CN118900572A - A zinc oxide-based ultraviolet photodetector and preparation method thereof - Google Patents
A zinc oxide-based ultraviolet photodetector and preparation method thereof Download PDFInfo
- Publication number
- CN118900572A CN118900572A CN202410924302.1A CN202410924302A CN118900572A CN 118900572 A CN118900572 A CN 118900572A CN 202410924302 A CN202410924302 A CN 202410924302A CN 118900572 A CN118900572 A CN 118900572A
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- electrode
- based ultraviolet
- prepared
- base layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 199
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 99
- 238000002360 preparation method Methods 0.000 title abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000004806 packaging method and process Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 30
- 238000005538 encapsulation Methods 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000010931 gold Substances 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 238000001771 vacuum deposition Methods 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 238000005566 electron beam evaporation Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 238000000206 photolithography Methods 0.000 claims description 7
- 238000005240 physical vapour deposition Methods 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 102
- 238000005516 engineering process Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/152—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/60—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光电探测技术领域,特别是涉及一种氧化锌基紫外光电探测器及其制备方法。The invention relates to the technical field of photoelectric detection, and in particular to a zinc oxide-based ultraviolet photoelectric detector and a preparation method thereof.
背景技术Background Art
在当今科技迅速发展的背景下,紫外光电探测器由于其在民用和科学研究等各个领域的广泛应用,如紫外线天文学、火焰探测、臭氧监测和紫外线通信等,已成为研究的热点。其中,氧化锌(ZnO)作为一种宽带隙半导体材料,因其优异的光电性能、化学稳定性和生物相容性,在紫外光电探测器领域显示出巨大的应用潜力。In the context of the rapid development of science and technology today, ultraviolet photodetectors have become a hot topic of research due to their wide applications in various fields such as civil and scientific research, such as ultraviolet astronomy, flame detection, ozone monitoring and ultraviolet communication. Among them, zinc oxide (ZnO), as a wide bandgap semiconductor material, shows great application potential in the field of ultraviolet photodetectors due to its excellent optoelectronic properties, chemical stability and biocompatibility.
现有的紫外光电探测器主要基于传统的半导体材料,如硅(Si)、氮化镓(GaN)等。这些材料虽然具备良好的探测性能,但仍存在一些局限性,例如成本高、制备工艺复杂以及对环境要求较高等问题。此外,对于可见光的响应也限制了它们在特定应用中的效率和选择性。Existing ultraviolet photodetectors are mainly based on traditional semiconductor materials, such as silicon (Si) and gallium nitride (GaN). Although these materials have good detection performance, they still have some limitations, such as high cost, complex preparation process and high environmental requirements. In addition, the response to visible light also limits their efficiency and selectivity in specific applications.
氧化锌作为一种新型的紫外光电探测材料,具有以下独特优势:首先,ZnO具有较大的激子结合能(60meV),使其在室温下能够稳定存在,且能有效工作于紫外光区域;其次,ZnO的带隙宽度约为3.37eV,对应于紫外光谱范围,使得基于ZnO的光电探测器对紫外光具有较高的选择性;最后,ZnO材料的制备过程相对简单,成本较低,适合于大规模生产。因此,本申请提供了一种氧化锌基紫外光电探测器及其制备方法,实现基于氧化锌的光电探测器。As a new type of ultraviolet photodetection material, zinc oxide has the following unique advantages: first, ZnO has a large exciton binding energy (60meV), which enables it to exist stably at room temperature and work effectively in the ultraviolet region; second, the band gap width of ZnO is about 3.37eV, corresponding to the ultraviolet spectrum range, so that the photodetector based on ZnO has a high selectivity for ultraviolet light; finally, the preparation process of ZnO material is relatively simple, the cost is low, and it is suitable for large-scale production. Therefore, the present application provides a zinc oxide-based ultraviolet photodetector and a preparation method thereof to realize a photodetector based on zinc oxide.
发明内容Summary of the invention
本发明的目的是提供一种氧化锌基紫外光电探测器及其制备方法,解决现有的紫外光电探测器主要基于传统的半导体材料,具有成本高、制备工艺复杂以及对环境要求较高的问题。The purpose of the present invention is to provide a zinc oxide-based ultraviolet photodetector and a preparation method thereof, so as to solve the problems that the existing ultraviolet photodetectors are mainly based on traditional semiconductor materials, have high cost, complex preparation process and high environmental requirements.
本发明提供了一种氧化锌基紫外光电探测器,包括:The present invention provides a zinc oxide-based ultraviolet photodetector, comprising:
衬底;substrate;
氧化锌基层,所述氧化锌基层制备于所述衬底上;A zinc oxide base layer, wherein the zinc oxide base layer is prepared on the substrate;
电极,所述电极包括第一电极和第二电极,所述电极制备于所述氧化锌基层表面两端;Electrodes, the electrodes comprising a first electrode and a second electrode, the electrodes being prepared at both ends of the surface of the zinc oxide base layer;
光敏层,所述光敏层制备于所述氧化锌基层上未被电极覆盖的表面;A photosensitive layer, wherein the photosensitive layer is prepared on the surface of the zinc oxide base layer that is not covered by the electrode;
封装层,所述封装层制备于所述光敏层上。The encapsulation layer is prepared on the photosensitive layer.
在本申请的一些实施例中,所述氧化锌基层的厚度为200-500nm。In some embodiments of the present application, the thickness of the zinc oxide-based layer is 200-500 nm.
在本申请的一些实施例中,所述电极的厚度为100-500nm。In some embodiments of the present application, the thickness of the electrode is 100-500 nm.
在本申请的一些实施例中,所述电极为铝电极、银电极、金电极中的一种。In some embodiments of the present application, the electrode is one of an aluminum electrode, a silver electrode, and a gold electrode.
在本申请的一些实施例中,所述光敏层采用有机半导体材料。In some embodiments of the present application, the photosensitive layer is made of organic semiconductor material.
本发明还提供了一种用于上述氧化锌基紫外光电探测器的制备方法,所述方法包括:The present invention also provides a method for preparing the above-mentioned zinc oxide-based ultraviolet photodetector, the method comprising:
采用玻璃或石英作为衬底,洗涤,吹干,备用;Use glass or quartz as substrate, wash, dry and set aside;
在衬底上采用气相沉积制备氧化锌基层,所述气相沉积包括化学气相沉积和物理气相沉积;The zinc oxide base layer is prepared on the substrate by vapor deposition, wherein the vapor deposition includes chemical vapor deposition and physical vapor deposition;
在氧化锌基层表面两端制备第一电极和第二电极;A first electrode and a second electrode are prepared at two ends of the surface of the zinc oxide substrate;
在氧化锌基层未被第一电极和第二电极覆盖的表面制备光敏层;Prepare a photosensitive layer on the surface of the zinc oxide base layer that is not covered by the first electrode and the second electrode;
在光敏层表面制备封装层,得到氧化锌基紫外光电探测器。A packaging layer is prepared on the surface of the photosensitive layer to obtain a zinc oxide-based ultraviolet photodetector.
在本申请的一些实施例中,将衬底依次在有机溶剂和去离子水中进行超声清洗,并用氮气枪吹干备用,以清除衬底表面杂质。In some embodiments of the present application, the substrate is ultrasonically cleaned in an organic solvent and deionized water in sequence, and blown dry with a nitrogen gun for later use, so as to remove impurities on the surface of the substrate.
在本申请的一些实施例中,制备第一电极和第二电极时采用光刻技术、磁控溅射、电子束蒸发中的一种。In some embodiments of the present application, one of photolithography, magnetron sputtering, and electron beam evaporation is used when preparing the first electrode and the second electrode.
在本申请的一些实施例中,制备光敏层时采用溶液法、真空蒸发法中的一种。In some embodiments of the present application, the photosensitive layer is prepared by using a solution method or a vacuum evaporation method.
在本申请的一些实施例中,所述方法还包括:对得到的氧化锌基紫外光电探测器进行电学测试和光学测试,对氧化锌基紫外光电探测器的性能进行评估。In some embodiments of the present application, the method further comprises: performing electrical tests and optical tests on the obtained zinc oxide-based ultraviolet photodetector to evaluate the performance of the zinc oxide-based ultraviolet photodetector.
与现有技术相比,本发明的有益效果在于,通过采用厚度为200-500nm的氧化锌基层,该探测器能够有效地吸收紫外光,同时对可见光具有良好的过滤作用。氧化锌的宽带隙特性使得探测器主要对紫外光区域敏感,从而提高了对紫外光的选择性探测能力。使用铝、银、金中的任一种作为电极材料,这些材料具备良好的导电性,有助于提高探测器的光电转换效率和响应速度。电极的厚度控制在100-500nm内,有利于保持电极的导电性和光电性能的稳定。在氧化锌基层上未被电极覆盖的表面制备有机半导体材料的光敏层,这种结构设计有利于提升器件的光响应能力和光稳定性。封装层的应用则保护了光敏层和氧化锌基层免受外部环境的影响,增强了器件的耐久性和可靠性。Compared with the prior art, the beneficial effect of the present invention is that by adopting a zinc oxide base layer with a thickness of 200-500nm, the detector can effectively absorb ultraviolet light and has a good filtering effect on visible light. The wide bandgap characteristics of zinc oxide make the detector mainly sensitive to the ultraviolet light region, thereby improving the selective detection capability of ultraviolet light. Using any one of aluminum, silver, and gold as the electrode material, these materials have good electrical conductivity and help to improve the photoelectric conversion efficiency and response speed of the detector. The thickness of the electrode is controlled within 100-500nm, which is conducive to maintaining the stability of the conductivity and photoelectric properties of the electrode. A photosensitive layer of organic semiconductor material is prepared on the surface of the zinc oxide base layer that is not covered by the electrode. This structural design is conducive to improving the light response ability and light stability of the device. The application of the encapsulation layer protects the photosensitive layer and the zinc oxide base layer from the influence of the external environment, thereby enhancing the durability and reliability of the device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings in the following description are only embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on the provided drawings without paying any creative work.
图1是本发明一种氧化锌基紫外光电探测器的结构示意图。FIG1 is a schematic diagram of the structure of a zinc oxide-based ultraviolet photodetector according to the present invention.
其中,1、衬底;2、氧化锌基层;3、第一电极;4、第二电极;5、光敏层;6、封装层。Among them, 1. substrate; 2. zinc oxide base layer; 3. first electrode; 4. second electrode; 5. photosensitive layer; 6. encapsulation layer.
具体实施方式DETAILED DESCRIPTION
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of the present application, it should be understood that the terms "center", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc., indicating orientations or positional relationships, are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。The terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of the features. In the description of this application, unless otherwise specified, "plurality" means two or more.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体的连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise clearly specified and limited, the terms "installed", "connected", and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood according to specific circumstances.
如图1所示,本发明提供了一种氧化锌基紫外光电探测器,包括:As shown in FIG1 , the present invention provides a zinc oxide-based ultraviolet photodetector, comprising:
衬底1;Substrate 1;
氧化锌基层2,氧化锌基层2制备于衬底1上;A zinc oxide base layer 2, wherein the zinc oxide base layer 2 is prepared on the substrate 1;
电极,电极包括第一电极3和第二电极4,电极制备于氧化锌基层2表面两端;Electrodes, the electrodes include a first electrode 3 and a second electrode 4, and the electrodes are prepared at both ends of the surface of the zinc oxide base layer 2;
光敏层5,光敏层5制备于氧化锌基层2上未被电极覆盖的表面;A photosensitive layer 5, wherein the photosensitive layer 5 is prepared on the surface of the zinc oxide base layer 2 that is not covered by the electrode;
封装层6,封装层6制备于光敏层5上。The encapsulation layer 6 is prepared on the photosensitive layer 5 .
本申请公开了一种基于氧化锌的紫外光电探测器,旨在高效地检测紫外光信号。主要包括:衬底1、氧化锌基层2、电极、光敏层5和封装层6。衬底1,它为整个探测器提供了坚实的基础,确保了探测器的稳定性和耐用性。氧化锌基层2,是探测器的核心,制备在衬底1之上。氧化锌是一种具有宽能带隙的半导体材料,能够有效地吸收紫外光并产生电子-空穴对,从而实现光电转换。电极,该探测器包含第一电极3和第二电极4,它们被放置在氧化锌基层2的表面两端。这两电极的作用是收集由光敏层5产生的电荷载体,并将其引导至外部电路,从而实现电信号的输出。电极通常由导电性能良好的材料,如金或银,制成,以保证良好的电导性和稳定性。光敏层5,这一层位于氧化锌基层2上未被电极覆盖的部分。光敏层5是实现紫外光检测的关键,它能够吸收紫外光能量,并将其转化为电信号。封装层6,它被制备在光敏层5的表面,起到保护内部结构免受外界环境影响的作用,如温度、湿度和化学腐蚀等。封装层6通常由透明的、高强度的材料,如环氧树脂,制成,以确保探测器能够长期稳定地工作。The present application discloses a zinc oxide-based ultraviolet photodetector, which is intended to efficiently detect ultraviolet light signals. It mainly includes: a substrate 1, a zinc oxide base layer 2, an electrode, a photosensitive layer 5 and an encapsulation layer 6. The substrate 1 provides a solid foundation for the entire detector and ensures the stability and durability of the detector. The zinc oxide base layer 2 is the core of the detector and is prepared on the substrate 1. Zinc oxide is a semiconductor material with a wide energy band gap that can effectively absorb ultraviolet light and generate electron-hole pairs, thereby realizing photoelectric conversion. The electrode, the detector includes a first electrode 3 and a second electrode 4, which are placed at both ends of the surface of the zinc oxide base layer 2. The function of these two electrodes is to collect the charge carriers generated by the photosensitive layer 5 and guide them to the external circuit to realize the output of electrical signals. The electrode is usually made of a material with good conductive properties, such as gold or silver, to ensure good conductivity and stability. The photosensitive layer 5 is located on the part of the zinc oxide base layer 2 that is not covered by the electrode. The photosensitive layer 5 is the key to realizing ultraviolet light detection. It can absorb ultraviolet light energy and convert it into electrical signals. The encapsulation layer 6 is prepared on the surface of the photosensitive layer 5 to protect the internal structure from external environmental influences, such as temperature, humidity and chemical corrosion. The encapsulation layer 6 is usually made of a transparent, high-strength material, such as epoxy resin, to ensure that the detector can work stably for a long time.
在本申请的一些实施例中,氧化锌基层2的厚度为200-500nm。In some embodiments of the present application, the thickness of the zinc oxide base layer 2 is 200-500 nm.
在本实施例中,光电探测器的氧化锌基层2的厚度设置为200-500nm。氧化锌基层2的厚度与光电探测器的整体性能之间存在密切的联系。一个适当的厚度能够确保光电探测器在各种使用条件下均能够达到最佳的探测效果。因此,通过精确控制氧化锌基层2的厚度,能够优化光电探测器的性能,使其在实际应用中表现出更加卓越的特性。In this embodiment, the thickness of the zinc oxide base layer 2 of the photodetector is set to 200-500nm. There is a close relationship between the thickness of the zinc oxide base layer 2 and the overall performance of the photodetector. An appropriate thickness can ensure that the photodetector can achieve the best detection effect under various conditions of use. Therefore, by accurately controlling the thickness of the zinc oxide base layer 2, the performance of the photodetector can be optimized, so that it can show more excellent characteristics in practical applications.
可理解的是,氧化锌基层2的厚度与光电探测器的性能密切相关,这是因为厚度直接影响薄膜的光学、电学和结构特性。具体来看,较薄的氧化锌基层2通常具有更高的量子效率,即吸收一个光子能产生更多的电子-空穴对。研究表明,在紫外范围内,适当减薄的氧化锌薄膜可以显著提高其光响应性和量子效率。随着基层厚度的增加,光电流也会逐渐增大,但达到一定厚度后,光电流的增速会放缓。这是因为较厚的薄膜能够吸收更多的入射光,从而产生更多的光生载流子。氧化锌基层2的厚度对光电探测器的响应速度有显著影响。较薄的基层通常具有更快的上升时间,即从无光照到光照状态下电流达到峰值所需的时间更短。同时,基层厚度的减小也有助于降低衰减时间,即从光照状态恢复到无光照状态的时间更短。这有利于提高探测器的响应速率和灵敏度。而在一定厚度范围内,氧化锌基层2的缺陷密度(如氧间隙、氧置换和氧空位等)会随着厚度的变化而变化。适当厚度的基层显示出改进的光电导参数,这是因为所有缺陷的密度增加,导致深能级发射增强,从而提高了紫外光敏性。It is understandable that the thickness of the zinc oxide base layer 2 is closely related to the performance of the photodetector, because the thickness directly affects the optical, electrical and structural properties of the film. Specifically, a thinner zinc oxide base layer 2 usually has a higher quantum efficiency, that is, absorbing a photon can produce more electron-hole pairs. Studies have shown that in the ultraviolet range, appropriately thinned zinc oxide films can significantly improve their photoresponsivity and quantum efficiency. As the thickness of the base layer increases, the photocurrent will gradually increase, but after reaching a certain thickness, the growth rate of the photocurrent will slow down. This is because thicker films can absorb more incident light, thereby generating more photogenerated carriers. The thickness of the zinc oxide base layer 2 has a significant effect on the response speed of the photodetector. Thinner base layers usually have a faster rise time, that is, the time required for the current to reach the peak from no light to the illuminated state is shorter. At the same time, the reduction in the thickness of the base layer also helps to reduce the decay time, that is, the time to recover from the illuminated state to the no light state is shorter. This is conducive to improving the response rate and sensitivity of the detector. Within a certain thickness range, the defect density (such as oxygen interstitial, oxygen substitution and oxygen vacancy) of the zinc oxide base layer 2 varies with the thickness. The base layer with appropriate thickness shows improved photoconductivity parameters because the density of all defects increases, resulting in enhanced deep level emission, thereby improving ultraviolet photosensitivity.
在本申请的一些实施例中,电极的厚度为100-500nm。In some embodiments of the present application, the thickness of the electrode is 100-500 nm.
在本实施例中,电极厚度对光电探测器的性能有显著影响,主要体现在导电性、透光率以及光响应度等方面。电极厚度增加导电性变化:研究表明,随着金属电极(如Au)厚度的增加,其导电性会先缓慢增加,然后迅速增加,最终趋于饱和。当电极厚度达到某一特定值时,导电性最优,此时电极能有效传导电流,且不会引起太大的欧姆损失。同时金属电极的透光率随电极厚度的增加呈线性下降。这是因为较厚的电极会吸收和反射更多的光线,减少到达光敏材料层的光量。在保证足够导电性的同时,尽可能选择较薄的电极以获得较高的透光率,以提升探测器的光谱响应范围。并且在一定范围内,光电探测器的光响应度随电极厚度的增加而增加,但超过某个特定值后反而会下降。合适的电极厚度能够最大化光响应度,这是因为它平衡了电极的透光性和导电性,使得光生载流子的有效收集达到最优。总结而言,电极厚度是决定光电探测器性能的关键参数。合适的电极厚度能够平衡导电性、透光率和光响应度,从而显著提升器件的整体性能。通过优化电极厚度和其他相关参数,可以在不同应用场景中实现高性能光电探测设备。因此,本申请中电极的厚度优选为100-500nm。In this embodiment, the electrode thickness has a significant effect on the performance of the photodetector, mainly in terms of conductivity, transmittance, and photoresponsivity. Changes in conductivity as the electrode thickness increases: Studies have shown that as the thickness of a metal electrode (such as Au) increases, its conductivity will first increase slowly, then increase rapidly, and eventually tend to saturation. When the electrode thickness reaches a certain value, the conductivity is optimal, and the electrode can effectively conduct current without causing too much ohmic loss. At the same time, the transmittance of the metal electrode decreases linearly with the increase in electrode thickness. This is because thicker electrodes absorb and reflect more light, reducing the amount of light reaching the photosensitive material layer. While ensuring sufficient conductivity, a thinner electrode is selected as much as possible to obtain a higher transmittance to improve the spectral response range of the detector. And within a certain range, the photoresponsivity of the photodetector increases with the increase in electrode thickness, but it will decrease after exceeding a certain value. The appropriate electrode thickness can maximize the photoresponsivity because it balances the transmittance and conductivity of the electrode, so that the effective collection of photogenerated carriers is optimized. In summary, electrode thickness is a key parameter that determines the performance of a photodetector. The appropriate electrode thickness can balance conductivity, transmittance and photoresponsivity, thereby significantly improving the overall performance of the device. By optimizing the electrode thickness and other related parameters, high-performance photodetection devices can be realized in different application scenarios. Therefore, the thickness of the electrode in this application is preferably 100-500nm.
在本申请的一些实施例中,电极为铝电极、银电极、金电极中的一种。In some embodiments of the present application, the electrode is one of an aluminum electrode, a silver electrode, and a gold electrode.
在本实施例中,光电探测器的电极采用铝电极、银电极或金电极,光电探测器的电极材料对其性能具有重要影响,选择合适的电极材料是优化光电探测器性能的关键步骤之一。金是光电探测器中常用的电极材料,因其优异的化学稳定性和良好的导电性而备受青睐。例如,在紫外光电探测器中,金被用作单电极和复合电极的材料,能够提供良好的接触特性和稳定的性能。铝也是一种广泛使用的电极材料,特别是在有机光电探测器中。铝电极不仅具有良好的导电性,还能有效地阻挡水分和氧气,保护有机层免受损害。银作为一种常用的电极材料,在紫外光电探测器中具有显著的应用潜力和优势。银电极不仅具备优异的导电性和光反射率,还能够通过特定的纳米结构设计来增强器件的光电性能。In this embodiment, the electrode of the photodetector adopts an aluminum electrode, a silver electrode or a gold electrode. The electrode material of the photodetector has an important influence on its performance. Selecting a suitable electrode material is one of the key steps to optimize the performance of the photodetector. Gold is a commonly used electrode material in photodetectors and is favored for its excellent chemical stability and good electrical conductivity. For example, in ultraviolet photodetectors, gold is used as a material for single electrodes and composite electrodes, which can provide good contact characteristics and stable performance. Aluminum is also a widely used electrode material, especially in organic photodetectors. The aluminum electrode not only has good electrical conductivity, but also can effectively block moisture and oxygen, protecting the organic layer from damage. As a commonly used electrode material, silver has significant application potential and advantages in ultraviolet photodetectors. The silver electrode not only has excellent electrical conductivity and light reflectivity, but also can enhance the photoelectric performance of the device through a specific nanostructure design.
在本申请的一些实施例中,光敏层5采用有机半导体材料。In some embodiments of the present application, the photosensitive layer 5 is made of organic semiconductor material.
在本实施例中,在氧化锌基层2表面施加一层光敏层5。这一层光敏材料,一般而言,是由有机半导体化合物构成的。这些有机半导体材料因其独特的电子性质,如能带结构的可调节性和优异的光电性能,而被广泛应用于光电子和半导体器件制造领域。通过在氧化锌基层2上沉积这样一层光敏层5,可以有效改善和提升基层的光电转换效率,进一步拓宽其在光电器件。此外,有机半导体光敏材料在实际应用中还表现出良好的稳定性和可加工性,为相关技术的研发和产业化提供了便利条件。In this embodiment, a photosensitive layer 5 is applied on the surface of the zinc oxide base layer 2. This layer of photosensitive material is generally composed of organic semiconductor compounds. These organic semiconductor materials are widely used in the fields of optoelectronics and semiconductor device manufacturing due to their unique electronic properties, such as the adjustability of the band structure and excellent photoelectric properties. By depositing such a photosensitive layer 5 on the zinc oxide base layer 2, the photoelectric conversion efficiency of the base layer can be effectively improved and enhanced, further broadening its application in optoelectronic devices. In addition, organic semiconductor photosensitive materials also show good stability and processability in practical applications, providing convenient conditions for the research and development and industrialization of related technologies.
本发明还公开了一种用于上述氧化锌基紫外光电探测器的制备方法,方法包括:The present invention also discloses a method for preparing the above-mentioned zinc oxide-based ultraviolet photodetector, the method comprising:
采用玻璃或石英作为衬底1,洗涤,吹干,备用;Using glass or quartz as substrate 1, washing, drying and setting aside;
在衬底1上采用气相沉积制备氧化锌基层2,气相沉积包括化学气相沉积和物理气相沉积;A zinc oxide base layer 2 is prepared on a substrate 1 by vapor deposition, wherein the vapor deposition includes chemical vapor deposition and physical vapor deposition;
在氧化锌基层2表面两端制备第一电极3和第二电极4;A first electrode 3 and a second electrode 4 are prepared at both ends of the surface of the zinc oxide base layer 2;
在氧化锌基层2未被第一电极3和第二电极4覆盖的表面制备光敏层5;A photosensitive layer 5 is formed on the surface of the zinc oxide base layer 2 that is not covered by the first electrode 3 and the second electrode 4;
在光敏层5表面制备封装层6,得到氧化锌基紫外光电探测器。The encapsulation layer 6 is prepared on the surface of the photosensitive layer 5 to obtain a zinc oxide-based ultraviolet photodetector.
在本实施例中,本申请提供了一种用于制作基于氧化锌基紫外光电探测器的制备技术,首先,选择玻璃或高纯度石英作为基础衬底1材料,对其进行彻底的清洗,以去除任何可能存在的杂质和污渍,确保后续层叠结构的纯净度。清洗后,通过吹干的方式迅速去除水分,使得衬底1材料达到干燥状态,为下一道工序做好准备。在准备好的衬底1上,采用气相沉积技术来构建氧化锌基层2。这种技术利用气态物质在高温下分解或与其他元素反应,从而在基底表面形成固态的氧化锌层。气相沉积包括两种主要方式:化学气相沉积(CVD)和物理气相沉积(PVD)。CVD通过化学反应在气相中生成所需的材料,而PVD则是通过物理方法,如蒸发或溅射,将材料沉积到衬底1上。这两种方式在制备氧化锌基层2时各有所长,因此结合使用它们可以获得更优质的氧化锌层。随后,在构建好的氧化锌基层2的两端,制备出第一电极3和第二电极4,它们是构成光电探测器电路的重要组成部分。这两个电极的设置是为了在氧化锌基层2中形成电场,以促进光电效应的产生。在电极之间的氧化锌基层2表面,未被电极覆盖的区域,制备光敏层5。这一层是紫外光电探测器的核心,它能够吸收紫外光并产生电子-空穴对,是实现光电转换的关键。最后,在光敏层5表面制备封装层6,以保护氧化锌基层2、电极和光敏层5免受外界环境的影响,确保其稳定性和耐用性。封装层6不仅可以起到保护作用,还可以作为电极和光敏层5之间的介质,以优化光电探测器的性能。完成这些步骤后,就得到了一个结构完整、功能明确的氧化锌基紫外光电探测器。In this embodiment, the present application provides a preparation technology for making a zinc oxide-based ultraviolet photodetector. First, glass or high-purity quartz is selected as the base substrate 1 material, and it is thoroughly cleaned to remove any possible impurities and stains to ensure the purity of the subsequent stacked structure. After cleaning, the moisture is quickly removed by blowing dry, so that the substrate 1 material reaches a dry state and is ready for the next process. On the prepared substrate 1, a vapor deposition technology is used to construct a zinc oxide base layer 2. This technology uses gaseous substances to decompose or react with other elements at high temperatures to form a solid zinc oxide layer on the surface of the substrate. Vapor deposition includes two main methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). CVD generates the required material in the gas phase through chemical reactions, while PVD deposits the material onto the substrate 1 through physical methods such as evaporation or sputtering. These two methods have their own strengths in preparing the zinc oxide base layer 2, so using them in combination can obtain a better quality zinc oxide layer. Subsequently, a first electrode 3 and a second electrode 4 are prepared at both ends of the constructed zinc oxide base layer 2, which are important components of the photodetector circuit. The two electrodes are set to form an electric field in the zinc oxide base layer 2 to promote the generation of the photoelectric effect. A photosensitive layer 5 is prepared on the surface of the zinc oxide base layer 2 between the electrodes, in the area not covered by the electrodes. This layer is the core of the ultraviolet photodetector. It can absorb ultraviolet light and generate electron-hole pairs, and is the key to achieving photoelectric conversion. Finally, an encapsulation layer 6 is prepared on the surface of the photosensitive layer 5 to protect the zinc oxide base layer 2, the electrode and the photosensitive layer 5 from the influence of the external environment to ensure its stability and durability. The encapsulation layer 6 not only plays a protective role, but also serves as a medium between the electrode and the photosensitive layer 5 to optimize the performance of the photodetector. After completing these steps, a zinc oxide-based ultraviolet photodetector with a complete structure and clear functions is obtained.
在本申请的一些实施例中,将衬底1依次在有机溶剂和去离子水中进行超声清洗,并用氮气枪吹干备用,以清除衬底1表面杂质。In some embodiments of the present application, the substrate 1 is ultrasonically cleaned in an organic solvent and deionized water in sequence, and blown dry with a nitrogen gun for later use, so as to remove impurities on the surface of the substrate 1 .
在本实施例中,将衬底1放置在有机溶剂中,通过超声波的方式进行清洗,这一步骤是利用超声波产生的空化效应和冲击力,有效地去除衬底1表面的有机污垢和残留物。随后,将衬底1从有机溶剂中取出,转移到去离子水中进行二次清洗,以去除在有机溶剂中清洗后可能残留的杂质和油脂。在这一过程中,去离子水的高纯度保证了清洗效果,降低了水分中的离子和杂质对衬底1的影响。清洗完成后,使用氮气枪对衬底1进行吹干处理,氮气的高纯度和干燥性质有助于迅速而有效地去除衬底1表面的水分,防止水分残留对后续处理产生不利影响。完成这些步骤后,衬底1表面的杂质将被彻底清除,为后续的应用和处理提供了干净的表面,保证了产品质量和性能。In this embodiment, the substrate 1 is placed in an organic solvent and cleaned by ultrasonic means. This step utilizes the cavitation effect and impact force generated by ultrasonic waves to effectively remove organic dirt and residues on the surface of the substrate 1. Subsequently, the substrate 1 is taken out of the organic solvent and transferred to deionized water for secondary cleaning to remove impurities and grease that may remain after cleaning in the organic solvent. In this process, the high purity of deionized water ensures the cleaning effect and reduces the impact of ions and impurities in the water on the substrate 1. After cleaning, the substrate 1 is blown dry using a nitrogen gun. The high purity and dry nature of nitrogen help to quickly and effectively remove moisture from the surface of the substrate 1, preventing residual moisture from adversely affecting subsequent processing. After completing these steps, the impurities on the surface of the substrate 1 will be completely removed, providing a clean surface for subsequent applications and processing, and ensuring product quality and performance.
在本申请的一些实施例中,制备第一电极3和第二电极4时采用光刻技术、磁控溅射、电子束蒸发中的一种。In some embodiments of the present application, one of photolithography, magnetron sputtering, and electron beam evaporation is used when preparing the first electrode 3 and the second electrode 4.
在本实施例中,在构建第一电极3和第二电极4的过程中,选择了光刻技术、磁控溅射以及电子束蒸发这三种先进技术中的一种。这些技术在电极的制备过程中都发挥着至关重要的作用,以确保电极的性能能够满足设计要求。光刻技术在电极制备中的应用主要体现在微电子制造领域。通过使用光刻技术,可以在半导体材料表面形成微小的电极图案,从而实现对电极尺寸和形状的精确控制。这种技术在制造微型电子器件时具有显著的优势,因为它可以实现高精度的图形转移,使得电极的尺寸可以达到微米甚至纳米级别。磁控溅射是一种在电极制备中常用的物理气相沉积技术。通过该技术,可以将金属或合金靶材溅射到基底表面,形成一层均匀的电极薄膜。磁控溅射具有溅射速率快、成膜均匀、溅射物质纯度高等优点,因此在制备高性能电极材料时具有广泛的应用。电子束蒸发也是一种重要的电极制备技术。该技术利用高能电子束对靶材进行加热,使靶材蒸发并沉积在基底表面形成电极薄膜。电子束蒸发具有蒸发速率可调、成膜速率快、成膜质量好等优点,适用于制备高性能的电极材料。因此,在制备第一电极3和第二电极4时,可根据实际需求选择光刻技术、磁控溅射或电子束蒸发这三种技术中的一种,以实现高性能电极的制备。In this embodiment, in the process of constructing the first electrode 3 and the second electrode 4, one of the three advanced technologies of photolithography, magnetron sputtering and electron beam evaporation is selected. These technologies play a vital role in the preparation process of the electrode to ensure that the performance of the electrode can meet the design requirements. The application of photolithography in electrode preparation is mainly reflected in the field of microelectronics manufacturing. By using photolithography, a tiny electrode pattern can be formed on the surface of the semiconductor material, thereby achieving precise control of the electrode size and shape. This technology has significant advantages in the manufacture of microelectronic devices because it can achieve high-precision graphic transfer, so that the size of the electrode can reach the micron or even nanometer level. Magnetron sputtering is a physical vapor deposition technology commonly used in electrode preparation. Through this technology, a metal or alloy target material can be sputtered onto the surface of the substrate to form a uniform electrode film. Magnetron sputtering has the advantages of fast sputtering rate, uniform film formation, and high purity of the sputtered material, so it is widely used in the preparation of high-performance electrode materials. Electron beam evaporation is also an important electrode preparation technology. This technology uses a high-energy electron beam to heat the target material, so that the target material evaporates and deposits on the surface of the substrate to form an electrode film. Electron beam evaporation has the advantages of adjustable evaporation rate, fast film forming rate, and good film forming quality, and is suitable for preparing high-performance electrode materials. Therefore, when preparing the first electrode 3 and the second electrode 4, one of the three technologies, photolithography, magnetron sputtering or electron beam evaporation, can be selected according to actual needs to achieve the preparation of high-performance electrodes.
在本申请的一些实施例中,制备光敏层5时采用溶液法、真空蒸发法中的一种。In some embodiments of the present application, the photosensitive layer 5 is prepared by using a solution method or a vacuum evaporation method.
在本实施例中,在制作光敏层5的工艺过程中,选择了两种主流的制造技术:溶液法和真空蒸发法。这两种方法各自拥有独特的优势和特点,可以根据实际需要和材料特性来选择使用其中的一种。溶液法是一种将光敏材料溶解在适当的溶剂中,通过搅拌使材料均匀分散,形成溶液。然后,通过涂覆、旋涂或滴涂等方法,将溶液均匀地涂布在基片上,并进行干燥处理,从而形成光敏层5。溶液法的优点在于操作简单、成本低廉,同时可以方便地调整光敏材料的浓度和分布。另一种方法是真空蒸发法,该方法通过在高真空条件下,将光敏材料蒸发并沉积在基片上,形成光敏层5。真空蒸发法的优点在于可以精确控制光敏材料的厚度和密度,制备出高质量的光敏层5。此外,真空蒸发法还可以避免溶液法中可能出现的溶剂残留问题,提高光敏层5的稳定性。因此,在制备光敏层5时,可以根据实际需求和材料特性来选择溶液法或真空蒸发法中的一种,以实现最佳的光敏层5性能。In this embodiment, in the process of making the photosensitive layer 5, two mainstream manufacturing technologies are selected: solution method and vacuum evaporation method. These two methods each have unique advantages and characteristics, and one of them can be selected according to actual needs and material properties. The solution method is a method in which a photosensitive material is dissolved in an appropriate solvent, and the material is evenly dispersed by stirring to form a solution. Then, the solution is evenly coated on the substrate by coating, spin coating or drop coating, and dried to form the photosensitive layer 5. The advantages of the solution method are simple operation and low cost, and the concentration and distribution of the photosensitive material can be easily adjusted. Another method is the vacuum evaporation method, which forms the photosensitive layer 5 by evaporating and depositing the photosensitive material on the substrate under high vacuum conditions. The advantage of the vacuum evaporation method is that the thickness and density of the photosensitive material can be accurately controlled to prepare a high-quality photosensitive layer 5. In addition, the vacuum evaporation method can also avoid the problem of solvent residue that may occur in the solution method and improve the stability of the photosensitive layer 5. Therefore, when preparing the photosensitive layer 5 , one of the solution method and the vacuum evaporation method can be selected according to actual needs and material properties to achieve the best performance of the photosensitive layer 5 .
在本申请的一些实施例中,在光敏层5表面制备封装层6,得到氧化锌基紫外光电探测器,以保护其免受环境影响,并提供连接电路的接口。In some embodiments of the present application, an encapsulation layer 6 is prepared on the surface of the photosensitive layer 5 to obtain a zinc oxide-based ultraviolet photodetector to protect it from environmental influences and provide an interface for connecting circuits.
可理解的是,在光敏层5表面精细地制备一层封装层6,从而得到氧化锌基紫外光电探测器。这层封装层6的主要作用是保护探测器免受外界环境因素的干扰,如温度、湿度、灰尘等,确保其稳定运行。同时,这层封装层6还为连接电路提供了必要的接口,使得探测器能够与电路顺利进行连接,从而发挥其紫外检测的功能。通过这种方式,封装层6不仅起到了保护作用,还实现了探测器与电路的有机结合,为实际应用提供了便利。It is understandable that a layer of encapsulation layer 6 is finely prepared on the surface of the photosensitive layer 5 to obtain a zinc oxide-based ultraviolet photodetector. The main function of this encapsulation layer 6 is to protect the detector from interference from external environmental factors, such as temperature, humidity, dust, etc., to ensure its stable operation. At the same time, this encapsulation layer 6 also provides the necessary interface for connecting the circuit, so that the detector can be smoothly connected to the circuit, thereby exerting its ultraviolet detection function. In this way, the encapsulation layer 6 not only plays a protective role, but also realizes the organic combination of the detector and the circuit, which provides convenience for practical applications.
在本申请的一些实施例中,方法还包括:对得到的氧化锌基紫外光电探测器进行电学测试和光学测试,对氧化锌基紫外光电探测器的性能进行评估。In some embodiments of the present application, the method further includes: performing electrical tests and optical tests on the obtained zinc oxide-based ultraviolet photodetector to evaluate the performance of the zinc oxide-based ultraviolet photodetector.
在本实施例中,针对已经制备出的氧化锌基紫外光电探测器,还需要进行电学性能测试以及光学性能测试,以全面评估其在紫外光检测领域的性能表现。在电学测试环节,通过对探测器施加不同的偏压,测量其电流-电压特性,从而得到了其电学参数,如电阻率、载流子浓度等,这对于理解探测器的工作原理以及优化其结构设计具有重要意义。而在光学测试环节,则测量了探测器在紫外光区域的响应度、量子效率等参数,并结合其电学性能,深入分析了其在紫外光探测方面的潜力。通过这些综合测试与评估,得出了该氧化锌基紫外光电探测器的性能指标,为其在实际应用中的性能优化提供了重要依据。In this embodiment, for the prepared zinc oxide-based ultraviolet photodetector, electrical performance tests and optical performance tests are also required to comprehensively evaluate its performance in the field of ultraviolet light detection. In the electrical test phase, by applying different bias voltages to the detector and measuring its current-voltage characteristics, its electrical parameters, such as resistivity and carrier concentration, are obtained, which is of great significance for understanding the working principle of the detector and optimizing its structural design. In the optical test phase, the parameters such as the detector's responsiveness and quantum efficiency in the ultraviolet light region are measured, and combined with its electrical performance, its potential in ultraviolet light detection is deeply analyzed. Through these comprehensive tests and evaluations, the performance indicators of the zinc oxide-based ultraviolet photodetector are obtained, which provides an important basis for its performance optimization in practical applications.
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention rather than to limit it. Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art should understand that they can still modify or replace the technical solution of the present invention with equivalents, and these modifications or equivalent replacements cannot cause the modified technical solution to deviate from the spirit and scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410924302.1A CN118900572A (en) | 2024-07-11 | 2024-07-11 | A zinc oxide-based ultraviolet photodetector and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410924302.1A CN118900572A (en) | 2024-07-11 | 2024-07-11 | A zinc oxide-based ultraviolet photodetector and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118900572A true CN118900572A (en) | 2024-11-05 |
Family
ID=93265880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410924302.1A Pending CN118900572A (en) | 2024-07-11 | 2024-07-11 | A zinc oxide-based ultraviolet photodetector and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118900572A (en) |
-
2024
- 2024-07-11 CN CN202410924302.1A patent/CN118900572A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111029416B (en) | A kind of circularly polarized light detection device and preparation method thereof | |
CN112331737B (en) | Ultraviolet-visible-near infrared silicon-based photoelectric detector and preparation method thereof | |
CN107732017B (en) | A kind of phasmon structured substrate and its preparation and application | |
CN112599611B (en) | Method for preparing photoelectric detector with wavelength selective response | |
CN107195787A (en) | Self-driven photodetector based on Graphene electrodes and perovskite light-absorption layer and preparation method thereof | |
Zhang et al. | Direct Growth of Pyramid‐Textured Perovskite Single Crystals: A New Strategy for Enhanced Optoelectronic Performance | |
CN110556478A (en) | Perovskite weak light detector based on plasmon effect | |
JP5054355B2 (en) | Photoelectric conversion device | |
CN111864080A (en) | A two-dimensional organic-inorganic hybrid perovskite crystal photodetector and preparation method thereof | |
CN108630782B (en) | Preparation method of wide detection waveband dual-plasma working photoelectric detector | |
CN111525036B (en) | Self-driven perovskite photoelectric detector and preparation method thereof | |
CN106449978A (en) | Preparation method of visible blind ultraviolet detector based on CH3NH3PbCl3 film | |
CN112038442A (en) | A kind of photoelectric detector and preparation method thereof | |
CN118900572A (en) | A zinc oxide-based ultraviolet photodetector and preparation method thereof | |
CN105161486B (en) | Tetracarboxylic acid dianhydride organic layer photoelectrical coupler and preparation method thereof | |
CN114628548A (en) | Photoelectric detector with dual-ferroelectric layer composite film and preparation method thereof | |
CN107230743B (en) | A kind of optoelectronic position sensitive sensor | |
CN111261781A (en) | A two-dimensional perovskite photodetector with interface passivation and preparation method thereof | |
CN111211195B (en) | A method for preparing high-performance photodetectors using novel chemical modification methods | |
CN115000230B (en) | A vertical structure TiN-enhanced 4H-SiC-based broad-spectrum photodetector and its preparation method | |
CN113437164B (en) | Photoconductive all-silicon solar blind ultraviolet detector and manufacturing method thereof | |
CN117293208A (en) | Photoelectric detector based on lead sulfide/silicon composite structure and preparation method thereof | |
CN117626194A (en) | Two-dimensional selenium-based ternary alloy nanofilm and its preparation method and application | |
CN110690311B (en) | Si substrate GaSe visible light detector and preparation method thereof | |
CN117855311A (en) | Self-powered photoelectric detector based on bulk photovoltaic effect and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |