CN107482120A - A kind of perovskite battery based on composite electron transport layer and its preparation method - Google Patents
A kind of perovskite battery based on composite electron transport layer and its preparation method Download PDFInfo
- Publication number
- CN107482120A CN107482120A CN201710564973.1A CN201710564973A CN107482120A CN 107482120 A CN107482120 A CN 107482120A CN 201710564973 A CN201710564973 A CN 201710564973A CN 107482120 A CN107482120 A CN 107482120A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- transport layer
- electron transport
- solution
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000002131 composite material Substances 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 50
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- 239000002243 precursor Substances 0.000 claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims description 21
- 150000004706 metal oxides Chemical class 0.000 claims description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 20
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 18
- 230000008021 deposition Effects 0.000 claims description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 16
- 230000005525 hole transport Effects 0.000 claims description 14
- 239000002798 polar solvent Substances 0.000 claims description 12
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 12
- 238000004528 spin coating Methods 0.000 claims description 11
- 239000012454 non-polar solvent Substances 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000002207 thermal evaporation Methods 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 238000002834 transmittance Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 claims description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 4
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 3
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 claims description 2
- 229910015711 MoOx Inorganic materials 0.000 claims description 2
- 229910005855 NiOx Inorganic materials 0.000 claims description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 claims description 2
- NPNMHHNXCILFEF-UHFFFAOYSA-N [F].[Sn]=O Chemical compound [F].[Sn]=O NPNMHHNXCILFEF-UHFFFAOYSA-N 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 claims description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 239000002923 metal particle Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 claims 3
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- DYDNPESBYVVLBO-UHFFFAOYSA-N formanilide Chemical compound O=CNC1=CC=CC=C1 DYDNPESBYVVLBO-UHFFFAOYSA-N 0.000 claims 1
- 239000013354 porous framework Substances 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 239000008096 xylene Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 4
- 230000027756 respiratory electron transport chain Effects 0.000 abstract 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000002905 metal composite material Substances 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 230000008092 positive effect Effects 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000005245 sintering Methods 0.000 description 6
- -1 yttrium chloride ethanol Chemical compound 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 4
- 229910009523 YCl3 Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- FZHSXDYFFIMBIB-UHFFFAOYSA-L diiodolead;methanamine Chemical compound NC.I[Pb]I FZHSXDYFFIMBIB-UHFFFAOYSA-L 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及钙钛矿太阳能电池领域,特别涉及一种基于新型复合电子传输层的钙钛矿电池及制备方法。The invention relates to the field of perovskite solar cells, in particular to a perovskite cell based on a novel composite electron transport layer and a preparation method thereof.
背景技术Background technique
由于经济的快速发展,人口的急剧增加,工业化进程不断推进,能源短缺和环境污染成为当今人类面临的两大难题。快速发展清洁能源和可再生能源,是目前的主要解决手段。太阳能电池将光能转化为电能,具有清洁无污染的特点,具有非常广阔的应用前景。钙钛矿太阳能电池是目前快速发展的一类太阳能电池,具有效率高、成本低、制备简单等特点。经过几年的快速发展,已经由2009年的3.8%迅速提高到了22.1%。Due to the rapid economic development, the sharp increase in population, and the continuous advancement of industrialization, energy shortage and environmental pollution have become two major problems facing mankind today. The rapid development of clean energy and renewable energy is currently the main solution. Solar cells convert light energy into electrical energy, are clean and pollution-free, and have very broad application prospects. Perovskite solar cells are a type of solar cells that are rapidly developing at present, with the characteristics of high efficiency, low cost, and simple preparation. After several years of rapid development, it has rapidly increased from 3.8% in 2009 to 22.1%.
钙钛矿太阳能电池按照结构划分为平面结构和介孔结构,主要包括透明电极、电子传输层、钙钛矿吸光材料、空穴传输层、对电极等。钙钛矿材料吸光后产生光生电子和空穴,分别传到电子传输层和空穴传输层,与外电路相连形成回路,输出电能。目前主要的电子传输层材料主要为高化学稳定性的金属氧化物半导体,但是由于其低载流子迁移率、高缺陷浓度、能级不匹配等特性,严重制约了光生电子由钙钛矿光吸收层转移到电子传输层,造成器件低效率、正反扫不一致、性能不稳定等问题。According to the structure, perovskite solar cells are divided into planar structure and mesoporous structure, mainly including transparent electrode, electron transport layer, perovskite light-absorbing material, hole transport layer, counter electrode, etc. After the perovskite material absorbs light, photogenerated electrons and holes are generated, which are transmitted to the electron transport layer and the hole transport layer respectively, and are connected with the external circuit to form a loop to output electric energy. At present, the main electron transport layer materials are mainly metal oxide semiconductors with high chemical stability, but due to their characteristics such as low carrier mobility, high defect concentration, and energy level mismatch, it seriously restricts the photogenerated electrons from perovskite to light. The absorption layer is transferred to the electron transport layer, causing problems such as low device efficiency, inconsistent forward and reverse scanning, and unstable performance.
因此,提高金属氧化物电子传输层分离抽取光生载流子的能力,减少界面缺陷复合,优化电子传输层和钙钛矿活性层的能级匹配,显得极其重要。Therefore, it is extremely important to improve the ability of the metal oxide electron transport layer to separate and extract photogenerated carriers, reduce the recombination of interfacial defects, and optimize the energy level matching between the electron transport layer and the perovskite active layer.
发明内容Contents of the invention
针对上述钙钛矿太阳能电池光生电子由钙钛矿光吸收层转移到电子传输层存在缺陷、能级不匹配等问题,本发明提出通过在电子传输层中复合不同电负性金属元素,改变元素化学态和电子结构,进而引起电子传输层能级分布变化,达到与钙钛矿光吸收更加匹配的能级排列,以提高载流子分离收集效率,减少界面复合,从而提高钙钛矿太阳能电池的光伏性能。Aiming at the problems of defect and energy level mismatch in the transfer of photogenerated electrons from perovskite solar cells from the perovskite light absorbing layer to the electron transport layer, the present invention proposes to compound different electronegative metal elements in the electron transport layer to change the element Chemical state and electronic structure, which in turn cause changes in the energy level distribution of the electron transport layer to achieve an energy level arrangement that is more compatible with perovskite light absorption, so as to improve the efficiency of carrier separation and collection and reduce interface recombination, thereby improving the performance of perovskite solar cells. photovoltaic performance.
为了实现本发明的目的,具体技术方案如下:In order to realize the purpose of the present invention, concrete technical scheme is as follows:
本发明基于复合电子传输层的钙钛矿电池,其电池结构自下而上包括衬底材料、透明电极、电子传输层、钙钛矿光吸收层、空穴传输层和对电极,其中电子传输层为平面结构或者为多孔骨架结构。The present invention is based on a perovskite battery with a composite electron transport layer, and its battery structure includes a substrate material, a transparent electrode, an electron transport layer, a perovskite light absorption layer, a hole transport layer and a counter electrode from bottom to top, wherein the electron transport The layer is a planar structure or a porous skeleton structure.
所述衬底材料为硬质透明玻璃或者柔性有机塑料。The substrate material is hard transparent glass or flexible organic plastic.
所述透明电极具有收集传输电子的能力,为铟锡氧化物、氟锡氧化物或铝锌氧化物,透光度>70%,面电阻<15Ω。The transparent electrode has the ability to collect and transport electrons, is indium tin oxide, fluorine tin oxide or aluminum zinc oxide, has a light transmittance of >70%, and a surface resistance of <15Ω.
所述电子传输层具有把钙钛矿材料中光生电子分离传输到透明电极的作用,主要由金属氧化物组成,其中金属元素为两种或多种组合,具有不同电负性;所述多孔骨架为微孔互穿结构,金属颗粒粒径在10-50nm,厚度为80-600nm。The electron transport layer has the function of separating and transporting the photogenerated electrons in the perovskite material to the transparent electrode, and is mainly composed of metal oxides, in which two or more metal elements are combined and have different electronegativity; the porous skeleton It is a microporous interpenetrating structure, the particle size of metal particles is 10-50nm, and the thickness is 80-600nm.
所述钙钛矿光吸收层材料为ABX3型,其中A可以为Rb+、Cs+、CH3NH3 +、HC(NH2)2 +,B可以为Pb、Sn、Cu,X可以为Cl、Br、I、SCN等;钙钛矿光吸收层可与平面电子传输层形成平面异质结;或渗入填充多孔结构电子传输层,并在多孔骨架上面形成一层致密均匀的钙钛矿薄膜;钙钛矿薄膜厚度为100-1000nm。The perovskite light absorbing layer material is ABX 3 type, wherein A can be Rb + , Cs + , CH 3 NH 3 + , HC(NH 2 ) 2 + , B can be Pb, Sn, Cu, and X can be Cl, Br, I, SCN, etc.; the perovskite light absorption layer can form a planar heterojunction with the planar electron transport layer; or infiltrate and fill the porous structure electron transport layer, and form a dense and uniform layer of perovskite on the porous skeleton Thin film; the thickness of the perovskite film is 100-1000nm.
所述的空穴传输层为Spiro-OMeTAD、P3HT、PTAA、CuI、CuSCN、Cu2O、NiOx和MoOx中的一种或多种。The hole transport layer is one or more of Spiro-OMeTAD, P3HT, PTAA, CuI, CuSCN, Cu 2 O, NiOx and MoOx.
所述对电极为不透明或者半透明的金属电极或者导电碳材料电极。The counter electrode is an opaque or translucent metal electrode or a conductive carbon material electrode.
上述钙钛矿太阳能电池的制备方法,包括以下步骤:The preparation method of above-mentioned perovskite solar cell comprises the following steps:
(1)配置溶于极性溶剂中的(FAPbI3)x(MAPbBr3)1-x钙钛矿前驱体溶液;配置溶于异丙醇的酸性异丙醇钛溶液,作为致密二氧化钛前驱体溶液;(1) Configure (FAPbI 3 ) x (MAPbBr 3 ) 1-x perovskite precursor solution dissolved in polar solvent; configure acidic titanium isopropoxide solution dissolved in isopropanol as a dense titanium dioxide precursor solution ;
(2)金属盐溶液制备:将高纯无水级氯化钇(YCl3)金属盐粉末溶于无水级乙醇溶液,配置成0-20mg/ml不同浓度的溶液;(2) Preparation of metal salt solution: Dissolve high-purity anhydrous grade yttrium chloride (YCl 3 ) metal salt powder in anhydrous ethanol solution, and configure solutions with different concentrations of 0-20 mg/ml;
(3)复合电负性金属氧化物电子传输层沉积:在FTO表面旋涂步骤(1)配置的致密TiO2前驱液,在100-150℃烘烤5-20min后放入马弗炉中,再在450~550℃烧结30-90min,获得10-100nm的具有良好电学性能的致密TiO2电子传输层;将商业Dyesol 30-NRD与乙醇进行混合,旋涂后于100-150℃烘烤5-20min,然后放入马弗炉中在450~550℃烧结30-90min,形成相互贯穿的微孔,通过调节Dyesol 30-NRD与乙醇混合比例,控制多孔层厚度为80-600nm;然后将其放入其他电负性金属盐(氯化钇)溶液中静置处理,取出后吹干溶液,在马弗炉中450~550℃烧结30-90min;(3) Deposition of composite electronegative metal oxide electron transport layer: spin-coat the dense TiO 2 precursor solution prepared in step (1) on the surface of FTO, bake at 100-150°C for 5-20min, and put it into the muffle furnace. Then sinter at 450-550°C for 30-90min to obtain a 10-100nm dense TiO 2 electron transport layer with good electrical properties; mix commercial Dyesol 30-NRD with ethanol, spin-coat and bake at 100-150°C for 5 -20min, then put it into a muffle furnace and sinter at 450-550°C for 30-90min to form interpenetrating micropores. By adjusting the mixing ratio of Dyesol 30-NRD and ethanol, the thickness of the porous layer is controlled to be 80-600nm; Put it into other electronegative metal salt (yttrium chloride) solution and let it stand for treatment, take it out, blow dry the solution, and sinter in a muffle furnace at 450-550°C for 30-90min;
(4)钙钛矿光吸收层的溶液法制备:在电子传输层表面滴加钙钛矿前驱体,旋涂过程中滴加非极性溶剂萃取出极性溶剂,然后在60-150℃烘干退火5-60min结晶;通过调节前驱体浓度和旋涂转速控制钙钛矿光吸收层的厚度为100-1000nm,与复合电负性金属氧化物电子传输层形成异质结,电子传输层包含两种或多种不同电负性金属元素;(4) Preparation of the perovskite light-absorbing layer by solution method: drop the perovskite precursor on the surface of the electron transport layer, add a non-polar solvent to extract the polar solvent during the spin coating process, and then bake at 60-150 °C Dry annealing for 5-60 minutes to crystallize; by adjusting the concentration of the precursor and the spin coating speed, the thickness of the perovskite light-absorbing layer is controlled to 100-1000nm, and a heterojunction is formed with the electron-transport layer of the composite electronegative metal oxide. The electron-transport layer contains Two or more metal elements with different electronegativity;
(5)空穴传输层沉积:在钙钛矿光吸收层表面旋涂空穴传输层,通过控制溶液浓度和转速,控制厚度为100-400nm;(5) Hole transport layer deposition: Spin-coat the hole transport layer on the surface of the perovskite light-absorbing layer, and control the thickness to 100-400nm by controlling the solution concentration and rotational speed;
(6)对电极沉积:采用热蒸镀法沉积金电极,控制厚度为50-150nm。(6) Deposition of the counter electrode: the gold electrode is deposited by the thermal evaporation method, and the thickness is controlled to be 50-150nm.
步骤(4)中所述溶液法的溶剂包括极性溶剂和非极性溶剂,其中极性溶剂溶解钙钛矿材料,包括二甲基甲酰胺、二甲基亚砜、γ-丁内酯中一种或多种;非极性溶剂与钙钛矿材料相互不溶,包括苯、甲苯、1,2-二甲苯、1,3-二甲苯、1,4-二甲苯、氯苯、1,2-二氯苯、1,3-二氯苯、1,4-二氯苯、乙醇、异丙醇中的一种或多种。The solvent of the solution method described in step (4) includes polar solvents and non-polar solvents, wherein polar solvents dissolve perovskite materials, including dimethylformamide, dimethyl sulfoxide, gamma-butyrolactone One or more; non-polar solvents are mutually insoluble with perovskite materials, including benzene, toluene, 1,2-xylene, 1,3-xylene, 1,4-xylene, chlorobenzene, 1,2 -One or more of dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, ethanol, isopropanol.
本发明的特点在于,新型复合电子传输层是由具有不同电负性的金属元素组成的复合金属氧化物,可通过改变不同电负性金属元素比例,调节元素的化学态和电子结构及电子传输层的能级分布,达到与钙钛矿光吸收层更合理的能级匹配,减少界面处光生电子空穴复合,提高分离收集钙钛矿中光生电子的效率,有效增加短路电流,最终提高器件性能。本发明制备过程简单有效,效果明显,制备的钙钛矿电池效率从15.10%提升到18.26%,具有应用前景。The feature of the present invention is that the novel composite electron transport layer is a composite metal oxide composed of metal elements with different electronegativity, and the chemical state, electronic structure and electron transport of the element can be adjusted by changing the ratio of metal elements with different electronegativity. The energy level distribution of the perovskite layer can achieve a more reasonable energy level match with the perovskite light absorption layer, reduce the recombination of photogenerated electrons and holes at the interface, improve the efficiency of separating and collecting photogenerated electrons in perovskite, effectively increase the short-circuit current, and ultimately improve the device performance. The preparation process of the invention is simple and effective, and the effect is obvious, and the efficiency of the prepared perovskite battery is increased from 15.10% to 18.26%, which has application prospects.
附图说明Description of drawings
图1为实施例1与对比例1的光电性能对比。Figure 1 is a comparison of the photoelectric properties of Example 1 and Comparative Example 1.
图2为实施例1与对比例1电子传输层的X-ray光电子能谱。Fig. 2 is the X-ray photoelectron spectrum of the electron transport layer of Example 1 and Comparative Example 1.
图3为实施例1与对比例1的时间分辨荧光光谱。FIG. 3 is the time-resolved fluorescence spectra of Example 1 and Comparative Example 1.
具体实施方式detailed description
以下结合实施例,对本发明进一步详细描述。对本领域相关技术人员来说没有这些细节描述也可以完全理解本发明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。Below in conjunction with embodiment, the present invention is further described in detail. It is to those skilled in the art that the present invention can be fully understood without these detailed descriptions. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
实施例1:Example 1:
复合电负性金属氧化物电子传输层的钙钛矿太阳能电池的构建Construction of perovskite solar cells with composite electronegative metal oxide electron transport layers
(1)配置(FAPbI3)0.83(MAPbBr3)0.17前驱体:PbI2浓度为1.1M,FAI浓度为1M,PbBr浓度为0.22M,MABr浓度为0.2M,溶剂为二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),其中溶剂体积比为4:1;配置致密二氧化钛前驱体:浓度为0.23M异丙醇钛和0.013M盐酸的混合异丙醇溶液;(1) Configuration (FAPbI 3 ) 0.83 (MAPbBr 3 ) 0.17 precursor: PbI 2 concentration is 1.1M, FAI concentration is 1M, PbBr concentration is 0.22M, MABr concentration is 0.2M, solvent is dimethylformamide (DMF ) and dimethyl sulfoxide (DMSO), wherein the solvent volume ratio is 4:1; configure a dense titanium dioxide precursor: a mixed isopropanol solution with a concentration of 0.23M titanium isopropoxide and 0.013M hydrochloric acid;
(2)氯化钇乙醇溶液制备:将高纯无水级YCl3粉末溶于无水级乙醇溶液,配置浓度为2mg/ml溶液;(2) Preparation of yttrium chloride ethanol solution: high - purity anhydrous grade YCl3 powder is dissolved in anhydrous grade ethanol solution, and the configuration concentration is 2mg/ml solution;
(3)采用FTO导电玻璃作为衬底和透明电极,透光度80%,面电阻为15Ω;(3) FTO conductive glass is used as the substrate and transparent electrode, the light transmittance is 80%, and the surface resistance is 15Ω;
(4)复合电负性金属氧化物电子传输层沉积:在FTO表面旋涂步骤(1)配置的致密TiO2前驱液,125℃烘烤5min后,放入马弗炉中500℃烧结30min,获得30nm的具有良好电学性能的致密TiO2电子传输层;将商业Dyesol 30-NRD与乙醇按比例进行混合,旋涂后在125℃烘烤5min,然后放入马弗炉中在500℃烧结30min,形成相互贯穿的微孔,厚度为200nm;然后放入氯化钇乙醇溶液中静置处理,取出后吹干溶液,在马弗炉中500℃烧结30min;(4) Deposition of composite electronegative metal oxide electron transport layer: Spin-coat the dense TiO 2 precursor liquid prepared in step (1) on the surface of FTO, bake at 125°C for 5min, put it into a muffle furnace for sintering at 500°C for 30min, A 30nm dense TiO2 electron transport layer with good electrical properties was obtained; commercial Dyesol 30-NRD was mixed with ethanol in proportion, after spin coating, it was baked at 125°C for 5min, and then put into a muffle furnace for sintering at 500°C for 30min , forming interpenetrating micropores with a thickness of 200nm; then put it into the yttrium chloride ethanol solution for static treatment, take it out, blow dry the solution, and sinter in a muffle furnace at 500°C for 30min;
(5)钙钛矿光吸收层的溶液法制备:在电子传输层表面滴加钙钛矿前驱体,旋涂过程中快速滴加氯苯作为非极性溶剂萃取出极性溶剂,然后在热台上100℃烘干退火30min结晶,厚度为500nm;(5) Preparation of the perovskite light-absorbing layer by solution method: drop the perovskite precursor on the surface of the electron transport layer, quickly drop chlorobenzene as a non-polar solvent during the spin coating process to extract the polar solvent, and then heat Dry and anneal at 100°C on the stage for 30 minutes to crystallize, with a thickness of 500nm;
(6)空穴传输层沉积:在钙钛矿光吸收层表面旋涂溶于氯苯的Spiro-OMeTAD溶液,控制厚度为200nm;(6) Hole transport layer deposition: Spiro-OMeTAD solution dissolved in chlorobenzene was spin-coated on the surface of the perovskite light-absorbing layer, and the thickness was controlled to be 200nm;
(7)对电极沉积:采用热蒸镀法沉积金电极,厚度为80nm。(7) Counter electrode deposition: A gold electrode is deposited by a thermal evaporation method with a thickness of 80 nm.
对比例1:Comparative example 1:
单一电负性金属氧化物电子传输层的钙钛矿太阳能电池及制备Perovskite solar cells with a single electronegative metal oxide electron transport layer and its preparation
(1)配置(FAPbI3)0.83(MAPbBr3)0.17前驱体:PbI2浓度为1.1M,FAI浓度为1M,PbBr浓度为0.22M,MABr浓度为0.2M,溶剂为二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),其中溶剂体积比为4:1;配置致密二氧化钛前驱体:浓度为0.23M异丙醇钛和0.013M盐酸的混合异丙醇溶液;(1) Configuration (FAPbI 3 ) 0.83 (MAPbBr 3 ) 0.17 precursor: PbI 2 concentration is 1.1M, FAI concentration is 1M, PbBr concentration is 0.22M, MABr concentration is 0.2M, solvent is dimethylformamide (DMF ) and dimethyl sulfoxide (DMSO), wherein the solvent volume ratio is 4:1; configure a dense titanium dioxide precursor: a mixed isopropanol solution with a concentration of 0.23M titanium isopropoxide and 0.013M hydrochloric acid;
(2)采用FTO导电玻璃作为衬底和透明电极,透光度80%,面电阻为15Ω;(2) FTO conductive glass is used as the substrate and transparent electrode, the light transmittance is 80%, and the surface resistance is 15Ω;
(3)单一电负性金属氧化物电子传输层沉积:在FTO表面旋涂步骤(1)配置的致密TiO2前驱液,125℃烘烤5min后,放入马弗炉中500℃烧结30min,获得30nm的具有良好电学性能的致密TiO2电子传输层;将商业Dyesol 30-NRD与乙醇按比例进行混合,旋涂后在125℃烘烤5min,然后放入马弗炉中在500℃烧结30min,形成相互贯穿的微孔,厚度为200nm;(3) Deposition of a single electronegative metal oxide electron transport layer: spin-coat the dense TiO 2 precursor liquid prepared in step (1) on the surface of FTO, bake at 125°C for 5min, put it into a muffle furnace for sintering at 500°C for 30min, Obtain a 30nm dense TiO2 electron transport layer with good electrical properties; mix commercial Dyesol 30-NRD with ethanol in proportion, spin-coat and bake at 125°C for 5min, then put it in a muffle furnace and sinter at 500°C for 30min , forming interpenetrating micropores with a thickness of 200nm;
(4)钙钛矿光吸收层的溶液法制备:在电子传输层表面滴加钙钛矿前驱体,旋涂过程中快速滴加氯苯作为非极性溶剂萃取出极性溶剂,然后在热台上100℃烘干退火30min结晶,厚度为500nm;(4) Preparation of the perovskite light-absorbing layer by solution method: drop the perovskite precursor on the surface of the electron transport layer, quickly drop chlorobenzene as a non-polar solvent to extract the polar solvent during the spin coating process, and then heat Dry and anneal at 100°C on the stage for 30 minutes to crystallize, with a thickness of 500nm;
(5)空穴传输层沉积:在钙钛矿光吸收层表面旋涂溶于氯苯的Spiro-OMeTAD溶液,控制厚度为200nm;(5) Hole transport layer deposition: Spiro-OMeTAD solution dissolved in chlorobenzene was spin-coated on the surface of the perovskite light-absorbing layer, and the thickness was controlled to be 200nm;
(6)对电极沉积:采用热蒸镀法沉积金电极,厚度为80nm。(6) Counter electrode deposition: A gold electrode is deposited by thermal evaporation method, with a thickness of 80 nm.
器件性能测试Device performance test
将实例1和对比例1的太阳能电池置于标准光强下(Newport,AM 1.5G,100mW cm-2)下进行测试。测量结果如图1所示,采用复合电负性金属氧化物作为电子传输层,钙钛矿电池效率大幅提高到了18.26%,具体电池性能参数如表1所示。The solar cells of Example 1 and Comparative Example 1 were tested under standard light intensity (Newport, AM 1.5G, 100 mW cm −2 ). The measurement results are shown in Figure 1. Using the composite electronegative metal oxide as the electron transport layer, the efficiency of the perovskite battery is greatly improved to 18.26%. The specific battery performance parameters are shown in Table 1.
表1钙钛矿电池的性能参数Table 1 Performance parameters of perovskite cells
图2给出的是电子传输层的X-ray光电子能谱,对比可以发现Y 3d5和Y 3d3出现在157.3eV和159.3eV位置,表明在复合电负性金属氧化物电子传输层中钇元素被成功沉积到了TiO2的表面。Figure 2 shows the X-ray photoelectron spectrum of the electron transport layer. By comparison, it can be found that Y 3d5 and Y 3d3 appear at 157.3eV and 159.3eV, indicating that the yttrium element in the composite electronegative metal oxide electron transport layer is successfully deposited onto the surface of TiO2 .
图3给出的时间分辨荧光光谱,结果表明在复合电负性金属氧化物电子传输层上的光生载流子寿命更短,说明复合电负性金属氧化物电子传输层具有更强的电子分离和收集能力,减少了界面复合,增加了短路电流,最后提高了器件光电性能。Figure 3 shows the time-resolved fluorescence spectra, the results show that the lifetime of the photogenerated carriers on the composite electronegative metal oxide electron transport layer is shorter, indicating that the composite electronegative metal oxide electron transport layer has stronger electron separation and collection ability, reducing interfacial recombination, increasing short-circuit current, and finally improving the photoelectric performance of the device.
实施例2:Example 2:
平面型复合电负性金属氧化物电子传输层的钙钛矿太阳能电池的构建Construction of perovskite solar cells with planar composite electronegative metal oxide electron transport layers
(1)配置(FAPbI3)0.83(MAPbBr3)0.17前驱体:PbI2浓度为1.1M,FAI浓度为1M,PbBr浓度为0.22M,MABr浓度为0.2M,溶剂为二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),其中溶剂体积比为4:1;配置致密二氧化钛前驱体:浓度为0.23M异丙醇钛和0.013M盐酸的混合异丙醇溶液;(1) Configuration (FAPbI 3 ) 0.83 (MAPbBr 3 ) 0.17 precursor: PbI 2 concentration is 1.1M, FAI concentration is 1M, PbBr concentration is 0.22M, MABr concentration is 0.2M, solvent is dimethylformamide (DMF ) and dimethyl sulfoxide (DMSO), wherein the solvent volume ratio is 4:1; configure a dense titanium dioxide precursor: a mixed isopropanol solution with a concentration of 0.23M titanium isopropoxide and 0.013M hydrochloric acid;
(2)氯化钇乙醇溶液制备:将高纯无水级YCl3粉末溶于无水级乙醇溶液,配置浓度为2mg/ml溶液;(2) Preparation of yttrium chloride ethanol solution: high - purity anhydrous grade YCl3 powder is dissolved in anhydrous grade ethanol solution, and the configuration concentration is 2mg/ml solution;
(3)采用FTO导电玻璃作为衬底和透明电极,透光度80%,面电阻为15Ω;(3) FTO conductive glass is used as the substrate and transparent electrode, the light transmittance is 80%, and the surface resistance is 15Ω;
(4)平面型复合电负性金属氧化物电子传输层沉积:在FTO表面旋涂步骤(1)配置的致密TiO2前驱液,125℃烘烤5min后,放入马弗炉中500℃烧结30min,获得30nm的具有良好电学性能的致密TiO2电子传输层;然后放入氯化钇乙醇溶液中静置处理,取出后吹干溶液,在马弗炉中500℃烧结30min;(4) Deposition of planar composite electronegative metal oxide electron transport layer: Spin-coat the dense TiO 2 precursor liquid prepared in step (1) on the surface of FTO, bake at 125°C for 5min, put it into a muffle furnace for sintering at 500°C 30min, to obtain a 30nm dense TiO2 electron transport layer with good electrical properties; then put it in the yttrium chloride ethanol solution for static treatment, take it out, dry the solution, and sinter in a muffle furnace at 500°C for 30min;
(5)钙钛矿光吸收层的溶液法制备:在电子传输层表面滴加钙钛矿前驱体,旋涂过程中快速滴加氯苯作为非极性溶剂萃取出极性溶剂,然后在热台上100℃烘干退火30min结晶,厚度为500nm;(5) Preparation of the perovskite light-absorbing layer by solution method: drop the perovskite precursor on the surface of the electron transport layer, quickly drop chlorobenzene as a non-polar solvent during the spin coating process to extract the polar solvent, and then heat Dry and anneal at 100°C on the stage for 30 minutes to crystallize, with a thickness of 500nm;
(6)空穴传输层沉积:在钙钛矿光吸收层表面旋涂溶于氯苯的Spiro-OMeTAD溶液,控制厚度为200nm;(6) Hole transport layer deposition: Spiro-OMeTAD solution dissolved in chlorobenzene was spin-coated on the surface of the perovskite light-absorbing layer, and the thickness was controlled to be 200nm;
(7)对电极沉积:采用热蒸镀法沉积金电极,厚度为80nm。(7) Counter electrode deposition: A gold electrode is deposited by a thermal evaporation method with a thickness of 80 nm.
实施例3:Example 3:
复合电负性金属氧化物电子传输层的甲胺铅碘型钙钛矿太阳能电池的构建Construction of methylamine-lead-iodide perovskite solar cells with composite electronegative metal oxide electron transport layer
(1)配置MAPbI3前驱体:PbI2浓度为1.143M,MAI浓度为1.43M,溶剂为二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),其中溶剂体积比为9:1;配置致密二氧化钛前驱体:浓度为0.23M异丙醇钛和0.013M盐酸的混合异丙醇溶液;(1) Configure the MAPbI 3 precursor: the concentration of PbI 2 is 1.143M, the concentration of MAI is 1.43M, the solvent is dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and the solvent volume ratio is 9:1 ; Configure a dense titanium dioxide precursor: a mixed isopropanol solution with a concentration of 0.23M titanium isopropoxide and 0.013M hydrochloric acid;
(2)氯化钇乙醇溶液制备:将高纯无水级YCl3粉末溶于无水级乙醇溶液,配置浓度为2mg/ml溶液;(2) Preparation of yttrium chloride ethanol solution: high - purity anhydrous grade YCl3 powder is dissolved in anhydrous grade ethanol solution, and the configuration concentration is 2mg/ml solution;
(3)采用FTO导电玻璃作为衬底和透明电极,透光度80%,面电阻为15Ω;(3) FTO conductive glass is used as the substrate and transparent electrode, the light transmittance is 80%, and the surface resistance is 15Ω;
(4)复合电负性金属氧化物电子传输层沉积:在FTO表面旋涂步骤(1)配置的致密TiO2前驱液,125℃烘烤5min后,放入马弗炉中500℃烧结30min,获得30nm的具有良好电学性能的致密TiO2电子传输层;将商业Dyesol 30-NRD与乙醇按比例进行混合,旋涂后在125℃烘烤5min,然后放入马弗炉中在500℃烧结30min,形成相互贯穿的微孔,厚度为200nm;然后放入氯化钇乙醇溶液中静置处理,取出后吹干溶液,在马弗炉中500℃烧结30min;(4) Deposition of composite electronegative metal oxide electron transport layer: Spin-coat the dense TiO 2 precursor liquid prepared in step (1) on the surface of FTO, bake at 125°C for 5min, put it into a muffle furnace for sintering at 500°C for 30min, A 30nm dense TiO2 electron transport layer with good electrical properties was obtained; commercial Dyesol 30-NRD was mixed with ethanol in proportion, after spin coating, it was baked at 125°C for 5min, and then put into a muffle furnace for sintering at 500°C for 30min , forming interpenetrating micropores with a thickness of 200nm; then put it into the yttrium chloride ethanol solution for static treatment, take it out, blow dry the solution, and sinter in a muffle furnace at 500°C for 30min;
(5)甲胺铅碘钙钛矿光吸收层的溶液法制备:在电子传输层表面滴加钙钛矿前驱体,旋涂过程中快速滴加氯苯作为非极性溶剂萃取出极性溶剂,然后在热台上100℃烘干退火30min结晶,厚度为500nm;(5) Preparation of methylamine lead iodide perovskite light-absorbing layer by solution method: drop perovskite precursor on the surface of electron transport layer, and quickly drop chlorobenzene as a non-polar solvent to extract polar solvent during spin coating , and then dried and annealed on a hot stage at 100°C for 30 minutes to crystallize, with a thickness of 500nm;
(6)空穴传输层沉积:在钙钛矿光吸收层表面旋涂溶于氯苯的Spiro-OMeTAD溶液,控制厚度为200nm;(6) Hole transport layer deposition: Spiro-OMeTAD solution dissolved in chlorobenzene was spin-coated on the surface of the perovskite light-absorbing layer, and the thickness was controlled to be 200nm;
(7)对电极沉积:采用热蒸镀法沉积金电极,厚度为80nm。(7) Counter electrode deposition: A gold electrode is deposited by a thermal evaporation method with a thickness of 80 nm.
以上实例详细描述了本发明所提供的一种基于新型电子传输层的钙钛矿电池及制备方法。通过复合电负性金属氧化物电子传输层提高载流子的分离收集效率,减少界面处光生电子空穴复合,有效增加短路电流,最终提高器件性能。The above examples describe in detail a perovskite battery based on a novel electron transport layer and its preparation method provided by the present invention. The composite electronegative metal oxide electron transport layer improves the separation and collection efficiency of carriers, reduces the recombination of photogenerated electrons and holes at the interface, effectively increases the short-circuit current, and finally improves the performance of the device.
以上所述仅是发明实例,应当指出:对于本领域的技术人员而言,在不脱离本发明精神和范围的情况下,对本发明公开的器件结构进行修改或变形,均应包含在本发明的保护范围之内。The above description is only an example of the invention. It should be pointed out that for those skilled in the art, without departing from the spirit and scope of the present invention, any modification or deformation of the device structure disclosed in the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710564973.1A CN107482120A (en) | 2017-07-12 | 2017-07-12 | A kind of perovskite battery based on composite electron transport layer and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710564973.1A CN107482120A (en) | 2017-07-12 | 2017-07-12 | A kind of perovskite battery based on composite electron transport layer and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107482120A true CN107482120A (en) | 2017-12-15 |
Family
ID=60596623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710564973.1A Withdrawn CN107482120A (en) | 2017-07-12 | 2017-07-12 | A kind of perovskite battery based on composite electron transport layer and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107482120A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108321298A (en) * | 2018-02-12 | 2018-07-24 | 西北工业大学 | A kind of high efficiency planar heterojunction perovskite thin film solar cell and preparation method |
CN109309162A (en) * | 2018-10-10 | 2019-02-05 | 湖北大学 | A kind of perovskite-based thin film solar cell and preparation method thereof |
CN109796976A (en) * | 2019-01-17 | 2019-05-24 | 华中科技大学 | A kind of Copper-cladding Aluminum Bar feux rouges perovskite quantum dot and preparation method thereof |
CN110190195A (en) * | 2019-05-16 | 2019-08-30 | 华南理工大学 | A perovskite photovoltaic-luminescence-light detection multifunctional device based on composite interface transport material and its preparation method |
CN110518123A (en) * | 2019-07-26 | 2019-11-29 | 西安电子科技大学 | Using composite material as the perovskite solar battery and preparation method of electron transfer layer |
CN111785835A (en) * | 2020-07-24 | 2020-10-16 | 西安电子科技大学 | A composite electron transport layer perovskite solar cell and preparation method thereof |
CN112687802A (en) * | 2020-12-24 | 2021-04-20 | 亚洲硅业(青海)股份有限公司 | Electronic transmission layer of perovskite battery, preparation method of electronic transmission layer and perovskite battery |
CN113097388A (en) * | 2021-04-02 | 2021-07-09 | 福州大学 | Perovskite battery based on composite electron transport layer and preparation method thereof |
CN113698302A (en) * | 2020-05-20 | 2021-11-26 | 中国科学院上海硅酸盐研究所 | A. Light absorption material constructed by X-position cooperative regulation and control as well as preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104064690A (en) * | 2014-06-27 | 2014-09-24 | 北京科技大学 | Organic light-emitting diode with double-layer structure electron transport layer and its preparation method |
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
CN106449982A (en) * | 2016-10-11 | 2017-02-22 | 中山大学 | Perovskite solar cell taking chromium oxide as electronic transmission layer and manufacturing method thereof |
-
2017
- 2017-07-12 CN CN201710564973.1A patent/CN107482120A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104064690A (en) * | 2014-06-27 | 2014-09-24 | 北京科技大学 | Organic light-emitting diode with double-layer structure electron transport layer and its preparation method |
CN106449982A (en) * | 2016-10-11 | 2017-02-22 | 中山大学 | Perovskite solar cell taking chromium oxide as electronic transmission layer and manufacturing method thereof |
CN106356456A (en) * | 2016-10-17 | 2017-01-25 | 北京科技大学 | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108321298A (en) * | 2018-02-12 | 2018-07-24 | 西北工业大学 | A kind of high efficiency planar heterojunction perovskite thin film solar cell and preparation method |
CN109309162A (en) * | 2018-10-10 | 2019-02-05 | 湖北大学 | A kind of perovskite-based thin film solar cell and preparation method thereof |
CN109309162B (en) * | 2018-10-10 | 2023-01-20 | 湖北大学 | Perovskite-based thin film solar cell and preparation method thereof |
CN109796976A (en) * | 2019-01-17 | 2019-05-24 | 华中科技大学 | A kind of Copper-cladding Aluminum Bar feux rouges perovskite quantum dot and preparation method thereof |
CN110190195A (en) * | 2019-05-16 | 2019-08-30 | 华南理工大学 | A perovskite photovoltaic-luminescence-light detection multifunctional device based on composite interface transport material and its preparation method |
CN110518123A (en) * | 2019-07-26 | 2019-11-29 | 西安电子科技大学 | Using composite material as the perovskite solar battery and preparation method of electron transfer layer |
CN113698302A (en) * | 2020-05-20 | 2021-11-26 | 中国科学院上海硅酸盐研究所 | A. Light absorption material constructed by X-position cooperative regulation and control as well as preparation method and application thereof |
CN113698302B (en) * | 2020-05-20 | 2022-09-09 | 中国科学院上海硅酸盐研究所 | A. Light absorption material constructed by X-position cooperative regulation and control as well as preparation method and application thereof |
CN111785835A (en) * | 2020-07-24 | 2020-10-16 | 西安电子科技大学 | A composite electron transport layer perovskite solar cell and preparation method thereof |
CN112687802A (en) * | 2020-12-24 | 2021-04-20 | 亚洲硅业(青海)股份有限公司 | Electronic transmission layer of perovskite battery, preparation method of electronic transmission layer and perovskite battery |
CN113097388A (en) * | 2021-04-02 | 2021-07-09 | 福州大学 | Perovskite battery based on composite electron transport layer and preparation method thereof |
CN113097388B (en) * | 2021-04-02 | 2024-02-13 | 厦门中科晏阳新材料有限公司 | Perovskite battery based on composite electron transport layer and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107482120A (en) | A kind of perovskite battery based on composite electron transport layer and its preparation method | |
Ke et al. | Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells | |
CN104134711B (en) | A kind of preparation method of perovskite solar cell | |
EP3172776B9 (en) | Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same | |
CN105702864B (en) | A kind of high quality perovskite thin film, solar cell and preparation method thereof | |
CN108269918B (en) | Porous perovskite films, carbon pastes and carbon electrode-based solar cells | |
CN106356456A (en) | Solar cell based on high-quality perovskite heterojunctions and preparation method thereof | |
CN109216557B (en) | Based on citric acid/SnO2Perovskite solar cell of electron transport layer and preparation method thereof | |
Zhang et al. | Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells | |
Liu et al. | Study on hole-transport-material-free planar TiO 2/CH 3 NH 3 PbI 3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell | |
CN105514279B (en) | A kind of honeycomb sandwich Ca-Ti ore type solar cell and preparation method thereof | |
CN104953030B (en) | A kind of interface modified perovskite solar cell and its preparation method | |
CN109728169B (en) | Perovskite solar cell doped with functional additive and preparation method thereof | |
CN111211230B (en) | Full-spectrum absorption multilayer perovskite/quantum dot solar cell device and preparation method | |
CN104022224A (en) | Plane heterojunction perovskite solar cell capable of being processed through solutions and manufacturing method thereof | |
CN110518128A (en) | A kind of ACI type two dimension perovskite solar cell and preparation method thereof | |
CN107123693A (en) | A kind of efficient CdTe nanometer crystalline solar cell with high transparency window layer material processed based on solwution method and preparation method thereof | |
Liu et al. | An effective TiO2 blocking layer for hole-conductor-free perovskite solar cells based on carbon counter electrode | |
CN108346742A (en) | Perovskite battery and its preparation of photovoltaic performance are improved based on polystyrene boundary layer | |
CN103681901B (en) | A kind of doped metal oxide semiconductor solar cell and its preparation method | |
CN110854273A (en) | Organic bulk heterojunction-doped perovskite solar cell and preparation method thereof | |
CN108023018A (en) | The preparation method of inversion perovskite solar cell based on the continuously adjustable control of band gap | |
Gu et al. | Flexible perovskite solar cells with enhanced performance based on a void-free imbedded interface via a thin layer of mesoporous TiO2 | |
CN105206749A (en) | Perovskite solar cell and preparation process thereof | |
CN104167293A (en) | Dye-sensitized solar cell photoanode and producing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20171215 |