[go: up one dir, main page]

CN115172500A - Laser battery pack - Google Patents

Laser battery pack Download PDF

Info

Publication number
CN115172500A
CN115172500A CN202210817562.XA CN202210817562A CN115172500A CN 115172500 A CN115172500 A CN 115172500A CN 202210817562 A CN202210817562 A CN 202210817562A CN 115172500 A CN115172500 A CN 115172500A
Authority
CN
China
Prior art keywords
thickness
doping concentration
type
laser
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210817562.XA
Other languages
Chinese (zh)
Other versions
CN115172500B (en
Inventor
张无迪
高鹏
王赫
姜明序
倪旺
王宇
赵一聪
孟占昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN202210817562.XA priority Critical patent/CN115172500B/en
Publication of CN115172500A publication Critical patent/CN115172500A/en
Application granted granted Critical
Publication of CN115172500B publication Critical patent/CN115172500B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • H10F77/315Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种激光电池组件,属于光伏电池技术领域,包括:绝缘衬底、M个激光电池单元、隔离槽、绝缘层、桥联电极。激光电池单元包括下电极,电池外延有源层,上电极,减反射结构。隔离槽将激光电池单元分离,绝缘层将激光电池单元侧壁绝缘钝化,桥联电极将相邻激光电池单元上下电极连接,实现相邻激光电池单元电学连接,将M个激光电池单元依次串联。该结构激光电池组件在远距离高功率的激光无线传能应用中,可兼顾电池效率与适用性。

Figure 202210817562

The invention discloses a laser battery assembly, belonging to the technical field of photovoltaic cells, comprising: an insulating substrate, M laser battery units, an isolation groove, an insulating layer and a bridge electrode. The laser battery unit includes a lower electrode, an epitaxial active layer of the battery, an upper electrode, and an anti-reflection structure. The isolation groove separates the laser battery cells, the insulating layer insulates and passivates the side walls of the laser battery cells, and the bridge electrodes connect the upper and lower electrodes of the adjacent laser battery cells to realize the electrical connection of the adjacent laser battery cells, and connect the M laser battery cells in series in sequence. . The laser battery assembly of this structure can take into account both battery efficiency and applicability in the application of long-distance high-power laser wireless energy transmission.

Figure 202210817562

Description

一种激光电池组件A laser battery assembly

技术领域technical field

本发明属于光伏电池技术领域,具体涉及一种激光电池组件。The invention belongs to the technical field of photovoltaic cells, and in particular relates to a laser cell assembly.

背景技术Background technique

激光无线传能具有传输能量密度大、传输及转换效率高、能量综合利用率高、系统体积小、供能场景受限小等优势,非常适用于空间环境应用。高轨空间飞行器的太阳电池阵实现太阳能转换为电能,电能再转换为激光,借助激光电池实现激光对其他空间飞行器或临近空间无人机供能。激光电池是无线传能系统激光接收端最重要的组成部分。激光电池组件的光电转换效率直接决定着无线传能系统的整体传输效率。Laser wireless energy transfer has the advantages of high transmission energy density, high transmission and conversion efficiency, high comprehensive energy utilization rate, small system size, and limited energy supply scenarios. It is very suitable for space environment applications. The solar cell array of the high-orbit space vehicle realizes the conversion of solar energy into electrical energy, and the electrical energy is converted into laser light, and the laser power is used to supply energy to other space vehicles or near-space UAVs. The laser battery is the most important part of the laser receiving end of the wireless energy transmission system. The photoelectric conversion efficiency of the laser battery module directly determines the overall transmission efficiency of the wireless energy transfer system.

远距离高功率的激光无线传能,要保证实际应用中激光电池组件较高的光电转换效率,对激光电池组件提出了更为苛刻的要求,包括:大尺寸、高电压和对激光光强与入射角变化适应性强。对于单结III-V族半导体激光电池,其在高功率激光照射下,会产生很大的工作电流,过大的电流在电路中会引起更高的能量损耗,从而降低激光电池组件的光电转换效率。一般会采取串联子电池的方法提升电池电压,进而减小电池输出电流。Long-distance high-power laser wireless energy transmission, in order to ensure high photoelectric conversion efficiency of laser battery components in practical applications, puts forward more stringent requirements for laser battery components, including: large size, high voltage, and the difference between laser light intensity and laser light intensity. Strong adaptability to incident angle changes. For single-junction III-V semiconductor laser cells, under high-power laser irradiation, a large operating current will be generated. Excessive current will cause higher energy loss in the circuit, thereby reducing the photoelectric conversion of laser cell components. efficiency. Generally, the method of series sub-battery is adopted to increase the battery voltage, thereby reducing the battery output current.

传统激光电池子电池的串联结构有横向和纵向两种。但横向串联结构子电池间存在分割区域,这减小了电池的有效发电面积。而纵向串联结构,只能针对单一激光强度,来优化每结子电池的吸收厚度。光强和入射角变化都会影响其效率,而且纵向结数越多影响越大。因此传统结构的激光电池无法适应远距离高功率的激光无线传能需求。There are two types of tandem structures of conventional laser battery sub-cells, horizontal and vertical. However, there are divided regions between the sub-cells in the horizontal series structure, which reduces the effective power generation area of the cells. The vertical tandem structure can only optimize the absorption thickness of each junction cell for a single laser intensity. Changes in light intensity and angle of incidence affect its efficiency, and the greater the number of vertical junctions, the greater the effect. Therefore, the traditional structure of the laser battery cannot meet the requirements of long-distance high-power laser wireless energy transmission.

发明内容SUMMARY OF THE INVENTION

本发明为解决公知技术中存在的技术问题,提供一种激光电池组件,能够同时满足远距离高功率的激光无线传能中,对激光电池组件的大尺寸、高电压和对激光光强与入射角变化适应性强的三项需求,电池有效受光面积更大,电池串联电阻更小,光电转换效率更高。In order to solve the technical problems existing in the known technology, the present invention provides a laser battery assembly, which can simultaneously satisfy the requirements of large size and high voltage of the laser battery assembly in the long-distance high-power laser wireless energy transmission, as well as to the laser light intensity and incidence. The three requirements of strong adaptability to angular changes are that the effective light-receiving area of the battery is larger, the series resistance of the battery is smaller, and the photoelectric conversion efficiency is higher.

本发明的目的是提供一种激光电池组件,包括:绝缘衬底、M个激光电池单元、隔离槽、绝缘层、桥联电极,其中:M为大于0的自然数。The purpose of the present invention is to provide a laser battery assembly, comprising: an insulating substrate, M laser battery cells, an isolation groove, an insulating layer, and a bridge electrode, wherein: M is a natural number greater than 0.

所述激光电池单元包括下电极、电池外延有源层、上电极、减反射结构。The laser battery unit includes a lower electrode, a battery epitaxial active layer, an upper electrode, and an anti-reflection structure.

所述隔离槽将相邻激光电池单元分离,所述绝缘层将所述激光电池单元侧壁绝缘钝化,所述桥联电极将相邻所述激光电池单元上下电极连接,实现相邻激光电池单元电学连接,将所述M个激光电池单元依次串联。The isolation groove separates the adjacent laser battery cells, the insulating layer insulates and passivates the side walls of the laser battery cells, and the bridge electrodes connect the upper and lower electrodes of the adjacent laser battery cells to realize adjacent laser cells. The units are electrically connected, and the M laser battery units are connected in series in sequence.

优选地,所述绝缘衬底的材料为氧化硅、聚酰亚胺、石英中的一种。Preferably, the material of the insulating substrate is one of silicon oxide, polyimide, and quartz.

优选地,M个激光电池单元的面积相同。Preferably, the areas of the M laser battery cells are the same.

作为一种可选结构,所述电池外延有源层为GaAs基电池有源层,由下向上包括:p型电极接触层、第一结Ga(In)As子电池、隧穿结、第二结Ga(In)As子电池和n型电极接触层。As an optional structure, the cell epitaxial active layer is a GaAs-based cell active layer, which includes from bottom to top: a p-type electrode contact layer, a first junction Ga(In)As sub-cell, a tunnel junction, a second Junction Ga(In)As subcell and n-type electrode contact layer.

优选地,所述第一结Ga(In)As子电池由下向上包括:GaInP背场、Gax1In1-x1As基区、Gax1In1-x1As发射区、GaInP窗口层,其中0.8≤x1≤1。Preferably, the first junction Ga(In)As sub-cell includes from bottom to top: a GaInP back field, a Ga x1 In 1-x1 As base region, a Ga x1 In 1-x1 As emitter region, and a GaInP window layer, wherein 0.8 ≤x1≤1.

优选地,所述第二结Ga(In)As子电池由下向上包括:GaInP背场、Gax2In1-x2As基区、Gax2In1-x2As发射区、GaInP窗口层,其中0.8≤x2≤1。Preferably, the second junction Ga(In)As sub-cell includes from bottom to top: a GaInP back field, a Ga x2 In 1-x2 As base region, a Ga x2 In 1-x2 As emitter region, and a GaInP window layer, wherein 0.8 ≤x2≤1.

优选地,所述p型电极接触层为p型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。Preferably, the p-type electrode contact layer is a p-type GaAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

优选地,所述GaInP背场为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。Preferably, the GaInP back field is p-type doped, the doping concentration is 1×10 17 -1×10 18 cm -3 , and the thickness is 50-400 nm.

优选地,所述GaInP窗口层为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。Preferably, the GaInP window layer is n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm −3 and a thickness of 50 to 400 nm.

优选地,所述Gax1In1-x1As基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。Preferably, the Ga x1 In 1-x1 As base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

优选地,所述Gax1In1-x1As发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。Preferably, the Ga x1 In 1-x1 As emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm -3 and a thickness of 100 to 500 nm.

优选地,所述Gax2In1-x2As基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。Preferably, the Ga x2 In 1-x2 As base region is p-type doped, the doping concentration is 1×10 16 -1×10 18 cm -3 , and the thickness is 1000-5000 nm.

优选地,所述Gax2In1-x2As发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。Preferably, the Ga x2 In 1-x2 As emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

优选地,所述隧穿结包括:n型GaAs层与p型GaAs层,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm。Preferably, the tunnel junction includes: an n-type GaAs layer and a p-type GaAs layer, the doping concentration is 1×10 19 -1×10 21 cm -3 , and the thickness is 10-100 nm.

优选地,所述n型电极接触层为n型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。Preferably, the n-type electrode contact layer is an n-type GaAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

作为另一种可选结构,所述电池外延有源层为InP基电池有源层,由下向上包括:p型电极接触层、第一结GaInAsP子电池、隧穿结、第二结GaInAsP子电池和n型电极接触层。As another optional structure, the cell epitaxial active layer is an InP-based cell active layer, including from bottom to top: p-type electrode contact layer, first junction GaInAsP sub-cell, tunnel junction, second junction GaInAsP sub-cell Cell and n-type electrode contact layer.

优选地,所述第一结GaInAsP子电池由下向上包括:InP背场、Gay1In1-y1Asz1P1-z1基区、Gay1In1-y1Asz1P1-z1发射区、InP窗口层,其中0≤y1≤0.5,0≤z1≤1。Preferably, the first junction GaInAsP sub-cell includes from bottom to top: InP back field, Ga y1 In 1-y1 As z1 P 1-z1 base region, Ga y1 In 1-y1 As z1 P 1-z1 emission region, InP window layer, where 0≤y1≤0.5, 0≤z1≤1.

优选地,所述第二结GaInAsP子电池由下向上包括:InP背场、Gay2In1-y2Asz2P1-z2基区、Gay2In1-y2Asz2P1-z2发射区、InP窗口层,其中0≤y2≤0.5,0≤z2≤1。Preferably, the second junction GaInAsP sub-cell includes from bottom to top: InP back field, Ga y2 In 1-y2 As z2 P 1-z2 base region, Ga y2 In 1-y2 As z2 P 1-z2 emission region, InP window layer, where 0≤y2≤0.5, 0≤z2≤1.

优选地,所述p型电极接触层为p型GaInAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。Preferably, the p-type electrode contact layer is a p-type GaInAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

优选地,所述InP背场为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。Preferably, the InP back field is p-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm −3 and a thickness of 50 to 400 nm.

优选地,所述InP窗口层为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。Preferably, the InP window layer is n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm −3 and a thickness of 50 to 400 nm.

优选地,所述Gay1In1-y1Asz1P1-z1基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。Preferably, the Ga y1 In 1-y1 As z1 P 1-z1 base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

优选地,所述Gay1In1-y1Asz1P1-z1发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。Preferably, the Ga y1 In 1-y1 As z1 P 1-z1 emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

优选地,所述Gay2In1-y2Asz2P1-z2基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。Preferably, the Ga y2 In 1-y2 As z2 P 1-z2 base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

优选地,所述Gay2In1-y2Asz2P1-z2发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。Preferably, the Ga y2 In 1-y2 As z2 P 1-z2 emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

优选地,所述隧穿结包括:n型InP层与p型InP层,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm。Preferably, the tunnel junction includes: an n-type InP layer and a p-type InP layer, the doping concentration is 1×10 19 -1×10 21 cm -3 , and the thickness is 10-100 nm.

优选地,所述n型电极接触层为n型GaInAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。Preferably, the n-type electrode contact layer is an n-type GaInAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

优选地,所述上电极与桥联电极的材料为Au/Ge/Ag,厚度为2~5μm;所述下电极的材料为Ti/Pd/Au/Ge/Au,厚度为4~8μm。Preferably, the material of the upper electrode and the bridge electrode is Au/Ge/Ag, and the thickness is 2-5 μm; the material of the lower electrode is Ti/Pd/Au/Ge/Au, and the thickness is 4-8 μm.

优选地,所述绝缘层为聚酰亚胺胶。Preferably, the insulating layer is polyimide glue.

优选地,所述减反射结构由下向上包括:氧化钛/氧化硅减反射膜、纳米阵列陷光结构。Preferably, the anti-reflection structure includes from bottom to top: a titanium oxide/silicon oxide anti-reflection film and a nano-array light trapping structure.

本发明具有的有益效果是:The beneficial effects that the present invention has are:

1、本发明将传统激光电池子电池横向串联与纵向串联两种技术路径结合,发明了纵向2结内级联结构激光电池组件。纵向2结结构对激光光强与入射角变化适应性较强,横向内级联串联结构有效提升电池电压,电池组件整体在保证高电压同时,减少了因隔离槽造成的电池有效面积损失。在远距离高功率的激光无线传能应用中,可兼顾电池效率与适用性。1. The present invention combines the two technical paths of horizontal series connection and vertical series connection of traditional laser battery sub-cells, and invents a vertical 2-junction cascade structure laser battery assembly. The vertical 2-junction structure has strong adaptability to the changes of laser light intensity and incident angle, and the horizontal inner cascading series structure effectively improves the battery voltage. In long-distance high-power laser wireless energy transfer applications, both battery efficiency and applicability can be considered.

2、在减反射膜上制作纳米阵列结构,陷光结构可延长光子光学路径,增强激光斜入射情况减反射效果,增强激光电池组件在无线传能应用中的适用性。2. The nano-array structure is fabricated on the anti-reflection film, and the light trapping structure can prolong the optical path of photons, enhance the anti-reflection effect in the case of oblique incidence of laser, and enhance the applicability of laser battery components in wireless energy transfer applications.

附图说明Description of drawings

图1为本发明优选实施例中激光电池组件的剖面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of a laser cell assembly in a preferred embodiment of the present invention.

图2为本发明优选实施例中激光电池组件的俯视面结构示意图。FIG. 2 is a schematic top view of the structure of the laser cell assembly in the preferred embodiment of the present invention.

图3为本发明优选实施例中激光电池组件外延有源层的剖面结构示意图。3 is a schematic cross-sectional structural diagram of an epitaxial active layer of a laser cell assembly in a preferred embodiment of the present invention.

图中:In the picture:

100、绝缘衬底;100. Insulating substrate;

200、下电极;200, lower electrode;

300、电池外延有源层;300. Battery epitaxy active layer;

310、p型电极接触层;310. p-type electrode contact layer;

320、第一结Ga(In)As子电池或第一结GaInAsP子电池;320. The first junction Ga(In)As sub-cell or the first junction GaInAsP sub-cell;

321、GaInP背场或InP背场;321. GaInP back field or InP back field;

322、Gax1In1-x1As基区或Gay1In1-y1Asz1P1-z1基区;322. Ga x1 In 1-x1 As base region or Ga y1 In 1-y1 As z1 P 1-z1 base region;

323、Gax1In1-x1As发射区或Gay1In1-y1Asz1P1-z1发射区;323. Ga x1 In 1-x1 As emission region or Ga y1 In 1-y1 As z1 P 1-z1 emission region;

324、GaInP窗口层或InP窗口层;324. GaInP window layer or InP window layer;

330、隧穿结;330, tunneling junction;

331、n型GaAs或n型InP;331, n-type GaAs or n-type InP;

332、p型GaAs或p型InP;332, p-type GaAs or p-type InP;

340、第二结Ga(In)As子电池或第二结GaInAsP子电池;340. The second junction Ga(In)As sub-cell or the second junction GaInAsP sub-cell;

341、GaInP背场或InP背场;341. GaInP back field or InP back field;

342、Gax2In1-x2As基区或Gay2In1-y2Asz2P1-z2基区;342. Ga x2 In 1-x2 As base region or Ga y2 In 1-y2 As z2 P 1-z2 base region;

343、Gax2In1-x2As发射区或Gay2In1-y2Asz2P1-z2发射区;343. Ga x2 In 1-x2 As emission region or Ga y2 In 1-y2 As z2 P 1-z2 emission region;

344、GaInP窗口层或InP窗口层;344. GaInP window layer or InP window layer;

350、n型电极接触层350, n-type electrode contact layer

400、上电极400, upper electrode

500、减反射结构500. Anti-reflection structure

600、绝缘层600, insulating layer

700、桥联电极700, bridge electrode

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细说明,以期能进一步了解本发明的发明内容。The technical solutions in the embodiments of the present application will be described in detail below with reference to the accompanying drawings in the embodiments of the present application, so as to further understand the inventive content of the present invention.

显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的技术方案,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the technical solutions in the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.

在本发明的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,使用“第一”、“第二”等词语来限定零部件,仅是为了便于描述本发明和简化描述,不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and the use of "first", "second", etc. Words to define parts are only for the convenience of describing the present invention and simplifying the description, and should not be construed as limiting the present invention.

本发明的目的是提供一种激光电池组件,如图1、2所示,包括:绝缘衬底100、9个激光电池单元、隔离槽、绝缘层600、桥联电极700。The purpose of the present invention is to provide a laser battery assembly, as shown in FIGS. 1 and 2 , comprising: an insulating substrate 100 , 9 laser battery cells, an isolation groove, an insulating layer 600 , and a bridge electrode 700 .

激光电池单元包括下电极200,电池外延有源层300,上电极400,减反射结构500。The laser battery unit includes a lower electrode 200 , a battery epitaxial active layer 300 , an upper electrode 400 , and an anti-reflection structure 500 .

隔离槽将相邻激光电池单元分离,绝缘层600将激光电池单元侧壁绝缘钝化,桥联电极700将相邻激光电池单元上下电极连接,实现相邻激光电池单元电学连接,将9个激光电池单元依次串联。The isolation groove separates the adjacent laser battery cells, the insulating layer 600 insulates and passivates the side walls of the laser battery cells, and the bridge electrode 700 connects the upper and lower electrodes of the adjacent laser battery cells to realize the electrical connection of the adjacent laser battery cells. The battery cells are connected in series in sequence.

其中:绝缘衬底100的材料为氧化硅、聚酰亚胺、石英中的一种。The material of the insulating substrate 100 is one of silicon oxide, polyimide, and quartz.

每个激光电池单元的面积相同。Each laser cell has the same area.

实施例一,一种用于接收780~850nm波段的GaAs基激光电池组件结构如下:Embodiment 1. The structure of a GaAs-based laser cell assembly for receiving a band of 780-850 nm is as follows:

如图3所示,电池外延有源层300为GaAs基电池有源层,由下向上包括:p型电极接触层310、第一结Ga(In)As子电池320、隧穿结330、第二结Ga(In)As子电池340、n型电极接触层350。As shown in FIG. 3 , the cell epitaxial active layer 300 is a GaAs-based cell active layer, including from bottom to top: a p-type electrode contact layer 310 , a first junction Ga(In)As sub-cell 320 , a tunnel junction 330 , a first junction Ga(In)As sub-cell 320 Two-junction Ga(In)As sub-cell 340 and n-type electrode contact layer 350 .

其中:第一结Ga(In)As子电池320由下向上包括:GaInP背场321、Gax1In1-x1As基区322、Gax1In1-x1As发射区323、GaInP窗口层324,其中0.8≤x1≤1。Wherein: the first junction Ga(In)As sub-cell 320 includes from bottom to top: GaInP back field 321, Gax1 In1 -x1As base region 322, Gax1In1 -x1As emission region 323, GaInP window layer 324, where 0.8≤x1≤1.

第二结Ga(In)As子电池340由下向上包括:GaInP背场341、Gax2In1-x2As基区342、Gax2In1-x2As发射区343、GaInP窗口层344,其中0.8≤x2≤1。The second junction Ga(In)As sub-cell 340 includes from bottom to top: GaInP back field 341, Ga x2 In 1-x2 As base region 342, Ga x2 In 1-x2 As emitter region 343, and GaInP window layer 344, wherein 0.8 ≤x2≤1.

p型电极接触层310为p型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The p-type electrode contact layer 310 is a p-type GaAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

GaInP背场321、341为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。The GaInP back fields 321 and 341 are p-type doping, the doping concentration is 1×10 17 -1×10 18 cm -3 , and the thickness is 50-400 nm.

GaInP窗口层324、344为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。The GaInP window layers 324 and 344 are n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm −3 and a thickness of 50 to 400 nm.

Gax1In1-x1As基区322为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。The Ga x1 In 1-x1 As base region 322 is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

Gax1In1-x1As发射区323为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。The Ga x1 In 1-x1 As emission region 323 is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

Gax2In1-x2As基区342为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。The Ga x2 In 1-x2 As base region 342 is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

Gax2In1-x2As发射区343为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。The Ga x2 In 1-x2 As emission region 343 is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

隧穿结包括:n型GaAs层334与p型GaAs层332,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm。The tunnel junction includes: an n-type GaAs layer 334 and a p-type GaAs layer 332 , the doping concentration is 1×10 19 -1×10 21 cm -3 , and the thickness is 10-100 nm.

n型电极接触层350为n型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The n-type electrode contact layer 350 is an n-type GaAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

上电极400与桥联电极700材料为Au/Ge/Ag,厚度为2~5μm;下电极200材料为Ti/Pd/Au/Ge/Au,厚度为4~8μm。The upper electrode 400 and the bridge electrode 700 are made of Au/Ge/Ag with a thickness of 2-5 μm; the lower electrode 200 is made of Ti/Pd/Au/Ge/Au with a thickness of 4-8 μm.

绝缘层600为聚酰亚胺胶。The insulating layer 600 is polyimide glue.

减反射结构500由下向上包括:氧化钛/氧化硅减反射膜、纳米阵列陷光结构。The anti-reflection structure 500 includes from bottom to top: a titanium oxide/silicon oxide anti-reflection film and a nano-array light trapping structure.

实施例二,一种用于接收950~1600nm波段的InP基激光电池组件结构如下:Embodiment 2, the structure of an InP-based laser battery assembly for receiving the 950-1600 nm band is as follows:

如图3所示,电池外延有源层300为InP基电池有源层,由下向上包括:p型电极接触层310、第一结GaInAsP子电池320、隧穿结330、第二结GaInAsP子电池340、n型电极接触层350。As shown in FIG. 3 , the cell epitaxial active layer 300 is an InP-based cell active layer, including from bottom to top: a p-type electrode contact layer 310 , a first-junction GaInAsP sub-cell 320 , a tunnel junction 330 , and a second-junction GaInAsP sub-cell Cell 340 , n-type electrode contact layer 350 .

其中,第一结GaInAsP子电池320由下向上包括:InP背场321、Gay1In1-y1Asz1P1-z1基区基区322、Gay1In1-y1Asz1P1-z1基区发射区323、InP窗口层324,其中0≤y1≤0.5,0≤z1≤1。The first junction GaInAsP sub-cell 320 includes from bottom to top: InP back field 321, Ga y1 In 1-y1 As z1 P 1-z1 base region base region 322, Ga y1 In 1-y1 As z1 P 1-z1 base Region emission region 323, InP window layer 324, wherein 0≤y1≤0.5, 0≤z1≤1.

第二结GaInAsP子电池340由下向上包括:InP背场341、Gay2In1-y2Asz2P1-z2基区342、Gay2In1-y2Asz2P1-z2发射区343、InP窗口层344,其中0≤y2≤0.5,0≤z2≤1。The second junction GaInAsP sub-cell 340 includes from bottom to top: InP back field 341, Ga y2 In 1-y2 As z2 P 1-z2 base region 342, Ga y2 In 1-y2 As z2 P 1-z2 emitter region 343, InP Window layer 344, where 0≤y2≤0.5, 0≤z2≤1.

p型电极接触层310为p型InP层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The p-type electrode contact layer 310 is a p-type InP layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

InP背场321、341为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。The InP back fields 321 and 341 are p-type doping, the doping concentration is 1×10 17 -1×10 18 cm -3 , and the thickness is 50-400 nm.

InP窗口层324、344为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm。The InP window layers 324 and 344 are n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm −3 and a thickness of 50 to 400 nm.

Gay1In1-y1Asz1P1-z1基区322为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。Ga y1 In 1-y1 As z1 P 1-z1 base region 322 is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

Gay1In1-y1Asz1P1-z1发射区323为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。The Ga y1 In 1-y1 As z1 P 1-z1 emission region 323 is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

Gay2In1-y2Asz2P1-z2基区342为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm。The Ga y2 In 1-y2 As z2 P 1-z2 base region 342 is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm −3 and a thickness of 1000 to 5000 nm.

Gay2In1-y2Asz2P1-z2发射区343为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm。The Ga y2 In 1-y2 As z2 P 1-z2 emitter region 343 is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm −3 and a thickness of 100 to 500 nm.

隧穿结包括:n型InP层334与p型InP层332,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm。The tunnel junction includes: an n-type InP layer 334 and a p-type InP layer 332 , with a doping concentration of 1×10 19 to 1×10 21 cm −3 and a thickness of 10 to 100 nm.

n型电极接触层350为n型GaInAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The n-type electrode contact layer 350 is an n-type GaInAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm.

上电极400与桥联电极700材料为Au/Ge/Ag,厚度为2~5μm;下电极200材料为Ti/Pd/Au/Ge/Au,厚度为4~8μm。The upper electrode 400 and the bridge electrode 700 are made of Au/Ge/Ag with a thickness of 2-5 μm; the lower electrode 200 is made of Ti/Pd/Au/Ge/Au with a thickness of 4-8 μm.

绝缘层600为聚酰亚胺胶。The insulating layer 600 is polyimide glue.

减反射结构500由下向上包括:氧化钛/氧化硅减反射膜、纳米阵列陷光结构。The anti-reflection structure 500 includes from bottom to top: a titanium oxide/silicon oxide anti-reflection film and a nano-array light trapping structure.

以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The above is only the preferred embodiment of the present invention, and does not limit the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention belong to the present invention. within the scope of the technical solution of the invention.

Claims (10)

1.一种激光电池组件,其特征在于,包括:绝缘衬底、M个激光电池单元、隔离槽、绝缘层、桥联电极;其中:M为大于0的自然数;1. A laser battery assembly, characterized in that, comprising: an insulating substrate, M laser battery cells, an isolation groove, an insulating layer, a bridge electrode; wherein: M is a natural number greater than 0; 所述激光电池单元包括下电极、电池外延有源层、上电极和减反射结构;The laser battery unit includes a lower electrode, a battery epitaxial active layer, an upper electrode and an anti-reflection structure; 所述隔离槽将相邻激光电池单元分离,所述绝缘层将激光电池单元侧壁绝缘钝化,所述桥联电极将相邻激光电池单元上下电极连接,实现相邻激光电池单元电学连接,将M个激光电池单元依次串联。The isolation groove separates the adjacent laser battery cells, the insulating layer insulates and passivates the side walls of the laser battery cells, and the bridge electrodes connect the upper and lower electrodes of the adjacent laser battery cells to realize the electrical connection of the adjacent laser battery cells, Connect M laser battery units in series in sequence. 2.根据权利要求1所述的激光电池组件,其特征在于:所述绝缘衬底的材料为氧化硅、聚酰亚胺、石英中的一种。2 . The laser battery assembly according to claim 1 , wherein the material of the insulating substrate is one of silicon oxide, polyimide, and quartz. 3 . 3.根据权利要求1所述的激光电池组件,其特征在于:M个激光电池单元的面积相同。3 . The laser battery assembly according to claim 1 , wherein the areas of the M laser battery cells are the same. 4 . 4.根据权利要求1所述的激光电池组件,其特征在于:所述电池外延有源层为GaAs基电池有源层,由下向上包括:p型电极接触层、第一结Ga(In)As子电池、隧穿结、第二结Ga(In)As子电池和n型电极接触层;4 . The laser cell assembly according to claim 1 , wherein the cell epitaxial active layer is a GaAs-based cell active layer, comprising from bottom to top: a p-type electrode contact layer, a first junction Ga(In) As subcell, tunnel junction, second junction Ga(In)As subcell and n-type electrode contact layer; 所述第一结Ga(In)As子电池由下向上包括:GaInP背场、Gax1In1-x1As基区、Gax1In1-x1As发射区、GaInP窗口层,其中0.8≤x1≤1;The first junction Ga(In)As sub-cell includes from bottom to top: a GaInP back field, a Ga x1 In 1-x1 As base region, a Ga x1 In 1-x1 As emission region, and a GaInP window layer, where 0.8≤x1≤ 1; 所述第二结Ga(In)As子电池由下向上包括:GaInP背场、Gax2In1-x2As基区、Gax2In1-x2As发射区、GaInP窗口层,其中0.8≤x2≤1。The second junction Ga(In)As sub-cell includes from bottom to top: a GaInP back field, a Gax2 In1 - x2As base region, a Gax2In1 - x2As emission region, and a GaInP window layer, where 0.8≤x2≤ 1. 5.根据权利要求4所述的激光电池组件,其特征在于:5. The laser cell assembly according to claim 4, wherein: 所述p型电极接触层为p型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm;The p-type electrode contact layer is a p-type GaAs layer, with a doping concentration of 1×10 18 to 1×10 19 cm -3 and a thickness of 100 to 200 nm; 所述GaInP背场为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm;The GaInP back field is p-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm -3 and a thickness of 50 to 400 nm; 所述GaInP窗口层为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm;The GaInP window layer is n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm -3 and a thickness of 50 to 400 nm; 所述Gax1In1-x1As基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm;The Ga x1 In 1-x1 As base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm -3 and a thickness of 1000 to 5000 nm; 所述Gax1In1-x1As发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm;The Ga x1 In 1-x1 As emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm -3 and a thickness of 100 to 500 nm; 所述Gax2In1-x2As基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm;The Ga x2 In 1-x2 As base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm -3 and a thickness of 1000 to 5000 nm; 所述Gax2In1-x2As发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm;The Ga x2 In 1-x2 As emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm -3 and a thickness of 100 to 500 nm; 所述隧穿结包括:n型GaAs与p型GaAs层,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm;The tunneling junction includes: n-type GaAs and p-type GaAs layers, with a doping concentration of 1×10 19 to 1×10 21 cm -3 and a thickness of 10 to 100 nm; 所述n型电极接触层为n型GaAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The n-type electrode contact layer is an n-type GaAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm. 6.根据权利要求1所述的激光电池组件,其特征在于:所述电池外延有源层为InP基电池有源层,由下向上包括:p型电极接触层、第一结GaInAsP子电池、隧穿结、第二结GaInAsP子电池和n型电极接触层;6 . The laser cell assembly according to claim 1 , wherein the cell epitaxial active layer is an InP-based cell active layer, comprising from bottom to top: a p-type electrode contact layer, a first junction GaInAsP sub-cell, Tunneling junction, second junction GaInAsP subcell and n-type electrode contact layer; 所述第一结GaInAsP子电池由下向上包括:InP背场、Gay1In1-y1Asz1P1-z1基区、Gay1In1- y1Asz1P1-z1发射区、InP窗口层,其中0≤y1≤0.5,0≤z1≤1;The first junction GaInAsP sub-cell includes from bottom to top: InP back field, Ga y1 In 1-y1 As z1 P 1-z1 base region, Ga y1 In 1- y1 As z1 P 1-z1 emission region, and InP window layer , where 0≤y1≤0.5, 0≤z1≤1; 所述第二结GaInAsP子电池由下向上包括:InP背场、Gay2In1-y2Asz2P1-z2基区、Gay2In1- y2Asz2P1-z2发射区、InP窗口层,其中0≤y2≤0.5,0≤z2≤1。The second junction GaInAsP sub-cell includes from bottom to top: InP back field, Ga y2 In 1-y2 As z2 P 1-z2 base region, Ga y2 In 1- y2 As z2 P 1-z2 emission region, InP window layer , where 0≤y2≤0.5, 0≤z2≤1. 7.根据权利要求6所述的激光电池组件,其特征在于:7. The laser battery assembly according to claim 6, wherein: 所述p型电极接触层为p型GaInAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm;The p-type electrode contact layer is a p-type GaInAs layer, with a doping concentration of 1×10 18 to 1×10 19 cm -3 and a thickness of 100 to 200 nm; 所述InP背场为p型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm;The InP back field is p-type doped, the doping concentration is 1×10 17 -1×10 18 cm -3 , and the thickness is 50-400 nm; 所述InP窗口层为n型掺杂,掺杂浓度为1×1017~1×1018cm-3,厚度为50~400nm;The InP window layer is n-type doped, with a doping concentration of 1×10 17 to 1×10 18 cm -3 and a thickness of 50 to 400 nm; 所述Gay1In1-y1Asz1P1-z1基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm;The Ga y1 In 1-y1 As z1 P 1-z1 base region is p-type doped, the doping concentration is 1×10 16 -1×10 18 cm -3 , and the thickness is 1000-5000 nm; 所述Gay1In1-y1Asz1P1-z1发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm;The Ga y1 In 1-y1 As z1 P 1-z1 emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm -3 and a thickness of 100 to 500 nm; 所述Gay2In1-y2Asz2P1-z2基区为p型掺杂,掺杂浓度为1×1016~1×1018cm-3,厚度为1000~5000nm;The Ga y2 In 1-y2 As z2 P 1-z2 base region is p-type doped, with a doping concentration of 1×10 16 to 1×10 18 cm -3 and a thickness of 1000 to 5000 nm; 所述Gay2In1-y2Asz2P1-z2发射区为n型掺杂,掺杂浓度为1×1017~1×1019cm-3,厚度为100~500nm;The Ga y2 In 1-y2 As z2 P 1-z2 emission region is n-type doped, with a doping concentration of 1×10 17 to 1×10 19 cm -3 and a thickness of 100 to 500 nm; 所述隧穿结包括:n型InP与p型InP层,掺杂浓度为1×1019~1×1021cm-3,厚度为10~100nm;The tunneling junction includes: n-type InP and p-type InP layers, with a doping concentration of 1×10 19 to 1×10 21 cm -3 and a thickness of 10 to 100 nm; 所述n型电极接触层为n型GaInAs层,掺杂浓度为1×1018~1×1019cm-3,厚度为100~200nm。The n-type electrode contact layer is an n-type GaInAs layer with a doping concentration of 1×10 18 to 1×10 19 cm −3 and a thickness of 100 to 200 nm. 8.根据权利要求1所述的激光电池组件,其特征在于:所述上电极与桥联电极的材料为Au/Ge/Ag,厚度为2~5μm;所述下电极的材料为Ti/Pd/Au/Ge/Au,厚度为4~8μm。8 . The laser battery assembly according to claim 1 , wherein: the material of the upper electrode and the bridge electrode is Au/Ge/Ag, and the thickness is 2-5 μm; the material of the lower electrode is Ti/Pd /Au/Ge/Au, with a thickness of 4 to 8 μm. 9.根据权利要求1所述的激光电池组件,其特征在于:所述绝缘层为聚酰亚胺胶。9 . The laser battery assembly of claim 1 , wherein the insulating layer is polyimide glue. 10 . 10.根据权利要求1所述的激光电池组件,其特征在于:所述减反射结构由下向上包括:氧化钛/氧化硅减反射膜、纳米阵列陷光结构。10 . The laser battery assembly according to claim 1 , wherein the anti-reflection structure comprises from bottom to top: a titanium oxide/silicon oxide anti-reflection film and a nano-array light trapping structure. 11 .
CN202210817562.XA 2022-07-12 2022-07-12 A laser battery component Active CN115172500B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210817562.XA CN115172500B (en) 2022-07-12 2022-07-12 A laser battery component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210817562.XA CN115172500B (en) 2022-07-12 2022-07-12 A laser battery component

Publications (2)

Publication Number Publication Date
CN115172500A true CN115172500A (en) 2022-10-11
CN115172500B CN115172500B (en) 2023-08-15

Family

ID=83494115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210817562.XA Active CN115172500B (en) 2022-07-12 2022-07-12 A laser battery component

Country Status (1)

Country Link
CN (1) CN115172500B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119133290A (en) * 2024-11-11 2024-12-13 中国科学院赣江创新研究院 Laser battery array chip and its manufacturing method and application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery
CN102339889A (en) * 2011-09-14 2012-02-01 中国科学院苏州纳米技术与纳米仿生研究所 Double-junction tandem InGaAs/InGaAsP double-terminal solar cell and manufacturing method thereof
US20120276681A1 (en) * 2009-09-20 2012-11-01 Solarion Ag Photovoltaik Serial connection of thin-layer solar cells
CN103022212A (en) * 2012-12-18 2013-04-03 李毅 Efficient and energy saving laminated thin-film solar cell and manufacturing method
CN105428456A (en) * 2015-12-08 2016-03-23 中国电子科技集团公司第十八研究所 Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN106549069A (en) * 2015-09-21 2017-03-29 波音公司 For the antimonide base high band gap tunnel knot of semiconductor devices
CN110634984A (en) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 A forward-mismatched five-junction solar cell
CN113690732A (en) * 2021-08-26 2021-11-23 深圳市中科芯辰科技有限公司 Vertical cavity surface emitting laser and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery
US20120276681A1 (en) * 2009-09-20 2012-11-01 Solarion Ag Photovoltaik Serial connection of thin-layer solar cells
CN102339889A (en) * 2011-09-14 2012-02-01 中国科学院苏州纳米技术与纳米仿生研究所 Double-junction tandem InGaAs/InGaAsP double-terminal solar cell and manufacturing method thereof
CN103022212A (en) * 2012-12-18 2013-04-03 李毅 Efficient and energy saving laminated thin-film solar cell and manufacturing method
CN106549069A (en) * 2015-09-21 2017-03-29 波音公司 For the antimonide base high band gap tunnel knot of semiconductor devices
CN105428456A (en) * 2015-12-08 2016-03-23 中国电子科技集团公司第十八研究所 Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN110634984A (en) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 A forward-mismatched five-junction solar cell
CN113690732A (en) * 2021-08-26 2021-11-23 深圳市中科芯辰科技有限公司 Vertical cavity surface emitting laser and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANWEN DING等: "TO-packaged, multi-junction GaAs laser power converter with output electric power over 1W", 《2017CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM(CLEO-PR)》, pages 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119133290A (en) * 2024-11-11 2024-12-13 中国科学院赣江创新研究院 Laser battery array chip and its manufacturing method and application

Also Published As

Publication number Publication date
CN115172500B (en) 2023-08-15

Similar Documents

Publication Publication Date Title
CN100565939C (en) Electrooptical device, electro-optical system and light electricity-generating method
EP1134813B1 (en) Multijunction photovoltaic cell with thin first (top) subcell and thick second subcell of same or similar semiconductor material
CN102184999B (en) NPN-structure-based laser photovoltaic cell and preparation process thereof
JPH05114747A (en) Improved monolithic tandem-type solar cell
US20120285519A1 (en) Grid design for iii-v compound semiconductor cell
CN102651420A (en) Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof
JP5481665B2 (en) Multi-junction solar cell
CN115172500B (en) A laser battery component
CN103219414B (en) GaInP/GaAs/InGaAsP/InGaAs tetra-ties the manufacture method of cascade solar cell
CN108878550B (en) Multi-junction solar cell and preparation method thereof
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN108735848A (en) More knot lamination laser photovoltaic cells and preparation method thereof
JP2011077295A (en) Junction type solar cell
CN111146305A (en) Solar cell
CN105428456A (en) Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN211150576U (en) High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission
CN116960205A (en) Solar cell module and preparation method thereof
CN111430495A (en) Multi-junction solar cell and power supply equipment
CN106611805A (en) Photovoltaic device and preparation method thereof, multi-junction GaAs laminated laser photovoltaic cell
US20150325733A1 (en) Grid design for iii-v compound semiconductor cell
CN114744070B (en) Multi-junction laminated laser photovoltaic cell
CN202352681U (en) Photovoltaic solar cell for generating energy from sun
JP2737705B2 (en) Solar cell
CN102054884A (en) Space GaAs/Ge single-junction gallium arsenide solar cell array
CN110797427A (en) Inverted growth double-heterojunction four-junction flexible solar cell and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant