic absorption layer to form a PbS film, and dropping an EDT ligand solution onto the PbS film to perform ligand exchange to form a PbS-EDT quantum dot film.
优选地,基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜的步骤包括:Preferably, the step of forming a PbS-EDT quantum dot film on the first intrinsic absorption layer based on a solid phase ligand exchange method comprises:
(1)配置EDT-乙腈溶液和溶解于非极性有机溶剂中的第一PbS量子点溶液;(1) preparing an EDT-acetonitrile solution and a first PbS quantum dot solution dissolved in a non-polar organic solvent;
(2)将第一PbS量子点溶液旋涂在第一本征吸收层上,形成PbS薄膜;(2) spin coating a first PbS quantum dot solution on the first intrinsic absorption layer to form a PbS thin film;
(3)滴加EDT-乙腈溶液直至其将PbS薄膜完全覆盖,静置后EDT充分取代第一PbS量子点表面的油酸,实现配体交换形成PbS-EDT量子点薄膜;(3) Add EDT-acetonitrile solution until the PbS film is completely covered. After standing, EDT fully replaces the oleic acid on the surface of the first PbS quantum dot to achieve ligand exchange and form a PbS-EDT quantum dot film.
(4)采用质子极性溶剂对残余溶液进行清洗和去除;(4) using a protic polar solvent to wash and remove the residual solution;
(5)重复步骤(2)至步骤(4)至少一次,直至PbS-EDT量子点薄膜达到设定厚度。(5) Repeat steps (2) to (4) at least once until the PbS-EDT quantum dot film reaches a set thickness.
优选地,所述第一PbS量子点溶液采用吸收峰为880nm的PbS量子点。Preferably, the first PbS quantum dot solution uses PbS quantum dots with an absorption peak of 880 nm.
优选地,基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜的步骤包括:Preferably, the step of forming a PbS-IBr quantum dot film on the hole transport layer based on a liquid phase ligand exchange method comprises:
配置溶解于极性有机溶剂中的卤素离子IBr配体溶液,和溶解于非极性有机溶剂中的第二PbS量子点溶液;Preparing a halogen ion IBr ligand solution dissolved in a polar organic solvent and a second PbS quantum dot solution dissolved in a non-polar organic solvent;
向第二PbS量子点溶液中滴加卤素离子IBr配体溶液,剧烈摇晃后静置分层,完成I-和Br-配体替换第二PbS量子点表面的长链油酸配体;Adding the halogen ion IBr ligand solution dropwise to the second PbS quantum dot solution, shaking vigorously and then standing to separate layers, completing the replacement of the long-chain oleic acid ligands on the surface of the second PbS quantum dot by I- and Br - ligands;
将上层澄清液与下层液体进行相分离,采用非极性有机溶剂对下层液体进行清洗去除长链油酸配体;The upper clarified liquid and the lower liquid are phase separated, and the lower liquid is washed with a non-polar organic solvent to remove the long-chain oleic acid ligand;
加入乙酸乙酯后发生沉淀反应,然后物理分离得到黑色沉淀,再干燥处理即为I-、Br-离子包覆的PbS-IBr量子点粉末;After adding ethyl acetate, a precipitation reaction occurs, and then a black precipitate is obtained by physical separation, and then a drying process is performed to obtain PbS-IBr quantum dot powder coated with I - and Br - ions;
将所述PbS-IBr量子点粉末溶解于胺类混合溶剂中形成PbS-IBr溶液,将PbS-IBr溶液在空穴传输层上旋涂成膜,最后退火处理制得PbS-IBr量子点薄膜。The PbS-IBr quantum dot powder is dissolved in an amine mixed solvent to form a PbS-IBr solution, the PbS-IBr solution is spin-coated on the hole transport layer to form a film, and finally annealing treatment is performed to obtain a PbS-IBr quantum dot film.
优选地,所述第二PbS量子点溶液采用吸收峰为1000nm~1800nm的PbS量子点。Preferably, the second PbS quantum dot solution uses PbS quantum dots with an absorption peak of 1000nm~1800nm.
优选地,所述第一金属电极和第二金属电极采用真空热蒸镀的方法制备;所述导电玻璃衬底采用ITO玻璃衬底或FTO玻璃衬底。Preferably, the first metal electrode and the second metal electrode are prepared by vacuum thermal evaporation; and the conductive glass substrate is an ITO glass substrate or a FTO glass substrate.
优选地,所述导电玻璃衬底的厚度为350nm~450nm,优选400nm;Preferably, the thickness of the conductive glass substrate is 350 nm to 450 nm, preferably 400 nm;
所述TiO2薄膜的厚度为45nm~55nm,优选50nm;The thickness of the TiO2 film is 45nm~55nm, preferably 50nm;
所述ZnO薄膜的厚度为120nm~170nm,优选150nm;The thickness of the ZnO film is 120nm-170nm, preferably 150nm;
所述Sb2S3薄膜的厚度为400nm~800nm;The thickness of the Sb 2 S 3 film is 400nm~800nm;
所述PbS-EDT量子点薄膜的厚度为40nm~50nm,优选50nm;The thickness of the PbS-EDT quantum dot film is 40nm-50nm, preferably 50nm;
所述PbS-IBr量子点薄膜的厚度为350nm~450nm,优选400nm。The thickness of the PbS-IBr quantum dot film is 350nm-450nm, preferably 400nm.
与现有技术相比,本发明结合了可见光和红外光的探测能力,能够进行双重探测,通过同时感知可见光和红外光,提高目标检测的准确性和可靠性,减少误报率。当器件施加反向偏压时用于近红外光响应,施加正向偏压时用于可见光响应。同时本发明可以通过比对可见光和红外光的探测信息,实现探测器的高灵敏度、快速响应、低暗电流等功能。Compared with the prior art, the present invention combines the detection capabilities of visible light and infrared light, and can perform dual detection. By simultaneously sensing visible light and infrared light, the accuracy and reliability of target detection are improved, and the false alarm rate is reduced. When the device is reverse biased, it is used for near-infrared light response, and when forward biased, it is used for visible light response. At the same time, the present invention can achieve the functions of high sensitivity, fast response, low dark current, etc. of the detector by comparing the detection information of visible light and infrared light.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明n-i-p-i-n型可见-红外双波段光电探测器的结构示意图;FIG1 is a schematic diagram of the structure of an n-i-p-i-n type visible-infrared dual-band photoelectric detector according to the present invention;
图2为本发明实施例1制得的双波段光电探测器在不同波段光照射下的电流密度-电压曲线图;FIG2 is a current density-voltage curve diagram of the dual-band photodetector prepared in Example 1 of the present invention under irradiation of light of different bands;
图3为本发明实施例1制得的双波段光电探测器的量子效率随波长的变化曲线图;FIG3 is a graph showing the quantum efficiency of the dual-band photodetector obtained in Example 1 of the present invention as a function of wavelength;
图4为本发明实施例1制得的双波段光电探测器的响应度随波长的变化曲线图。FIG. 4 is a graph showing the variation of the responsivity of the dual-band photodetector obtained in Example 1 of the present invention with wavelength.
图示说明:1-衬底,2-第一电子传输层,3-第一本征吸收层,4-空穴传输层,5-第二本征吸收层,6-第二电子传输层,7-第一金属电极,8-第二金属电极。Illustration: 1-substrate, 2-first electron transport layer, 3-first intrinsic absorption layer, 4-hole transport layer, 5-second intrinsic absorption layer, 6-second electron transport layer, 7-first metal electrode, 8-second metal electrode.
具体实施方式DETAILED DESCRIPTION
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以通过许多不同的形式来实现,并不限于本文所描述的实施例。相反地,下述实施例的目的是使得本发明的公开内容更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully below with reference to the relevant drawings. Several embodiments of the present invention are given in the drawings. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of the following embodiments is to make the disclosure of the present invention more thorough and comprehensive.
除非另有定义,本文所使用的所有技术和科学术语与属于本发明技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art of the present invention. The terms used herein are only for the purpose of describing specific embodiments and are not intended to limit the present invention. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
如图1所示,一种n-i-p-i-n型可见-红外双波段光电探测器,采用基于两种光敏材料构成的垂直型n-i-p-i-n结构;实现了在单个器件中能够进行双波段探测,极大地拓宽了光谱探测范围及其对应领域。As shown in Figure 1, an n-i-p-i-n type visible-infrared dual-band photodetector adopts a vertical n-i-p-i-n structure based on two photosensitive materials; it realizes dual-band detection in a single device, greatly broadening the spectral detection range and its corresponding fields.
具体地,光电探测器包括:衬底1;在衬底1上依次生长的第一电子传输层2、由可见光敏材料制成的第一本征吸收层3、空穴传输层4、由红外光敏材料制成的第二本征吸收层5以及第二电子传输层6;接触第二电子传输层6的第一金属电极7以及接触衬底1的第二金属电极8。Specifically, the photodetector includes: a substrate 1; a first electron transport layer 2, a first intrinsic absorption layer 3 made of a visible light-sensitive material, a hole transport layer 4, a second intrinsic absorption layer 5 made of an infrared light-sensitive material, and a second electron transport layer 6 grown in sequence on the substrate 1; a first metal electrode 7 contacting the second electron transport layer 6 and a second metal electrode 8 contacting the substrate 1.
衬底1采用导电玻璃衬底,比如氧化锡铟ITO玻璃衬底、氧化锡氟FTO玻璃衬底等。第一电子传输层2采用TiO2薄膜;第一本征吸收层3采用可见光敏材料制成的Sb2S3薄膜;空穴传输层4采用PbS-EDT量子点薄膜;第二本征吸收层5采用红外光敏材料制成的PbS-IBr量子点薄膜;第二电子传输层6采用ZnO薄膜。其中,TiO2薄膜、ZnO薄膜等金属氧化物可采用物理沉积薄膜方法制备,包括但不限于射频磁控溅射、分子束外延、喷雾热解等。作为可见光吸收层的Sb2S3薄膜采用快速热蒸发法制备,空穴传输层PbS-EDT量子点薄膜以及作为红外光吸收层的PbS-IBr量子点薄膜采用化学旋涂法制备。第一金属电极7和第二金属电极8的材料选取金、铝、钛等,采用真空热蒸镀的方法进行制备。The substrate 1 is a conductive glass substrate, such as an indium tin oxide ITO glass substrate, a fluorine tin oxide FTO glass substrate, etc. The first electron transport layer 2 is a TiO2 film; the first intrinsic absorption layer 3 is a Sb2S3 film made of a visible light sensitive material; the hole transport layer 4 is a PbS-EDT quantum dot film; the second intrinsic absorption layer 5 is a PbS-IBr quantum dot film made of an infrared light sensitive material; the second electron transport layer 6 is a ZnO film. Among them, metal oxides such as TiO2 film and ZnO film can be prepared by physical deposition film methods, including but not limited to radio frequency magnetron sputtering, molecular beam epitaxy, spray pyrolysis, etc. The Sb2S3 film as a visible light absorption layer is prepared by rapid thermal evaporation, and the PbS-EDT quantum dot film as a hole transport layer and the PbS-IBr quantum dot film as an infrared light absorption layer are prepared by chemical spin coating. The materials of the first metal electrode 7 and the second metal electrode 8 are selected from gold, aluminum, titanium, etc., and are prepared by vacuum thermal evaporation.
本发明基于两种光敏材料并结合特有的光学器件结构(n-i-p-i-n结构),实现了在单个器件中可电压偏置调节的可见光-红外光双波段光电探测。与传统探测器相比,本发明的光电探测器极大地扩宽了光谱探测范围及其应用领域。The present invention is based on two photosensitive materials and combines a unique optical device structure (n-i-p-i-n structure) to achieve voltage-biased adjustable visible light-infrared dual-band photoelectric detection in a single device. Compared with traditional detectors, the photoelectric detector of the present invention greatly broadens the spectral detection range and its application field.
本发明的双波光电探测器原理为:The principle of the dual-wave photoelectric detector of the present invention is:
首先,引入了两种不同的电子传输层:TiO2薄膜构成的第一电子传输层2和ZnO薄膜构成的第二电子传输层6,其分别可以与导电玻璃衬底的导电薄膜(如ITO、FTO)和第一金属电极7形成良好的能级匹配界面,有助于有效地传输和收集光生电子;First, two different electron transport layers are introduced: a first electron transport layer 2 composed of a TiO2 thin film and a second electron transport layer 6 composed of a ZnO thin film, which can form a good energy level matching interface with the conductive film (such as ITO, FTO) of the conductive glass substrate and the first metal electrode 7, respectively, which is helpful to effectively transmit and collect photogenerated electrons;
其次,在正向电压下,即导电玻璃衬底上的第二金属电极8接电源负极、前端的第一金属电极7接电源正极,Sb2S3薄膜等前端异质结处于反偏压状态,可在可见光照射下产生光生电流,同时PbS-IBr量子点薄膜等后端异质结处于正偏压导通状态,此时器件表现为前端异质结工作,可进行可见光探测;相反地,在反向电压下,即导电玻璃衬底上的第二金属电极8接电源正极、前端的第一金属电极7接电源负极,前端异质结处于正偏压状态,具有导通功能,后端异质结处于反偏压状态,可在红外光照射下产生光生电流,此时表现为后端异质结工作,可进行近红外光探测。Secondly, under forward voltage, that is, the second metal electrode 8 on the conductive glass substrate is connected to the negative pole of the power supply, and the first metal electrode 7 at the front end is connected to the positive pole of the power supply, the front heterojunction such as the Sb2S3 film is in a reverse bias state, and can generate photocurrent under visible light irradiation, while the back heterojunction such as the PbS-IBr quantum dot film is in a forward bias conduction state. At this time, the device behaves as the front heterojunction working and can perform visible light detection; on the contrary, under reverse voltage, that is, the second metal electrode 8 on the conductive glass substrate is connected to the positive pole of the power supply, and the first metal electrode 7 at the front end is connected to the negative pole of the power supply, the front heterojunction is in a forward bias state and has a conduction function, and the back heterojunction is in a reverse bias state, and can generate photocurrent under infrared light irradiation. At this time, it behaves as the back heterojunction working and can perform near-infrared light detection.
因此,可见光-红外光光电探测模式的独立载流子转移过程赋予本发明器件的可电压偏置的双波段探测功能。Therefore, the independent carrier transfer process of the visible light-infrared light photodetection mode gives the device of the present invention a voltage-biasable dual-band detection function.
一种n-i-p-i-n型可见-红外双波段光电探测器的制备方法,包括如下步骤:A method for preparing an n-i-p-i-n type visible-infrared dual-band photoelectric detector comprises the following steps:
S100、提供一厚度为350nm~450nm的导电玻璃衬底;S100, providing a conductive glass substrate with a thickness of 350nm-450nm;
具体地,利用物理沉积方法如射频磁控溅射、分子束外延等方法在透明玻璃上溅射沉积氧化锡铟ITO或氧化锡氟FTO薄膜作为衬底,衬底的预计厚度约为350nm~450nm。Specifically, a physical deposition method such as radio frequency magnetron sputtering, molecular beam epitaxy, etc. is used to sputter-deposit an indium tin oxide ITO or fluorine tin oxide FTO thin film on a transparent glass as a substrate, and the estimated thickness of the substrate is about 350nm~450nm.
S200、在导电玻璃衬底上生长一层厚度为45nm~55nm的TiO2薄膜,作为第一电子传输层;S200, growing a TiO2 thin film with a thickness of 45nm-55nm on a conductive glass substrate as a first electron transport layer;
具体地,利用喷雾热解法或本领域其他沉积方法在衬底上沉积TiO2薄膜;本发明中喷雾热解法可采用本领域常用的方法,比如:Specifically, a TiO2 thin film is deposited on a substrate by using a spray pyrolysis method or other deposition methods in the art; the spray pyrolysis method in the present invention can adopt a method commonly used in the art, such as:
(1)二(乙酰丙酮基)钛酸二异丙酯和无水乙醇两种液体按照体积比1:9进行混合,取出20mL的混合液体进行48小时电磁搅拌,制得的溶液作为喷涂的前驱体溶液备用;(1) Diisopropyl di(acetylacetonate)titanate and anhydrous ethanol were mixed in a volume ratio of 1:9, 20 mL of the mixed liquid was taken out and subjected to electromagnetic stirring for 48 hours, and the obtained solution was used as a precursor solution for spraying;
(2)超声波清洗机将导电玻璃衬底洗净后加热至450℃,再利用空气压缩机在导电玻璃衬底表面喷涂该前驱体溶液若干次;(2) The conductive glass substrate is cleaned by an ultrasonic cleaner and then heated to 450°C, and then the precursor solution is sprayed on the surface of the conductive glass substrate several times by an air compressor;
(3)喷涂完成后在约500℃下退火30分钟左右,自然冷却后得到一定厚度的TiO2薄膜。(3) After spraying, anneal at about 500°C for about 30 minutes, and then naturally cool to obtain a TiO2 film of a certain thickness.
上述喷雾热解法的参数可根据实际需要进行调整,在此不作具体限定。The parameters of the above-mentioned spray pyrolysis method can be adjusted according to actual needs and are not specifically limited here.
S300、在第一电子传输层上生长厚度为400nm~800nm的可见光吸光层Sb2S3薄膜,作为第一本征吸收层;S300, growing a visible light absorption layer Sb 2 S 3 thin film with a thickness of 400nm-800nm on the first electron transport layer as a first intrinsic absorption layer;
具体地,置于TiO2薄膜表面的Sb2S3薄膜采用快速热蒸发法制备,步骤如下:Specifically, the Sb2S3 film placed on the surface of the TiO2 film is prepared by a rapid thermal evaporation method, and the steps are as follows:
(1)将约0.4g的Sb2S3粉末均匀地分散在与导电玻璃尺寸相同的干净玻璃片上,之后将装有Sb2S3粉末的玻璃片置于快速退火炉中的氮化硅支撑片上,作为蒸发源备用;(1) Disperse about 0.4 g of Sb 2 S 3 powder evenly on a clean glass sheet of the same size as the conductive glass, and then place the glass sheet containing Sb 2 S 3 powder on a silicon nitride support sheet in a rapid annealing furnace as an evaporation source;
(2)将沉积有TiO2薄膜的导电玻璃衬底放入快速退火炉中,快速退火炉加热30秒至约300℃并恒温20分钟左右,然后继续加热至550℃,此时Sb2S3粉末开始逐渐蒸发,并保持恒温30秒-60秒,时间结束后得到厚度约为400nm~800nm左右的Sb2S3薄膜,整个蒸发过程需保持小于10-3Torr的真空度;(2) Place the conductive glass substrate with the TiO2 film deposited in a rapid annealing furnace, heat it to about 300°C for 30 seconds and keep it at a constant temperature for about 20 minutes, then continue to heat it to 550°C, at which time the Sb2S3 powder begins to evaporate gradually and keeps the temperature constant for 30-60 seconds. After the time is up, a Sb2S3 film with a thickness of about 400nm~800nm is obtained. The vacuum degree must be maintained at less than 10-3 Torr during the entire evaporation process;
Sb2S3薄膜也可采用本领域其他方法制备,上述快速热蒸发法的参数可根据实际需要进行调整,在此不作具体限定。The Sb 2 S 3 thin film can also be prepared by other methods in the art. The parameters of the above-mentioned rapid thermal evaporation method can be adjusted according to actual needs and are not specifically limited here.
S400、基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜,作为空穴传输层;具体包括:S400, forming a PbS-EDT quantum dot film on the first intrinsic absorption layer based on a solid phase ligand exchange method as a hole transport layer; specifically comprising:
(1)配置EDT-乙腈溶液和溶解于非极性有机溶剂中的第一PbS量子点溶液;(1) preparing an EDT-acetonitrile solution and a first PbS quantum dot solution dissolved in a non-polar organic solvent;
(2)将第一PbS量子点溶液旋涂在第一本征吸收层上,形成PbS薄膜;(2) spin coating a first PbS quantum dot solution on the first intrinsic absorption layer to form a PbS thin film;
(3)滴加EDT-乙腈溶液直至其将PbS薄膜完全覆盖,静置后EDT充分取代第一PbS量子点表面的油酸,实现配体交换形成PbS-EDT量子点薄膜;(3) Add EDT-acetonitrile solution until the PbS film is completely covered. After standing, EDT fully replaces the oleic acid on the surface of the first PbS quantum dot to achieve ligand exchange and form a PbS-EDT quantum dot film.
(4)采用质子极性溶剂对残余溶液进行清洗和去除;(4) using a protic polar solvent to wash and remove the residual solution;
(5)重复步骤(2)至步骤(4)至少一次,直至PbS-EDT量子点薄膜达到设定厚度。(5) Repeat steps (2) to (4) at least once until the PbS-EDT quantum dot film reaches a set thickness.
其中第一PbS量子点溶液采用吸收峰为880nm的PbS量子点,能很好地实现能带对齐,减少界面缺陷;S400步骤中的非极性有机溶剂、质子极性溶剂采用本技术领域常规的有机溶剂,比如非极性有机溶剂采用正辛烷,质子极性溶剂采用纯乙腈。PbS-EDT量子点薄膜最终厚度设定为40nm~50nm。The first PbS quantum dot solution uses PbS quantum dots with an absorption peak of 880nm, which can achieve good band alignment and reduce interface defects; the non-polar organic solvent and the proton polar solvent in step S400 use conventional organic solvents in the technical field, such as n-octane for the non-polar organic solvent and pure acetonitrile for the proton polar solvent. The final thickness of the PbS-EDT quantum dot film is set to 40nm~50nm.
S500、基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜,作为第二本征吸收层;具体包括:S500, forming a PbS-IBr quantum dot film on the hole transport layer based on a liquid phase ligand exchange method as a second intrinsic absorption layer; specifically comprising:
(1)配置溶解于极性有机溶剂中的卤素离子IBr配体溶液,和溶解于非极性有机溶剂中的第二PbS量子点溶液;(1) preparing a halogen ion IBr ligand solution dissolved in a polar organic solvent and a second PbS quantum dot solution dissolved in a non-polar organic solvent;
(2)向第二PbS量子点溶液中滴加卤素离子IBr配体溶液,剧烈摇晃后静置分层,完成I-和Br-配体替换第二PbS量子点表面的长链油酸配体;(2) adding the halogen ion IBr ligand solution to the second PbS quantum dot solution, shaking vigorously and then standing to separate the layers, thereby completing the replacement of the long-chain oleic acid ligands on the surface of the second PbS quantum dots by I- and Br - ligands;
(3)将上层澄清液与下层液体进行相分离,采用非极性有机溶剂对下层液体进行清洗去除长链油酸配体;(3) separating the upper clarified liquid from the lower liquid, and washing the lower liquid with a non-polar organic solvent to remove the long-chain oleic acid ligand;
(4)加入乙酸乙酯后发生沉淀反应,然后物理分离得到黑色沉淀,再干燥处理即为I-、Br-离子包覆的PbS-IBr量子点粉末;(4) After adding ethyl acetate, a precipitation reaction occurs, and then a black precipitate is obtained by physical separation, and then dried to obtain PbS-IBr quantum dot powder coated with I - and Br - ions;
(5)将PbS-IBr量子点粉末溶解于胺类混合溶剂中形成PbS-IBr溶液,将PbS-IBr溶液在空穴传输层上旋涂成膜,最后80℃~90℃退火处理若干分钟制得PbS-IBr量子点薄膜。(5) The PbS-IBr quantum dot powder is dissolved in an amine mixed solvent to form a PbS-IBr solution, the PbS-IBr solution is spin-coated on the hole transport layer to form a film, and finally annealed at 80°C to 90°C for several minutes to obtain a PbS-IBr quantum dot film.
其中,第二PbS量子点溶液采用吸收峰为1000nm~1800nm的PbS量子点,优选1300nm,其带隙为0.95eV。S500步骤中的极性有机溶剂、非极性有机溶剂、胺类混合溶剂采用本领域常规的有机溶剂,比如极性有机溶剂采用N-N二甲基甲酰胺DMF,非极性有机溶剂采用正辛烷,胺类混合溶剂采用正丁胺、正戊胺、正己胺三种混合物;PbS-IBr量子点薄膜的厚度为350nm~450nm。The second PbS quantum dot solution uses PbS quantum dots with an absorption peak of 1000nm~1800nm, preferably 1300nm, and a band gap of 0.95eV. The polar organic solvent, non-polar organic solvent, and amine mixed solvent in step S500 use conventional organic solvents in the art, such as N-N dimethylformamide DMF as the polar organic solvent, n-octane as the non-polar organic solvent, and a mixture of n-butylamine, n-pentylamine, and n-hexylamine as the amine mixed solvent; the thickness of the PbS-IBr quantum dot film is 350nm~450nm.
卤素混合离子IBr配体交换前后的红外吸收层PbS量子点薄膜结构性能变化的机理为:The mechanism of the change in the structure and performance of the infrared absorption layer PbS quantum dot film before and after the halogen mixed ion IBr ligand exchange is:
PbS量子点薄膜是由无数个量子点堆积而成,因此具有极大的表面积,这导致单个量子点的表面性质对整个薄膜的性能有很大的影响;量子点表面通常会存在悬挂键,提供了额外的电子态,而对于整个薄膜而言,这些电子态可能会成为禁带之间的缺陷态,从而影响到整个量子点薄膜的电学性能,而通过引入配体与表面悬挂键相连,可以钝化表面态;PbS quantum dot film is composed of countless quantum dots, so it has a very large surface area, which leads to the surface properties of a single quantum dot having a great influence on the performance of the entire film; there are usually dangling bonds on the surface of quantum dots, which provide additional electronic states, and for the entire film, these electronic states may become defect states between the forbidden bands, thereby affecting the electrical properties of the entire quantum dot film. By introducing ligands to connect to the surface dangling bonds, the surface states can be passivated;
然而,不同的配体对PbS量子点的钝化效果不同,PbS量子点表面通常由{111}面和{100}面构成;其中{111}面由铅原子紧密排列而成,能够和有机长链配体紧密结合,{100}面由铅原子与硫原子排列而成,不易与有机长链配体结合,因此{100}面钝化不足会增加量子点表面的缺陷态密度,非常容易引起量子点表面的刻蚀和量子点之间的团聚融合现象,导致器件的性能降低;However, different ligands have different passivation effects on PbS quantum dots. The surface of PbS quantum dots is usually composed of {111} planes and {100} planes. The {111} planes are composed of densely arranged lead atoms and can be tightly combined with organic long-chain ligands. The {100} planes are composed of arranged lead atoms and sulfur atoms and are not easy to combine with organic long-chain ligands. Therefore, insufficient passivation of the {100} plane will increase the defect state density on the surface of quantum dots, which is very likely to cause etching on the surface of quantum dots and agglomeration and fusion between quantum dots, resulting in reduced device performance.
随着PbS量子点尺寸增大,{100}面与{111}面的比例升高;因此,如何有效地钝化{100}面、降低量子点表面缺陷态密度成为提高量子点薄膜性能的关键。本发明通过短链的混合卤素离子钝化PbS量子点表面的{100}面,小尺寸的卤素离子如溴离子能够紧密地吸附在{100}面上,对其{100}面进行有效地缺陷钝化,而大尺寸的卤素离子如碘离子则更多地钝化PbS量子点的{111}面。同时,无机卤素离子配体相比有机长链配体具有更小的尺寸,使得通过卤素离子配体交换后的量子点之间的间距更小,最终的量子点薄膜载流子迁移率更高,表面缺陷更少。As the size of PbS quantum dots increases, the ratio of {100} plane to {111} plane increases; therefore, how to effectively passivate {100} plane and reduce the density of defect states on the surface of quantum dots becomes the key to improving the performance of quantum dot films. The present invention passivates the {100} plane on the surface of PbS quantum dots by short-chain mixed halogen ions. Small-sized halogen ions such as bromide ions can be tightly adsorbed on the {100} plane to effectively passivate the defects on its {100} plane, while large-sized halogen ions such as iodide ions passivate more {111} plane of PbS quantum dots. At the same time, inorganic halogen ion ligands have a smaller size than organic long-chain ligands, so that the spacing between quantum dots after exchange of halogen ion ligands is smaller, and the final quantum dot film has higher carrier mobility and fewer surface defects.
S600、第二本征吸收层上沉积厚度为120nm~170nm的ZnO薄膜,作为第二电子传输层;S600, depositing a ZnO film with a thickness of 120nm-170nm on the second intrinsic absorption layer as a second electron transport layer;
具体地,ZnO薄膜采用磁控溅射方法制备而成,例如采用射频电源在常温下溅射沉积薄膜,使用氩氧混合气(如体积比例设置为99:1)作为溅射气体,设备溅射功率约150W,溅射气压约2.5Pa,溅射约20分钟~30分钟得到厚度约120nm~170nm左右的氧化锌ZnO薄膜。Specifically, the ZnO film is prepared by a magnetron sputtering method, for example, a radio frequency power supply is used to sputter and deposit the film at room temperature, an argon oxygen mixture (such as a volume ratio set to 99:1) is used as the sputtering gas, the equipment sputtering power is about 150W, the sputtering gas pressure is about 2.5Pa, and sputtering is performed for about 20 minutes to 30 minutes to obtain a zinc oxide ZnO film with a thickness of about 120nm to 170nm.
ZnO薄膜也可采用本领域其他方法制备,上述磁控溅射方法的参数可根据实际需要进行调整,在此不作具体限定。The ZnO thin film can also be prepared by other methods in the art. The parameters of the above magnetron sputtering method can be adjusted according to actual needs and are not specifically limited here.
S700、通过刻蚀等方式暴露部分导电玻璃衬底,采用真空热蒸镀的方法分别在第二电子传输层表面和导电玻璃衬底上制备两组金属电极,金属电极采用金电极、铝电极或钛电极,第一金属电极接触第二电子传输层;第二金属电极接触导电玻璃衬底;S700, exposing a portion of the conductive glass substrate by etching or the like, and preparing two sets of metal electrodes on the surface of the second electron transport layer and the conductive glass substrate respectively by vacuum thermal evaporation, wherein the metal electrodes are gold electrodes, aluminum electrodes or titanium electrodes, and the first metal electrode contacts the second electron transport layer; and the second metal electrode contacts the conductive glass substrate;
具体地,金属电极采用真空热蒸镀的方法制备,例如取约0.4g金属颗粒作为蒸发源,将上述制备的多层薄膜样品固定在托盘上放入蒸发腔室,待蒸发腔室抽真空至小于10- 4Pa时,控制电流80A开始蒸镀,待晶振显示蒸发厚度达到标准时停止蒸发;Specifically, the metal electrode is prepared by vacuum thermal evaporation. For example, about 0.4 g of metal particles are taken as an evaporation source, and the multilayer film sample prepared above is fixed on a tray and placed in an evaporation chamber. When the evaporation chamber is evacuated to a vacuum of less than 10 - 4 Pa, the current is controlled to 80 A to start evaporation, and the evaporation is stopped when the crystal oscillator shows that the evaporation thickness reaches the standard.
金属电极也可采用本领域其他方法制备,上述真空热蒸镀的参数可根据实际需要进行调整,在此不作具体限定。The metal electrode may also be prepared by other methods in the art. The parameters of the above vacuum thermal evaporation may be adjusted according to actual needs and are not specifically limited here.
实施例1Example 1
一种n-i-p-i-n型可见-红外双波段光电探测器的制备方法,包括如下步骤:A method for preparing an n-i-p-i-n type visible-infrared dual-band photoelectric detector comprises the following steps:
S100、提供一导电玻璃衬底;S100, providing a conductive glass substrate;
选择厚度为400nm的FTO玻璃衬底,对FTO玻璃衬底进行清洗,最后吹去表面水分待用。A FTO glass substrate with a thickness of 400 nm was selected, the FTO glass substrate was cleaned, and finally the surface moisture was blown off for standby use.
S200、在导电玻璃衬底上沉积TiO2薄膜,作为第一电子传输层;S200, depositing a TiO2 thin film on a conductive glass substrate as a first electron transport layer;
采用喷雾热解法在FTO玻璃衬底上沉积一层厚度为50nm的TiO2薄膜。A 50 nm thick TiO2 film was deposited on the FTO glass substrate by spray pyrolysis.
S300、在第一电子传输层上形成Sb2S3薄膜,作为第一本征吸收层;S300, forming a Sb 2 S 3 thin film on the first electron transport layer as a first intrinsic absorption layer;
采用快速热蒸发法在沉积有TiO2薄膜的FTO玻璃衬底上形成一层厚度为400nm的Sb2S3薄膜。A Sb 2 S 3 thin film with a thickness of 400 nm was formed on the FTO glass substrate with the TiO 2 thin film deposited thereon by rapid thermal evaporation.
S400、基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜,作为空穴传输层;S400, forming a PbS-EDT quantum dot film on the first intrinsic absorption layer based on a solid phase ligand exchange method as a hole transport layer;
使用EDT配体交换后的PbS量子点作为空穴传输层,其带隙为1.4eV,吸收峰为880nm,能实现能带对齐,减少界面缺陷,具体生成步骤如下:PbS quantum dots after EDT ligand exchange are used as hole transport layers. The band gap is 1.4eV and the absorption peak is 880nm. It can achieve band alignment and reduce interface defects. The specific generation steps are as follows:
(1)配置EDT配体溶液和第一PbS量子点溶液;(1) preparing an EDT ligand solution and a first PbS quantum dot solution;
量取5mL乙腈置于玻璃瓶中,再用移液枪吸取50μL的EDT(1,2-乙二硫醇)加入其中,制成浓度1%的EDT-乙腈溶液,再次量取10mL乙腈置于干净玻璃瓶中,用移液枪吸取200μL1%的EDT-乙腈溶液加入其中制备得到浓度0.02%的EDT-乙腈溶液;5 mL of acetonitrile was measured and placed in a glass bottle, and 50 μL of EDT (1,2-ethanedithiol) was pipetted and added thereto to prepare a 1% EDT-acetonitrile solution. 10 mL of acetonitrile was measured and placed in a clean glass bottle, and 200 μL of 1% EDT-acetonitrile solution was pipetted and added thereto to prepare a 0.02% EDT-acetonitrile solution.
用量筒量取10mL正辛烷置于试剂瓶,称取400mg合成的吸收峰为880nm的PbS量子点溶解在正辛烷中混合均匀,用0.22μm过滤头过滤后得到第一PbS量子点溶液;10 mL of n-octane is measured with a measuring cylinder and placed in a reagent bottle, 400 mg of synthesized PbS quantum dots with an absorption peak of 880 nm are weighed and dissolved in the n-octane and mixed evenly, and the first PbS quantum dot solution is obtained after filtering with a 0.22 μm filter head;
(2)将含有TiO2薄膜、Sb2S3薄膜的FTO玻璃衬底吸附于旋涂机吸板中央,将第一PbS量子点溶液以2500转每分钟的速率均匀旋转30秒;(2) The FTO glass substrate containing the TiO 2 film and the Sb 2 S 3 film was adsorbed on the center of the spin coater suction plate, and the first PbS quantum dot solution was uniformly rotated at a rate of 2500 rpm for 30 seconds;
(3)然后向FTO玻璃衬底样品表面滴加EDT-乙腈溶液直到溶液完全覆盖样品,等待约60秒后使EDT充分取代量子点表面的油酸,实现配体交换形成PbS-EDT量子点薄膜;(3) Then, add EDT-acetonitrile solution to the surface of the FTO glass substrate sample until the solution completely covers the sample. After waiting for about 60 seconds, EDT fully replaces the oleic acid on the surface of the quantum dots to achieve ligand exchange and form a PbS-EDT quantum dot film.
(4)再旋转去除表面多余的EDT-乙腈溶液,最后滴加纯乙腈溶液清洗样品两次;(4) Rotate to remove excess EDT-acetonitrile solution on the surface, and finally add pure acetonitrile solution to wash the sample twice;
(5)PbS-EDT量子点薄膜的厚度可以通过第一PbS量子点溶液的浓度与旋涂的次数进行控制,重复上述步骤(2)至步骤(4)直至PbS-EDT量子点薄膜的厚度约为45nm。(5) The thickness of the PbS-EDT quantum dot film can be controlled by the concentration of the first PbS quantum dot solution and the number of spin coating cycles. Repeat steps (2) to (4) until the thickness of the PbS-EDT quantum dot film is about 45 nm.
S500、基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜,作为第二本征吸收层;S500, forming a PbS-IBr quantum dot film on the hole transport layer based on a liquid phase ligand exchange method as a second intrinsic absorption layer;
使用混合卤素离子I-、Br-配体交换后的PbS量子点作为红外吸收层,其带隙为0.95eV,吸收峰为1300nm;其生成步骤如下:PbS quantum dots after mixed halogen ion I- and Br - ligand exchange are used as infrared absorption layer, with a band gap of 0.95eV and an absorption peak of 1300nm. The generation steps are as follows:
(1)配置卤素离子IBr配体溶液和第二PbS量子点溶液;(1) preparing a halogen ion IBr ligand solution and a second PbS quantum dot solution;
将约为692mg的PbI2(0.2mol/L)、110mg的PbBr2(0.04mol/L)、45mg的醋酸胺(0.08mol/L)溶解于装有N,N-二甲基甲酰胺(DMF)的离心管中,将离心管密封后放入超声波机器中超声振荡20分钟使混合物充分溶解,形成IBr配体溶液,用0.22微米过滤头将溶液过滤后放入洁净玻璃瓶中密封备用;Dissolve about 692 mg of PbI 2 (0.2 mol/L), 110 mg of PbBr 2 (0.04 mol/L), and 45 mg of acetamide (0.08 mol/L) in a centrifuge tube filled with N,N-dimethylformamide (DMF). Seal the centrifuge tube and place it in an ultrasonic machine for 20 minutes to fully dissolve the mixture to form an IBr ligand solution. Filter the solution with a 0.22 μm filter head and place it in a clean glass bottle and seal it for later use.
用量筒量取15mL正辛烷置于试剂瓶,称取约140mg由油酸包裹的PbS量子点溶解于正辛烷中混合均匀,形成第二PbS量子点溶液;Use a measuring cylinder to measure 15 mL of n-octane and put it in a reagent bottle, weigh about 140 mg of PbS quantum dots wrapped by oleic acid, dissolve them in n-octane and mix them evenly to form a second PbS quantum dot solution;
(2)使用0.22μm过滤头将过滤后的第二PbS量子点溶液滴入装有IBr配体溶液的玻璃瓶中,剧烈摇晃约60s后溶液迅速分层,第二PbS量子点从非极性溶剂转移至极性溶剂DMF中,I-和Br-配体成功地将长链油酸配体替换;(2) Use a 0.22 μm filter head to drop the filtered second PbS quantum dot solution into a glass bottle containing the IBr ligand solution. After vigorous shaking for about 60 seconds, the solution quickly separates into layers. The second PbS quantum dots are transferred from the non-polar solvent to the polar solvent DMF. The I- and Br - ligands successfully replace the long-chain oleic acid ligands.
(3)试剂瓶静置一段时间后用滴管将上层澄清液体吸出,继续往溶液中加入正辛烷摇晃,重复三次将溶液清洗干净,确保溶液中油酸配体完全去除;(3) After the reagent bottle has been left to stand for a while, use a dropper to suck out the clear liquid on the top, continue to add n-octane to the solution and shake it. Repeat three times to clean the solution and ensure that the oleic acid ligand in the solution is completely removed;
(4)逐渐滴加8mL的乙酸乙酯,同时不断摇晃,全部滴加完成后放入离心机,以9000rmp/min速率离心5min,移除上层棕色液体后底部留下黑色粉末,将黑色粉末抽真空干燥30min,得到I-和Br-离子包覆的PbS-IBr量子点黑色粉末;(4) Gradually add 8 mL of ethyl acetate while shaking continuously. After all the addition is completed, place the mixture in a centrifuge and centrifuge at 9000 rpm for 5 min. Remove the upper brown liquid and leave black powder at the bottom. Vacuum dry the black powder for 30 min to obtain PbS-IBr quantum dot black powder coated with I- and Br- ions.
(5)配置1mL混合溶剂(正丁胺:正戊胺:正己胺=10:3:2),将约270mg的PbS-IBr量子点黑色粉末溶解在混合溶剂中,用振荡器振荡2min得到量子点PbS-IBr溶液,随后滴在PbS-EDT量子点薄膜上以3000rmp/min旋涂成膜,之后在85℃下退火5min制备得到厚度约为400nm的PbS-IBr量子点薄膜。(5) Prepare 1 mL of a mixed solvent (n-butylamine: n-pentylamine: n-hexylamine = 10:3:2), dissolve about 270 mg of PbS-IBr quantum dot black powder in the mixed solvent, and oscillate with an oscillator for 2 min to obtain a quantum dot PbS-IBr solution. Then, drop the solution on the PbS-EDT quantum dot film and spin coat it at 3000 rpm to form a film. After that, anneal at 85 °C for 5 min to obtain a PbS-IBr quantum dot film with a thickness of about 400 nm.
S600、第二本征吸收层上通过射频磁控溅射方法沉积厚度约为150nm的ZnO薄膜,作为第二电子传输层。S600, depositing a ZnO film with a thickness of about 150 nm on the second intrinsic absorption layer by a radio frequency magnetron sputtering method as a second electron transport layer.
S700、暴露部分导电玻璃衬底,制备两组金属电极,其中所述第一金属电极接触所述导电玻璃衬底,所述第二金属电极接触所述第二电子传输层;S700, exposing a portion of the conductive glass substrate to prepare two sets of metal electrodes, wherein the first metal electrode contacts the conductive glass substrate, and the second metal electrode contacts the second electron transport layer;
刻蚀部分FTO玻璃衬底上的第一电子传输层、第一本征吸收层、空穴传输层、第二本征吸收层以及第二电子传输层,使得FTO玻璃衬底的一侧部分暴露;Etching a portion of the first electron transport layer, the first intrinsic absorption layer, the hole transport layer, the second intrinsic absorption layer, and the second electron transport layer on the FTO glass substrate so that one side of the FTO glass substrate is partially exposed;
采用真空热蒸镀的方法分别在ZnO薄膜表面和FTO玻璃衬底暴露的部分上制备两组厚度约为60nm的金属电极Au电极。Two groups of metal electrodes Au electrodes with a thickness of about 60 nm were prepared on the surface of the ZnO film and the exposed part of the FTO glass substrate respectively by vacuum thermal evaporation.
上述方法步骤制得的光电探测器结构如图1所示,光电探测器包括沿着入射光方向依次叠加的衬底1、第一电子传输层2、由可见光敏材料制成的第一本征吸收层3、空穴传输层4、由红外光敏材料制成的第二本征吸收层5、第二电子传输层6以及接触第二电子传输层6的第一金属电极7,还包括接触衬底1的第二金属电极8。The photodetector structure obtained by the above method steps is shown in Figure 1. The photodetector includes a substrate 1, a first electron transport layer 2, a first intrinsic absorption layer 3 made of a visible light-sensitive material, a hole transport layer 4, a second intrinsic absorption layer 5 made of an infrared light-sensitive material, a second electron transport layer 6, and a first metal electrode 7 contacting the second electron transport layer 6, which are stacked in sequence along the direction of the incident light, and also includes a second metal electrode 8 contacting the substrate 1.
利用SCAPS-1D仿真软件模拟仿真了本实施例1制得的光电探测器在不同波段光照射下的电流密度-电压曲线,如图2所示,说明该器件在可见光及红外光都有响应,在530nm波段照射下的器件开路电压最大,在单波段照射下该器件的饱和光电流可达到0.6mA/cm2。The current density-voltage curve of the photodetector prepared in Example 1 under different wavelength light irradiation was simulated by using SCAPS-1D simulation software, as shown in FIG2 , indicating that the device responds to both visible light and infrared light, and the device open circuit voltage is the largest under 530nm wavelength irradiation, and the saturated photocurrent of the device can reach 0.6mA/cm 2 under single-band irradiation.
利用SCAPS-1D仿真软件模拟仿真该器件的量子效率(EQE)随波长的变化曲线,如图3所示。说明该双波探测器件在可见光EQE可高达82%,红外波段的EQE可高达75%。The SCAPS-1D simulation software is used to simulate the curve of the quantum efficiency (EQE) of the device as a function of wavelength, as shown in Figure 3. This shows that the EQE of the dual-wave detection device can be as high as 82% in visible light and 75% in the infrared band.
利用SCAPS-1D仿真软件模拟仿真该器件的响应度随波长的变化曲线,如图4所示,说明该器件在可见光及红外波段都具备高响应度。The SCAPS-1D simulation software is used to simulate the curve of the device's response versus wavelength, as shown in Figure 4, indicating that the device has high response in both visible light and infrared bands.
实施例2Example 2
一种n-i-p-i-n型可见-红外双波段光电探测器的制备方法,包括如下步骤:A method for preparing an n-i-p-i-n type visible-infrared dual-band photoelectric detector comprises the following steps:
S100、提供一导电玻璃衬底;S100, providing a conductive glass substrate;
选择厚度为350nm的ITO玻璃衬底,对衬底进行清洗,最后吹去表面水分待用。An ITO glass substrate with a thickness of 350 nm was selected, the substrate was cleaned, and finally the surface moisture was blown off for standby use.
S200、在导电玻璃衬底上沉积TiO2薄膜,作为第一电子传输层;S200, depositing a TiO2 thin film on a conductive glass substrate as a first electron transport layer;
采用喷雾热解法在ITO玻璃衬底上生长一层厚度为45nm的TiO2薄膜。A 45nm thick TiO2 film was grown on an ITO glass substrate using spray pyrolysis.
S300、在第一电子传输层上形成Sb2S3薄膜,作为第一本征吸收层;S300, forming a Sb 2 S 3 thin film on the first electron transport layer as a first intrinsic absorption layer;
采用快速热蒸发法在沉积有TiO2薄膜的ITO玻璃衬底上形成一层厚度为600nm的Sb2S3薄膜。A Sb 2 S 3 film with a thickness of 600 nm was formed on an ITO glass substrate with a TiO 2 film deposited thereon by a rapid thermal evaporation method.
S400、基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜,作为空穴传输层;S400, forming a PbS-EDT quantum dot film on the first intrinsic absorption layer based on a solid phase ligand exchange method as a hole transport layer;
使用EDT配体交换后的PbS量子点作为空穴传输层,其带隙为1.4eV,吸收峰为880nm,能实现能带对齐,减少界面缺陷,具体生成步骤与实施例1相同,PbS-EDT量子点薄膜的厚度可以通过量子点溶液的浓度与旋涂的次数进行控制,本实施例2中PbS-EDT量子点薄膜的厚度约为40nm。PbS quantum dots after EDT ligand exchange are used as the hole transport layer, and its band gap is 1.4eV, and the absorption peak is 880nm, which can achieve band alignment and reduce interface defects. The specific generation steps are the same as those in Example 1. The thickness of the PbS-EDT quantum dot film can be controlled by the concentration of the quantum dot solution and the number of spin coating. The thickness of the PbS-EDT quantum dot film in this Example 2 is about 40nm.
S500、基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜,作为第二本征吸收层;使用混合卤素离子I-、Br-配体交换后的PbS量子点作为红外吸收层,其吸收峰为1000nm,生成步骤与实施例1相同,本实施例2制备得到厚度约为350nm的PbS-IBr量子点薄膜。S500. Based on the liquid phase ligand exchange method, a PbS-IBr quantum dot film is formed on the hole transport layer as a second intrinsic absorption layer; PbS quantum dots after mixed halogen ion I- and Br - ligand exchange are used as an infrared absorption layer, and its absorption peak is 1000nm. The generation steps are the same as those in Example 1. In this Example 2, a PbS-IBr quantum dot film with a thickness of about 350nm is prepared.
S600、第二本征吸收层上通过射频磁控溅射方法沉积厚度约为120nm的ZnO薄膜,作为第二电子传输层。S600, depositing a ZnO film with a thickness of about 120 nm on the second intrinsic absorption layer by a radio frequency magnetron sputtering method as a second electron transport layer.
S700、暴露部分导电玻璃衬底,制备两组金属电极,其中所述第一金属电极接触所述导电玻璃衬底,所述第二金属电极接触所述第二电子传输层;S700, exposing a portion of the conductive glass substrate to prepare two sets of metal electrodes, wherein the first metal electrode contacts the conductive glass substrate, and the second metal electrode contacts the second electron transport layer;
刻蚀部分ITO玻璃衬底上的第一电子传输层、第一本征吸收层、空穴传输层、第二本征吸收层以及第二电子传输层,使得ITO玻璃衬底的一侧部分暴露;Etching a portion of the first electron transport layer, the first intrinsic absorption layer, the hole transport layer, the second intrinsic absorption layer, and the second electron transport layer on the ITO glass substrate so that one side of the ITO glass substrate is partially exposed;
采用真空热蒸镀的方法分别在ZnO薄膜表面和ITO玻璃衬底暴露的部分上制备两组厚度约为50nm的Al电极。Two groups of Al electrodes with a thickness of about 50 nm were prepared on the surface of the ZnO film and the exposed part of the ITO glass substrate by vacuum thermal evaporation.
实施例3Example 3
一种n-i-p-i-n型可见-红外双波段光电探测器的制备方法,包括如下步骤:A method for preparing an n-i-p-i-n type visible-infrared dual-band photoelectric detector comprises the following steps:
S100、提供一导电玻璃衬底;S100, providing a conductive glass substrate;
选择厚度为450nm的FTO玻璃衬底,对衬底进行清洗,最后吹去表面水分待用。A FTO glass substrate with a thickness of 450 nm was selected, the substrate was cleaned, and finally the surface moisture was blown off for standby use.
S200、在导电玻璃衬底上沉积TiO2薄膜,作为第一电子传输层;S200, depositing a TiO2 thin film on a conductive glass substrate as a first electron transport layer;
采用喷雾热解法在FTO玻璃衬底上生长一层厚度为55nm的TiO2薄膜。A 55nm thick TiO2 film was grown on FTO glass substrate by spray pyrolysis.
S300、在第一电子传输层上形成Sb2S3薄膜,作为第一本征吸收层;S300, forming a Sb 2 S 3 thin film on the first electron transport layer as a first intrinsic absorption layer;
采用快速热蒸发法在沉积有TiO2薄膜的FTO玻璃衬底上形成一层厚度为800nm的Sb2S3薄膜。A Sb 2 S 3 thin film with a thickness of 800 nm was formed on the FTO glass substrate with the TiO 2 thin film deposited thereon by rapid thermal evaporation.
S400、基于固相配体交换法在第一本征吸收层上形成PbS-EDT量子点薄膜,作为空穴传输层;S400, forming a PbS-EDT quantum dot film on the first intrinsic absorption layer based on a solid phase ligand exchange method as a hole transport layer;
使用EDT配体交换后的PbS量子点作为空穴传输层,其带隙为1.4eV,吸收峰为880nm,能实现能带对齐,减少界面缺陷,具体生成步骤与实施例1相同,PbS-EDT量子点薄膜的厚度可以通过量子点溶液的浓度与旋涂的次数进行控制,本实施例3中PbS-EDT量子点薄膜的厚度约50nm。PbS quantum dots after EDT ligand exchange are used as the hole transport layer, and its band gap is 1.4eV, and the absorption peak is 880nm, which can achieve band alignment and reduce interface defects. The specific generation steps are the same as those in Example 1. The thickness of the PbS-EDT quantum dot film can be controlled by the concentration of the quantum dot solution and the number of spin coating. The thickness of the PbS-EDT quantum dot film in this Example 3 is about 50nm.
S500、基于液相配体交换法在空穴传输层上形成PbS-IBr量子点薄膜,作为第二本征吸收层;使用混合卤素离子I-、Br-配体交换后的PbS量子点作为红外吸收层,其吸收峰为1800nm,生成步骤与实施例1相同,本实施例3制备得到厚度约为450nm的PbS-IBr量子点薄膜。S500. Based on the liquid phase ligand exchange method, a PbS-IBr quantum dot film is formed on the hole transport layer as a second intrinsic absorption layer; PbS quantum dots after mixed halogen ion I- and Br - ligand exchange are used as an infrared absorption layer, and its absorption peak is 1800nm. The generation steps are the same as those in Example 1. This Example 3 prepares a PbS-IBr quantum dot film with a thickness of about 450nm.
S600、第二本征吸收层上通过射频磁控溅射方法沉积厚度约为170nm的ZnO薄膜,作为第二电子传输层。S600, depositing a ZnO film with a thickness of about 170 nm on the second intrinsic absorption layer by a radio frequency magnetron sputtering method as a second electron transport layer.
S700、暴露部分导电玻璃衬底,制备两组金属电极,其中第一金属电极接触导电玻璃衬底,第二金属电极接触第二电子传输层;S700, exposing a portion of the conductive glass substrate, and preparing two sets of metal electrodes, wherein the first metal electrode contacts the conductive glass substrate, and the second metal electrode contacts the second electron transport layer;
刻蚀部分FTO玻璃衬底上的第一电子传输层、第一本征吸收层、空穴传输层、第二本征吸收层以及第二电子传输层,使得FTO玻璃衬底的一侧部分暴露;Etching a portion of the first electron transport layer, the first intrinsic absorption layer, the hole transport layer, the second intrinsic absorption layer, and the second electron transport layer on the FTO glass substrate so that one side of the FTO glass substrate is partially exposed;
采用真空热蒸镀的方法分别在ZnO薄膜表面和FTO玻璃衬底暴露的部分上制备两组厚度约为60nm的Ti电极。Two sets of Ti electrodes with a thickness of about 60 nm were prepared on the surface of the ZnO film and the exposed part of the FTO glass substrate by vacuum thermal evaporation.
对比例1Comparative Example 1
将实施例1中的激子吸收峰约为880nm(带隙约为1.4eV)的PbS-EDT量子点薄膜替换为带隙较窄的PbS-EDT量子点薄膜(带隙约为1.0eV,激子吸收峰约为1240nm),其它参数与实施例1相同。The PbS-EDT quantum dot film with an exciton absorption peak of about 880nm (band gap of about 1.4eV) in Example 1 was replaced with a PbS-EDT quantum dot film with a narrower band gap (band gap of about 1.0eV, exciton absorption peak of about 1240nm), and the other parameters were the same as in Example 1.
当采用带隙更宽的PbS-EDT量子点薄膜作为该器件的共用P型层时,该层薄膜较宽的带隙主要来自于导带低的上移,导致空穴传输层(PbS-EDT量子点薄膜)的导带均大于第一本征吸收层(Sb2S3薄膜)和第二本征吸收层(PbS-IBr量子点薄膜)的导带,赋予PbS-EDT量子点薄膜更高的光生电子阻挡势垒,使得器件工作时相应的吸收层产生的光生电子能够正确地传输到对应的电子传输层中,有效地改善了光生载流子的收集效率,显著提高器件性能。When the PbS-EDT quantum dot film with a wider band gap is used as the common P-type layer of the device, the wider band gap of this film mainly comes from the upward shift of the conduction band, resulting in the conduction band of the hole transport layer (PbS-EDT quantum dot film) being larger than the conduction band of the first intrinsic absorption layer ( Sb2S3 film) and the second intrinsic absorption layer (PbS-IBr quantum dot film), giving the PbS-EDT quantum dot film a higher photogenerated electron blocking barrier, so that the photogenerated electrons generated by the corresponding absorption layer can be correctly transmitted to the corresponding electron transport layer when the device is working, effectively improving the collection efficiency of photogenerated carriers and significantly improving the device performance.
另一方面,当采用较窄带隙(1.0eV)的PbS-EDT量子点薄膜时,由于带隙较窄,空穴传输层(PbS-EDT量子点薄膜)的导带可能会低于第一本征吸收层(Sb2S3薄膜)和第二本征吸收层(PbS-IBr量子点薄膜)的导带,导致相应的吸光层产生的光生电子能越过PbS-EDT量子点薄膜的阻挡势垒而无法正常的传输到对应的电子传输层中,这种异质界面处形成了不合适的能带对准,进而会降低器件性能,甚至会影响器件的正常工作。On the other hand, when a PbS-EDT quantum dot film with a narrower band gap (1.0 eV) is used, due to the narrow band gap, the conduction band of the hole transport layer (PbS-EDT quantum dot film) may be lower than the conduction band of the first intrinsic absorption layer ( Sb2S3 film) and the second intrinsic absorption layer (PbS-IBr quantum dot film), resulting in the photogenerated electrons generated by the corresponding light-absorbing layer to cross the blocking barrier of the PbS-EDT quantum dot film and cannot be normally transmitted to the corresponding electron transport layer. This heterogeneous interface forms an inappropriate energy band alignment, which will reduce the device performance and even affect the normal operation of the device.
对比例2Comparative Example 2
在制备PbS-EDT量子点薄膜时,将EDT配体溶液和第一PbS量子点溶液混合后直接旋涂形成PbS-EDT量子点薄膜,其他参数和步骤与实施例1相同。When preparing the PbS-EDT quantum dot film, the EDT ligand solution and the first PbS quantum dot solution are mixed and then directly spin-coated to form the PbS-EDT quantum dot film. Other parameters and steps are the same as those in Example 1.
经测试和研究发现,虽然相比较本发明实施例1中的固相配体交换工艺,对比例2的步骤简化许多,无需重复地进行多次旋涂薄膜,但是该工艺过程容易导致量子点之间发生融合、刻蚀和团聚,进而比较难获得胶体稳定的量子点墨水。因此,在旋涂空穴传输层PbS-EDT量子点薄膜时,实施例1在量子点的尺寸分布控制及重复性方面优于对比例2的方法。Through testing and research, it is found that, although the steps of Comparative Example 2 are much simpler than the solid-phase ligand exchange process in Example 1 of the present invention, and there is no need to repeatedly spin-coat the film, the process easily leads to fusion, etching and agglomeration between quantum dots, and it is difficult to obtain colloidally stable quantum dot ink. Therefore, when spin-coating the hole transport layer PbS-EDT quantum dot film, Example 1 is superior to the method of Comparative Example 2 in terms of quantum dot size distribution control and repeatability.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present invention, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the patent of the present invention. It should be pointed out that, for ordinary technicians in this field, several variations and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410926535.5A CN118475138B (en) | 2024-07-11 | 2024-07-11 | N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410926535.5A CN118475138B (en) | 2024-07-11 | 2024-07-11 | N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118475138A true CN118475138A (en) | 2024-08-09 |
CN118475138B CN118475138B (en) | 2024-11-05 |
Family
ID=92150133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410926535.5A Active CN118475138B (en) | 2024-07-11 | 2024-07-11 | N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118475138B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119050122A (en) * | 2024-10-30 | 2024-11-29 | 中芯热成科技(北京)有限责任公司 | Infrared detector and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807588A (en) * | 2018-06-15 | 2018-11-13 | 杭州国翌科技有限公司 | One chip n-i-p-i-n molded breadth spectrum photodetectors |
CN109888109A (en) * | 2019-03-13 | 2019-06-14 | 电子科技大学 | A quantum dot-modified double-heterojunction organic solar cell and its preparation method |
US20200075265A1 (en) * | 2017-03-08 | 2020-03-05 | Kao Corporation | Light absorption layer, photoelectric conversion element, and solar cell |
CN111816774A (en) * | 2020-07-17 | 2020-10-23 | 南京理工大学 | A visible/infrared spectrally switchable dual-frequency detection imaging perovskite device |
CN114975655A (en) * | 2022-05-17 | 2022-08-30 | 东北电力大学 | A kind of photodetector of antimony-based nanorod array heterojunction and preparation method thereof |
CN115088085A (en) * | 2020-02-13 | 2022-09-20 | 富士胶片株式会社 | Photodetecting element and image sensor |
-
2024
- 2024-07-11 CN CN202410926535.5A patent/CN118475138B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200075265A1 (en) * | 2017-03-08 | 2020-03-05 | Kao Corporation | Light absorption layer, photoelectric conversion element, and solar cell |
CN108807588A (en) * | 2018-06-15 | 2018-11-13 | 杭州国翌科技有限公司 | One chip n-i-p-i-n molded breadth spectrum photodetectors |
CN109888109A (en) * | 2019-03-13 | 2019-06-14 | 电子科技大学 | A quantum dot-modified double-heterojunction organic solar cell and its preparation method |
CN115088085A (en) * | 2020-02-13 | 2022-09-20 | 富士胶片株式会社 | Photodetecting element and image sensor |
CN111816774A (en) * | 2020-07-17 | 2020-10-23 | 南京理工大学 | A visible/infrared spectrally switchable dual-frequency detection imaging perovskite device |
CN114975655A (en) * | 2022-05-17 | 2022-08-30 | 东北电力大学 | A kind of photodetector of antimony-based nanorod array heterojunction and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119050122A (en) * | 2024-10-30 | 2024-11-29 | 中芯热成科技(北京)有限责任公司 | Infrared detector and system |
Also Published As
Publication number | Publication date |
---|---|
CN118475138B (en) | 2024-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118475138B (en) | N-i-p-i-n type visible-infrared dual-band photoelectric detector and preparation method thereof | |
CN107275421A (en) | A kind of quantum dot light electric explorer and preparation method thereof | |
CN109742178B (en) | A kind of infrared-transmitting high-sensitivity visible light detector and preparation method thereof | |
CN114702960B (en) | Infrared quantum dot layer and preparation method thereof, infrared detector and preparation method thereof | |
CN110311007A (en) | A quantum dot near-infrared photodetector and its preparation method | |
CN110556478A (en) | Perovskite weak light detector based on plasmon effect | |
CN111864080A (en) | A two-dimensional organic-inorganic hybrid perovskite crystal photodetector and preparation method thereof | |
CN111834487A (en) | All-inorganic perovskite nanowire self-powered-short-wave photodetector and preparation method | |
CN108376741A (en) | A kind of perovskite visible-light detector and preparation method thereof with energy band gradient | |
CN111525036B (en) | Self-driven perovskite photoelectric detector and preparation method thereof | |
CN111816774B (en) | Visible/infrared spectrum switchable double-frequency detection imaging perovskite device | |
CN106449978A (en) | Preparation method of visible blind ultraviolet detector based on CH3NH3PbCl3 film | |
CN111244194A (en) | A ZnO/Cu2O heterojunction ultraviolet photodetector based on the localized surface plasmon effect of aluminum nanoparticles | |
CN117529197A (en) | Preparation method of perovskite passivation layer and solar cell | |
CN110010770A (en) | Preparation of a gold bipyramid plasmon-enhanced perovskite solar cell | |
CN112310242B (en) | Sensitization method of PbS thin film, infrared photodetector and preparation method thereof | |
CN116322246A (en) | A transistor-type photodetector based on bismuth sulfide thin film and its preparation method | |
CN113394343B (en) | Back-incident p-i-n structure perovskite solar cell and preparation method thereof | |
CN109346461B (en) | A kind of photoelectric thermoelectric composite self-driven photodetector and preparation method thereof | |
CN113054055A (en) | SnSe/SnO-based2Self-driven photoelectric detector of multilayer spherical shell/Si heterojunction and preparation method thereof | |
CN111261781A (en) | A two-dimensional perovskite photodetector with interface passivation and preparation method thereof | |
CN115588702B (en) | Infrared quantum dot layer, device, preparation method and application thereof | |
CN106024966B (en) | A kind of TiO based on the doping of many crystal face Ir Pd nanoparticle systems2Film ultraviolet detector and preparation method thereof | |
CN111276615B (en) | A kind of large area perovskite solar cell and preparation method thereof | |
CN118900572A (en) | A zinc oxide-based ultraviolet photodetector and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |