CN113394343B - Back-incident p-i-n structure perovskite solar cell and preparation method thereof - Google Patents
Back-incident p-i-n structure perovskite solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN113394343B CN113394343B CN202110020736.5A CN202110020736A CN113394343B CN 113394343 B CN113394343 B CN 113394343B CN 202110020736 A CN202110020736 A CN 202110020736A CN 113394343 B CN113394343 B CN 113394343B
- Authority
- CN
- China
- Prior art keywords
- perovskite
- solar cell
- copper oxide
- preparing
- perovskite solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 38
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000005751 Copper oxide Substances 0.000 claims abstract description 57
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 57
- 230000005525 hole transport Effects 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000002073 nanorod Substances 0.000 claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 66
- 229910052757 nitrogen Inorganic materials 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 30
- 238000000137 annealing Methods 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 21
- 230000031700 light absorption Effects 0.000 claims description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 14
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 14
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 12
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 238000004528 spin coating Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000012046 mixed solvent Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 5
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 claims description 5
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 5
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- NPNMHHNXCILFEF-UHFFFAOYSA-N [F].[Sn]=O Chemical compound [F].[Sn]=O NPNMHHNXCILFEF-UHFFFAOYSA-N 0.000 claims description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 23
- 229920000144 PEDOT:PSS Polymers 0.000 description 14
- 239000003292 glue Substances 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005286 illumination Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002120 nanofilm Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 6
- 239000012459 cleaning agent Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000004026 adhesive bonding Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052861 titanite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种背入射p‑i‑n钙钛矿太阳电池及其制备方法,利用垂直生长于FTO衬基上的氧化铜纳米棒阵列作为钙钛矿太阳电池的空穴传输层,并制成以FTO为阴极和透明复合电极(V2O5/Ag/V2O5)为阳极的背入射钙钛矿太阳电池。发现氧化铜纳米棒阵列构筑的背入射p‑i‑n钙钛矿太阳电池的短路电流密度为23.98 mA/cm2,效率为17.46%;与氧化铜纳米薄膜空穴传输层制备的钙钛矿电池相比,氧化铜纳米阵列空穴传输层制备的钙钛矿电池的短路电流密度和效率大幅度提升,短路电流密度提高了约1.4倍,效率增加了约1.7倍。
The invention discloses a back-incidence p-i-n perovskite solar cell and a preparation method thereof. A copper oxide nanorod array vertically grown on a FTO substrate is used as a hole transport layer of the perovskite solar cell, and the A back-incidence perovskite solar cell with FTO as cathode and transparent composite electrode (V 2 O 5 /Ag/V 2 O 5 ) as anode was fabricated. It is found that the short-circuit current density of the back-incident p‑i‑n perovskite solar cell constructed by the copper oxide nanorod array is 23.98 mA/cm 2 and the efficiency is 17.46%; Compared with the battery, the short-circuit current density and efficiency of the perovskite battery prepared by the copper oxide nanoarray hole transport layer are greatly improved, the short-circuit current density is increased by about 1.4 times, and the efficiency is increased by about 1.7 times.
Description
技术领域technical field
本发明涉及纳米半导体材料和新能源领域,确切地说是一种钙钛矿太阳电池结构及其制备方法。The invention relates to the fields of nano-semiconductor materials and new energy sources, specifically a perovskite solar cell structure and a preparation method thereof.
背景技术Background technique
基于有机甲基胺与无机碘化铅合成的杂化钙钛矿结构材料(CH3NH3PbI3)制备的太阳电池因其较高的光电转换效率(最高效率目前已经超过22%)、较低的成本及易于制备等优势获得了广泛关注【Nature,2019,567,511】。目前,高性能的钙钛矿太阳电池大多采用TiO2介孔层/钙钛矿层/空穴传输层构筑的n-i-p型器件结构。TiO2需要高温制备而Spiro-OMeTAD中的掺杂剂会降低电池稳定性【Science,2017,358,739;Advanced Energy Materials,2018,8,1701883】。之后,人们采用PEDOT:PSS/钙钛矿层/PC61BM构筑的p-i-n型电池器件,工艺相对简单,而且薄膜退火温度较低以及J-V迟滞效应较小逐渐引起了广泛的兴趣。这种器件结构的光电转换效率略低与n-i-p结构器件,目前PEDOT:PSS/钙钛矿层/PC61BM结构器件效率已经超过18%【Energy&EnvironmentalScience,2015,8,1602】。空穴传输层的主要作用是收集并传输从钙钛矿薄膜层注入的光生空穴,从而实现电子-空穴的有效分离,是钙钛矿太阳电池的重要组成部分,然而,这种p-i-n器件结构中通常使用的PEDOT:PSS有机空穴传输层并不是很理想,因为其电子阻挡性能力并非完美而且其功函数相对较低(-5.0eV),从而导致开路电压通常在0.95-1.0V之间;另一方面,PEDOT:PSS具有酸性,很容易腐蚀导电玻璃电极,不利于空穴的收集,也降低了器件的稳定性【Nanoscale,2016,8,11403;】。所以寻找更好的空穴传输材料代替有机PEDOT:PSS材料是钙钛矿太阳电池的重要研究方向之一。The solar cell prepared based on the hybrid perovskite structure material (CH 3 NH 3 PbI 3 ) synthesized by organic methylamine and inorganic lead iodide is due to its high photoelectric conversion efficiency (the highest efficiency has exceeded 22% at present), relatively The advantages of low cost and easy preparation have gained widespread attention [Nature, 2019, 567, 511]. At present, most high-performance perovskite solar cells adopt a nip-type device structure constructed with a TiO2 mesoporous layer/perovskite layer/hole transport layer. TiO2 requires high temperature preparation The dopants in Spiro-OMeTAD will reduce the battery stability [Science, 2017, 358, 739; Advanced Energy Materials, 2018, 8, 1701883]. Afterwards, the use of PEDOT:PSS/perovskite layer/PC 61 BM to build pin-type battery devices has gradually attracted widespread interest. The photoelectric conversion efficiency of this device structure is slightly lower than that of nip structure devices, and the current PEDOT:PSS/perovskite layer/PC 61 BM structure device efficiency has exceeded 18% [Energy & Environmental Science, 2015, 8, 1602]. The main role of the hole transport layer is to collect and transport the photo-generated holes injected from the perovskite thin film layer, thereby realizing the effective separation of electrons and holes, which is an important part of perovskite solar cells. However, this pin device The PEDOT:PSS organic hole transport layer commonly used in the structure is not ideal because its electron blocking ability is not perfect and its work function is relatively low (-5.0eV), resulting in an open circuit voltage typically between 0.95-1.0V. On the other hand, PEDOT:PSS is acidic, which can easily corrode the conductive glass electrodes, which is not conducive to the collection of holes, and also reduces the stability of the device [Nanoscale, 2016, 8, 11403;]. Therefore, finding better hole transport materials to replace organic PEDOT:PSS materials is one of the important research directions of perovskite solar cells.
对比传统的有机空穴传输层,p型半导体氧化铜材料具有来源丰富、成本低廉、空气稳定、制备工艺简单等特点;更重要的是,氧化铜的价带能级和CH3NH3PbI3的能级非常匹配,可以实现空穴的有效注入与传输,从而被成功用于钙钛矿太阳电池的空穴传输层【Journal of Materials Chemistry A,2017,5,20381】。但是不难发现,目前在钙钛矿太阳电池的研究中,作为空穴传输层的氧化铜全都是平面薄膜结构,这种结构极大的限制了钙钛矿与氧化铜的活性接触面积。Compared with the traditional organic hole transport layer, the p-type semiconductor copper oxide material has the characteristics of abundant sources, low cost, air stability and simple preparation process; more importantly, the valence band energy level of copper oxide and CH 3 NH 3 PbI 3 The energy levels of the ions are very matched, which can realize the efficient injection and transport of holes, which has been successfully used in the hole transport layer of perovskite solar cells [Journal of Materials Chemistry A, 2017, 5, 20381]. However, it is not difficult to find that in the current research on perovskite solar cells, the copper oxide used as the hole transport layer is all a planar thin film structure, which greatly limits the active contact area between perovskite and copper oxide.
例如现有专利CN111463349A,该专利公开了一种提高钙钛矿太阳能电池稳定性的方法,然而该专利使用的是氧化铜薄膜(氧化铜与钙钛矿的接触面积较小),并且其为底部入射结构。底部入射时,由于氧化铜本身对可见光有吸收,从而影响了钙钛矿薄膜对光子的获取,顶部入射结构就避免了这样的问题。For example, the existing patent CN111463349A discloses a method for improving the stability of perovskite solar cells, but this patent uses a copper oxide film (the contact area between copper oxide and perovskite is small), and it is the bottom incident structure. At bottom incidence, since copper oxide itself absorbs visible light, which affects the photon acquisition of perovskite films, the top incidence structure avoids such a problem.
发明内容SUMMARY OF THE INVENTION
本发明目的是提供一种钙钛矿太阳电池电池及其制备方法,用于解决现有p-i-n钙钛矿太阳电池空穴传输层与钙钛矿的接触面积有限,从而造成钙钛矿太阳电池中的光生空穴收集损失的问题。The purpose of the present invention is to provide a perovskite solar cell and a preparation method thereof, which are used to solve the problem that the contact area between the hole transport layer and the perovskite of the existing p-i-n perovskite solar cell is limited, thereby causing the perovskite solar cell. The problem of photogenerated hole collection loss.
本发明解决所述技术问题的技术方案为:The technical scheme of the present invention to solve the technical problem is:
一种背入射p-i-n结构钙钛矿太阳电池,依次包括阴极、氧化铜阵列、钙钛矿光吸收层、电子传输层和阳极。A back-incidence p-i-n structure perovskite solar cell sequentially includes a cathode, a copper oxide array, a perovskite light absorption layer, an electron transport layer, and an anode.
所述阴极为透明导电玻璃。The cathode is transparent conductive glass.
所述透明导电玻璃为氟锡氧化物、铟锡氧化物、铝锌氧化物的一种。The transparent conductive glass is one of fluorine tin oxide, indium tin oxide and aluminum zinc oxide.
所述钙钛矿光吸收层选自CH3NH3PbI3、CH3NH3PbBr3或CH3NH3PbIxBr1-x薄膜的一种。The perovskite light absorbing layer is selected from one of CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 or CH 3 NH 3 PbI x Br 1-x thin films.
所述电子传输层为PC61BM。The electron transport layer is PC 61 BM.
所述阳极为透明复合电极(V2O5/Ag/V2O5)。The anode is a transparent composite electrode (V 2 O 5 /Ag/V 2 O 5 ).
所述的背入射p-i-n结构钙钛矿太阳电池的制备方法,包括如下步骤:The preparation method of the back incident p-i-n structure perovskite solar cell includes the following steps:
(1)FTO导电薄膜的处理;(1) Treatment of FTO conductive film;
(2)氧化铜纳米阵列空穴传输层的制备;(2) Preparation of copper oxide nanoarray hole transport layer;
(3)钙钛矿光吸收层的制备;(3) Preparation of perovskite light absorption layer;
(4)电子传输层的制备;(4) Preparation of electron transport layer;
(5)透明复合电极的制备。(5) Preparation of transparent composite electrodes.
所述氧化铜纳米阵列空穴传输层的制备步骤如下:The preparation steps of the copper oxide nano-array hole transport layer are as follows:
(1)将醋酸铜溶解于乙醇中,在室温下搅拌得的蓝色澄清透明溶液;(1) copper acetate is dissolved in ethanol, the blue clear transparent solution that stirs at room temperature obtains;
(2)将上述溶液通过匀胶机旋涂在洁净的FTO导电玻璃上,得到均匀的醋酸铜薄膜;(2) above-mentioned solution is spin-coated on clean FTO conductive glass by a gluer to obtain a uniform copper acetate film;
(3)在马弗炉中退火得到致密的氧化铜薄膜;(3) annealing in a muffle furnace to obtain a dense copper oxide film;
(4)将其置三水合硝酸铜和六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应1-2小时,得到氧化铜纳米棒阵列。(4) placing it in an aqueous solution composed of copper nitrate trihydrate and hexamethylenetetramine, sealing and reacting in a 90° C. oven for 1-2 hours to obtain a copper oxide nanorod array.
所述钙钛矿光吸收层为CH3NH3PbI3钙钛矿光吸收层,其具体制备方法如下:(1)将CH3NH2和PbI2加入在到有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成;然后在搅拌得到黄色澄清的钙钛矿前驱液;The perovskite light absorbing layer is a CH 3 NH 3 PbI 3 perovskite light absorbing layer, and its specific preparation method is as follows: (1) CH 3 NH 2 and PbI 2 are added to an organic mixed solvent, and the organic mixed The solvent is prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3; then a yellow clear perovskite precursor solution is obtained by stirring;
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米棒阵列上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层。(2) The perovskite precursor solution was spin-coated on the copper oxide nanorod array obtained in the above step using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI3 perovskite light absorbing layer.
所述电子传输层具体制备方法如下:The specific preparation method of the electron transport layer is as follows:
(1)将PC61BM粉末溶解在氯苯中;(1) dissolve PC 61 BM powder in chlorobenzene;
(2)氮气手套箱中将上述溶液通过匀胶机旋涂在CH3NH3PbI3钙钛矿光吸收层上;(2) spin-coating the above solution on the CH 3 NH 3 PbI 3 perovskite light absorbing layer through a glue spinner in a nitrogen glove box;
(3)氮气手套箱中利用加热板对基底进行退火。(3) The substrate was annealed with a heating plate in a nitrogen glove box.
本发明中,我们利用氧化铜纳米阵列代替氧化铜薄膜,这将极大的增加氧化铜与钙钛矿的接触面积,从而可能更好的分离与转移钙钛矿中的光生空穴;同时,纳米棒阵列提供了直接空穴传输通道,可以降低界面电荷复合程度,从而将会进一步提高钙钛矿太阳电池的光电性能。另外,阵列的几何尺寸和空间分布在使用过程中不易发生变化,避免了光照温度下的光活性层形态结构发生变化,增加了电池的结构与性能的稳定性。我们利用透明电极(V2O5/Ag/V2O5)代替常规的顶部金属电极,便获得氧化铜纳米阵列作为空穴传输层的背入射p-i-n结构钙钛矿太阳电池。In the present invention, we use copper oxide nanoarrays to replace the copper oxide thin film, which will greatly increase the contact area between copper oxide and perovskite, so that the photo-generated holes in perovskite may be better separated and transferred; at the same time, Nanorod arrays provide direct hole transport channels, which can reduce the degree of interfacial charge recombination, which will further improve the optoelectronic performance of perovskite solar cells. In addition, the geometric size and spatial distribution of the array are not easily changed during use, which avoids the change of the morphological structure of the photoactive layer under the illumination temperature, and increases the stability of the structure and performance of the battery. We replaced the conventional top metal electrode with a transparent electrode (V 2 O 5 /Ag/V 2 O 5 ), and obtained a back-incidence pin-structured perovskite solar cell with copper oxide nanoarrays as the hole transport layer.
本发明的有益效果为:The beneficial effects of the present invention are:
(1)本发明通过采用氧化铜阵列来替代目前常规的平面薄膜作为空穴传输层来制备背入射p-i-n钙钛矿太阳电池,可明显提升电池的光电流。本发明中采用平面氧化铜薄膜作为空穴传输层,其电池的短路电流密度和效率分别为16.71mA/cm2和10.21%;采用传统的平面PEDOT:PSS薄膜作为空穴传输层,其电池的短路电流密度和效率分别为16.35mA/cm2和10.56%;而使用氧化铜阵列作为空穴传输层后,其电池短路电流密度和效率可获得23.98mA/cm2和17.46%,电池性能明显增强。(1) The present invention prepares a back-incident pin perovskite solar cell by using a copper oxide array to replace the current conventional flat film as a hole transport layer, which can significantly improve the photocurrent of the cell. In the present invention, the flat copper oxide film is used as the hole transport layer, and the short-circuit current density and efficiency of the battery are 16.71 mA/cm 2 and 10.21% respectively; using the traditional flat PEDOT:PSS film as the hole transport layer, the battery has a The short-circuit current density and efficiency are 16.35 mA/cm 2 and 10.56%, respectively; while using the copper oxide array as the hole transport layer, the short-circuit current density and efficiency of the battery can reach 23.98 mA/cm 2 and 17.46%, and the battery performance is significantly enhanced .
(2)本发明中利用氧化铜阵列作为空穴传输层,可以极大的增加氧化铜与钙钛矿的接触面积,从而可能更好的分离与转移钙钛矿中的光生空穴,改善了空穴的收集性能,从而提升了电池的光电流。(2) In the present invention, the copper oxide array is used as the hole transport layer, which can greatly increase the contact area between the copper oxide and the perovskite, so that the photogenerated holes in the perovskite may be better separated and transferred. The hole collection performance improves the photocurrent of the cell.
(3)本发明中背入射p-i-n钙钛矿太阳电池制备方法简便,对设备要求低,适合大规模应用,在光伏材料和低价太阳电池器件等领域具有很大的应用价值。(3) The back-incidence p-i-n perovskite solar cell in the present invention is simple in preparation method, low in equipment requirements, suitable for large-scale application, and has great application value in the fields of photovoltaic materials and low-cost solar cell devices.
附图说明Description of drawings
图1是本发明一种背入射p-i-n钙钛矿太阳电池的结构示意图;图中数字标注说明如下:1、阴极;2、氧化铜纳米阵列空穴传输层;3、CH3NH3PbI3钙钛矿光吸收层;4、电子传输层;5、阳极。Figure 1 is a schematic structural diagram of a back-incidence pin perovskite solar cell of the present invention; the numbers in the figure are marked as follows: 1, cathode; 2, copper oxide nanoarray hole transport layer; 3, CH 3 NH 3 PbI 3 calcium Titanite light absorption layer; 4. Electron transport layer; 5. Anode.
图2是本发明所述的实施例提供的一种背入射p-i-n钙钛矿太阳电池在光照(AM1.5)下的电流-电压性能。其中,(a)为使用1h氧化铜纳米阵列作为空穴传输层电池在光照(AM 1.5)下的电流-电压性能,即实施例1;(b)为使用1.5h氧化铜纳米阵列作为空穴传输层电池在光照(AM 1.5)下的电流-电压性能,即实施例2;(c)为使用2h氧化铜纳米阵列作为空穴传输层电池在光照(AM 1.5)下的电流-电压性能.,即实施例3。FIG. 2 is the current-voltage performance of a back-incident p-i-n perovskite solar cell under illumination (AM1.5) provided by the embodiment of the present invention. Among them, (a) is the current-voltage performance of the cell using 1h copper oxide nanoarrays as hole transport layer under illumination (AM 1.5), namely Example 1; (b) is using 1.5h copper oxide nanoarrays as holes The current-voltage performance of the transport layer cell under illumination (AM 1.5), namely Example 2; (c) is the current-voltage performance of the cell using 2h copper oxide nanoarrays as the hole transport layer under illumination (AM 1.5). , namely Example 3.
图3是本发明所述的对比例提供的一种背入射p-i-n钙钛矿太阳电池在光照(AM1.5)下的电流-电压性能。其中,(a)为使用氧化铜纳米薄膜作为空穴传输层电池在光照(AM 1.5)下的电流-电压性能,即对比例1;(b)为使用PEDOT:PSS薄膜作为空穴传输层电池在光照(AM 1.5)下的电流-电压性能,即对比例2。FIG. 3 is the current-voltage performance of a back-incident p-i-n perovskite solar cell provided by the comparative example of the present invention under illumination (AM1.5). Among them, (a) is the current-voltage performance of the battery using copper oxide nanofilm as the hole transport layer under illumination (AM 1.5), that is, Comparative Example 1; (b) is the battery using PEDOT:PSS film as the hole transport layer. Current-voltage performance under illumination (AM 1.5), ie, Comparative Example 2.
具体实施方式Detailed ways
实施例1Example 1
FTO导电薄膜的处理:将FTO导电玻璃经玻璃清洗剂、丙酮、异丙醇超声清洗干净,氮气吹干,紫外-臭氧处理30分钟。Treatment of FTO conductive film: The FTO conductive glass was ultrasonically cleaned with glass cleaning agent, acetone, and isopropanol, dried with nitrogen, and treated with ultraviolet-ozone for 30 minutes.
氧化铜纳米阵列空穴传输层的制备步骤:Preparation steps of copper oxide nanoarray hole transport layer:
(1)将0.02克醋酸铜溶解于10ml乙醇中,在室温下搅拌12小时得的蓝色澄清透明溶液。(1) Dissolve 0.02 g of copper acetate in 10 ml of ethanol and stir at room temperature for 12 hours to obtain a blue clear and transparent solution.
(2)将上述溶液通过匀胶机于2000转/分钟的转速旋涂在洁净的FTO导电玻璃上,得到均匀的醋酸铜薄膜。(2) Spin-coating the above solution on clean FTO conductive glass at a speed of 2000 r/min through a gluing machine to obtain a uniform copper acetate film.
(3)在马弗炉中于350℃下退火30分钟得到致密的氧化铜薄膜。(3) Annealing in a muffle furnace at 350° C. for 30 minutes obtains a dense copper oxide film.
(4)将其置于0.25mol/L三水合硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应1小时,得到氧化铜纳米棒阵列。(4) placing it in an aqueous solution composed of 0.25 mol/L copper nitrate trihydrate and 0.25 mol/L hexamethylenetetramine, sealing and reacting in a 90° C. oven for 1 hour to obtain a copper oxide nanorod array.
CH3NH3PbI3钙钛矿光吸收层的制备步骤:Preparation steps of CH 3 NH 3 PbI 3 perovskite light absorption layer:
(1)将209mg CH3NH2和581mg PbI2加入在到1ml的有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成。然后在80℃下搅拌2h得到黄色澄清的钙钛矿前驱液。(1) 209 mg of CH 3 NH 2 and 581 mg of PbI 2 were added to 1 ml of an organic mixed solvent prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3. Then stirred at 80 °C for 2 h to obtain a yellow clear perovskite precursor.
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米棒阵列上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层,退火温度为80℃,退火时间为10分钟。(2) The perovskite precursor solution was spin-coated on the copper oxide nanorod array obtained in the above step using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI3 perovskite light absorption layer, the annealing temperature is 80 °C, and the annealing time is 10 minutes.
电子传输层的制备步骤:Preparation steps of the electron transport layer:
(1)将15mg的PC61BM粉末溶解在1ml的氯苯中。(1) 15 mg of PC 61 BM powder was dissolved in 1 ml of chlorobenzene.
(2)氮气手套箱中将上述溶液通过匀胶机于2000转/分钟的转速旋涂在CH3NH3PbI3钙钛矿光吸收层上。(2) The above solution was spin-coated on the CH 3 NH 3 PbI 3 perovskite light absorbing layer at a speed of 2000 rpm in a nitrogen glove box through a glue spinner.
(3)氮气手套箱中利用加热板对基底进行退火,退火温度为80℃,退火时间为5分钟。(3) The substrate is annealed with a heating plate in a nitrogen glove box, the annealing temperature is 80° C., and the annealing time is 5 minutes.
透明复合电极的制备:通过在真空镀腔中,通过热蒸发的方式在电子传输层上先沉积10nm厚度的V2O5,然后沉积9nm厚度的银,最后再40nm厚度的V2O5。Preparation of transparent composite electrode: V 2 O 5 with a thickness of 10 nm was deposited on the electron transport layer by thermal evaporation in a vacuum coating chamber, then silver with a thickness of 9 nm was deposited, and finally V 2 O 5 with a thickness of 40 nm was deposited.
实施例2Example 2
FTO导电薄膜的处理:将FTO导电玻璃经玻璃清洗剂、丙酮、异丙醇超声清洗干净,氮气吹干,紫外-臭氧处理30分钟。Treatment of FTO conductive film: The FTO conductive glass was ultrasonically cleaned with glass cleaning agent, acetone, and isopropanol, dried with nitrogen, and treated with ultraviolet-ozone for 30 minutes.
氧化铜纳米阵列空穴传输层的制备步骤:Preparation steps of copper oxide nanoarray hole transport layer:
(1)将0.02克醋酸铜溶解于10ml乙醇中,在室温下搅拌12小时得的蓝色澄清透明溶液。(1) Dissolve 0.02 g of copper acetate in 10 ml of ethanol and stir at room temperature for 12 hours to obtain a blue clear and transparent solution.
(2)将上述溶液通过匀胶机于2000转/分钟的转速旋涂在洁净的FTO导电玻璃上,得到均匀的醋酸铜薄膜。(2) Spin-coating the above solution on clean FTO conductive glass at a speed of 2000 r/min through a gluing machine to obtain a uniform copper acetate film.
(3)在马弗炉中于350℃下退火30分钟得到致密的氧化铜薄膜。(3) Annealing in a muffle furnace at 350° C. for 30 minutes obtains a dense copper oxide film.
(4)将其置于0.25mol/L三水合硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应1.5小时,得到氧化铜纳米棒阵列。(4) placing it in an aqueous solution composed of 0.25 mol/L copper nitrate trihydrate and 0.25 mol/L hexamethylenetetramine, sealing and reacting in a 90° C. oven for 1.5 hours to obtain a copper oxide nanorod array.
CH3NH3PbI3钙钛矿光吸收层的制备步骤:Preparation steps of CH 3 NH 3 PbI 3 perovskite light absorption layer:
(1)将209mg CH3NH2和581mg PbI2加入在到1ml的有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成。然后在80℃下搅拌2h得到黄色澄清的钙钛矿前驱液。(1) 209 mg of CH 3 NH 2 and 581 mg of PbI 2 were added to 1 ml of an organic mixed solvent prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3. Then stirred at 80 °C for 2 h to obtain a yellow clear perovskite precursor.
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米棒阵列上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层,退火温度为80℃,退火时间为10分钟。(2) The perovskite precursor solution was spin-coated on the copper oxide nanorod array obtained in the above step using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI3 perovskite light absorption layer, the annealing temperature is 80 °C, and the annealing time is 10 minutes.
电子传输层的制备步骤:Preparation steps of the electron transport layer:
(1)将15mg的PC61BM粉末溶解在1ml的氯苯中。(1) 15 mg of PC 61 BM powder was dissolved in 1 ml of chlorobenzene.
(2)氮气手套箱中将上述溶液通过匀胶机于2000转/分钟的转速旋涂在CH3NH3PbI3钙钛矿光吸收层上。(2) The above solution was spin-coated on the CH 3 NH 3 PbI 3 perovskite light absorbing layer at a speed of 2000 rpm in a nitrogen glove box through a glue spinner.
(3)氮气手套箱中利用加热板对基底进行退火,退火温度为80℃,退火时间为5分钟。(3) The substrate is annealed with a heating plate in a nitrogen glove box, the annealing temperature is 80° C., and the annealing time is 5 minutes.
透明复合电极的制备:通过在真空镀腔中,通过热蒸发的方式在电子传输层上先沉积10nm厚度的V2O5,然后沉积9nm厚度的银,最后再40nm厚度的V2O5。Preparation of transparent composite electrode: V 2 O 5 with a thickness of 10 nm was deposited on the electron transport layer by thermal evaporation in a vacuum coating chamber, then silver with a thickness of 9 nm was deposited, and finally V 2 O 5 with a thickness of 40 nm was deposited.
实施例3Example 3
FTO导电薄膜的处理:将FTO导电玻璃经玻璃清洗剂、丙酮、异丙醇超声清洗干净,氮气吹干,紫外-臭氧处理30分钟。Treatment of FTO conductive film: The FTO conductive glass was ultrasonically cleaned with glass cleaning agent, acetone, and isopropanol, dried with nitrogen, and treated with ultraviolet-ozone for 30 minutes.
氧化铜纳米阵列空穴传输层的制备步骤:Preparation steps of copper oxide nanoarray hole transport layer:
(1)将0.02克醋酸铜溶解于10ml乙醇中,在室温下搅拌12小时得的蓝色澄清透明溶液。(1) Dissolve 0.02 g of copper acetate in 10 ml of ethanol and stir at room temperature for 12 hours to obtain a blue clear and transparent solution.
(2)将上述溶液通过匀胶机于2000转/分钟的转速旋涂在洁净的FTO导电玻璃上,得到均匀的醋酸铜薄膜。(2) Spin-coating the above solution on clean FTO conductive glass at a speed of 2000 r/min through a gluing machine to obtain a uniform copper acetate film.
(3)在马弗炉中于350℃下退火30分钟得到致密的氧化铜薄膜。(3) Annealing in a muffle furnace at 350° C. for 30 minutes obtains a dense copper oxide film.
(4)将其置于0.25mol/L三水合硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应2小时,得到氧化铜纳米棒阵列。(4) placing it in an aqueous solution composed of 0.25 mol/L copper nitrate trihydrate and 0.25 mol/L hexamethylenetetramine, sealing and reacting in a 90° C. oven for 2 hours to obtain a copper oxide nanorod array.
CH3NH3PbI3钙钛矿光吸收层的制备步骤:Preparation steps of CH 3 NH 3 PbI 3 perovskite light absorption layer:
(1)将209mg CH3NH2和581mg PbI2加入在到1ml的有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成。然后在80℃下搅拌2h得到黄色澄清的钙钛矿前驱液。(1) 209 mg of CH 3 NH 2 and 581 mg of PbI 2 were added to 1 ml of an organic mixed solvent prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3. Then stirred at 80 °C for 2 h to obtain a yellow clear perovskite precursor.
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米棒阵列上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层,退火温度为80℃,退火时间为10分钟。(2) The perovskite precursor solution was spin-coated on the copper oxide nanorod array obtained in the above step using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI3 perovskite light absorption layer, the annealing temperature is 80 °C, and the annealing time is 10 minutes.
电子传输层的制备步骤:Preparation steps of the electron transport layer:
(1)将15mg的PC61BM粉末溶解在1ml的氯苯中。(1) 15 mg of PC 61 BM powder was dissolved in 1 ml of chlorobenzene.
(2)氮气手套箱中将上述溶液通过匀胶机于2000转/分钟的转速旋涂在CH3NH3PbI3钙钛矿光吸收层上。(2) The above solution was spin-coated on the CH 3 NH 3 PbI 3 perovskite light absorbing layer at a speed of 2000 rpm in a nitrogen glove box through a glue spinner.
(3)氮气手套箱中利用加热板对基底进行退火,退火温度为80℃,退火时间为5分钟。(3) The substrate is annealed with a heating plate in a nitrogen glove box, the annealing temperature is 80° C., and the annealing time is 5 minutes.
透明复合电极的制备:通过在真空镀腔中,通过热蒸发的方式在电子传输层上先沉积10nm厚度的V2O5,然后沉积9nm厚度的银,最后再40nm厚度的V2O5。Preparation of transparent composite electrode: V 2 O 5 with a thickness of 10 nm was deposited on the electron transport layer by thermal evaporation in a vacuum coating chamber, then silver with a thickness of 9 nm was deposited, and finally V 2 O 5 with a thickness of 40 nm was deposited.
对比例1Comparative Example 1
对比例1为氧化铜纳米薄膜空穴传输层制备的背入射p-i-n钙钛矿太阳电池。Comparative Example 1 is a back-incidence p-i-n perovskite solar cell prepared with a copper oxide nano-film hole transport layer.
FTO导电薄膜的处理:将FTO导电玻璃经玻璃清洗剂、丙酮、异丙醇超声清洗干净,氮气吹干,紫外-臭氧处理30分钟。Treatment of FTO conductive film: The FTO conductive glass was ultrasonically cleaned with glass cleaning agent, acetone, and isopropanol, dried with nitrogen, and treated with ultraviolet-ozone for 30 minutes.
氧化铜纳米薄膜空穴传输层的制备步骤:Preparation steps of copper oxide nano-film hole transport layer:
(1)将0.02克醋酸铜溶解于10ml乙醇中,在室温下搅拌12小时得的蓝色澄清透明溶液。(1) Dissolve 0.02 g of copper acetate in 10 ml of ethanol and stir at room temperature for 12 hours to obtain a blue clear and transparent solution.
(2)将上述溶液通过匀胶机于2000转/分钟的转速旋涂在洁净的FTO导电玻璃上,得到均匀的醋酸铜薄膜。(2) Spin-coating the above solution on clean FTO conductive glass at a speed of 2000 r/min through a gluing machine to obtain a uniform copper acetate film.
(3)在马弗炉中于350℃下退火30分钟得到致密的氧化铜薄膜。(3) Annealing in a muffle furnace at 350° C. for 30 minutes obtains a dense copper oxide film.
CH3NH3PbI3钙钛矿光吸收层的制备步骤:Preparation steps of CH 3 NH 3 PbI 3 perovskite light absorption layer:
(1)将209mg CH3NH2和581mg PbI2加入在到1ml的有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成。然后在80℃下搅拌2h得到黄色澄清的钙钛矿前驱液。(1) 209 mg of CH 3 NH 2 and 581 mg of PbI 2 were added to 1 ml of an organic mixed solvent prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3. Then stirred at 80 °C for 2 h to obtain a yellow clear perovskite precursor.
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米薄膜上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层,退火温度为80℃,退火时间为10分钟。(2) The perovskite precursor solution was spin-coated on the copper oxide nanofilm obtained in the above step by using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI 3 The perovskite light absorption layer, the annealing temperature is 80°C, and the annealing time is 10 minutes.
电子传输层的制备步骤:Preparation steps of the electron transport layer:
(1)将15mg的PC61BM粉末溶解在1ml的氯苯中。(1) 15 mg of PC 61 BM powder was dissolved in 1 ml of chlorobenzene.
(2)氮气手套箱中将上述溶液通过匀胶机于2000转/分钟的转速旋涂在CH3NH3PbI3钙钛矿光吸收层上。(2) The above solution was spin-coated on the CH 3 NH 3 PbI 3 perovskite light absorbing layer at a speed of 2000 rpm in a nitrogen glove box through a glue spinner.
(3)氮气手套箱中利用加热板对基底进行退火,退火温度为80℃,退火时间为5分钟。(3) The substrate is annealed with a heating plate in a nitrogen glove box, the annealing temperature is 80° C., and the annealing time is 5 minutes.
透明复合电极的制备:通过在真空镀腔中,通过热蒸发的方式在电子传输层上先沉积10nm厚度的V2O5,然后沉积9nm厚度的银,最后再40nm厚度的V2O5。Preparation of transparent composite electrode: V 2 O 5 with a thickness of 10 nm was deposited on the electron transport layer by thermal evaporation in a vacuum coating chamber, then silver with a thickness of 9 nm was deposited, and finally V 2 O 5 with a thickness of 40 nm was deposited.
对比例2Comparative Example 2
对比例2为PEDOT:PSS有机薄膜空穴传输层制备的背入射p-i-n钙钛矿太阳电池。Comparative Example 2 is a back-incidence p-i-n perovskite solar cell prepared with a PEDOT:PSS organic thin film hole transport layer.
FTO导电薄膜的处理:将FTO导电玻璃经玻璃清洗剂、丙酮、异丙醇超声清洗干净,氮气吹干,紫外-臭氧处理30分钟。Treatment of FTO conductive film: The FTO conductive glass was ultrasonically cleaned with glass cleaning agent, acetone, and isopropanol, dried with nitrogen, and treated with ultraviolet-ozone for 30 minutes.
PEDOT:PSS有机空穴传输层的制备步骤:首先将PEDOT:PSS溶液用0.45μm的过滤头过滤,然后利用匀胶机在空气下将PEDOT:PSS溶液旋涂到洁净的FTO导电基底上,旋涂转速为4500转/分钟,时间60s。之后在空气下于145℃下热处理10分钟,得到PEDOT:PSS膜层作为空穴传输层。Preparation steps of PEDOT:PSS organic hole transport layer: First, filter the PEDOT:PSS solution with a 0.45 μm filter head, and then use a spin coater to spin-coat the PEDOT:PSS solution on a clean FTO conductive substrate under air. The coating speed is 4500 rpm and the time is 60s. Then, heat treatment was performed at 145° C. for 10 minutes under air to obtain a PEDOT:PSS film layer as a hole transport layer.
CH3NH3PbI3钙钛矿光吸收层的制备步骤:Preparation steps of CH 3 NH 3 PbI 3 perovskite light absorption layer:
(1)将209mg CH3NH2和581mg PbI2加入在到1ml的有机混合溶剂中,该有机混合溶剂由γ-丁内酯和二甲基亚砜按照体积比7:3配制而成。然后在80℃下搅拌2h得到黄色澄清的钙钛矿前驱液。(1) 209 mg of CH 3 NH 2 and 581 mg of PbI 2 were added to 1 ml of an organic mixed solvent prepared from γ-butyrolactone and dimethyl sulfoxide in a volume ratio of 7:3. Then stirred at 80 °C for 2 h to obtain a yellow clear perovskite precursor.
(2)在氮气手套箱中利用匀胶机将钙钛矿前驱液旋涂在上述步骤得到的氧化铜纳米薄膜上,并在氮气手套箱中利用加热板对基底进行退火得到CH3NH3PbI3钙钛矿光吸收层,退火温度为80℃,退火时间为10分钟。(2) The perovskite precursor solution was spin-coated on the copper oxide nanofilm obtained in the above step by using a glue spinner in a nitrogen glove box, and the substrate was annealed with a heating plate in a nitrogen glove box to obtain CH 3 NH 3 PbI 3 The perovskite light absorption layer, the annealing temperature is 80°C, and the annealing time is 10 minutes.
电子传输层的制备步骤:Preparation steps of the electron transport layer:
(1)将15mg的PC61BM粉末溶解在1ml的氯苯中。(1) 15 mg of PC 61 BM powder was dissolved in 1 ml of chlorobenzene.
(2)氮气手套箱中将上述溶液通过匀胶机于2000转/分钟的转速旋涂在CH3NH3PbI3钙钛矿光吸收层上。(2) The above solution was spin-coated on the CH 3 NH 3 PbI 3 perovskite light absorbing layer at a speed of 2000 rpm in a nitrogen glove box through a glue spinner.
(3)氮气手套箱中利用加热板对基底进行退火,退火温度为80℃,退火时间为5分钟。(3) The substrate is annealed with a heating plate in a nitrogen glove box, the annealing temperature is 80° C., and the annealing time is 5 minutes.
透明复合电极的制备:通过在真空镀腔中,通过热蒸发的方式在电子传输层上先沉积10nm厚度的V2O5,然后沉积9nm厚度的银,最后再40nm厚度的V2O5。Preparation of transparent composite electrode: V 2 O 5 with a thickness of 10 nm was deposited on the electron transport layer by thermal evaporation in a vacuum coating chamber, then silver with a thickness of 9 nm was deposited, and finally V 2 O 5 with a thickness of 40 nm was deposited.
实施例1、实施例2、实施例3、对比例1、对比例2制备的钙钛矿太阳电池在光照(AM1.5)下的电流-电压(J-V)性能表征结果见附图2。J-V测试是在空气室温环境中完成的;由氧化铜纳米薄膜空穴传输层制备的钙钛矿电池的短路电流密度和效率分别为16.71mA/cm2和10.21%。由PEDOT:PSS纳米薄膜空穴传输层制备的钙钛矿电池的短路电流密度和效率分别为16.35mA/cm2和10.56%。与氧化铜纳米薄膜以及PEDOT:PSS有机薄膜空穴传输层制备的钙钛矿电池相比,氧化铜纳米阵列空穴传输层制备的钙钛矿电池的短路电流密度和效率大幅度提升,详细比较见表1。Figure 2 shows the current-voltage (JV) performance characterization results of the perovskite solar cells prepared in Example 1, Example 2, Example 3, Comparative Example 1, and Comparative Example 2 under illumination (AM1.5). The JV test was done in an air room temperature environment; the short-circuit current density and efficiency of the perovskite cells fabricated from the copper oxide nanofilm hole transport layer were 16.71 mA/cm and 10.21%, respectively. The short-circuit current density and efficiency of the perovskite cells fabricated from the PEDOT:PSS nanofilm hole transport layer were 16.35 mA/cm and 10.56%, respectively. Compared with perovskite cells prepared from copper oxide nanofilms and PEDOT:PSS organic thin film hole transport layers, the short-circuit current density and efficiency of perovskite cells prepared with copper oxide nanoarray hole transport layers are greatly improved. Detailed comparison See Table 1.
表1.Table 1.
注:J-V性能测试在实验室环境中完成,电池的有效面积为16mm2;Voc、Jsc、FF和η分别为电池的开路电压、短路电流、填充因子和转换效率。Note: JV performance test is done in laboratory environment, the effective area of the battery is 16mm 2 ; V oc , J sc , FF and η are the open circuit voltage, short circuit current, fill factor and conversion efficiency of the battery, respectively.
以上实施例仅用以说明本发明的技术方案而非对其进行限制,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Those skilled in the art can make various corresponding changes according to the present invention without departing from the spirit and essence of the present invention. and deformation, but these corresponding changes and deformations should belong to the protection scope of the appended claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110020736.5A CN113394343B (en) | 2021-01-07 | 2021-01-07 | Back-incident p-i-n structure perovskite solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110020736.5A CN113394343B (en) | 2021-01-07 | 2021-01-07 | Back-incident p-i-n structure perovskite solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113394343A CN113394343A (en) | 2021-09-14 |
CN113394343B true CN113394343B (en) | 2022-08-05 |
Family
ID=77616667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110020736.5A Active CN113394343B (en) | 2021-01-07 | 2021-01-07 | Back-incident p-i-n structure perovskite solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113394343B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114716323B (en) * | 2022-03-10 | 2023-06-09 | 吉林大学 | Metal halide micro-nano array, preparation method and optical film application |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100469685C (en) * | 2006-01-09 | 2009-03-18 | 合肥工业大学 | Preparation method of copper oxide nanotube array |
CN100500571C (en) * | 2007-08-14 | 2009-06-17 | 北京科技大学 | A method for preparing cuprous oxide nanocolumn array |
CN103058124A (en) * | 2011-10-21 | 2013-04-24 | 中国科学院合肥物质科学研究院 | Copper oxide grading array film and preparation method thereof |
US20150144198A1 (en) * | 2013-11-26 | 2015-05-28 | Michael D. IRWIN | Solar cell materials |
KR20180033074A (en) * | 2016-09-23 | 2018-04-02 | 주식회사 엘지화학 | Organic-inorganic complex solar cell and method for manufacturing same |
CN107369729B (en) * | 2017-08-08 | 2019-02-12 | 湖州师范学院 | A nano-ordered interpenetrating all-oxide heterojunction thin-film solar cell and its preparation method |
CN107705993B (en) * | 2017-08-21 | 2019-01-08 | 湖州师范学院 | Dye-sensitized solar cells cupric oxide nano-rod array is to electrode and preparation method thereof |
CN110963523B (en) * | 2018-09-29 | 2021-11-05 | 清华大学 | Nanoporous copper-supported copper oxide nanosheet array composite material and preparation method thereof |
CN109786480B (en) * | 2019-01-11 | 2020-05-12 | 北京科技大学 | A kind of nano-array structure solar cell and preparation method thereof |
CN109748314A (en) * | 2019-03-25 | 2019-05-14 | 郑州大学 | A kind of preparation method of template-free cuprous oxide nanowire array |
CN110224066A (en) * | 2019-05-14 | 2019-09-10 | 浙江大学 | A kind of translucent perovskite solar battery of no auxiliary layer and preparation method thereof |
CN111755256B (en) * | 2020-07-14 | 2022-03-29 | 湖州师范学院 | Preparation method of three-dimensional ZnO/CuO nano heterogeneous hierarchical structure photoelectrode |
-
2021
- 2021-01-07 CN CN202110020736.5A patent/CN113394343B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113394343A (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105702864B (en) | A kind of high quality perovskite thin film, solar cell and preparation method thereof | |
CN110350089B (en) | Bi2O2S modified SnO2 electron transport layer perovskite solar cell and preparation method | |
CN105244441B (en) | Perovskite solar cell based on tetraphenyl ethylene polymer hole transport layer | |
CN109728169B (en) | Perovskite solar cell doped with functional additive and preparation method thereof | |
CN105576150B (en) | The Ca-Ti ore type solar cell and preparation method of a kind of quantum dot size graded | |
CN109768167B (en) | Perovskite solar cell without current lag and preparation method thereof | |
CN109216557A (en) | One kind being based on citric acid/SnO2Perovskite solar battery of electron transfer layer and preparation method thereof | |
CN110335945B (en) | A kind of double electron transport layer inorganic perovskite solar cell and its preparation method and application | |
CN107482120A (en) | A kind of perovskite battery based on composite electron transport layer and its preparation method | |
CN103811663A (en) | Annealed free organic solar cell and production method thereof | |
CN107394047A (en) | Application of the alcohol-soluble fullerene derivate in perovskite solar cell | |
CN107154460A (en) | A kind of complete carbon-based perovskite solar cell and its preparation technology | |
CN114141952B (en) | A kind of doped perovskite solar cell and its preparation method | |
CN105470399A (en) | Perovskite solar cell based on undoped organic hole transport layer and preparation method | |
CN111987220A (en) | Perovskite solar cell based on down-conversion layer and preparation method | |
CN109103280B (en) | All-inorganic perovskite ferroelectric fiber composite structure solar cell and preparation method | |
CN109065724B (en) | Mo-titanium dioxide-AgNWs flexible perovskite solar cell and preparation method thereof | |
CN106935709B (en) | Carbon cloth base back electrode and solar cell and preparation method thereof | |
CN108767120A (en) | A kind of method and solar cell preparing perovskite thin film using carbon quantum dot | |
CN108767112B (en) | BiI with different hole transport layers3Solar cell and preparation method thereof | |
CN110808333A (en) | A kind of perovskite solar cell based on copper-zinc-tin-sulfur-selenium hole transport layer and preparation method thereof | |
CN110061137A (en) | A kind of perovskite battery and preparation method thereof preparing tin oxide electron transfer layer based on room temperature film-forming | |
CN113394343B (en) | Back-incident p-i-n structure perovskite solar cell and preparation method thereof | |
CN114824103A (en) | A kind of perovskite solar cell and its production method | |
CN204927356U (en) | An improved nano-zinc oxide flake array perovskite solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |