CN116130569A - High-efficiency light-emitting diode and preparation method thereof - Google Patents
High-efficiency light-emitting diode and preparation method thereof Download PDFInfo
- Publication number
- CN116130569A CN116130569A CN202310402346.3A CN202310402346A CN116130569A CN 116130569 A CN116130569 A CN 116130569A CN 202310402346 A CN202310402346 A CN 202310402346A CN 116130569 A CN116130569 A CN 116130569A
- Authority
- CN
- China
- Prior art keywords
- layer
- doped
- gan layer
- doped gan
- emitting diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 239000002131 composite material Substances 0.000 claims abstract description 42
- 230000000903 blocking effect Effects 0.000 claims abstract description 15
- 238000000151 deposition Methods 0.000 claims description 58
- 230000008021 deposition Effects 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 9
- 230000007547 defect Effects 0.000 abstract description 19
- 239000010410 layer Substances 0.000 description 459
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 229
- 229910002601 GaN Inorganic materials 0.000 description 228
- 239000013078 crystal Substances 0.000 description 21
- 229910052594 sapphire Inorganic materials 0.000 description 14
- 239000010980 sapphire Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- USZGMDQWECZTIQ-UHFFFAOYSA-N [Mg](C1C=CC=C1)C1C=CC=C1 Chemical compound [Mg](C1C=CC=C1)C1C=CC=C1 USZGMDQWECZTIQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/8215—Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光电技术领域,具体涉及一种高效发光二级管及制备方法。The invention relates to the field of optoelectronic technology, and in particular to a high-efficiency light-emitting diode and a preparation method thereof.
背景技术Background Art
近年来,氮化镓(GaN)材料作为第三代直接带隙半导体材料在工业上有着广泛的应用。特别在LED照明领域,GaN基蓝光LED具有的高亮度、高能效和高寿命的特点,彰显了其具有替代现有照明设备的潜能。In recent years, gallium nitride (GaN) materials, as third-generation direct bandgap semiconductor materials, have been widely used in industry. Especially in the field of LED lighting, GaN-based blue LEDs have the characteristics of high brightness, high energy efficiency and long life, demonstrating their potential to replace existing lighting equipment.
本征GaN晶体的导电率比较低,目前可以通过有效的掺杂提升GaN的电导率,在电流注入时可以不断产生电子参与有源区中的辐射复合。掺杂元素一般要求与GaN原子半径接近且在生长温度下仍能保持一定稳定性。在外延生长GaN中,使用最多的n型掺杂元素为Si,掺杂源为SiH4,掺杂浓度可以通过调节SiH4的流量来实现。The conductivity of intrinsic GaN crystal is relatively low. Currently, the conductivity of GaN can be improved through effective doping. When current is injected, electrons can be continuously generated to participate in the radiation recombination in the active area. The doping elements are generally required to be close to the atomic radius of GaN and still maintain a certain stability at the growth temperature. In the epitaxial growth of GaN, the most commonly used n-type doping element is Si, and the doping source is SiH 4. The doping concentration can be achieved by adjusting the flow rate of SiH 4 .
然而,由于衬底材料与GaN晶体之间存在较大的晶格失配与热膨胀系数的差异,造成发光二极管外延层中存在很大的压应力,应力释放会对有源区产生线缺陷以及堆垛层错,影响器件的可靠性与发光特性。However, due to the large lattice mismatch and difference in thermal expansion coefficient between the substrate material and the GaN crystal, there is a large compressive stress in the epitaxial layer of the light-emitting diode. Stress release will cause line defects and stacking faults in the active area, affecting the reliability and light-emitting characteristics of the device.
发明内容Summary of the invention
基于此,本发明的目的是提供一种高效发光二级管及制备方法,以解决现有技术中存在的问题。Based on this, the purpose of the present invention is to provide a high-efficiency light emitting diode and a preparation method thereof to solve the problems existing in the prior art.
本发明第一方面提供一种高效发光二极管,包括衬底,以及依次沉积在所述衬底上的缓冲层、非掺杂GaN层、复合N型GaN层、多量子阱层、电子阻挡层和P型GaN层;所述复合N型GaN层包括依次沉积在所述非掺杂GaN层上的第一Si掺GaN层、SiN层以及超晶格层,所述超晶格层包括按预设周期依次交替沉积的Si掺AlN层、InN层和第二Si掺GaN层,其中,所述第一Si掺GaN层中掺Si的浓度大于所述第二Si掺GaN层中掺Si的浓度。A first aspect of the present invention provides a high-efficiency light-emitting diode, comprising a substrate, and a buffer layer, an undoped GaN layer, a composite N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer sequentially deposited on the substrate; the composite N-type GaN layer comprises a first Si-doped GaN layer, a SiN layer and a superlattice layer sequentially deposited on the undoped GaN layer, the superlattice layer comprises a Si-doped AlN layer, an InN layer and a second Si-doped GaN layer alternately deposited in sequence according to a preset period, wherein the concentration of Si doped in the first Si-doped GaN layer is greater than the concentration of Si doped in the second Si-doped GaN layer.
本发明的有益效果是:本发明提供一种高效发光二极管,在非掺杂GaN层与多量子阱层之间插入了一层复合N型GaN层,其中,复合N型GaN层包括依次沉积在非掺杂GaN层上的第一Si掺GaN层、SiN层以及超晶格层,超晶格层包括按预设周期依次交替沉积的Si掺AlN层、InN层和第二Si掺GaN层,第一Si掺GaN层中掺Si的浓度大于第二Si掺GaN层中掺Si的浓度,由于复合N型GaN层的电阻率比P型GaN层的电阻率高,因此,在非掺杂GaN层上沉积浓度较高的第一Si掺GaN层,可以产生大量的电子供给多量子阱层,与多量子阱层中的空穴进行辐射复合,减少复合N型GaN层整体的电阻率,提高二极管的发光效果,进一步的,沉积SiN层可以在第一Si掺GaN层形成致密的SiN薄膜,进一步减少穿透第一Si掺GaN层的位错缺陷,减少位错缺陷延伸至多量子阱层中而影响发光效率,超晶格层可以有效的释放复合N型GaN层与多量子阱有源层之间的应力,减少多量子阱层界面的线缺陷和堆垛层错,提高晶体质量,进一步的,超晶格层中第二Si掺GaN层的掺Si的浓度小于第一Si掺GaN层的掺Si的浓度,可以为第一Si掺GaN层产生的电子提供运动通道,使得电子能有效的运动至多量子阱层,另外还可以减小第二Si掺GaN层与多量子阱层之间的界面电压,进一步提高晶体质量。The beneficial effects of the present invention are as follows: the present invention provides a high-efficiency light-emitting diode, wherein a composite N-type GaN layer is inserted between an undoped GaN layer and a multi-quantum well layer, wherein the composite N-type GaN layer comprises a first Si-doped GaN layer, a SiN layer and a superlattice layer sequentially deposited on the undoped GaN layer, the superlattice layer comprises a Si-doped AlN layer, an InN layer and a second Si-doped GaN layer sequentially deposited alternately according to a preset period, the concentration of Si doped in the first Si-doped GaN layer is greater than the concentration of Si doped in the second Si-doped GaN layer, and since the resistivity of the composite N-type GaN layer is higher than that of the P-type GaN layer, therefore, depositing a first Si-doped GaN layer with a higher concentration on the undoped GaN layer can generate a large amount of electrons to supply the multi-quantum well layer, and perform radiation recombination with holes in the multi-quantum well layer, thereby reducing the overall density of the composite N-type GaN layer. The resistivity of the body is improved, and the light-emitting effect of the diode is improved. Furthermore, the deposited SiN layer can form a dense SiN film on the first Si-doped GaN layer, further reducing the dislocation defects that penetrate the first Si-doped GaN layer, and reducing the dislocation defects that extend into the multi-quantum well layer and affect the light-emitting efficiency. The superlattice layer can effectively release the stress between the composite N-type GaN layer and the multi-quantum well active layer, reduce the line defects and stacking faults at the interface of the multi-quantum well layer, and improve the crystal quality. Furthermore, the Si-doping concentration of the second Si-doped GaN layer in the superlattice layer is less than the Si-doping concentration of the first Si-doped GaN layer, which can provide a movement channel for the electrons generated by the first Si-doped GaN layer, so that the electrons can effectively move to the multi-quantum well layer. In addition, the interface voltage between the second Si-doped GaN layer and the multi-quantum well layer can be reduced, further improving the crystal quality.
优选的,所述第一Si掺GaN层的厚度为1um-5um,所述SiN层的厚度为1nm-100nm,所述超晶格层的厚度为50nm-500nm。Preferably, the thickness of the first Si-doped GaN layer is 1um-5um, the thickness of the SiN layer is 1nm-100nm, and the thickness of the superlattice layer is 50nm-500nm.
优选的,所述Si掺AlN层、所述InN层和所述第二Si掺GaN层的厚度比为1:1:10~10:1:50。Preferably, a thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:10-10:1:50.
优选的,所述预设周期为1-20。Preferably, the preset period is 1-20.
优选的,所述第一Si掺GaN层中掺Si的浓度为1×1018atoms/cm3-1×1020atoms/cm3,所述Si掺AlN层以及所述第二Si掺GaN层中掺Si的浓度为1×1017atoms/cm3-1×1019atoms/cm3。Preferably, the concentration of Si doped in the first Si-doped GaN layer is 1×10 18 atoms/cm 3 -1×10 20 atoms/cm 3 , and the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 1×10 17 atoms/cm 3 -1×10 19 atoms/cm 3 .
本发明另一方面还提供一种制备上述的高效发光二极管的制备方法,包括以下步骤:Another aspect of the present invention further provides a method for preparing the above-mentioned high-efficiency light-emitting diode, comprising the following steps:
提供一衬底;providing a substrate;
在所述衬底上依次沉积缓冲层、非掺杂GaN层、复合N型GaN层、多量子阱层、电子阻挡层和P型GaN层;Depositing a buffer layer, a non-doped GaN layer, a composite N-type GaN layer, a multi-quantum well layer, an electron blocking layer and a P-type GaN layer in sequence on the substrate;
所述复合N型GaN层包括依次沉积在所述非掺杂GaN层上的第一Si掺GaN层、SiN层以及超晶格层,所述超晶格层包括按预设周期依次交替沉积在所述SiN层上的Si掺AlN层、InN层和第二Si掺GaN层,其中,所述第一Si掺GaN层中掺Si的浓度大于所述第二Si掺GaN层中掺Si的浓度。The composite N-type GaN layer includes a first Si-doped GaN layer, a SiN layer and a superlattice layer sequentially deposited on the undoped GaN layer, and the superlattice layer includes a Si-doped AlN layer, an InN layer and a second Si-doped GaN layer alternately deposited on the SiN layer in sequence according to a preset period, wherein the concentration of Si doped in the first Si-doped GaN layer is greater than the concentration of Si doped in the second Si-doped GaN layer.
优选的,所述第一Si掺GaN层沉积生长过程中的生长气氛为N2/H2/NH3成分比例为1:1:10-1:5:10的混合气。Preferably, the growth atmosphere during the deposition and growth of the first Si-doped GaN layer is a mixed gas with a composition ratio of N 2 /H 2 /NH 3 of 1:1:10-1:5:10.
优选的,所述超晶格层沉积生长过程中的生长气氛为N2/ NH3成分比例为1:5-5:1的混合气。Preferably, the growth atmosphere during the deposition growth of the superlattice layer is a mixed gas with a N 2 /NH 3 composition ratio of 1:5-5:1.
优选的,所述第一Si掺GaN层的沉积生长温度为1000℃-1200℃,所述SiN层的沉积生长温度为900℃-1100℃,所述超晶格层的沉积生长温度为800℃-1000℃。Preferably, the deposition growth temperature of the first Si-doped GaN layer is 1000°C-1200°C, the deposition growth temperature of the SiN layer is 900°C-1100°C, and the deposition growth temperature of the superlattice layer is 800°C-1000°C.
优选的,所述复合N型GaN层生长过程中的生长压力为50torr -300torr。Preferably, the growth pressure during the growth of the composite N-type GaN layer is 50 torr-300 torr.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be given in part in the following description and in part will be obvious from the following description, or will be learned through practice of the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明提供的高效发光二极管结构示意图;FIG1 is a schematic diagram of the structure of a high-efficiency light-emitting diode provided by the present invention;
图2为本发明提供的高效发光二极管制备方法流程图。FIG. 2 is a flow chart of a method for preparing a high-efficiency light-emitting diode provided by the present invention.
主要元件符号说明:Description of main component symbols:
如下具体实施方式将结合上述附图进一步说明本发明。The following specific implementation manner will further illustrate the present invention in conjunction with the above-mentioned drawings.
具体实施方式DETAILED DESCRIPTION
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully below with reference to the relevant drawings. Several embodiments of the present invention are given in the drawings. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present invention more thorough and comprehensive.
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when an element is referred to as being "fixed to" another element, it may be directly on the other element or there may be a central element. When an element is considered to be "connected to" another element, it may be directly connected to the other element or there may be a central element at the same time. The terms "vertical", "horizontal", "left", "right" and similar expressions used herein are for illustrative purposes only.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which the present invention belongs. The terms used herein in the specification of the present invention are only for the purpose of describing specific embodiments and are not intended to limit the present invention. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
本发明提供一种高效发光二极管及制备方法,在非掺杂GaN层与多量子阱层之间插入了一层复合N型GaN层,其中,复合N型GaN层包括依次沉积在非掺杂GaN层上的第一Si掺GaN层、SiN层以及超晶格层,超晶格层包括按预设周期依次交替沉积的Si掺AlN层、InN层和第二Si掺GaN层,第一Si掺GaN层中掺Si的浓度大于第二Si掺GaN层中掺Si的浓度,通过复合N型GaN层减少多量子阱层界面的线缺陷和堆垛层错,减小第二Si掺GaN层与多量子阱层之间的界面电压,提高晶体质量。The present invention provides a high-efficiency light-emitting diode and a preparation method thereof. A composite N-type GaN layer is inserted between an undoped GaN layer and a multi-quantum well layer, wherein the composite N-type GaN layer comprises a first Si-doped GaN layer, a SiN layer and a superlattice layer sequentially deposited on the undoped GaN layer, the superlattice layer comprises a Si-doped AlN layer, an InN layer and a second Si-doped GaN layer sequentially deposited alternately according to a preset period, the concentration of Si doped in the first Si-doped GaN layer is greater than the concentration of Si doped in the second Si-doped GaN layer, the composite N-type GaN layer is used to reduce line defects and stacking faults at the interface of the multi-quantum well layer, reduce the interface voltage between the second Si-doped GaN layer and the multi-quantum well layer, and improve the crystal quality.
具体的,参阅图1,本发明实施方式提供的高效发光二极管,包括衬底10,以及依次沉积在衬底10上的缓冲层20、非掺杂GaN层30、复合N型GaN层40、多量子阱层50、电子阻挡层60和P型GaN层70;复合N型GaN层40包括依次沉积在非掺杂GaN层30上的第一Si掺GaN层41、SiN层42以及超晶格层43,超晶格层43包括按预设周期依次交替沉积在SiN层42上的Si掺AlN层431、InN层432和第二Si掺GaN层433,其中,第一Si掺GaN层41中掺Si的浓度大于第二Si掺GaN层433中掺Si的浓度。优选的,第一Si掺GaN层中掺Si的浓度为1×1018atoms/cm3-1×1020atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为1×1017atoms/cm3-1×1019atoms/cm3。Specifically, referring to Figure 1, the high-efficiency light-emitting diode provided in an embodiment of the present invention includes a
具体的,衬底10可以选用蓝宝石衬底、SiO2蓝宝石复合衬底、硅衬底、碳化硅衬底、氮化镓衬底、氧化锌衬底中的一种;蓝宝石衬底具有制备工艺成熟、性价比高、易于清洗和处理,高温下有很好的稳定性,应用比较广泛。因此,选用蓝宝石衬底,然而,蓝宝石衬底表面存在非常大的缺陷,在衬底上直接沉积外延层缺陷容易延伸至多量子阱层,多量子阱层为发光二极管的有源层,延伸至多量子阱层的缺陷会直接影响其发光效果,因此,在衬底上沉积外延层之前,需要在衬底10上沉积缓冲层20以在一定程度上减小蓝宝石衬底表面的缺陷,具体的,缓冲层20可以为AlN缓冲层,厚度为10nm-15nm。Specifically, the
非掺杂GaN层30沉积在缓冲层20上,非掺杂GaN层30厚度为1um-5um,厚度较厚的非掺杂GaN层30可以减少有效的释放发光二极管之间的压应力,提高晶体质量,降低反向漏电。但同时,GaN层厚度的增加对Ga源材料消耗较大,大大提高了发光二极管(LED)的外延成本,因此,进一步的,为了兼顾发光二极管的质量和生产成本,优选的,非掺杂GaN层30为2um-3um。The
复合N型GaN层40在LED中的主要作用是进一步减少晶体之间的缺陷以及为LED发光提供足够的电子并使得电子顺利的运动至多量子阱层,与多量子阱层中的空穴发生辐射复合;进一步减小晶体的缺陷可以提高晶体的质量,提供足够的电子与多量子阱层中的空穴发生复合可以有效的提高LED整体的发光效率,具体的,复合N型GaN层40包括依次沉积在非掺杂GaN层30上的第一Si掺GaN层41、SiN层42以及超晶格层43,第一Si掺GaN层的厚度为1um -5um,SiN层的厚度为1nm -100nm,超晶格层的厚度为50nm-500nm。由于复合N型GaN层40的电阻率要比P型GaN层70上的透明电极的电阻率高,是影响器件电流扩展,增加串联电阻的主要因素。因此,本发明提供的发光二极管,在非掺杂GaN层30上沉积浓度较高的第一Si掺GaN层41,既可以产生大量的电子供给多量子阱层50,与多量子阱层50中的空穴进行辐射复合,减少复合N型GaN层40整体的电阻率,提高二极管的发光效果。另外,将第一Si掺GaN层41厚度沉积至1um-5um,较高的厚度既可以增加电流扩展,降低复合N型GaN层40的串联电阻,降低发光二极管的工作电压,还可以将复合N型GaN层内部的压应力通过堆垛层错释放,线缺陷减少,晶体质量提高,反向漏电流降低。The main function of the composite N-
进一步的,在第一Si掺GaN层41上沉积SiN层42,可以在第一Si掺GaN层41上形成致密的SiN薄膜,阻挡穿透第一Si掺GaN层41的位错缺陷,进一步减少位错缺陷延伸至多量子阱层50,影响多量子阱层50的发光效率。另外,超晶格层43包括按预设周期依次交替沉积在所述SiN层42上的Si掺AlN层431、InN层432和第二Si掺GaN层433,优选的,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:10~10:1:50,交替沉积的周期为1-20,超晶格层43可以有效的释放复合N型GaN层40与多量子阱层50之间的失配应力,提高多量子阱层50中电子与空穴的并入效率,提高晶体质量,降低多量子阱层50的非辐射复合效率。进一步的,超晶格层中第二Si掺GaN层的掺Si的浓度小于第一Si掺GaN层的掺Si的浓度,较低的Si掺GaN层既可以为第一Si掺GaN层产生的电子提供运动通道,使得电子能有效的运动至多量子阱层,又可以减小第二Si掺GaN层与多量子阱层之间的界面电压,进一步提高晶体质量。Furthermore, by depositing the
多量子阱层50包括交替沉积的InGaN量子阱层和AlGaN量子垒层,沉积周期数6~12,其中,单层InGaN量子阱层的厚度为2nm~5nm,单层AlGaN量子垒层的厚度为5nm~15nm,Al组分为0.01~0.1。电子阻挡层60AlaInbGaN层,厚度为10nm~40 nm,其中,a的取值范为0.005-0.1,b的取值范为0.01-0.2;P型GaN层70厚度为10nm~50nm,可以采用Mg进行掺杂,Mg掺杂浓度1×1019atoms/cm3-1×1021atoms/cm3。The
请参阅图2,为本发明实施方式中的高效发光二极管的制备方法,用于制备上述发光二极管,具体的,本发明提供的高效发光二极管制备方法包括步骤S10-S70。Please refer to FIG. 2 , which is a method for preparing a high-efficiency light-emitting diode in an embodiment of the present invention, which is used to prepare the above-mentioned light-emitting diode. Specifically, the method for preparing a high-efficiency light-emitting diode provided by the present invention includes steps S10-S70.
步骤S10,提供一衬底;Step S10, providing a substrate;
具体的,衬底可选用蓝宝石衬底、SiO2蓝宝石复合衬底、硅衬底、碳化硅衬底、氮化镓衬底、氧化锌衬底中的一种。蓝宝石是目前最常用的GaN基LED衬底材料,蓝宝石衬底的最大优点是技术成熟,稳定性好,生产成本低。因此,在本实施方式中,选用蓝宝石作为衬底。Specifically, the substrate can be selected from one of a sapphire substrate, a SiO2 sapphire composite substrate, a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, and a zinc oxide substrate. Sapphire is currently the most commonly used GaN-based LED substrate material. The biggest advantage of the sapphire substrate is that the technology is mature, the stability is good, and the production cost is low. Therefore, in this embodiment, sapphire is selected as the substrate.
步骤S20,在衬底上沉积缓冲层;Step S20, depositing a buffer layer on the substrate;
具体的,在衬底上沉积缓冲层可以采用物理气相沉积(Physical VaporDeposition,PVD)进行,缓冲层厚度为15nm-20nm,在本实施方式中,采用AlN缓冲层,采用AlN缓冲层提供了与衬底取向相同的成核中心,释放了外延GaN材料和衬底之间的晶格失配产生的应力以及热膨胀系数失配所产生的热应力,为外延生长提供了平整的成核表面,减少其成核生长的接触角使岛状生长的GaN晶粒在较小的厚度内能连成面,转变为二维外延生长。Specifically, physical vapor deposition (PVD) can be used to deposit a buffer layer on the substrate, and the thickness of the buffer layer is 15nm-20nm. In the present embodiment, an AlN buffer layer is used. The AlN buffer layer provides a nucleation center with the same orientation as the substrate, releases the stress caused by the lattice mismatch between the epitaxial GaN material and the substrate and the thermal stress caused by the mismatch of thermal expansion coefficients, provides a flat nucleation surface for epitaxial growth, reduces the contact angle of its nucleation growth, and enables the island-like grown GaN grains to be connected into a surface within a smaller thickness, thereby transforming into two-dimensional epitaxial growth.
步骤S30,对已沉积缓冲层的衬底进行预处理。Step S30, pre-treating the substrate on which the buffer layer has been deposited.
具体地,将已沉积完缓冲层的蓝宝石衬底转入中微A7金属有机气相沉积(Metal-organic Chemical Vapor Deposition简称MOCVD)设备中,在MOCVD设备中,可以采用高纯H2(氢气)、高纯N2(氮气)、高纯H2和高纯N2的混合气体中的一种作为载气,高纯NH3作为N源,三甲基镓(TMGa)及三乙基镓(TEGa)作为镓源,三甲基铟(TMIn)作为铟源,三甲基铝(TMAl)作为铝源,硅烷(SiH4)作为N型掺杂剂,二茂镁(CP2Mg)作为P型掺杂剂进行外延生长。Specifically, the sapphire substrate on which the buffer layer has been deposited is transferred to the A7 Metal-organic Chemical Vapor Deposition (MOCVD) equipment of Zhongwei. In the MOCVD equipment, one of high-purity H2 (hydrogen), high-purity N2 (nitrogen), and a mixed gas of high-purity H2 and high-purity N2 can be used as a carrier gas, high-purity NH3 as an N source, trimethylgallium (TMGa) and triethylgallium (TEGa) as gallium sources, trimethylindium (TMIn) as an indium source, trimethylaluminum (TMAl) as an aluminum source, silane ( SiH4 ) as an N-type dopant, and bis(cyclopentadienyl)magnesium ( CP2Mg ) as a P-type dopant can be used for epitaxial growth.
具体的,将已沉积完缓冲层的衬底在H2气氛进行处理1min-10 min,处理温度为1000℃~1200℃,再对其进行氮化处理,提升缓冲层的晶体质量,并且可以有效提高后续沉积GaN外延层的晶体质量。Specifically, the substrate on which the buffer layer has been deposited is treated in a H2 atmosphere for 1 min-10 min at a treatment temperature of 1000°C-1200°C, and then nitrided to improve the crystal quality of the buffer layer and effectively improve the crystal quality of the subsequently deposited GaN epitaxial layer.
步骤S40,在缓冲层上沉积非掺杂GaN层。Step S40: depositing a non-doped GaN layer on the buffer layer.
对沉积完缓冲层的衬底进行氮化处理后,在MOCVD设备中沉积非掺杂GaN层,采用高纯NH3作为N源,三甲基镓(TMGa)及三乙基镓(TEGa)作为镓源;非掺杂GaN层生长温度为1050℃-1200℃,压力为50torr-500torr,厚度为1um-5um;优选的,非掺杂GaN层生长温度1100℃,生长压力150torr,非掺杂GaN层生长温度较高,压力较低,制备的到GaN的晶体质量较优,并且随着GaN厚度的增加,非掺杂GaN层中的压应力会通过堆垛层错释放,减少线缺陷,提高晶体质量,降低反向漏电,但提高GaN层厚度对Ga源材料消耗较大,大大提高了LED的外延成本,优选的,非掺杂GaN生长厚度为2um-3um,不仅节约生产成本,而且GaN材料又具有较高的晶体质量。After the substrate on which the buffer layer is deposited is nitrided, a non-doped GaN layer is deposited in an MOCVD device, and high-purity NH3 is used as an N source, and trimethyl gallium (TMGa) and triethyl gallium (TEGa) are used as gallium sources; the growth temperature of the non-doped GaN layer is 1050°C-1200°C, the pressure is 50torr-500torr, and the thickness is 1um-5um; preferably, the growth temperature of the non-doped GaN layer is 1100°C, and the growth pressure is 150torr. The growth temperature of the non-doped GaN layer is high and the pressure is low, and the prepared GaN crystal quality is better. In addition, as the thickness of the GaN increases, the compressive stress in the non-doped GaN layer will be released through stacking faults, thereby reducing line defects, improving crystal quality, and reducing reverse leakage. However, increasing the thickness of the GaN layer consumes a large amount of Ga source materials, which greatly increases the epitaxial cost of the LED. Preferably, the growth thickness of the non-doped GaN is 2um-3um, which not only saves production costs, but also has a higher crystal quality of the GaN material.
步骤S50,在非掺杂GaN层上沉积复合N型GaN层。Step S50, depositing a composite N-type GaN layer on the undoped GaN layer.
具体的,沉积完非掺杂GaN层后,在MOCVD设备中继续沉积复合N型GaN层,复合N型GaN层包括依次沉积在非掺杂GaN层上的第一Si掺GaN层、SiN层以及超晶格层,超晶格层包括按预设周期依次交替沉积的Si掺AlN层、InN层和第二Si掺GaN层,其中,第一Si掺GaN层中掺Si的浓度大于第二Si掺GaN层中掺Si的浓度。Specifically, after depositing the undoped GaN layer, a composite N-type GaN layer is continuously deposited in the MOCVD device, wherein the composite N-type GaN layer includes a first Si-doped GaN layer, a SiN layer, and a superlattice layer sequentially deposited on the undoped GaN layer, and the superlattice layer includes a Si-doped AlN layer, an InN layer, and a second Si-doped GaN layer alternately deposited in sequence according to a preset period, wherein the concentration of Si doped in the first Si-doped GaN layer is greater than the concentration of Si doped in the second Si-doped GaN layer.
具体的,第一Si掺GaN层的沉积厚度为1um-5um,SiN层的沉积厚度为1nm-100nm,超晶格层的沉积厚度为50nm-500nm,Si掺AlN层、InN层和第二Si掺GaN层的沉积厚度比为1:1:10~10:1:50,优选的,第一Si掺GaN层的沉积厚度为2.5um,SiN层的沉积厚度为65nm,超晶格层的沉积厚度为200nm,Si掺AlN层、InN层和第二Si掺GaN层的沉积厚度比为5:1:40。Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为1-20,优选的,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为6。第一Si掺GaN层中掺Si的浓度为1×1018atoms/cm3-1×1020atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为1×1017atoms/cm3-1×1019atoms/cm3;优选的,第一Si掺GaN层中掺Si的浓度为2×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为6×1017atoms/cm3。Specifically, the deposition thickness of the first Si-doped GaN layer is 1um-5um, the deposition thickness of the SiN layer is 1nm-100nm, the deposition thickness of the superlattice layer is 50nm-500nm, the deposition thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:10~10:1:50, preferably, the deposition thickness of the first Si-doped GaN layer is 2.5um, the deposition thickness of the SiN layer is 65nm, the deposition thickness of the superlattice layer is 200nm, and the deposition thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 5:1:40. The cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1-20, preferably, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 6. The Si doping concentration in the first Si-doped GaN layer is 1×10 18 atoms/cm 3 -1×10 20 atoms/cm 3 , and the Si doping concentration in the Si-doped AlN layer and the second Si-doped GaN layer is 1×10 17 atoms/cm 3 -1×10 19 atoms/cm 3 ; preferably, the Si doping concentration in the first Si-doped GaN layer is 2×10 19 atoms/cm 3 , and the Si doping concentration in the Si-doped AlN layer and the second Si-doped GaN layer is 6×10 17 atoms/cm 3 .
进一步的,第一Si掺GaN层的沉积生长温度为1000℃-1200℃,SiN层的沉积生长温度为900℃-1100℃,超晶格层的沉积生长温度为800℃-1000℃;优选的,第一Si掺GaN层的沉积生长温度为1100℃,SiN层的沉积生长温度为1000℃,超晶格层的沉积生长温度为900℃。第一Si掺GaN层沉积生长过程中的生长气氛为N2/H2/NH3成分比例为1:1:10-1:5:10的混合气;超晶格层沉积生长过程中的生长气氛为N2/ NH3成分比例为1:5-5:1的混合气;优选的,第一Si掺GaN层沉积生长过程中的生长气氛为N2/H2/NH3成分比例为1:2:6的混合气;超晶格层沉积生长过程中的生长气氛为N2/ NH3成分比例为1:3的混合气。复合N型GaN层生长过程中的生长压力为50torr-300torr;优选的,复合N型GaN层生长过程中的生长压力为150torr。Further, the deposition growth temperature of the first Si-doped GaN layer is 1000°C-1200°C, the deposition growth temperature of the SiN layer is 900°C-1100°C, and the deposition growth temperature of the superlattice layer is 800°C-1000°C; preferably, the deposition growth temperature of the first Si-doped GaN layer is 1100°C, the deposition growth temperature of the SiN layer is 1000°C, and the deposition growth temperature of the superlattice layer is 900°C. The growth atmosphere during the deposition and growth of the first Si-doped GaN layer is a mixture of N2 / H2 / NH3 with a ratio of 1:1:10-1:5:10; the growth atmosphere during the deposition and growth of the superlattice layer is a mixture of N2 / NH3 with a ratio of 1:5-5:1; preferably, the growth atmosphere during the deposition and growth of the first Si-doped GaN layer is a mixture of N2 / H2 / NH3 with a ratio of 1:2:6; the growth atmosphere during the deposition and growth of the superlattice layer is a mixture of N2 / NH3 with a ratio of 1:3. The growth pressure during the growth of the composite N-type GaN layer is 50torr-300torr; preferably, the growth pressure during the growth of the composite N-type GaN layer is 150torr.
对于由蓝宝石作为衬底生长出来的LED结构来说,由于N型GaN层的电阻率要比P型GaN上的透明电极的电阻率高,因此是影响器件电流扩展,增加串联电阻的主要因素。本发明提供的发光二极管制备方法,在非掺杂GaN层上沉积浓度较高的第一Si掺GaN层,可以产生大量的电子供给多量子阱层,与多量子阱层中的空穴进行辐射复合,减少复合N型GaN层整体的电阻率,提高二极管的发光效果。另外,将第一Si掺GaN层厚度沉积至1um-5um,较高的厚度既可以增加电流扩展,降低复合N型GaN层的串联电阻,降低发光二极管的工作电压,还可以将复合N型GaN层内部的压应力通过堆垛层错释放,线缺陷减少,晶体质量提高,反向漏电流降低。For the LED structure grown from sapphire as a substrate, since the resistivity of the N-type GaN layer is higher than that of the transparent electrode on the P-type GaN, it is the main factor affecting the current expansion of the device and increasing the series resistance. The light-emitting diode preparation method provided by the present invention deposits a first Si-doped GaN layer with a higher concentration on the non-doped GaN layer, which can generate a large number of electrons to supply the multi-quantum well layer, and radiate and recombine with the holes in the multi-quantum well layer, thereby reducing the overall resistivity of the composite N-type GaN layer and improving the light-emitting effect of the diode. In addition, the first Si-doped GaN layer is deposited to a thickness of 1um-5um. The higher thickness can increase the current expansion, reduce the series resistance of the composite N-type GaN layer, and reduce the operating voltage of the light-emitting diode. It can also release the compressive stress inside the composite N-type GaN layer through stacking faults, reduce line defects, improve crystal quality, and reduce reverse leakage current.
进一步的,在第一Si掺GaN层上沉积SiN层,可以在第一Si掺GaN层上形成致密的SiN薄膜,阻挡穿透第一Si掺GaN层的位错缺陷,进一步减少位错缺陷延伸至多量子阱层,影响多量子阱层的发光效率。另外,超晶格层包括按预设周期依次交替沉积在所述SiN层上的Si掺AlN层、InN层和第二Si掺GaN层,优选的,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:10~10:1:50,交替沉积的周期为1-20,超晶格层可以有效的释放复合N型GaN层40与多量子阱层之间的失配应力,提高多量子阱层中电子与空穴的并入效率,提高晶体质量,降低多量子阱层的非辐射复合效率。进一步的,超晶格层中第二Si掺GaN层的掺Si的浓度小于第一Si掺GaN层的掺Si的浓度,可以为第一Si掺GaN层产生的电子提供运动通道,使得电子能有效的运动至多量子阱层,可以减小第二Si掺GaN层与多量子阱层之间的界面电压,进一步提高晶体质量。Furthermore, a SiN layer is deposited on the first Si-doped GaN layer, and a dense SiN film can be formed on the first Si-doped GaN layer to block dislocation defects that penetrate the first Si-doped GaN layer, and further reduce the extension of dislocation defects to the multi-quantum well layer, which affects the luminescence efficiency of the multi-quantum well layer. In addition, the superlattice layer includes a Si-doped AlN layer, an InN layer, and a second Si-doped GaN layer that are alternately deposited on the SiN layer in sequence according to a preset period. Preferably, the thickness ratio of the Si-doped AlN layer, the InN layer, and the second Si-doped GaN layer is 1:1:10~10:1:50, and the period of alternating deposition is 1-20. The superlattice layer can effectively release the mismatch stress between the composite N-
步骤S60,在复合N型GaN层上沉积多量子阱层。Step S60 , depositing a multi-quantum well layer on the composite N-type GaN layer.
具体的,多量子阱层为交替沉积的InGaN量子阱层和AlGaN量子垒层,沉积周期数6~12,优选的,沉积周期为10。InGaN量子阱层生长温度为790℃~810℃,厚度为2nm~5nm,生长压力50torr~300torr,In组分为0.15-0.3;优选的,InGaN量子阱层生长温度为795℃,厚度为3.5nm,生长压力200torr,In组分为0.22。AlGaN量子垒层生长温度为800℃~900℃,厚度为5nm~15nm,生长压力50torr ~300torr,Al组分为0.01~0.1;优选的,AlGaN量子垒层生长温度为855℃,厚度为9.8nm,生长压力200 torr,Al组分为0.05。多量子阱层为电子和空穴辐射复合的区域,合理的结构设计可以显著增加电子和空穴波函数交叠程度,从而提高LED 器件发光效率。Specifically, the multi-quantum well layer is an alternately deposited InGaN quantum well layer and an AlGaN quantum barrier layer, with a deposition cycle number of 6 to 12, preferably, a deposition cycle of 10. The InGaN quantum well layer has a growth temperature of 790°C to 810°C, a thickness of 2nm to 5nm, a growth pressure of 50torr to 300torr, and an In component of 0.15-0.3; preferably, the InGaN quantum well layer has a growth temperature of 795°C, a thickness of 3.5nm, a growth pressure of 200torr, and an In component of 0.22. The AlGaN quantum barrier layer has a growth temperature of 800°C to 900°C, a thickness of 5nm to 15nm, a growth pressure of 50torr to 300torr, and an Al component of 0.01 to 0.1; preferably, the AlGaN quantum barrier layer has a growth temperature of 855°C, a thickness of 9.8nm, a growth pressure of 200 torr, and an Al component of 0.05. The multi-quantum well layer is the region where electrons and holes radiate and recombine. Reasonable structural design can significantly increase the overlap of electron and hole wave functions, thereby improving the luminous efficiency of LED devices.
步骤S70,在多量子阱层上沉积电子阻挡层。Step S70, depositing an electron blocking layer on the multi-quantum well layer.
具体的,电子阻挡层为AlaInbGaN层,电子阻挡层的厚度为10nm~40nm,生长沉积温度为900℃-1000℃,压力为100torr~300torr, Al组分0.005<a<0.1,In组分浓度为0.01<b<0.2。优选的,电子阻挡层的厚度为15 nm,生长沉积温度为965℃,压力为200torr, Al组分浓度延外延层生长方向由0.01渐变至0.05,In组分浓度为0.01。电子阻挡层既可以有效地限制电子溢流,也可以减少对空穴的阻挡,提升空穴向量子阱的注入效率,减少载流子俄歇复合,提高发光二极管的发光效率。Specifically, the electron blocking layer is an Al a In b GaN layer, the thickness of the electron blocking layer is 10nm~40nm, the growth deposition temperature is 900℃-1000℃, the pressure is 100torr~300torr, the Al component is 0.005<a<0.1, and the In component concentration is 0.01<b<0.2. Preferably, the thickness of the electron blocking layer is 15 nm, the growth deposition temperature is 965℃, the pressure is 200torr, the Al component concentration gradually changes from 0.01 to 0.05 along the growth direction of the epitaxial layer, and the In component concentration is 0.01. The electron blocking layer can effectively limit the electron overflow, reduce the blocking of holes, improve the injection efficiency of holes into the quantum well, reduce carrier Auger recombination, and improve the luminous efficiency of the light-emitting diode.
步骤S80,在电子阻挡层上沉积P型GaN层。Step S80, depositing a P-type GaN layer on the electron blocking layer.
具体的,P型GaN层的主要作用为多量子阱层提供空穴,以使得在多量子阱层中电子与空穴进行辐射复合进行发光。P型GaN层生长温度900℃-1050℃,厚度10nm~50nm,生长压力100torr~600torr,采用Mg进行掺杂,掺杂浓度为1×1019atoms/cm3~1×1021atoms/cm3,Mg掺杂浓度过高会破坏晶体质量,而掺杂浓度过低则会影响空穴浓度。优选的,P型GaN层生长温度985℃,厚度15nm,生长压力200torr,Mg掺杂浓度为2×1020atoms/cm3。同时,对于含V 形坑的LED结构来说,P型GaN层较高的生长温度也有利于合并V形坑,得到表面光滑的LED外延片。Specifically, the main function of the P-type GaN layer is to provide holes for the multi-quantum well layer, so that electrons and holes in the multi-quantum well layer can be radiatively recombined to emit light. The growth temperature of the P-type GaN layer is 900℃-1050℃, the thickness is 10nm~50nm, the growth pressure is 100torr~600torr, and Mg is used for doping, and the doping concentration is 1×10 19 atoms/cm 3 ~1×10 21 atoms/cm 3. Too high Mg doping concentration will damage the crystal quality, while too low doping concentration will affect the hole concentration. Preferably, the growth temperature of the P-type GaN layer is 985℃, the thickness is 15nm, the growth pressure is 200torr, and the Mg doping concentration is 2×10 20 atoms/cm 3. At the same time, for LED structures containing V-shaped pits, the higher growth temperature of the P-type GaN layer is also conducive to merging the V-shaped pits to obtain LED epitaxial wafers with smooth surfaces.
实施例1Example 1
一种高效发光二级管,在本实施例中,选用蓝宝石衬底。第一Si掺GaN层、SiN层以及超晶格层的厚度分别为2.5um/1nm/200nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:4,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为6,第一Si掺GaN层中掺Si的浓度为1×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为1×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:1:10,超晶格层生长N2/ NH3成分比为1:5。A high-efficiency light-emitting diode, in this embodiment, a sapphire substrate is selected. The thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 2.5um/1nm/200nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:4, the cycle of the alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 6, the concentration of Si doped in the first Si-doped GaN layer is 1×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 1×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio of the first Si-doped GaN layer is 1:1:10, and the N 2 /NH 3 composition ratio of the superlattice layer is 1:5.
实施例2Example 2
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为5um/80nm/50nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为5:1:40,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为1,第一Si掺GaN层中掺Si的浓度为5×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为6×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:3:10,超晶格层生长N2/NH3成分比为1:2。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 5 um/80 nm/50 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 5:1:40, the period of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1, the concentration of Si doped in the first Si-doped GaN layer is 5×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 6×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio of the first Si-doped GaN layer is 1:3:10, and the N 2 /NH 3 composition ratio of the superlattice layer is 1:2.
实施例3Example 3
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为2um/50nm/200nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:10,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为6,第一Si掺GaN层中掺Si的浓度为2×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为3×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:1:8,超晶格层生长N2/ NH3成分比为1:5。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 2 um/50 nm/200 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:10, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 6, the concentration of Si doped in the first Si-doped GaN layer is 2×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 3×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio for growing the first Si-doped GaN layer is 1:1:8, and the N 2 /NH 3 composition ratio for growing the superlattice layer is 1:5.
实施例4Example 4
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为3um/65nm/300nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为10:1:30,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为8,第一Si掺GaN层中掺Si的浓度为2×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为6×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:2:10,超晶格层生长N2/NH3成分比为1:1。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 3 um/65 nm/300 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 10:1:30, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 8, the concentration of Si doped in the first Si-doped GaN layer is 2×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 6×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio of the first Si-doped GaN layer is 1:2:10, and the N 2 /NH 3 composition ratio of the superlattice layer is 1:1.
实施例5Example 5
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为2.5um/45nm/200nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:40,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为6,第一Si掺GaN层中掺Si的浓度为2×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为1×1018atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:3:8,超晶格层生长N2/NH3成分比为1:4。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 2.5 um/45 nm/200 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:40, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 6, the concentration of Si doped in the first Si-doped GaN layer is 2×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 1×10 18 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio of the first Si-doped GaN layer is 1:3:8, and the N 2 /NH 3 composition ratio of the superlattice layer is 1:4.
实施例6Example 6
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为3um/100nm/80nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:6,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为3,第一Si掺GaN层中掺Si的浓度为1×1020atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为1×1019atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:2:6,超晶格层生长N2/ NH3成分比为4:1。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 3 um/100 nm/80 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:6, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 3, the concentration of Si doped in the first Si-doped GaN layer is 1×10 20 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 1×10 19 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio for growing the first Si-doped GaN layer is 1:2:6, and the N 2 /NH 3 composition ratio for growing the superlattice layer is 4:1.
实施例7Example 7
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为3.5um/85nm/500nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为10:1:50,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为10,第一Si掺GaN层中掺Si的浓度为2×1019atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为8×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:5:10,超晶格层生长N2/ NH3成分比为3:1。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 3.5 um/85 nm/500 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 10:1:50, the period of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 10, the concentration of Si doped in the first Si-doped GaN layer is 2×10 19 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 8×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio for growing the first Si-doped GaN layer is 1:5:10, and the N 2 /NH 3 composition ratio for growing the superlattice layer is 3:1.
实施例8Example 8
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为2um/65nm/200nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为10:1:30,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为20,第一Si掺GaN层中掺Si的浓度为8×1018atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为3×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:4:10,超晶格层生长N2/NH3成分比为5:1。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 2 um/65 nm/200 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 10:1:30, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 20, the concentration of Si doped in the first Si-doped GaN layer is 8×10 18 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 3×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio of the first Si-doped GaN layer is 1:4:10, and the N 2 /NH 3 composition ratio of the superlattice layer is 5:1.
实施例9Example 9
本实施例当中的高效发光二级管与实施例1中的发光二级管的不同之处在于,第一Si掺GaN层、SiN层以及超晶格层的厚度分别为1um/65nm/300nm,Si掺AlN层、InN层和第二Si掺GaN层的厚度比为1:1:5,Si掺AlN层、InN层和第二Si掺GaN层交替沉积的周期为9,第一Si掺GaN层中掺Si的浓度为1×1018atoms/cm3,Si掺AlN层以及第二Si掺GaN层中掺Si的浓度为2×1017atoms/cm3,第一Si掺GaN层生长N2/H2/NH3成分比为1:1:6,超晶格层生长N2/ NH3成分比为2:1。The high-efficiency light-emitting diode in this embodiment is different from the light-emitting diode in Embodiment 1 in that the thicknesses of the first Si-doped GaN layer, the SiN layer and the superlattice layer are 1 um/65 nm/300 nm respectively, the thickness ratio of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 1:1:5, the cycle of alternating deposition of the Si-doped AlN layer, the InN layer and the second Si-doped GaN layer is 9, the concentration of Si doped in the first Si-doped GaN layer is 1×10 18 atoms/cm 3 , the concentration of Si doped in the Si-doped AlN layer and the second Si-doped GaN layer is 2×10 17 atoms/cm 3 , the N 2 /H 2 /NH 3 composition ratio for growing the first Si-doped GaN layer is 1:1:6, and the N 2 /NH 3 composition ratio for growing the superlattice layer is 2:1.
对照例Comparative Example
本实施例当中的发光二级管与实施例1中的高效发光二级管的不同之处在于,在非掺杂GaN层与多量子阱层之间插入了一层N型GaN层,N型GaN层厚度为3um,采用Si进行掺杂,掺杂浓度为2×1019atoms/cm3。The light emitting diode in this embodiment is different from the high-efficiency light emitting diode in embodiment 1 in that an N-type GaN layer is inserted between the undoped GaN layer and the multi-quantum well layer. The N-type GaN layer is 3 um thick and is doped with Si at a doping concentration of 2×10 19 atoms/cm 3 .
请参阅表1,所示为上述各个实施例及对照例的部分参数对比及对应透光率的对比结果。Please refer to Table 1, which shows the comparison of some parameters of the above-mentioned embodiments and control examples and the comparison results of the corresponding light transmittance.
表1Table 1
从表1可知,本发明提供的高效发光二极管外延片,与目前量产的制备的发光二极管外延片相比,光电效率提升1.5%-5%。As can be seen from Table 1, the photoelectric efficiency of the high-efficiency light-emitting diode epitaxial wafer provided by the present invention is improved by 1.5%-5% compared with the light-emitting diode epitaxial wafer currently prepared in mass production.
需要说明的是,上述的实施过程只是为了说明本申请的可实施性,但这并不代表本申请的高效发光二极管只有上述几种实施流程,相反的,只要能够将本申请的高效发光二极管实施起来,都可以被纳入本申请的可行实施方案。另外,本发明的实施方式中高效发光二极管的结构部分与本发明制备高效发光二极管的方法部分是相对应的,其具体实施细节也是相同的,在此不再赘述。It should be noted that the above implementation process is only to illustrate the feasibility of the present application, but it does not mean that the high-efficiency light-emitting diode of the present application has only the above-mentioned implementation processes. On the contrary, as long as the high-efficiency light-emitting diode of the present application can be implemented, it can be included in the feasible implementation scheme of the present application. In addition, the structural part of the high-efficiency light-emitting diode in the embodiment of the present invention corresponds to the method for preparing the high-efficiency light-emitting diode of the present invention, and the specific implementation details are also the same, which will not be repeated here.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "examples", "specific examples", or "some examples" means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner.
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above embodiments only express several implementation methods of the present invention, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the present invention. It should be pointed out that, for a person of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the present invention patent shall be subject to the attached claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310402346.3A CN116130569B (en) | 2023-04-17 | 2023-04-17 | High-efficiency light-emitting diode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310402346.3A CN116130569B (en) | 2023-04-17 | 2023-04-17 | High-efficiency light-emitting diode and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116130569A true CN116130569A (en) | 2023-05-16 |
CN116130569B CN116130569B (en) | 2023-06-27 |
Family
ID=86301291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310402346.3A Active CN116130569B (en) | 2023-04-17 | 2023-04-17 | High-efficiency light-emitting diode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116130569B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116544327A (en) * | 2023-06-27 | 2023-08-04 | 江西兆驰半导体有限公司 | Light-emitting diode and preparation method thereof |
CN116581216A (en) * | 2023-07-12 | 2023-08-11 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
CN117712253A (en) * | 2024-02-05 | 2024-03-15 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode and preparation method |
CN118969931A (en) * | 2024-10-16 | 2024-11-15 | 江西兆驰半导体有限公司 | Epitaxial wafer of light emitting diode and preparation method thereof |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1277461A (en) * | 1999-06-15 | 2000-12-20 | 华上光电股份有限公司 | Unipolar light emitting device based on superlattice III-nitride semiconductor |
CN1505843A (en) * | 2001-06-15 | 2004-06-16 | ���﹫˾ | GaN-based LEDs formed on SiC substrates |
CN1659713A (en) * | 2002-06-04 | 2005-08-24 | 氮化物半导体株式会社 | Gallium nitride (GaN)-based compound semiconductor device and manufacturing method thereof |
US20050230695A1 (en) * | 2004-04-06 | 2005-10-20 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting element and method for manufacturing the same |
JP2008184360A (en) * | 2007-01-30 | 2008-08-14 | Covalent Materials Corp | Nitride semiconductor single crystal |
JP2008258561A (en) * | 2007-03-13 | 2008-10-23 | Covalent Materials Corp | Nitride semiconductor single crystal |
US20160276529A1 (en) * | 2015-03-20 | 2016-09-22 | Enraytek Optoelectronics Co., Ltd. | Gan-based led epitaxial structure and preparation method thereof |
US20180019372A1 (en) * | 2015-03-30 | 2018-01-18 | Hc Semitek (Suzhou) Co., Ltd. | Light-emitting diode epitaxial wafer and method for preparing the same |
CN107799631A (en) * | 2017-09-12 | 2018-03-13 | 合肥惠科金扬科技有限公司 | High-brightness LED preparation technology |
CN108110098A (en) * | 2017-10-25 | 2018-06-01 | 华灿光电(浙江)有限公司 | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof |
CN108365069A (en) * | 2018-02-06 | 2018-08-03 | 华南师范大学 | A kind of high brightness V-type polarization doping deep ultraviolet LED preparation methods |
CN108630791A (en) * | 2018-03-29 | 2018-10-09 | 华灿光电(浙江)有限公司 | GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof |
CN109786532A (en) * | 2018-12-26 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of GaN base light emitting epitaxial wafer and preparation method thereof |
CN109980056A (en) * | 2019-02-28 | 2019-07-05 | 华灿光电(苏州)有限公司 | Gallium nitride based LED epitaxial slice and its manufacturing method |
CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN115548178A (en) * | 2022-10-25 | 2022-12-30 | 湘能华磊光电股份有限公司 | LED epitaxial wafer structure capable of improving luminous efficiency |
CN115799416A (en) * | 2023-02-15 | 2023-03-14 | 江西兆驰半导体有限公司 | Deep ultraviolet light emitting diode epitaxial wafer and preparation method thereof |
CN115911201A (en) * | 2022-11-21 | 2023-04-04 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
-
2023
- 2023-04-17 CN CN202310402346.3A patent/CN116130569B/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1277461A (en) * | 1999-06-15 | 2000-12-20 | 华上光电股份有限公司 | Unipolar light emitting device based on superlattice III-nitride semiconductor |
CN1505843A (en) * | 2001-06-15 | 2004-06-16 | ���﹫˾ | GaN-based LEDs formed on SiC substrates |
CN1659713A (en) * | 2002-06-04 | 2005-08-24 | 氮化物半导体株式会社 | Gallium nitride (GaN)-based compound semiconductor device and manufacturing method thereof |
US20050230695A1 (en) * | 2004-04-06 | 2005-10-20 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting element and method for manufacturing the same |
JP2008184360A (en) * | 2007-01-30 | 2008-08-14 | Covalent Materials Corp | Nitride semiconductor single crystal |
JP2008258561A (en) * | 2007-03-13 | 2008-10-23 | Covalent Materials Corp | Nitride semiconductor single crystal |
US20160276529A1 (en) * | 2015-03-20 | 2016-09-22 | Enraytek Optoelectronics Co., Ltd. | Gan-based led epitaxial structure and preparation method thereof |
US20180019372A1 (en) * | 2015-03-30 | 2018-01-18 | Hc Semitek (Suzhou) Co., Ltd. | Light-emitting diode epitaxial wafer and method for preparing the same |
CN107799631A (en) * | 2017-09-12 | 2018-03-13 | 合肥惠科金扬科技有限公司 | High-brightness LED preparation technology |
CN108110098A (en) * | 2017-10-25 | 2018-06-01 | 华灿光电(浙江)有限公司 | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof |
CN108365069A (en) * | 2018-02-06 | 2018-08-03 | 华南师范大学 | A kind of high brightness V-type polarization doping deep ultraviolet LED preparation methods |
CN108630791A (en) * | 2018-03-29 | 2018-10-09 | 华灿光电(浙江)有限公司 | GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof |
CN109786532A (en) * | 2018-12-26 | 2019-05-21 | 华灿光电(浙江)有限公司 | A kind of GaN base light emitting epitaxial wafer and preparation method thereof |
CN109980056A (en) * | 2019-02-28 | 2019-07-05 | 华灿光电(苏州)有限公司 | Gallium nitride based LED epitaxial slice and its manufacturing method |
CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
CN115548178A (en) * | 2022-10-25 | 2022-12-30 | 湘能华磊光电股份有限公司 | LED epitaxial wafer structure capable of improving luminous efficiency |
CN115911201A (en) * | 2022-11-21 | 2023-04-04 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
CN115799416A (en) * | 2023-02-15 | 2023-03-14 | 江西兆驰半导体有限公司 | Deep ultraviolet light emitting diode epitaxial wafer and preparation method thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116544327A (en) * | 2023-06-27 | 2023-08-04 | 江西兆驰半导体有限公司 | Light-emitting diode and preparation method thereof |
CN116544327B (en) * | 2023-06-27 | 2023-11-17 | 江西兆驰半导体有限公司 | Light-emitting diode and preparation method thereof |
CN116581216A (en) * | 2023-07-12 | 2023-08-11 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
CN116581216B (en) * | 2023-07-12 | 2023-09-15 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode |
CN117712253A (en) * | 2024-02-05 | 2024-03-15 | 江西兆驰半导体有限公司 | Deep ultraviolet light-emitting diode and preparation method |
CN117712253B (en) * | 2024-02-05 | 2024-04-19 | 江西兆驰半导体有限公司 | A deep ultraviolet light emitting diode and preparation method thereof |
CN118969931A (en) * | 2024-10-16 | 2024-11-15 | 江西兆驰半导体有限公司 | Epitaxial wafer of light emitting diode and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116130569B (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116130569B (en) | High-efficiency light-emitting diode and preparation method thereof | |
CN115188863B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN117253950B (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN118522833B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN116230823A (en) | A high-efficiency light-emitting diode epitaxial wafer and its preparation method | |
CN116825913A (en) | A kind of light-emitting diode epitaxial wafer and preparation method, LED | |
CN117810324A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN116314502A (en) | High-luminous-efficiency light-emitting diode epitaxial wafer, preparation method thereof and LED chip | |
CN117476827A (en) | Epitaxial wafer of light-emitting diode with low contact resistance and preparation method thereof | |
CN116454185A (en) | High-light-efficiency light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN116364825A (en) | Composite buffer layer, preparation method thereof, epitaxial wafer and light-emitting diode | |
CN116435424A (en) | Light-emitting diode epitaxial wafer with high radiation recombination efficiency and preparation method thereof | |
CN116387426A (en) | Light-emitting diode epitaxial wafer and preparation method thereof | |
CN116344684B (en) | A kind of light-emitting diode preparation method and diode | |
CN116344693B (en) | A high-efficiency light-emitting diode epitaxial wafer and its preparation method | |
CN118782699A (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN116314510B (en) | Composite non-doped AlGaN layer and preparation method, epitaxial wafer and LED | |
CN116487493A (en) | Light-emitting diode epitaxial wafer and its preparation method, LED chip | |
CN117712253B (en) | A deep ultraviolet light emitting diode and preparation method thereof | |
CN116598395B (en) | A kind of light-emitting diode and preparation method thereof | |
CN116565087B (en) | A kind of light-emitting diode and preparation method | |
CN116544327B (en) | Light-emitting diode and preparation method thereof | |
CN116525730B (en) | A method for preparing a light-emitting diode epitaxial wafer and an epitaxial wafer | |
CN117832348B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode | |
CN117457824B (en) | Light-emitting diode epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |