[go: up one dir, main page]

CN116314513A - Light-emitting diode epitaxial wafer and preparation method thereof - Google Patents

Light-emitting diode epitaxial wafer and preparation method thereof Download PDF

Info

Publication number
CN116314513A
CN116314513A CN202310559032.4A CN202310559032A CN116314513A CN 116314513 A CN116314513 A CN 116314513A CN 202310559032 A CN202310559032 A CN 202310559032A CN 116314513 A CN116314513 A CN 116314513A
Authority
CN
China
Prior art keywords
layer
electron
sublayer
forbidden band
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202310559032.4A
Other languages
Chinese (zh)
Inventor
张彩霞
印从飞
刘春杨
胡加辉
金从龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202310559032.4A priority Critical patent/CN116314513A/en
Publication of CN116314513A publication Critical patent/CN116314513A/en
Priority to CN202310893392.8A priority patent/CN116705946A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • H10H20/8162Current-blocking structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及半导体技术领域,具体公开一种发光二极管外延片及其制备方法,包括衬底,所述衬底上沿外延方向依次设置有形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;所述电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;所述第二电子拦截层的禁带宽度>所述第三电子扩展层的最大禁带宽度>所述第一电子储存层的禁带宽度。本发明的外延片发光波长和发光亮度分布均匀,抗静电能力佳。

Figure 202310559032

The invention relates to the field of semiconductor technology, and specifically discloses a light-emitting diode epitaxial wafer and a preparation method thereof, including a substrate, on which a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, and an electron guiding layer are sequentially arranged along the epitaxial direction. layer, a multi-quantum well layer, an electron blocking layer, and a P-type semiconductor layer; the electron guiding layer includes a first electron storage layer, a second electron intercepting layer, and a third electron expansion layer arranged in sequence along the epitaxial direction; the second The forbidden band width of the electron intercepting layer>the maximum forbidden band width of the third electron expansion layer>the forbidden band width of the first electron storage layer. The epitaxial wafer of the invention has uniform distribution of luminous wavelength and luminous brightness, and good antistatic ability.

Figure 202310559032

Description

发光二极管外延片及其制备方法Light-emitting diode epitaxial wafer and preparation method thereof

技术领域technical field

本发明涉及半导体技术领域,尤其涉及一种发光二极管外延片及其制备方法。The invention relates to the technical field of semiconductors, in particular to a light-emitting diode epitaxial wafer and a preparation method thereof.

背景技术Background technique

目前,GaN基发光二极管已经大量应用于固态照明领域以及显示领域,吸引着越来越多的人关注。GaN 基发光二极管已经实现工业化生产、在背光源、照明、景观灯等方面都有应用。At present, GaN-based light-emitting diodes have been widely used in the fields of solid-state lighting and display, attracting more and more people's attention. GaN-based light-emitting diodes have been industrialized and used in backlights, lighting, and landscape lights.

传统的GaN基发光二极管外延片包括:一种衬底、以及在所述衬底上依次生长的形核层、本征GaN层、N型半导体层、多量子阱层、电子阻挡层、P型半导体层,这种结构的缺点在于,由于电子迁移率远大于空穴,所以电子扩展能力差,导致载流子在多量子阱区不能很好的扩展开来,造成发光波长和亮度均匀性差,而且载流子扩展不好,会导致发光二极管抗静电能力变差。A traditional GaN-based light-emitting diode epitaxial wafer includes: a substrate, and a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, a multi-quantum well layer, an electron blocking layer, and a P-type semiconductor layer grown sequentially on the substrate. The disadvantage of this structure is that because the electron mobility is much larger than that of holes, the electron expansion ability is poor, resulting in the carriers not being able to spread well in the multi-quantum well region, resulting in poor uniformity of luminous wavelength and brightness. Moreover, the carrier expansion is not good, which will lead to the deterioration of the antistatic ability of the light emitting diode.

发明内容Contents of the invention

本发明的目的在于针对已有的技术现状,提供一种发光波长和发光亮度分布均匀、抗静电能力佳的发光二极管外延片及其制备方法。The purpose of the present invention is to provide a light-emitting diode epitaxial wafer with uniform distribution of luminous wavelength and luminous brightness and good antistatic ability and its preparation method in view of the existing technical status.

为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

本发明提供一种发光二极管外延片,包括衬底,所述衬底上沿外延方向依次设置有形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;The invention provides a light-emitting diode epitaxial wafer, including a substrate, on which a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multi-quantum well layer, and an electron blocking layer are sequentially arranged along the epitaxial direction , P-type semiconductor layer;

所述电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guide layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer sequentially arranged along the epitaxial direction;

所述第二电子拦截层的禁带宽度>所述第三电子扩展层的最大禁带宽度>所述第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the maximum forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer.

在一些实施例中,所述第一电子储存层包括周期性层叠的第一子层、第二子层及第三子层,所述第三子层的禁带宽度Eg3>第二子层的禁带宽度Eg2>第一子层的禁带宽度Eg1,且Eg3/Eg1>3,所述第二电子拦截层的禁带宽度>1.5×Eg3In some embodiments, the first electron storage layer includes a first sublayer, a second sublayer, and a third sublayer stacked periodically, and the bandgap Eg 3 of the third sublayer is greater than the second sublayer The band gap Eg 2 of the second electron intercepting layer is greater than the band gap Eg 1 of the first sublayer, and Eg 3 /Eg 1 >3, and the band gap of the second electron intercepting layer is >1.5×Eg 3 .

在一些实施例中,所述第一电子储存层为InxN1-x/InyGa1-yN/GaN层,所述第二电子拦截层为BmGa1-mN/BnN1-n层,所述第三电子扩展层为InaGa1-aN/N型BbGa1-bN层。In some embodiments, the first electron storage layer is In x N 1-x /In y Ga 1-y N/GaN layer, and the second electron interception layer is B m Ga 1-m N/B n N 1-n layer, the third electron expansion layer is an In a Ga 1-a N/N type B b Ga 1-b N layer.

在一些实施例中,所述第一电子储存层中,0.6≥x≥0.4,0.3≥y≥0.1。In some embodiments, in the first electron storage layer, 0.6≥x≥0.4, 0.3≥y≥0.1.

在一些实施例中,所述第一电子储存层包括周期性层叠的InxN1-x子层、InyGa1-yN子层及GaN子层,其中,单个InxN1-x子层的厚度为1nm~5nm,单个InyGa1-yN子层的厚度为1nm~5nm,单个GaN子层的厚度为6nm~10nm,所述第一电子储存层的周期数为2个~6个,生长温度为800℃~900℃。In some embodiments, the first electron storage layer includes periodically stacked In x N 1-x sub-layers, In y Ga 1-y N sub-layers and GaN sub-layers, wherein a single In x N 1-x The thickness of the sublayer is 1nm~5nm, the thickness of a single In y Ga 1-y N sublayer is 1nm~5nm, the thickness of a single GaN sublayer is 6nm~10nm, and the number of periods of the first electron storage layer is 2 ~6, the growth temperature is 800℃~900℃.

在一些实施例中,所述第二电子拦截层中,0.3≥m≥0.1,0.5≥n≥0.3。In some embodiments, in the second electron intercepting layer, 0.3≥m≥0.1, 0.5≥n≥0.3.

在一些实施例中,所述第二电子拦截层包括周期性层叠的BmGa1-mN子层及BnN1-n子层,其中,单个BmGa1-mN子层的厚度为6nm~10nm,单个BnN1-n子层的厚度为2nm~5nm,所述第二电子拦截层的周期数为2个~6个,生长温度为1000℃~1100℃。In some embodiments, the second electron intercepting layer includes periodically stacked B m Ga 1-m N sub-layers and B n N 1-n sub-layers, wherein a single B m Ga 1-m N sub-layer The thickness is 6nm-10nm, the thickness of a single B n N 1-n sublayer is 2nm-5nm, the number of periods of the second electron intercepting layer is 2-6, and the growth temperature is 1000°C-1100°C.

在一些实施例中,所述第三电子扩展层中,0.3≥a≥0.1,0.3≥b≥0.1,Si的掺杂浓度为1×1016cm-3~1×1017cm-3In some embodiments, in the third electron expansion layer, 0.3≥a≥0.1, 0.3≥b≥0.1, and the doping concentration of Si is 1×10 16 cm −3 to 1×10 17 cm −3 .

在一些实施例中,所述第三电子扩展层包括周期性层叠的InaGa1-aN子层及N型BbGa1-bN子层,其中,单个InaGa1-aN子层的厚度为1nm~10nm,单个N型BbGa1-bN子层的厚度为10nm~20nm,所述第三电子扩展层的生长温度为900℃~1000℃。In some embodiments, the third electron expansion layer includes periodically stacked In a Ga 1-a N sublayers and N-type B b Ga 1-b N sublayers, wherein a single In a Ga 1-a N The thickness of the sublayer is 1nm~10nm, the thickness of a single N-type B b Ga 1-b N sublayer is 10nm~20nm, and the growth temperature of the third electron expansion layer is 900°C~1000°C.

本发明还提供一种发光二极管外延片的制备方法,包括:The present invention also provides a method for preparing a light-emitting diode epitaxial wafer, comprising:

提供衬底;provide the substrate;

在所述衬底上依次沉积形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;sequentially depositing a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multiple quantum well layer, an electron blocking layer, and a P-type semiconductor layer on the substrate;

所述电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guide layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer sequentially arranged along the epitaxial direction;

所述第二电子拦截层的禁带宽度>所述第三电子扩展层的最大禁带宽度>第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the maximum forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer.

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明中,在N型半导体层与多量子阱层之间设置电子引导层,且在电子引导层中,首先,设置第一电子储存层,用于储存从N型半导体层产生的电子,其次,利用禁带宽度高于第一电子储存层的第二电子拦截层,形成一个能级屏障,拦截电子,强制使电子移动速率慢下来,由于跨越第二电子拦截层本身迁移率大大下降,电子的扩展本身就会加强,同时,通过禁带宽度高于第一电子储存层而低于第二电子拦截层的第三电子扩展层,进一步扩展电子,由此通过第一电子储存层、第二电子拦截层及第三电子扩展层的共同作用,对电子进行引导,使电子迁移率降低,增加了多量子阱区电子的扩展能力,进而有效提升抗静电能力,发光波长及发光亮度的分布更均匀,同时,发光效率更高。In the present invention, an electron guiding layer is provided between the N-type semiconductor layer and the multi-quantum well layer, and in the electron guiding layer, firstly, a first electron storage layer is provided for storing electrons generated from the N-type semiconductor layer, and secondly , using the second electron interception layer whose bandgap width is higher than the first electron storage layer, forms an energy level barrier, intercepts electrons, and forces the electron movement speed to slow down. Since the mobility across the second electron interception layer itself is greatly reduced, electrons The expansion itself will be strengthened, and at the same time, through the third electron expansion layer whose bandgap width is higher than the first electron storage layer and lower than the second electron interception layer, electrons are further expanded, thereby passing through the first electron storage layer, the second The combined effect of the electron intercepting layer and the third electron expansion layer guides the electrons, reduces the electron mobility, increases the expansion ability of the electrons in the multi-quantum well region, and then effectively improves the antistatic ability, and the distribution of the luminous wavelength and luminous brightness is more accurate. Uniform, at the same time, higher luminous efficiency.

附图说明Description of drawings

图1为本发明的发光二极管外延片的结构示意图。FIG. 1 is a schematic structural view of a light-emitting diode epitaxial wafer of the present invention.

图2为本发明的电子引导层的结构示意图。Fig. 2 is a schematic diagram of the structure of the electron guiding layer of the present invention.

图3为本发明的第一电子储存层的结构示意图。FIG. 3 is a schematic structural diagram of the first electron storage layer of the present invention.

图4为本发明的第二电子拦截层的结构示意图。Fig. 4 is a schematic structural diagram of the second electron intercepting layer of the present invention.

图5为本发明的第三电子扩展层的结构示意图。FIG. 5 is a schematic structural diagram of the third electron expansion layer of the present invention.

图6为本发明的发光二极管外延片的制备方法的流程图。Fig. 6 is a flow chart of a method for preparing a light-emitting diode epitaxial wafer of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below.

参见图1所示,本发明公开一种发光二极管外延片,包括衬底1,衬底1上沿外延方向依次设置有形核层2、本征GaN层3、N型半导体层4、电子引导层5、多量子阱层6、电子阻挡层7、P型半导体层8;Referring to Fig. 1, the present invention discloses a light-emitting diode epitaxial wafer, including a substrate 1, on which a nucleation layer 2, an intrinsic GaN layer 3, an N-type semiconductor layer 4, and an electron guiding layer are sequentially arranged along the epitaxial direction. 5. Multiple quantum well layer 6, electron blocking layer 7, P-type semiconductor layer 8;

电子引导层5包括沿外延方向依次设置的第一电子储存层51、第二电子拦截层52及第三电子扩展层53;The electron guide layer 5 includes a first electron storage layer 51, a second electron interception layer 52 and a third electron expansion layer 53 arranged in sequence along the epitaxial direction;

第二电子拦截层52的禁带宽度>第三电子扩展层53的最大禁带宽度>第一电子储存层51的禁带宽度。The forbidden band width of the second electron intercepting layer 52 >the maximum forbidden band width of the third electron expanding layer 53 >the forbidden band width of the first electron storage layer 51 .

本发明中,在N型半导体层4与多量子阱层6之间设置电子引导层5,且在电子引导层5中,首先,设置第一电子储存层51,用于储存从N型半导体层4产生的电子,其次,利用禁带宽度高于第一电子储存层51的第二电子拦截层52,形成一个能级屏障,拦截电子,强制使电子移动速率慢下来,由于跨越第二电子拦截层52本身迁移率大大下降,电子的扩展本身就会加强,同时,通过最大禁带宽度高于第一电子储存层51而低于第二电子拦截层52的第三电子扩展层53,进一步扩展电子,由此通过第一电子储存层51、第二电子拦截层52及第三电子扩展层53的共同作用,对电子进行引导,使电子迁移率降低,增加了多量子阱区电子的扩展能力,进而有效提升抗静电能力,发光波长及发光亮度的分布更均匀,同时,发光效率更高。In the present invention, an electron guiding layer 5 is set between the N-type semiconductor layer 4 and the multi-quantum well layer 6, and in the electron guiding layer 5, at first, a first electron storage layer 51 is set for storing electrons from the N-type semiconductor layer. 4. The generated electrons, secondly, use the second electron interception layer 52 whose band gap is higher than that of the first electron storage layer 51 to form an energy level barrier to intercept the electrons and force the electrons to move at a slower rate. The mobility of layer 52 itself is greatly reduced, and the expansion of electrons will be strengthened. At the same time, through the third electron expansion layer 53 whose maximum band gap is higher than the first electron storage layer 51 and lower than the second electron interception layer 52, further expansion The electrons are thus guided by the joint action of the first electron storage layer 51, the second electron interception layer 52, and the third electron expansion layer 53, so that the electron mobility is reduced, and the expansion ability of the electrons in the multi-quantum well region is increased. , and then effectively improve the antistatic ability, the distribution of luminous wavelength and luminous brightness is more uniform, and at the same time, the luminous efficiency is higher.

其中,第一电子储存层51包括周期性层叠的第一子层、第二子层及第三子层,第三子层的禁带宽度Eg3>第二子层的禁带宽度Eg2>第一子层的禁带宽度Eg1,且Eg3/Eg1>3,第二电子拦截层52的禁带宽度>1.5×Eg3Wherein, the first electron storage layer 51 includes a first sub-layer, a second sub-layer and a third sub-layer stacked periodically, and the band gap Eg 3 of the third sub-layer > the band gap Eg 2 of the second sub-layer > The forbidden band of the first sublayer is Eg 1 , and Eg 3 /Eg 1 >3, and the forbidden band of the second electron intercepting layer 52 is >1.5×Eg 3 .

本发明中,在第一电子储存层51中,通过设置禁带宽度相对降低的第一子层及禁带宽度远高于第一子层的第三子层,并在第一子层与第三子层之间设置禁带宽度居于第一子层与第三子层之间的第二子层,由此在第一电子储存层51中形成“能带陷阱”,通过“能带陷阱”储存从N型半导体层4产生的电子。In the present invention, in the first electron storage layer 51, the first sublayer with a relatively lower forbidden band width and the third sublayer with a much higher forbidden band width than the first sublayer are provided, and the first sublayer and the second sublayer The second sublayer with a forbidden band width between the first sublayer and the third sublayer is arranged between the three sublayers, thereby forming an "energy band trap" in the first electron storage layer 51, and passing through the "energy band trap" Electrons generated from the N-type semiconductor layer 4 are stored.

同时,使第二电子拦截层52的禁带宽度远高于第三子层,确保第二电子拦截层52的禁带宽度远高于第一电子储存层51,从而形成能级屏障,其中,Eg3/Eg1(第三子层的禁带宽度Eg3与第一子层的禁带宽度Eg1之间的比值)不能过低,Eg3/Eg1过低不利于形成“能带陷阱”,难以储存电子,而Eg3/Eg1过高则电子难以跨越第三子层,第二电子拦截层52的禁带宽度与第三子层之间禁带宽度的比值不宜过低,否则不利于在第一电子储存层51与第二电子拦截层52之间形成足够的禁带宽度差,第二电子拦截层52难以形成能级屏障。At the same time, the band gap of the second electron intercepting layer 52 is much higher than that of the third sublayer, ensuring that the band gap of the second electron intercepting layer 52 is much higher than that of the first electron storage layer 51, thereby forming an energy level barrier, wherein, Eg 3 /Eg 1 (the ratio between the band gap Eg 3 of the third sublayer and the band gap Eg 1 of the first sublayer) cannot be too low, and too low Eg 3 /Eg 1 is not conducive to the formation of "band traps"", it is difficult to store electrons, and if Eg 3 /Eg 1 is too high, electrons are difficult to cross the third sublayer, and the ratio of the band gap width of the second electron intercepting layer 52 to the band gap width between the third sublayer should not be too low, otherwise It is not conducive to forming a sufficient gap between the first electron storage layer 51 and the second electron interception layer 52 , and the second electron interception layer 52 is difficult to form an energy level barrier.

参见图2所示,其中,第一电子储存层51为InxN1-x/InyGa1-yN/GaN层,第二电子拦截层52为BmGa1-mN/BnN1-n层,第三电子扩展层53为InaGa1-aN/N型BbGa1-bN层。Referring to Fig. 2, wherein, the first electron storage layer 51 is In x N 1-x /In y Ga 1-y N/GaN layer, and the second electron interception layer 52 is B m Ga 1-m N/B n N 1-n layer, the third electron expansion layer 53 is an In a Ga 1-a N/N type B b Ga 1-b N layer.

本发明中,第一电子储存层51为InxN1-x/InyGa1-yN/GaN层,其中,InxN1-x子层511为第一子层,InyGa1-yN子层512为第二子层,GaN子层513为第三子层,InxN1-x子层511的禁带宽度约为0.7eV,GaN子层513的禁带宽度约为3.4eV,由此在第一电子储存层51中形成“能带陷阱”,储存从N型半导体层4产生的电子。In the present invention, the first electron storage layer 51 is an In x N 1-x /In y Ga 1-y N/GaN layer, wherein the In x N 1-x sublayer 511 is the first sublayer, and the In y Ga 1 -y N sublayer 512 is the second sublayer, GaN sublayer 513 is the third sublayer, In x N 1-x sublayer 511 has a band gap of about 0.7 eV, and GaN sub layer 513 has a band gap of about 3.4eV, thereby forming an “energy band trap” in the first electron storage layer 51 to store electrons generated from the N-type semiconductor layer 4 .

此外,InxN1-x子层511及InyGa1-yN子层512引入In组分,降低势垒高度,从而与GaN子层513形成势垒差,此外,在InxN1-x子层511及InyGa1-yN子层512之后引入GaN子层513,还能在生长过程中修复InxN1-x子层511及InyGa1-yN子层512低温高掺杂In组分所产生的缺陷。In addition, the In x N 1-x sublayer 511 and the In y Ga 1-y N sublayer 512 introduce In components to reduce the barrier height, thereby forming a potential barrier difference with the GaN sublayer 513. In addition, the In x N 1 - After the x sublayer 511 and the In y Ga 1-y N sublayer 512, the GaN sublayer 513 is introduced, and the In x N 1-x sublayer 511 and the In y Ga 1-y N sublayer 512 can also be repaired during the growth process Defects generated by low temperature and high doping In components.

其次,在第二电子拦截层52中,BN层的禁带宽度约为6.4eV,远高于第一电子储存层51的禁带宽度,这一层的能级远高于第一电子储存层51的能级,形成一个能级屏障,强制性使电子移动速率慢下来,同时,由于硼原子较小,且BmGa1-mN/BnN1-n原子晶格匹配较好,所以在这一层能够形成高质量晶格,能够修复第一电子储存层51低温高掺杂In组分所产生的缺陷。Secondly, in the second electron intercepting layer 52, the band gap of the BN layer is about 6.4eV, which is much higher than the band gap of the first electron storage layer 51, and the energy level of this layer is much higher than that of the first electron storage layer The energy level of 51 forms an energy level barrier, which forcibly slows down the electron movement rate. At the same time, due to the small boron atom and the better lattice matching of B m Ga 1-m N/B n N 1-n atoms, Therefore, a high-quality crystal lattice can be formed in this layer, and defects generated by the low-temperature high-doped In component of the first electron storage layer 51 can be repaired.

第三电子扩展层53为InaGa1-aN/N型BbGa1-bN层,一方面,由于这一层的最大禁带宽度高于第一电子储存层51而低于第二电子拦截层52,能级介于第一电子储存层51与第二电子拦截层52之间,跨越第二电子拦截层52本身迁移率大大下降,电子的扩展本身就会加强,其次,InaGa1-aN与N型BbGa1-bN材料之间晶格失配严重,重复层叠的异质结构产生二维电子气,增加了载流子的扩展作用,并且BbGa1-bN材料中低N型掺杂的并入,降低了材料的体电阻,使得电子扩展更好。The third electron expansion layer 53 is an In a Ga 1-a N/N type B b Ga 1-b N layer. On the one hand, because the maximum band gap of this layer is higher than that of the first electron storage layer 51 and lower than that of the first electron storage layer 51 The second electron interception layer 52, the energy level is between the first electron storage layer 51 and the second electron interception layer 52, the mobility across the second electron interception layer 52 itself is greatly reduced, and the expansion of electrons itself will be strengthened. Secondly, In The lattice mismatch between a Ga 1-a N and N-type B b Ga 1-b N materials is serious, and the repeated stacked heterostructure generates two-dimensional electron gas, which increases the expansion of carriers, and B b Ga The incorporation of low N-type doping in 1-b N materials reduces the bulk resistance of the material and enables better electron spreading.

由此,通过第一电子储存层51、第二电子拦截层52与第三电子扩展层53的共同配合,对电子进行引导,进而降低电子迁移率,增加多量子阱区电子空穴对的平衡,增加了电子的扩展能力,进而有效提升抗静电能力,发光波长及发光亮度的分布更均匀,同时发光效率更高。Thus, through the joint cooperation of the first electron storage layer 51, the second electron interception layer 52 and the third electron expansion layer 53, electrons are guided, thereby reducing electron mobility and increasing the balance of electron-hole pairs in the multi-quantum well region , increasing the expansion ability of electrons, thereby effectively improving the antistatic ability, the distribution of luminous wavelength and luminous brightness is more uniform, and the luminous efficiency is higher.

其中,第一电子储存层51中,0.6≥x≥0.4,0.3≥y≥0.1,示例性的,x为0.4、0.5或0.6,但不限于此,当x过大时,可能会因In组分过多导致晶格质量变差,当x过小时,即In组分过少,则难以与GaN子层513形成势垒差,难以储藏足够多的电子;示例性的,y为0.1、0.2或0.3,但不限于此,当y过大时,可能会由于持续高In组分导致的缺陷增多,晶体质量变差,当y过小时,则不能有效储存电子。Wherein, in the first electron storage layer 51, 0.6≥x≥0.4, 0.3≥y≥0.1, for example, x is 0.4, 0.5 or 0.6, but not limited thereto, when x is too large, it may be caused by In group Too much content leads to poor lattice quality. When x is too small, that is, the In composition is too small, it is difficult to form a potential barrier difference with the GaN sublayer 513, and it is difficult to store enough electrons; for example, y is 0.1, 0.2 Or 0.3, but not limited thereto, when y is too large, defects may increase due to continuous high In composition, and the crystal quality may deteriorate; when y is too small, electrons cannot be stored effectively.

参见图3所示,其中,第一电子储存层51包括周期性层叠的InxN1-x子层511、InyGa1- yN子层512及GaN子层513,其中,单个InxN1-x子层511的厚度为1nm~5nm,单个InyGa1-yN子层512的厚度为1nm~5nm,单个GaN子层513的厚度为6nm~10nm,第一电子储存层51的周期数为2个~6个,生长温度为800℃~900℃,优选地,单个GaN子层513的厚度为8nm~10nm,GaN子层513偏厚,更利于修复InxN1-x子层511及InyGa1-yN子层512低温高掺杂In组分所产生的缺陷,示例性的,生长温度为800℃、830℃、860℃或900℃,但不限于此,生长温度不宜过高,过高的生长温度容易造成In组分的扩散,生长温度不宜过低,过低的生长温度会影响In组分的并入。Referring to FIG. 3 , the first electron storage layer 51 includes periodically stacked In x N 1-x sub-layers 511, In y Ga 1- y N sub-layers 512 and GaN sub-layers 513, wherein a single In x The thickness of the N 1-x sublayer 511 is 1nm~5nm, the thickness of a single In y Ga 1-y N sublayer 512 is 1nm~5nm, the thickness of a single GaN sublayer 513 is 6nm~10nm, the first electron storage layer 51 The number of cycles is 2~6, and the growth temperature is 800°C~900°C. Preferably, the thickness of a single GaN sublayer 513 is 8nm~10nm, and the GaN sublayer 513 is thicker, which is more conducive to repairing In x N 1-x Defects generated by sub-layer 511 and In y Ga 1-y N sub-layer 512 caused by low temperature and high doping of In components, for example, the growth temperature is 800°C, 830°C, 860°C or 900°C, but not limited thereto, The growth temperature should not be too high, as the growth temperature that is too high will easily cause the diffusion of the In component, and the growth temperature should not be too low, as the growth temperature that is too low will affect the incorporation of the In component.

其中,第二电子拦截层52中,0.3≥m≥0.1,0.5≥n≥0.3,示例性的,m为0.1、0.2或0.3,但不限于此,在此范围内,既能保证BmGa1-mN子层521与BnN1-n子层522具有较好的晶格匹配,又确保不会产生裂纹;示例性的,n为0.3、0.4或0.5,但不限于此,当n>0.5时,容易产生裂纹,造成晶格质量下降,当n<0.3时,则对电子拦截作用减弱。Wherein, in the second electron intercepting layer 52, 0.3≥m≥0.1, 0.5≥n≥0.3, for example, m is 0.1, 0.2 or 0.3, but not limited thereto, within this range, both B m Ga The 1-m N sublayer 521 and the B n N 1-n sublayer 522 have good lattice matching, and ensure that no cracks are generated; for example, n is 0.3, 0.4 or 0.5, but not limited thereto, when When n>0.5, it is easy to produce cracks, resulting in a decrease in lattice quality, and when n<0.3, the electron interception effect is weakened.

参见图4所示,其中,第二电子拦截层52包括周期性层叠的BmGa1-mN子层521及BnN1-n子层522,其中,单个BmGa1-mN子层521的厚度为6nm~10nm,单个BnN1-n子层522的厚度为2nm~5nm,第二电子拦截层52的周期数为2个~6个,生长温度为1000℃~1100℃,示例性的,生长温度为1000℃、1030℃、1080℃或1100℃,但不限于此,较高的生长温度利于提高晶格质量,更好的修复第一电子储存层51低温高In组分所带来的缺陷。4, wherein the second electron intercepting layer 52 includes periodically stacked B m Ga 1-m N sub-layers 521 and B n N 1-n sub-layers 522, wherein a single B m Ga 1-m N The thickness of the sublayer 521 is 6nm~10nm, the thickness of a single B n N 1-n sublayer 522 is 2nm~5nm, the number of cycles of the second electron intercepting layer 52 is 2~6, and the growth temperature is 1000°C~1100°C. °C, for example, the growth temperature is 1000 °C, 1030 °C, 1080 °C or 1100 °C, but not limited thereto, a higher growth temperature is conducive to improving the quality of the crystal lattice, better repairing the first electron storage layer 51 with low temperature and high In defects caused by components.

其中,第三电子扩展层53中,0.3≥a≥0.1,0.3≥b≥0.1,Si的掺杂浓度为1×1016cm-3~1×1017cm-3,示例性的,a为0.1、0.2或0.3,但不限于此,当a过大时,In组分过多,容易降低晶格质量,当a过小时,In组分过少,难以与第二电子拦截层52形成势垒差,b为0.1、0.2或0.3,但不限于此,当b过大时,容易产生裂纹,造成晶格质量下降,当b过小时,难以与第一电子储存层51形成势垒差,Si的掺杂浓度为1×1016cm-3、3×1016cm-3、5×1016cm-3、8×1016cm-3或1×1017cm-3,但不限于此,通过低N型掺杂Si的并入,降低了材料的体电阻,使得电子扩展更好。Wherein, in the third electron expansion layer 53, 0.3≥a≥0.1, 0.3≥b≥0.1, the doping concentration of Si is 1×10 16 cm -3 ~1×10 17 cm -3 , for example, a is 0.1, 0.2 or 0.3, but not limited thereto, when a is too large, the In composition is too much, and the quality of the crystal lattice is easily reduced; when a is too small, the In composition is too small, and it is difficult to form a potential with the second electron intercepting layer 52. barrier difference, b is 0.1, 0.2 or 0.3, but not limited thereto, when b is too large, cracks are likely to occur, resulting in a decrease in lattice quality; when b is too small, it is difficult to form a potential barrier difference with the first electron storage layer 51, The doping concentration of Si is 1×10 16 cm -3 , 3×10 16 cm -3 , 5×10 16 cm -3 , 8×10 16 cm -3 or 1×10 17 cm -3 , but not limited thereto , through the incorporation of low N-type doped Si, the bulk resistance of the material is reduced, making the electron expansion better.

参见图5所示,其中,第三电子扩展层53包括周期性层叠的InaGa1-aN子层531及N型BbGa1-bN子层,其中,单个InaGa1-aN子层531的厚度为1nm~10nm,单个N型BbGa1-bN子层的厚度为10nm~20nm,第三电子扩展层53的生长温度为900℃~1000℃,优选地,单个N型BbGa1-bN子层的厚度为15nm~20nm,通过各子层的厚度设置及生长温度设置,既能确保In组分的并入,又能保证较好的晶格质量,阻挡底层缺陷,避免缺陷延伸至多量子阱层6而造成非辐射复合。5, wherein the third electron expansion layer 53 includes periodically stacked In a Ga 1-a N sub-layers 531 and N-type B b Ga 1-b N sub-layers, wherein a single In a Ga 1-a The thickness of the a N sublayer 531 is 1nm~10nm, the thickness of a single N-type BbGa1 -bN sublayer is 10nm~20nm, the growth temperature of the third electron expansion layer 53 is 900°C~1000°C, preferably, The thickness of a single N-type B b Ga 1-b N sublayer is 15nm~20nm. By setting the thickness and growth temperature of each sublayer, it can not only ensure the incorporation of In components, but also ensure better lattice quality. , to block the defects at the bottom layer, and prevent the defects from extending to the multi-quantum well layer 6 to cause non-radiative recombination.

其中,形核层2的厚度为20nm~100nm,本征GaN层3的厚度为300nm~800nm,N型半导体层4的厚度为1μm~3μm,单个周期的多量子阱层6的厚度为2nm~5nm,单个周期的电子阻挡层7的厚度为20nm~100nm,P型半导体层8的厚度为200nm~300nm。Among them, the thickness of the nucleation layer 2 is 20nm~100nm, the thickness of the intrinsic GaN layer 3 is 300nm~800nm, the thickness of the N-type semiconductor layer 4 is 1μm~3μm, and the thickness of the multiple quantum well layer 6 of a single period is 2nm~ 5nm, the thickness of the electron blocking layer 7 of a single period is 20nm~100nm, and the thickness of the P-type semiconductor layer 8 is 200nm~300nm.

参见图6所示,本发明还公开一种发光二极管外延片的制备方法,包括:Referring to Figure 6, the present invention also discloses a method for preparing a light-emitting diode epitaxial wafer, including:

S100.提供衬底1;S100. Providing a substrate 1;

S200.在衬底1上依次沉积形核层2、本征GaN层3、N型半导体层4、电子引导层5、多量子阱层6、电子阻挡层7、P型半导体层8;S200. sequentially depositing a nucleation layer 2, an intrinsic GaN layer 3, an N-type semiconductor layer 4, an electron guiding layer 5, a multi-quantum well layer 6, an electron blocking layer 7, and a P-type semiconductor layer 8 on the substrate 1;

电子引导层5包括沿外延方向依次设置的第一电子储存层51、第二电子拦截层52及第三电子扩展层53;The electron guide layer 5 includes a first electron storage layer 51, a second electron interception layer 52 and a third electron expansion layer 53 arranged in sequence along the epitaxial direction;

第二电子拦截层52的禁带宽度>第三电子扩展层53的禁带宽度>第一电子储存层51的禁带宽度。The forbidden band width of the second electron intercepting layer 52 >the forbidden band width of the third electron expanding layer 53 >the forbidden band width of the first electron storage layer 51 .

其中,步骤S100中,衬底1可为Si衬底、蓝宝石衬底等,但不限于此,其具体步骤如下:Wherein, in step S100, the substrate 1 can be a Si substrate, a sapphire substrate, etc., but not limited thereto, and the specific steps are as follows:

控制反应室温度为1000℃~1200℃,控制反应室压力为200Torr~600Torr,在H2气氛下对衬底1进行5~8min的高温退火,对衬底1表面的颗粒和氧化物进行清洁。The temperature of the reaction chamber is controlled to be 1000°C-1200°C, the pressure of the reaction chamber is controlled to be 200Torr-600Torr, and the substrate 1 is annealed at a high temperature for 5-8 minutes under H2 atmosphere to clean the particles and oxides on the surface of the substrate 1.

其中,步骤S200的具体步骤如下:Wherein, the specific steps of step S200 are as follows:

S210.在衬底1上沉积形核层2:S210. Depositing a nucleation layer 2 on the substrate 1:

其中,形核层2可为AlGaN层或AlN层,本层主要用于提供晶种,缓解衬底1和外延层的晶格失配,提升外延片晶格质量。Wherein, the nucleation layer 2 can be an AlGaN layer or an AlN layer, and this layer is mainly used to provide crystal seeds, alleviate the lattice mismatch between the substrate 1 and the epitaxial layer, and improve the lattice quality of the epitaxial wafer.

控制反应室温度为500℃~700℃,反应室压力为200Torr~400Torr,N2和H2作为载气,通入NH3提供N源,通入TMGa作为Ga源,通入TMAl作为Al源,厚度为20nm~100nm。Control the temperature of the reaction chamber at 500°C to 700°C, the pressure of the reaction chamber at 200Torr to 400Torr, N2 and H2 as the carrier gas, NH3 as the N source, TMGa as the Ga source, and TMAl as the Al source, The thickness is 20nm~100nm.

S220.在形核层2上沉积本征GaN层3:S220. Depositing an intrinsic GaN layer 3 on the nucleation layer 2:

将反应室的温度控制在1100℃~1150℃,压力为100Torr~500Torr,N2和H2作为载气,通入NH3作为N源,通入TMGa作为Ga源,厚度为300nm~800nm。The temperature of the reaction chamber is controlled at 1100°C-1150°C, the pressure is 100Torr-500Torr, N2 and H2 are used as carrier gases, NH3 is fed as N source, TMGa is fed as Ga source, and the thickness is 300nm~800nm.

S230.在本征GaN层3上沉积N型半导体层4:S230. Depositing an N-type semiconductor layer 4 on the intrinsic GaN layer 3:

将反应室的温度控制在1100℃~1150℃,压力为100Torr~500Torr,N2和H2作为载气,通入NH3作为N源,通入TMGa作为Ga源,通入SiH4作为N型掺杂剂,厚度为1μm~3μm。Control the temperature of the reaction chamber at 1100°C to 1150°C, the pressure at 100Torr to 500Torr, N2 and H2 as the carrier gas, NH3 as the N source, TMGa as the Ga source, and SiH4 as the N type Dopant, the thickness is 1μm~3μm.

S240.在N型半导体层4上沉积电子引导层5,具体步骤如下:S240. Depositing the electron guiding layer 5 on the N-type semiconductor layer 4, the specific steps are as follows:

S241.在N型半导体层4上沉积第一电子储存层51:S241. Depositing the first electron storage layer 51 on the N-type semiconductor layer 4:

1)沉积InxN1-x子层511;1) depositing In x N 1-x sublayer 511;

2)沉积InyGa1-yN子层512;2) Depositing the In y Ga 1-y N sublayer 512;

3)沉积GaN子层513;3) depositing a GaN sublayer 513;

其中,0.6≥x≥0.4,0.3≥y≥0.1;Among them, 0.6≥x≥0.4, 0.3≥y≥0.1;

单个InxN1-x子层511的厚度为1nm~5nm,单个InyGa1-yN子层512的厚度为1nm~5nm,单个GaN子层513的厚度为6nm~10nm,第一电子储存层51的周期数为2个~6个,生长温度为800℃~900℃,压力为100Torr~300Torr。The thickness of a single In x N 1-x sublayer 511 is 1nm~5nm, the thickness of a single InyGa1 -yN sublayer 512 is 1nm~5nm, and the thickness of a single GaN sublayer 513 is 6nm~10nm, the first electron The number of cycles of the storage layer 51 is 2 to 6, the growth temperature is 800° C. to 900° C., and the pressure is 100 Torr to 300 Torr.

S242.在第一电子储存层51上沉积第二电子拦截层52:S242. Depositing the second electron interception layer 52 on the first electron storage layer 51:

1)沉积BmGa1-mN子层521;1) depositing a B m Ga 1-m N sublayer 521;

2)沉积BnN1-n子层522;2) Depositing a B n N 1-n sublayer 522;

其中,0.3≥m≥0.1,0.5≥n≥0.3;Among them, 0.3≥m≥0.1, 0.5≥n≥0.3;

单个BmGa1-mN子层521的厚度为6nm~10nm,单个BnN1-n子层522的厚度为2nm~5nm,第二电子拦截层52的周期数为2个~6个,生长温度为1000℃~1100℃,压力为100Torr~300Torr。The thickness of a single BmGa1 -mN sublayer 521 is 6nm~10nm, the thickness of a single BnN1 -n sublayer 522 is 2nm~5nm, and the number of periods of the second electron intercepting layer 52 is 2~6 , the growth temperature is 1000°C~1100°C, and the pressure is 100Torr~300Torr.

S243.在第二电子拦截层52上沉积第三电子扩展层53:S243. Depositing the third electron expansion layer 53 on the second electron interception layer 52:

1)沉积InaGa1-aN子层531;1) depositing an In a Ga 1-a N sublayer 531;

2)沉积N型BbGa1-bN子层532;2) depositing an N-type B b Ga 1-b N sublayer 532;

其中,0.3≥a≥0.1,0.3≥b≥0.1,Si的掺杂浓度为1×1016cm-3~1×1017cm-3Among them, 0.3≥a≥0.1, 0.3≥b≥0.1, the doping concentration of Si is 1×10 16 cm -3 ~1×10 17 cm -3 ;

单个InaGa1-aN子层531的厚度为1nm~10nm,单个N型BbGa1-bN子层的厚度为10nm~20nm,第三电子扩展层53的生长温度为900℃~1000℃,周期数为2个~6个,压力为100Torr~300Torr。The thickness of a single In a Ga 1-a N sublayer 531 is 1nm~10nm, the thickness of a single N-type BbGa 1-b N sublayer is 10nm~20nm, and the growth temperature of the third electron expansion layer 53 is 900°C~ 1000°C, the number of cycles is 2~6, and the pressure is 100Torr~300Torr.

S250.在电子引导层5上沉积多量子阱层6:S250. Depositing a multi-quantum well layer 6 on the electron guiding layer 5:

多量子阱层6为InGaN/GaN层,周期数为3个~15个,反应室的温度控制在700℃~900℃,压力为100Torr~500Torr,单个周期的多量子阱层6的厚度为2nm~5nm。The multi-quantum well layer 6 is an InGaN/GaN layer, the number of periods is 3-15, the temperature of the reaction chamber is controlled at 700°C-900°C, the pressure is 100Torr-500Torr, and the thickness of the multi-quantum well layer 6 of a single period is 2nm ~5nm.

S260.在多量子阱层6上沉积电子阻挡层7:S260. Depositing an electron blocking layer 7 on the multiple quantum well layer 6:

电子阻挡层7为AlGaN/InGaN层,周期数为3个~15个,反应室的温度控制在900℃~1000℃,压力为100Torr~500Torr,单个周期的电子阻挡层7的厚度为20nm~100nm,其中,TMGa作为Ga源,TMAl作为Al源,TMIn作为In源。The electron blocking layer 7 is an AlGaN/InGaN layer, the number of cycles is 3~15, the temperature of the reaction chamber is controlled at 900°C~1000°C, the pressure is 100Torr~500Torr, and the thickness of a single cycle of the electron blocking layer 7 is 20nm~100nm , where TMGa is used as the Ga source, TMAl is used as the Al source, and TMIn is used as the In source.

S270.在电子阻挡层7上沉积P型半导体层8:S270. Depositing a P-type semiconductor layer 8 on the electron blocking layer 7:

反应室的温度控制在800℃~1000℃,压力为100Torr~300Torr,通入NH3作为N源,通入TMGa作为Ga源,通入CP2Mg作为P型掺杂剂,其中,Mg的掺杂浓度为5×1017~1×1020cm-3,厚度为200nm~300nm。The temperature of the reaction chamber is controlled at 800°C~1000°C, the pressure is 100Torr~300Torr, NH 3 is fed in as the N source, TMGa is fed in as the Ga source, and CP 2 Mg is fed in as the P-type dopant. Among them, the doping of Mg The impurity concentration is 5×10 17 ~1×10 20 cm -3 , and the thickness is 200nm~300nm.

下面结合附图及实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:

实施例1Example 1

参见图1所示,本实施例公开一种发光二极管外延片,包括衬底1,衬底1上沿外延方向依次设置有形核层2、本征GaN层3、N型半导体层4、电子引导层5、多量子阱层6、电子阻挡层7、P型半导体层8;Referring to Fig. 1, the present embodiment discloses a light-emitting diode epitaxial wafer, including a substrate 1, on which a nucleation layer 2, an intrinsic GaN layer 3, an N-type semiconductor layer 4, and an electron guiding layer are sequentially arranged along the epitaxial direction. Layer 5, multi-quantum well layer 6, electron blocking layer 7, P-type semiconductor layer 8;

电子引导层5包括沿外延方向依次设置的第一电子储存层51、第二电子拦截层52及第三电子扩展层53;The electron guide layer 5 includes a first electron storage layer 51, a second electron interception layer 52 and a third electron expansion layer 53 arranged in sequence along the epitaxial direction;

第二电子拦截层52的禁带宽度>第三电子扩展层53的最大禁带宽度>第一电子储存层51的禁带宽度。The forbidden band width of the second electron intercepting layer 52 >the maximum forbidden band width of the third electron expanding layer 53 >the forbidden band width of the first electron storage layer 51 .

其中,第一电子储存层51包括周期性层叠的第一子层、第二子层及第三子层,第三子层的禁带宽度Eg3>第二子层的禁带宽度Eg2>第一子层的禁带宽度Eg1,且Eg3/Eg1>3,第二电子拦截层52的禁带宽度>1.5×Eg3Wherein, the first electron storage layer 51 includes a first sub-layer, a second sub-layer and a third sub-layer stacked periodically, and the band gap Eg 3 of the third sub-layer > the band gap Eg 2 of the second sub-layer > The forbidden band of the first sublayer is Eg 1 , and Eg 3 /Eg 1 >3, and the forbidden band of the second electron intercepting layer 52 is >1.5×Eg 3 .

参见图2所示,其中,第一电子储存层51为InxN1-x/InyGa1-yN/GaN层,第二电子拦截层52为BmGa1-mN/BnN1-n层,第三电子扩展层53为InaGa1-aN/N型BbGa1-bN层。Referring to Fig. 2, wherein, the first electron storage layer 51 is In x N 1-x /In y Ga 1-y N/GaN layer, and the second electron interception layer 52 is B m Ga 1-m N/B n N 1-n layer, the third electron expansion layer 53 is an In a Ga 1-a N/N type B b Ga 1-b N layer.

其中,第一电子储存层51中,x为0.6,y为0.3。Wherein, in the first electron storage layer 51, x is 0.6, and y is 0.3.

参见图3所示,其中,第一电子储存层51包括周期性层叠的InxN1-x子层511、InyGa1- yN子层512及GaN子层513,其中,单个InxN1-x子层511的厚度为3nm,单个InyGa1-yN子层512的厚度为3nm,单个GaN子层513的厚度为8nm,第一电子储存层51的周期数为3个,生长温度为900℃。Referring to FIG. 3 , the first electron storage layer 51 includes periodically stacked In x N 1-x sub-layers 511, In y Ga 1- y N sub-layers 512 and GaN sub-layers 513, wherein a single In x The thickness of the N 1-x sublayer 511 is 3nm, the thickness of a single In y Ga 1-y N sublayer 512 is 3nm, the thickness of a single GaN sublayer 513 is 8nm, and the number of periods of the first electron storage layer 51 is 3 , the growth temperature is 900°C.

其中,第二电子拦截层52中,m为0.3,n为0.5。Wherein, in the second electron intercepting layer 52, m is 0.3, and n is 0.5.

参见图4所示,其中,第二电子拦截层52包括周期性层叠的BmGa1-mN子层521及BnN1-n子层522,其中,单个BmGa1-mN子层521的厚度为8nm,单个BnN1-n子层522的厚度为3nm,第二电子拦截层52的周期数为4个,生长温度为1100℃。4, wherein the second electron intercepting layer 52 includes periodically stacked B m Ga 1-m N sub-layers 521 and B n N 1-n sub-layers 522, wherein a single B m Ga 1-m N The thickness of the sublayer 521 is 8nm, the thickness of a single BnN1 -n sublayer 522 is 3nm, the number of cycles of the second electron intercepting layer 52 is 4, and the growth temperature is 1100°C.

其中,第三电子扩展层53中,a为0.3,b为0.3,Si的掺杂浓度为5×1016cm-3Wherein, in the third electron expansion layer 53 , a is 0.3, b is 0.3, and the doping concentration of Si is 5×10 16 cm −3 .

参见图5所示,其中,第三电子扩展层53包括周期性层叠的InaGa1-aN子层531及N型BbGa1-bN子层532,其中,单个InaGa1-aN子层531的厚度为5nm,单个N型BbGa1-bN子层532的厚度为15nm,第三电子扩展层53的生长温度为1000℃。5, wherein the third electron expansion layer 53 includes periodically stacked In a Ga 1-a N sub-layers 531 and N-type B b Ga 1-b N sub-layers 532, wherein a single In a Ga 1 - the thickness of the a N sublayer 531 is 5 nm, the thickness of a single N-type B b Ga 1-b N sublayer 532 is 15 nm, and the growth temperature of the third electron expansion layer 53 is 1000° C.

参见图6所示,本发明还公开一种发光二极管外延片的制备方法,包括:Referring to Figure 6, the present invention also discloses a method for preparing a light-emitting diode epitaxial wafer, including:

S100.提供衬底1;S100. Providing a substrate 1;

S200.在衬底1上依次沉积形核层2、本征GaN层3、N型半导体层4、电子引导层5、多量子阱层6、电子阻挡层7、P型半导体层8;S200. sequentially depositing a nucleation layer 2, an intrinsic GaN layer 3, an N-type semiconductor layer 4, an electron guiding layer 5, a multi-quantum well layer 6, an electron blocking layer 7, and a P-type semiconductor layer 8 on the substrate 1;

电子引导层5包括沿外延方向依次设置的第一电子储存层51、第二电子拦截层52及第三电子扩展层53;The electron guide layer 5 includes a first electron storage layer 51, a second electron interception layer 52 and a third electron expansion layer 53 arranged in sequence along the epitaxial direction;

第二电子拦截层52的禁带宽度>第三电子扩展层53的禁带宽度>第一电子储存层51的禁带宽度。The forbidden band width of the second electron intercepting layer 52 >the forbidden band width of the third electron expanding layer 53 >the forbidden band width of the first electron storage layer 51 .

其中,步骤S200的具体步骤如下:Wherein, the specific steps of step S200 are as follows:

S210.在衬底1上沉积形核层2;S210. depositing a nucleation layer 2 on the substrate 1;

S220.在形核层2上沉积本征GaN层3;S220. Depositing an intrinsic GaN layer 3 on the nucleation layer 2;

S230.在本征GaN层3上沉积N型半导体层4;S230. Depositing an N-type semiconductor layer 4 on the intrinsic GaN layer 3;

S240.在N型半导体层4上沉积电子引导层5;S240. Depositing an electron guiding layer 5 on the N-type semiconductor layer 4;

S250.在电子引导层5上沉积多量子阱层6;S250. Depositing a multi-quantum well layer 6 on the electron guiding layer 5;

S260.在多量子阱层6上沉积电子阻挡层7;S260. Depositing an electron blocking layer 7 on the multiple quantum well layer 6;

S270.在电子阻挡层7上沉积P型半导体层8。S270 . Depositing a P-type semiconductor layer 8 on the electron blocking layer 7 .

其中,步骤S240的具体步骤如下:Wherein, the concrete steps of step S240 are as follows:

S241.在N型半导体层4上沉积第一电子储存层51:S241. Depositing the first electron storage layer 51 on the N-type semiconductor layer 4:

1)沉积InxN1-x子层511;1) depositing In x N 1-x sublayer 511;

2)沉积InyGa1-yN子层512;2) Depositing the In y Ga 1-y N sublayer 512;

3)沉积GaN子层513。3) GaN sub-layer 513 is deposited.

S242.在第一电子储存层51上沉积第二电子拦截层52:S242. Depositing the second electron interception layer 52 on the first electron storage layer 51:

1)沉积BmGa1-mN子层521;1) depositing a B m Ga 1-m N sublayer 521;

2)沉积BnN1-n子层522。2) Deposit B n N 1-n sublayer 522 .

S243.在第二电子拦截层52上沉积第三电子扩展层53:S243. Depositing the third electron expansion layer 53 on the second electron interception layer 52:

1)沉积InaGa1-aN子层531;1) depositing an In a Ga 1-a N sublayer 531;

2)沉积N型BbGa1-bN子层532。2) Depositing an N-type B b Ga 1-b N sublayer 532 .

实施例2Example 2

本实施例公开一种发光二极管外延片,包括衬底,衬底上沿外延方向依次设置有形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;This embodiment discloses a light-emitting diode epitaxial wafer, which includes a substrate, on which a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multi-quantum well layer, an electron blocking layer, P-type semiconductor layer;

电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guiding layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer arranged in sequence along the epitaxial direction;

第二电子拦截层的禁带宽度>第三电子扩展层的最大禁带宽度>第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the maximum forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer.

其中,第一电子储存层包括周期性层叠的第一子层、第二子层及第三子层,第三子层的禁带宽度Eg3>第二子层的禁带宽度Eg2>第一子层的禁带宽度Eg1,且Eg3/Eg1>3,第二电子拦截层的禁带宽度>1.5×Eg3Wherein, the first electron storage layer includes a first sublayer, a second sublayer and a third sublayer stacked periodically, and the bandgap width Eg 3 of the third sublayer > the bandgap width Eg 2 of the second sublayer > the bandgap width Eg 2 of the second sublayer > The forbidden band width of the first sublayer is Eg 1 , and Eg 3 /Eg 1 >3, and the forbidden band width of the second electron intercepting layer is >1.5×Eg 3 .

其中,第一电子储存层为InxN1-x/InyGa1-yN/GaN层,第二电子拦截层为BmGa1-mN/BnN1-n层,第三电子扩展层为InaGa1-aN/N型BbGa1-bN层。Among them, the first electron storage layer is In x N 1-x /In y Ga 1-y N/GaN layer, the second electron interception layer is B m Ga 1-m N/B n N 1-n layer, and the third The electron expansion layer is an In a Ga 1-a N/N type B b Ga 1-b N layer.

其中,第一电子储存层中,x为0.4,y为0.1。Wherein, in the first electron storage layer, x is 0.4, and y is 0.1.

其中,第一电子储存层包括周期性层叠的InxN1-x子层、InyGa1-yN子层及GaN子层,其中,单个InxN1-x子层的厚度为3nm,单个InyGa1-yN子层的厚度为3nm,单个GaN子层的厚度为8nm,第一电子储存层的周期数为3个,生长温度为900℃。Wherein, the first electron storage layer includes periodically stacked In x N 1-x sub-layers, In y Ga 1-y N sub-layers and GaN sub-layers, wherein the thickness of a single In x N 1-x sub-layer is 3nm , the thickness of a single In y Ga 1-y N sublayer is 3nm, the thickness of a single GaN sublayer is 8nm, the period number of the first electron storage layer is 3, and the growth temperature is 900°C.

其中,第二电子拦截层中,m为0.1,n为0.3。Wherein, in the second electron intercepting layer, m is 0.1, and n is 0.3.

其中,第二电子拦截层包括周期性层叠的BmGa1-mN子层及BnN1-n子层,其中,单个BmGa1-mN子层的厚度为8nm,单个BnN1-n子层的厚度为3nm,第二电子拦截层的周期数为4个,生长温度为1100℃。Wherein, the second electron intercepting layer includes periodically stacked B m Ga 1-m N sub-layers and B n N 1-n sub-layers, wherein the thickness of a single B m Ga 1-m N sub-layer is 8nm, and a single B The thickness of the n N 1-n sublayer is 3nm, the period number of the second electron intercepting layer is 4, and the growth temperature is 1100°C.

其中,第三电子扩展层中,a为0.1,b为0.1,Si的掺杂浓度为5×1016cm-3Wherein, in the third electron expansion layer, a is 0.1, b is 0.1, and the doping concentration of Si is 5×10 16 cm −3 .

其中,第三电子扩展层包括周期性层叠的InaGa1-aN子层及N型BbGa1-bN子层,其中,单个InaGa1-aN子层的厚度为5nm,单个N型BbGa1-bN子层的厚度为15nm,第三电子扩展层的生长温度为1000℃。Wherein, the third electron expansion layer includes periodically stacked In a Ga 1-a N sublayers and N-type B b Ga 1-b N sublayers, wherein the thickness of a single In a Ga 1-a N sublayer is 5nm , the thickness of a single N-type BbGa1 -bN sublayer is 15 nm, and the growth temperature of the third electron expansion layer is 1000 °C.

本发明还公开一种发光二极管外延片的制备方法,包括:The invention also discloses a method for preparing a light-emitting diode epitaxial wafer, including:

S100.提供衬底;S100. providing a substrate;

S200.在衬底上依次沉积形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;S200. sequentially depositing a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multiple quantum well layer, an electron blocking layer, and a P-type semiconductor layer on the substrate;

电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guiding layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer arranged in sequence along the epitaxial direction;

第二电子拦截层的禁带宽度>第三电子扩展层的禁带宽度>第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer.

其中,步骤S200的具体步骤如下:Wherein, the concrete steps of step S200 are as follows:

S210.在衬底上沉积形核层;S210. depositing a nucleation layer on the substrate;

S220.在形核层上沉积本征GaN层;S220. Depositing an intrinsic GaN layer on the nucleation layer;

S230.在本征GaN层上沉积N型半导体层;S230. Depositing an N-type semiconductor layer on the intrinsic GaN layer;

S240.在N型半导体层上沉积电子引导层;S240. Depositing an electron guiding layer on the N-type semiconductor layer;

S250.在电子引导层上沉积多量子阱层;S250. Depositing a multiple quantum well layer on the electron guiding layer;

S260.在多量子阱层上沉积电子阻挡层;S260. Depositing an electron blocking layer on the multiple quantum well layer;

S270.在电子阻挡层上沉积P型半导体层。S270. Depositing a P-type semiconductor layer on the electron blocking layer.

其中,步骤S240的具体步骤如下:Wherein, the concrete steps of step S240 are as follows:

S241.在N型半导体层上沉积第一电子储存层:S241. Depositing a first electron storage layer on the N-type semiconductor layer:

1)沉积InxN1-x子层;1) Deposit In x N 1-x sublayers;

2)沉积InyGa1-yN子层;2) Deposit In y Ga 1-y N sublayer;

3)沉积GaN子层。3) GaN sublayers are deposited.

S242.在第一电子储存层上沉积第二电子拦截层:S242. Depositing a second electron interception layer on the first electron storage layer:

1)沉积BmGa1-mN子层;1) Deposit B m Ga 1-m N sublayer;

2)沉积BnN1-n子层。2) Deposit BnN1 -n sublayers.

S243.在第二电子拦截层上沉积第三电子扩展层:S243. Depositing a third electron expansion layer on the second electron interception layer:

1)沉积InaGa1-aN子层;1) Deposit In a Ga 1-a N sublayer;

2)沉积N型BbGa1-bN子层。2) Deposit the N-type BbGa1 -bN sublayer.

对比例1Comparative example 1

本对比例与实施例1的不同之处在于,本对比例的外延片不包含电子引导层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the epitaxial wafer of this comparative example does not include an electron guiding layer, and the preparation method does not include the preparation steps of corresponding material layers.

对比例2Comparative example 2

本对比例与实施例1的不同之处在于,本对比例的电子引导层不包含第一电子储存层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the electron guiding layer of this comparative example does not include the first electron storage layer, and the preparation method does not include the preparation steps of the corresponding material layer.

对比例3Comparative example 3

本对比例与实施例1的不同之处在于,本对比例的第一电子储存层为InyGa1-yN/GaN层,即第一电子储存层不包含InxN1-x子层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the first electron storage layer of this comparative example is an In y Ga 1-y N/GaN layer, that is, the first electron storage layer does not include an In x N 1-x sublayer , the preparation method does not include the preparation step of the corresponding material layer.

对比例4Comparative example 4

本对比例与实施例1的不同之处在于,本对比例的电子引导层不包含第二电子拦截层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the electron guiding layer of this comparative example does not include the second electron intercepting layer, and the preparation method does not include the preparation steps of the corresponding material layer.

对比例5Comparative example 5

本对比例与实施例1的不同之处在于,本对比例的第二电子拦截层为BmGa1-mN子层,即第二电子拦截层不包含BnN1-n子层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the second electron intercepting layer of this comparative example is a B m Ga 1-m N sublayer, that is, the second electron intercepting layer does not include a B n N 1-n sublayer, The preparation method does not include the preparation steps of the corresponding material layer.

对比例6Comparative example 6

本对比例与实施例1的不同之处在于,本对比例的电子引导层不包含第三电子扩展层,制备方法中不包含相应材料层的制备步骤。The difference between this comparative example and Example 1 is that the electron guiding layer of this comparative example does not include the third electron expansion layer, and the preparation method does not include the preparation steps of the corresponding material layer.

对比例7Comparative example 7

本对比例与实施例1的不同之处在于,本对比例的第三电子扩展层周期性层叠的InaGa1-aN子层及不掺杂BbGa1-bN子层,即BbGa1-bN子层不进行N型掺杂。The difference between this comparative example and Example 1 is that the third electron expansion layer of this comparative example is periodically laminated with In a Ga 1-a N sublayers and undoped B b Ga 1-b N sublayers, namely The B b Ga 1-b N sublayer is not N-type doped.

光电性能测试:Photoelectric performance test:

测试方法:取实施例1~实施例2及对比例1~对比例7制得的外延片,做成10*24mil的芯片,随后进行光电性能测试。Test method: take the epitaxial wafers prepared in Examples 1-2 and Comparative Examples 1-7, make a 10*24mil chip, and then conduct photoelectric performance tests.

其中,亮度均匀性数值越小,亮度分布越均匀,波长均匀性数值越小,波长分布越均匀。Wherein, the smaller the brightness uniformity value is, the more uniform the brightness distribution is, and the smaller the wavelength uniformity value is, the more uniform the wavelength distribution is.

测试结果如下:The test results are as follows:

Figure SMS_1
Figure SMS_1

由测试结果显示,实施例1~实施例2、对比例2~对比例7在抗静电能力、发光效率、亮度均匀性、波长均匀性上相对于对比例1有不同程度的提升,其中,实施例1~实施例2在各方面性能上具有明显提升,结合实施例1、对比例2及对比例3,可见第一电子储存层及其具体材料层结构设置对发光效率、亮度均匀性、波长均匀性存在影响,结合实施例1、对比例4及对比例5,可见第二电子拦截层及其具体材料层结构设置对抗静电能力、发光效率、亮度均匀性、波长均匀性存在影响,结合实施例1、对比例6及对比例7,可见第三电子扩展层及其具体材料层结构设置对抗静电能力、发光效率、亮度均匀性、波长均匀性存在影响。The test results show that Embodiment 1~Example 2 and Comparative Example 2~Comparative Example 7 have different degrees of improvement compared with Comparative Example 1 in terms of antistatic ability, luminous efficiency, brightness uniformity, and wavelength uniformity. Examples 1~Example 2 have significantly improved performance in various aspects. Combining Example 1, Comparative Example 2 and Comparative Example 3, it can be seen that the first electron storage layer and its specific material layer structure settings have a significant impact on luminous efficiency, brightness uniformity, wavelength Uniformity has an impact. In combination with Example 1, Comparative Example 4 and Comparative Example 5, it can be seen that the second electron interception layer and its specific material layer structure settings have an impact on antistatic ability, luminous efficiency, brightness uniformity, and wavelength uniformity. Combined with implementation Example 1, Comparative Example 6 and Comparative Example 7, it can be seen that the structure settings of the third electron expansion layer and its specific material layer have an impact on the antistatic ability, luminous efficiency, brightness uniformity, and wavelength uniformity.

以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the technology of this patent Without departing from the scope of the technical solution of the present invention, personnel can use the technical content of the above prompts to make some changes or modify them into equivalent embodiments with equivalent changes. In essence, any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the solutions of the present invention.

Claims (10)

1.一种发光二极管外延片,包括衬底,其特征在于,所述衬底上沿外延方向依次设置有形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;1. A light-emitting diode epitaxial wafer, comprising a substrate, characterized in that, the substrate is sequentially provided with a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multi-quantum well layer, Electron blocking layer, P-type semiconductor layer; 所述电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guide layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer sequentially arranged along the epitaxial direction; 所述第二电子拦截层的禁带宽度>所述第三电子扩展层的最大禁带宽度>所述第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the maximum forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer. 2.根据权利要求1所述的发光二极管外延片,其特征在于,所述第一电子储存层包括周期性层叠的第一子层、第二子层及第三子层,所述第三子层的禁带宽度Eg3>第二子层的禁带宽度Eg2>第一子层的禁带宽度Eg1,且Eg3/Eg1>3,所述第二电子拦截层的禁带宽度>1.5×Eg32. The light-emitting diode epitaxial wafer according to claim 1, wherein the first electron storage layer comprises a first sub-layer, a second sub-layer and a third sub-layer stacked periodically, and the third sub-layer The forbidden band width Eg 3 of the layer > the forbidden band width Eg 2 of the second sublayer > the forbidden band width Eg 1 of the first sublayer, and Eg 3 /Eg 1 > 3, the forbidden band width of the second electron intercepting layer >1.5×Eg 3 . 3.根据权利要求1所述的发光二极管外延片,其特征在于,所述第一电子储存层为InxN1-x/InyGa1-yN/GaN层,所述第二电子拦截层为BmGa1-mN/BnN1-n层,所述第三电子扩展层为InaGa1-aN/N型BbGa1-bN层。3. The light-emitting diode epitaxial wafer according to claim 1, wherein the first electron storage layer is an In x N 1-x /In y Ga 1-y N/GaN layer, and the second electron interceptor The layer is a B m Ga 1-m N/B n N 1-n layer, and the third electron expansion layer is an In a Ga 1-a N/N type B b Ga 1-b N layer. 4.根据权利要求3所述的发光二极管外延片,其特征在于,所述第一电子储存层中,0.6≥x≥0.4,0.3≥y≥0.1。4 . The light emitting diode epitaxial wafer according to claim 3 , wherein, in the first electron storage layer, 0.6≥x≥0.4 and 0.3≥y≥0.1. 5.根据权利要求4所述的发光二极管外延片,其特征在于,所述第一电子储存层包括周期性层叠的InxN1-x子层、InyGa1-yN子层及GaN子层,其中,单个InxN1-x子层的厚度为1nm~5nm,单个InyGa1-yN子层的厚度为1nm~5nm,单个GaN子层的厚度为6nm~10nm,所述第一电子储存层的周期数为2个~6个,生长温度为800℃~900℃。5. The light-emitting diode epitaxial wafer according to claim 4, wherein the first electron storage layer comprises periodically stacked In x N 1-x sub-layers, In y Ga 1-y N sub-layers and GaN sublayers, wherein the thickness of a single In x N 1-x sublayer is 1nm~5nm, the thickness of a single In y Ga 1-y N sublayer is 1nm~5nm, and the thickness of a single GaN sublayer is 6nm~10nm, so The number of cycles of the first electron storage layer is 2 to 6, and the growth temperature is 800°C to 900°C. 6.根据权利要求3所述的发光二极管外延片,其特征在于,所述第二电子拦截层中,0.3≥m≥0.1,0.5≥n≥0.3。6 . The light emitting diode epitaxial wafer according to claim 3 , wherein, in the second electron intercepting layer, 0.3≥m≥0.1, 0.5≥n≥0.3. 7.根据权利要求6所述的发光二极管外延片,其特征在于,所述第二电子拦截层包括周期性层叠的BmGa1-mN子层及BnN1-n子层,其中,单个BmGa1-mN子层的厚度为6nm~10nm,单个BnN1-n子层的厚度为2nm~5nm,所述第二电子拦截层的周期数为2个~6个,生长温度为1000℃~1100℃。7. The light-emitting diode epitaxial wafer according to claim 6, wherein the second electron intercepting layer comprises periodically stacked B m Ga 1-m N sublayers and B n N 1-n sublayers, wherein , the thickness of a single B m Ga 1-m N sublayer is 6nm~10nm, the thickness of a single BnN 1-n sublayer is 2nm~5nm, and the number of cycles of the second electron intercepting layer is 2~6 , the growth temperature is 1000℃~1100℃. 8.根据权利要求3所述的发光二极管外延片,其特征在于,所述第三电子扩展层中,0.3≥a≥0.1,0.3≥b≥0.1,Si的掺杂浓度为1×1016cm-3~1×1017 cm-38. The light-emitting diode epitaxial wafer according to claim 3, characterized in that, in the third electron expansion layer, 0.3≥a≥0.1, 0.3≥b≥0.1, and the doping concentration of Si is 1×10 16 cm -3 ~1×10 17 cm -3 . 9.根据权利要求8所述的发光二极管外延片,其特征在于,所述第三电子扩展层包括周期性层叠的InaGa1-aN子层及N型BbGa1-bN子层,其中,单个InaGa1-aN子层的厚度为1nm~10nm,单个N型BbGa1-bN子层的厚度为10nm~20nm,所述第三电子扩展层的生长温度为900℃~1000℃。9. The light-emitting diode epitaxial wafer according to claim 8, wherein the third electron expansion layer comprises periodically stacked In a Ga 1-a N sub-layers and N-type B b Ga 1-b N sub-layers layer, wherein the thickness of a single In a Ga 1-a N sublayer is 1nm~10nm, the thickness of a single N-type BbGa 1-b N sublayer is 10nm~20nm, and the growth temperature of the third electron expansion layer 900°C~1000°C. 10.一种发光二极管外延片的制备方法,其特征在于,包括:10. A method for preparing a light-emitting diode epitaxial wafer, comprising: 提供衬底;provide the substrate; 在所述衬底上依次沉积形核层、本征GaN层、N型半导体层、电子引导层、多量子阱层、电子阻挡层、P型半导体层;sequentially depositing a nucleation layer, an intrinsic GaN layer, an N-type semiconductor layer, an electron guiding layer, a multiple quantum well layer, an electron blocking layer, and a P-type semiconductor layer on the substrate; 所述电子引导层包括沿外延方向依次设置的第一电子储存层、第二电子拦截层及第三电子扩展层;The electron guide layer includes a first electron storage layer, a second electron interception layer and a third electron expansion layer sequentially arranged along the epitaxial direction; 所述第二电子拦截层的禁带宽度>所述第三电子扩展层的最大禁带宽度>第一电子储存层的禁带宽度。The forbidden band width of the second electron intercepting layer>the maximum forbidden band width of the third electron expanding layer>the forbidden band width of the first electron storage layer.
CN202310559032.4A 2023-05-18 2023-05-18 Light-emitting diode epitaxial wafer and preparation method thereof Withdrawn CN116314513A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310559032.4A CN116314513A (en) 2023-05-18 2023-05-18 Light-emitting diode epitaxial wafer and preparation method thereof
CN202310893392.8A CN116705946A (en) 2023-05-18 2023-07-20 Light-emitting diode epitaxial wafer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310559032.4A CN116314513A (en) 2023-05-18 2023-05-18 Light-emitting diode epitaxial wafer and preparation method thereof

Publications (1)

Publication Number Publication Date
CN116314513A true CN116314513A (en) 2023-06-23

Family

ID=86790952

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310559032.4A Withdrawn CN116314513A (en) 2023-05-18 2023-05-18 Light-emitting diode epitaxial wafer and preparation method thereof
CN202310893392.8A Pending CN116705946A (en) 2023-05-18 2023-07-20 Light-emitting diode epitaxial wafer and preparation method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310893392.8A Pending CN116705946A (en) 2023-05-18 2023-07-20 Light-emitting diode epitaxial wafer and preparation method thereof

Country Status (1)

Country Link
CN (2) CN116314513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352537A (en) * 2023-12-06 2024-01-05 江西兆驰半导体有限公司 Gallium nitride-based high electron mobility transistor epitaxial wafer and preparation method thereof, HEMT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352537A (en) * 2023-12-06 2024-01-05 江西兆驰半导体有限公司 Gallium nitride-based high electron mobility transistor epitaxial wafer and preparation method thereof, HEMT
CN117352537B (en) * 2023-12-06 2024-03-08 江西兆驰半导体有限公司 Gallium nitride-based high electron mobility transistor epitaxial wafer and preparation method thereof, HEMT

Also Published As

Publication number Publication date
CN116705946A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
CN115472718B (en) Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode
CN108346725B (en) GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN117253950B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN115241336B (en) Epitaxial wafer, epitaxial wafer growth process and light emitting diode
CN116565098B (en) Gallium nitride light-emitting diode epitaxial wafer and growth process thereof
CN109888068B (en) Near ultraviolet light emitting diode epitaxial wafer and preparation method thereof
CN116845153A (en) High-light-efficiency light-emitting diode epitaxial wafer, preparation method and LED
CN116130569A (en) High-efficiency light-emitting diode and preparation method thereof
CN112951963B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN112510124B (en) Light-emitting diode epitaxial wafer and manufacturing method thereof
CN115842077B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN117954539A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116646431A (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN111883623A (en) Near-ultraviolet light-emitting diode epitaxial wafer and preparation method thereof
CN116314513A (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN117810324B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN116344684B (en) A kind of light-emitting diode preparation method and diode
CN116504894B (en) GaN-based LED epitaxial wafer and its growth process, LED
CN109802022B (en) GaN-based light emitting diode epitaxial wafer and preparation method thereof
CN117153981A (en) LED epitaxial wafer, preparation method thereof and LED
CN117766649A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116825919A (en) LED epitaxial wafer, preparation method thereof and LED
CN116454180A (en) LED epitaxial wafer, preparation method thereof and LED
CN116759500B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN118016774B (en) Light emitting diode epitaxial wafer and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20230623

WW01 Invention patent application withdrawn after publication