[go: up one dir, main page]

CN102651420A - Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof - Google Patents

Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof Download PDF

Info

Publication number
CN102651420A
CN102651420A CN2012101549784A CN201210154978A CN102651420A CN 102651420 A CN102651420 A CN 102651420A CN 2012101549784 A CN2012101549784 A CN 2012101549784A CN 201210154978 A CN201210154978 A CN 201210154978A CN 102651420 A CN102651420 A CN 102651420A
Authority
CN
China
Prior art keywords
gaas
layer
junction
double
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101549784A
Other languages
Chinese (zh)
Inventor
赵春雨
董建荣
赵勇明
孙玉润
李奎龙
于淑珍
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN2012101549784A priority Critical patent/CN102651420A/en
Publication of CN102651420A publication Critical patent/CN102651420A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种双结GaAs叠层激光光伏电池,包括GaAs衬底,以及在衬底上依次生长的N型GaAs的导电层、第一隧穿结、P型AlGaAs((Al)GaInP)的第一势垒层、底电池、第二隧穿结、P型AlGaAs((Al)GaInP)的第二势垒层、顶电池、AlGaAs(Ga0.51In0.49P)的窗口层与GaAs接触层,还包括隔离槽,隔离槽依次贯穿GaAs接触层直至显露出衬底,并在隔离槽中填充有氧化硅或聚酰亚胺胶。本发明还提供一种上述的双结GaAs叠层激光光伏电池制备方法,包括步骤:(1)提供衬底;(2)在衬底上依次生长导电层、第一隧穿结、第一势垒层、底电池、第二隧穿结、第二势垒层、顶电池、窗口层与GaAs接触层;(3)采用干法或湿法刻蚀方法刻蚀GaAs接触层直至显露出衬底表面,形成隔离槽;(4)在隔离槽中填充氧化硅或聚酰亚胺胶。

The invention provides a double-junction GaAs laminated laser photovoltaic cell, which includes a GaAs substrate, a conductive layer of N-type GaAs, a first tunnel junction, and a layer of P-type AlGaAs ((Al)GaInP) grown sequentially on the substrate. The first barrier layer, the bottom cell, the second tunnel junction, the second barrier layer of P-type AlGaAs ((Al)GaInP), the top cell, the window layer of AlGaAs (Ga 0.51 In 0.49 P) and the GaAs contact layer, It also includes isolation grooves, which sequentially penetrate the GaAs contact layer until the substrate is exposed, and the isolation grooves are filled with silicon oxide or polyimide glue. The present invention also provides a method for preparing the above-mentioned double-junction GaAs stacked laser photovoltaic cell, which includes the steps of: (1) providing a substrate; (2) sequentially growing a conductive layer, a first tunnel junction, and a first potential on the substrate; Barrier layer, bottom cell, second tunnel junction, second barrier layer, top cell, window layer and GaAs contact layer; (3) Etch the GaAs contact layer by dry or wet etching until the substrate is exposed surface to form an isolation groove; (4) Fill the isolation groove with silicon oxide or polyimide glue.

Description

双结GaAs叠层激光光伏电池及其制备方法Double-junction GaAs stacked laser photovoltaic cell and its preparation method

技术领域 technical field

本发明涉及激光光伏电池领域,尤其涉及双结GaAs叠层激光光伏电池及其制备方法。 The invention relates to the field of laser photovoltaic cells, in particular to a double-junction GaAs lamination laser photovoltaic cell and a preparation method thereof.

背景技术 Background technique

激光供能系统是一个创新的能量传递系统,凭借这个系统,将激光光源发出的光通过光纤输送到激光光伏电池上,可以提供稳定的电源输出。通过光纤传导光转化为电比传统的金属线和同轴电缆电力传输技术有更多的优点,可以应用在需要消除电磁干扰或需要将电子器件与周围环境隔离的情况下,在无线电通信,工业传感器,国防,航空,医药、能源等方向有重要应用。激光光伏电池的工作原理与太阳能电池类似,只是有可获得更高的转换效率,更大的输出电压,能传递更多的能量,与一般太阳能电池不同的是,光源采用适合光纤传输的790 nm - 850 nm波长的激光。 The laser energy supply system is an innovative energy transfer system. With this system, the light emitted by the laser source is transmitted to the laser photovoltaic cell through the optical fiber, which can provide a stable power output. The conversion of light into electricity through optical fiber has more advantages than traditional metal wire and coaxial cable power transmission technology, and can be applied in radio communication, industry where electromagnetic interference needs to be eliminated or electronic devices need to be isolated from the surrounding environment. Sensors, national defense, aviation, medicine, energy and other directions have important applications. The working principle of laser photovoltaic cells is similar to that of solar cells, except that they can obtain higher conversion efficiency, larger output voltage, and can transmit more energy. - Laser light with a wavelength of 850 nm.

GaAs是III/V族半导体材料,室温下的禁带宽度Eg是1.428 eV,GaAs PN结电池可以用于将808 nm的激光能量转换为电能,用作激光供能系统中的激光电池,但是GaAs电池的开路电压只有为1 V,不能够直接用于电子器件电路中的电源。早期的激光光伏电池是将几个单结电池单元串联以获得所需的输出电压,通过刻蚀隔离沟槽的方式将单位面积的电池芯片进行隔离,再通过引线的方式将几个单结电池单元串联。隔离沟槽的个数越多就会导致电池的有效受光面积就越小,为解决此问题我们提出将每个电池单元设计为通过隧穿结连接的双结电池结构,这样可以减小隔离沟槽的影响,增大激光光电池的有效受光面积,减小电池互联的串联电阻,有助于提高器件的性能。 GaAs is a III/V group semiconductor material, and the band gap Eg at room temperature is 1.428 eV. GaAs PN junction cells can be used to convert 808 nm laser energy into electrical energy and used as laser cells in laser energy supply systems, but GaAs The open circuit voltage of the battery is only 1 V, and it cannot be directly used as a power source in electronic circuits. In the early laser photovoltaic cells, several single-junction battery cells were connected in series to obtain the required output voltage, and the battery chips per unit area were isolated by etching isolation trenches, and then several single-junction battery cells were connected by wires. Units are connected in series. The greater the number of isolation trenches, the smaller the effective light-receiving area of the cell. To solve this problem, we propose to design each battery cell as a double-junction cell structure connected by a tunnel junction, which can reduce the isolation trench Influenced by the groove, the effective light-receiving area of the laser photocell is increased, and the series resistance of the battery interconnection is reduced, which helps to improve the performance of the device.

发明内容 Contents of the invention

本发明所要解决的技术问题是,提供双结GaAs叠层激光光伏电池及其制备方法。 The technical problem to be solved by the present invention is to provide a double-junction GaAs laminated laser photovoltaic cell and a preparation method thereof.

为了解决上述问题,本发明提供了一种双结GaAs叠层激光光伏电池,包括GaAs衬底,以及在所述衬底上依次设置的N型GaAs的导电层、第一隧穿结、底电池、第二隧穿结、顶电池、AlGaAs(Ga0.51In0.49P)的窗口层以及GaAs接触层。 In order to solve the above problems, the present invention provides a double-junction GaAs laminated laser photovoltaic cell, including a GaAs substrate, and an N-type GaAs conductive layer, a first tunnel junction, and a bottom cell arranged in sequence on the substrate. , a second tunnel junction, a top cell, a window layer of AlGaAs (Ga 0.51 In 0.49 P), and a GaAs contact layer.

所述的双结GaAs叠层激光光伏电池,进一步包括隔离槽,所述隔离槽为从GaAs接触层向衬底方向贯穿,直至显露出衬底,并且所述隔离槽中填充有氧化硅或聚酰亚胺胶。 The double-junction GaAs laminated laser photovoltaic cell further includes an isolation groove that penetrates from the GaAs contact layer to the substrate until the substrate is exposed, and the isolation groove is filled with silicon oxide or poly imide glue.

所述第一隧穿结、第二隧穿结均包括按照远离衬底方向依次设置的N型GaAs(Ga0.51In0.49P)层、P型(Al)GaAs层和P型AlGaAs((Al)GaInP)层。 Both the first tunneling junction and the second tunneling junction include an N-type GaAs (Ga 0.51 In 0.49 P) layer, a P-type (Al) GaAs layer, and a P-type AlGaAs ((Al) GaInP) layer.

所述底电池、顶电池均为基于GaAs的PN结电池,且所述底电池和顶电池各自的P区、N区均依次远离衬底。 Both the bottom cell and the top cell are GaAs-based PN junction cells, and the respective P regions and N regions of the bottom cell and the top cell are sequentially away from the substrate.

所述的双结GaAs叠层激光光伏电池,进一步包括正电极窗口,所述正电极窗口为从GaAs接触层往导电层方向贯穿,直至显露出导电层。 The double-junction GaAs laminated laser photovoltaic cell further includes a positive electrode window, and the positive electrode window penetrates from the GaAs contact layer to the conductive layer until the conductive layer is exposed.

所述的双结GaAs叠层激光光伏电池,进一步包括ZnSe/MgF或TiO2/SiO2的减反射膜,置于所述窗口层的裸露表面上。 The double-junction GaAs laminated laser photovoltaic cell further includes an anti-reflection film of ZnSe/MgF or TiO2/SiO2 placed on the exposed surface of the window layer.

为了解决上述问题,本发明还提供了一种如上述的双结GaAs叠层激光光伏电池制备方法,包括步骤:(1)提供GaAs衬底;(2)在衬底上依次生长导电层、第一隧穿结、底电池、第二隧穿结、顶电池、窗口层与GaAs接触层; In order to solve the above problems, the present invention also provides a method for preparing a double-junction GaAs laminated laser photovoltaic cell as described above, including the steps: (1) providing a GaAs substrate; (2) sequentially growing a conductive layer on the substrate, the second a tunnel junction, a bottom cell, a second tunnel junction, a top cell, a window layer and a GaAs contact layer;

所述的双结GaAs叠层激光光伏电池的制备方法,进一步包括步骤:(3)采用干法或湿法刻蚀方法从GaAs接触层向衬底方向刻蚀,直至显露出衬底表面,形成隔离槽;(4)在隔离槽中填充氧化硅或聚酰亚胺胶。 The method for preparing a double-junction GaAs laminated laser photovoltaic cell further includes the step of: (3) using a dry or wet etching method to etch from the GaAs contact layer to the substrate until the surface of the substrate is exposed, forming Isolation tank; (4) Fill the isolation tank with silicon oxide or polyimide glue.

所述的双结GaAs叠层激光光伏电池的制备方法,进一步包括步骤:(5)采用干法或湿法刻蚀方法从GaAs接触层向衬底方向刻蚀,直至显露出导电层表面,形成正电极窗口。 The method for preparing a double-junction GaAs laminated laser photovoltaic cell further includes the step of: (5) using a dry or wet etching method to etch from the GaAs contact layer to the substrate until the surface of the conductive layer is exposed, forming Positive electrode window.

所述的双结GaAs叠层激光光伏电池的制备方法,进一步包括步骤:采用干法或湿法刻蚀方法刻蚀指定区域的GaAs接触层,直至显露出窗口层的表面;在窗口层的裸露表面上生长减反射膜,所述生长减反射膜的方法为化学气相淀积、蒸发和溅射中任意一种。 The preparation method of the double-junction GaAs laminated laser photovoltaic cell further includes the step of: using dry or wet etching to etch the GaAs contact layer in the designated area until the surface of the window layer is exposed; An anti-reflection film is grown on the surface, and the method for growing the anti-reflection film is any one of chemical vapor deposition, evaporation and sputtering.

本发明提供双结GaAs叠层激光光伏电池及其制备方法,优点在于: The invention provides a double-junction GaAs laminated laser photovoltaic cell and a preparation method thereof, the advantages of which are:

1. 双结GaAs叠层激光光伏电池实现了每个单元有两个电池串联,减小了串联电阻,有利于电池效率的提高; 1. Double-junction GaAs laminated laser photovoltaic cells realize that each unit has two cells in series, which reduces the series resistance and is conducive to the improvement of cell efficiency;

2. 本发明中,对于同等开路电压的光伏电池,减少了隔离沟槽所占受光面积的比例,减少了入射光在隔离沟槽上的损失,有利于电池效率的提高; 2. In the present invention, for photovoltaic cells with the same open circuit voltage, the proportion of the light-receiving area occupied by the isolation groove is reduced, and the loss of incident light on the isolation groove is reduced, which is beneficial to the improvement of cell efficiency;

3. 本发明中,GaAs接触层和导电层都采用N型GaAs,在电池工艺中一步可以完成正、负电极的欧姆接触金属的蒸发或电镀加厚,减少一步光刻、一步剥离工艺,减少一张光刻版,节省工艺加工时间和降低成本; 3. In the present invention, both the GaAs contact layer and the conductive layer use N-type GaAs, which can complete the evaporation or electroplating thickening of the ohmic contact metal of the positive and negative electrodes in one step in the battery process, reducing the one-step photolithography and one-step stripping process, reducing One photolithography plate, saving processing time and reducing costs;

4. 本发明提供的双结GaAs叠层激光光伏电池通过N个单元串联可获得约2N伏的输出电压。 4. The double-junction GaAs laminated laser photovoltaic cell provided by the present invention can obtain an output voltage of about 2N volts by connecting N units in series.

附图说明 Description of drawings

图1是本发明提供的双结GaAs叠层激光光伏电池第一具体实施方式的截面示意图; Fig. 1 is a schematic cross-sectional view of a first embodiment of a double-junction GaAs laminated laser photovoltaic cell provided by the present invention;

图2是本发明提供的双结GaAs叠层激光光伏电池第一具体实施方式隔离槽结构截面示意图; 2 is a schematic cross-sectional view of the isolation groove structure of the first embodiment of the double-junction GaAs stacked laser photovoltaic cell provided by the present invention;

图3是本发明提供的双结GaAs叠层激光光伏电池第一具体实施方式的产品结构截面示意图; 3 is a schematic cross-sectional view of the product structure of the first embodiment of the double-junction GaAs laminated laser photovoltaic cell provided by the present invention;

图4A至图4D分别是本发明提供的2V、4V、6V、12V双结GaAs叠层激光光伏电池的俯视图。 4A to 4D are top views of 2V, 4V, 6V, and 12V double-junction GaAs laminated laser photovoltaic cells provided by the present invention, respectively.

具体实施方式 Detailed ways

下面结合附图对本发明提供的双结GaAs叠层激光光伏电池及其制备方法的具体实施方式做详细说明。 The specific implementation of the double-junction GaAs laminated laser photovoltaic cell and its preparation method provided by the present invention will be described in detail below with reference to the accompanying drawings.

第一具体实施方式 First Embodiment

图1为所述双结GaAs叠层激光光伏电池第一具体实施方式的截面示意图。 Fig. 1 is a schematic cross-sectional view of the first embodiment of the double-junction GaAs stacked laser photovoltaic cell.

图2为所述双结GaAs叠层激光光伏电池第一具体实施方式隔离槽结构截面示意图。 Fig. 2 is a schematic cross-sectional view of the isolation groove structure of the first embodiment of the double-junction GaAs stacked laser photovoltaic cell.

本实施方式提供一种双结GaAs叠层激光光伏电池,包括半绝缘GaAs衬底01,以及在所述衬底01上依次生长的N型GaAs的导电层02、第一隧穿结17、底电池18、第二隧穿结19、顶电池20、窗口层15与GaAs接触层16。 This embodiment provides a double-junction GaAs laminated laser photovoltaic cell, including a semi-insulating GaAs substrate 01, and an N-type GaAs conductive layer 02, a first tunnel junction 17, and a bottom substrate 01 grown sequentially on the substrate 01. Cell 18 , second tunnel junction 19 , top cell 20 , window layer 15 and GaAs contact layer 16 .

所述双结GaAs叠层激光光伏电池进一步还包括隔离槽22,所述隔离槽22为从GaAs接触层16向衬底01方向贯穿,直至显露出衬底01,并且所述隔离槽22中填充有氧化硅或聚酰亚胺胶(Polyimide,简称PI胶)。 The double-junction GaAs laminated laser photovoltaic cell further includes an isolation groove 22, the isolation groove 22 penetrates from the GaAs contact layer 16 to the substrate 01 until the substrate 01 is exposed, and the isolation groove 22 is filled with Silicon oxide or polyimide glue (Polyimide, referred to as PI glue).

本实施方式中在隔离槽22中填充的氧化硅或聚酰亚胺胶,而本发明不限于此,在隔离槽22中填充物还可包括其他类似PI胶的光敏性的胶。 In this embodiment, silicon oxide or polyimide glue is filled in the isolation groove 22 , but the present invention is not limited thereto, and the filler in the isolation groove 22 may also include other photosensitive glue like PI glue.

所述第一隧穿结17包括按照远离衬底方向依次生长的N型第一GaAs(Ga0.51In0.49P)层04、P型第一(Al)GaAs层05和P型AlGaAs((Al)GaInP)的第一势垒层06。 The first tunnel junction 17 includes an N-type first GaAs (Ga 0.51 In 0.49 P) layer 04, a P-type first (Al) GaAs layer 05, and a P-type AlGaAs ((Al) GaInP) first barrier layer 06.

所述第二隧穿结19包括按照远离衬底01方向依次生长的N型第二GaAs(Ga0.51In0.49P)层10、P型第二(Al)GaAs层11和P型AlGaAs((Al)GaInP)的第二势垒层12; The second tunnel junction 19 includes an N-type second GaAs (Ga 0.51 In 0.49 P) layer 10, a P-type second (Al) GaAs layer 11, and a P-type AlGaAs ((Al ) GaInP) second barrier layer 12;

作为可选实施方式,所述第一隧穿结17进一步包括N型AlGaAs((Al)GaInP)的第三势垒层03,位于导电层02和N型第一GaAs(Ga0.51In0.49P)层04之间。 As an optional implementation, the first tunnel junction 17 further includes a third barrier layer 03 of N-type AlGaAs ((Al)GaInP), located on the conductive layer 02 and the first N-type GaAs (Ga 0.51 In 0.49 P) between layers 04.

作为可选实施方式,所述第二隧穿结19进一步包括N型AlGaAs((Al)GaInP)的第四势垒层09,位于底电池18和N型第二GaAs(Ga0.51In0.49P)层10之间,也可作为底电池18的窗口层。 As an optional implementation, the second tunnel junction 19 further includes a fourth barrier layer 09 of N-type AlGaAs ((Al)GaInP), located between the bottom cell 18 and the second N-type GaAs (Ga 0.51 In 0.49 P) Between the layers 10 can also serve as the window layer of the bottom cell 18 .

其中,本申请中所出现的AlGaAs((Al)GaInP)为AlGaAs或AlxGa1-xInP之意,其中x为大于等于0且小于等于1。 Wherein, AlGaAs ((Al)GaInP) in this application means AlGaAs or AlxGa1 - xInP, where x is greater than or equal to 0 and less than or equal to 1.

其中,本申请中所出现的GaAs(Ga0.51In0.49P)为GaAs或Ga0.51In0.49P之意。 Wherein, GaAs (Ga 0.51 In 0.49 P) in this application means GaAs or Ga 0.51 In 0.49 P.

其中,本申请中所出现的(Al)GaAs为AlxGa1-xAs之意,其中x大于等于0且小于等于1。 Wherein, (Al)GaAs in this application means AlxGa1 -xAs , where x is greater than or equal to 0 and less than or equal to 1.

所述底电池18为基于GaAs的PN结电池,包括P型GaAs吸收层的第一P区07与N型GaAs吸收层的第一N区08,且底电池18的第一P区07、第一N区08均依次远离衬底01。 The bottom cell 18 is a GaAs-based PN junction cell, including the first P region 07 of the P-type GaAs absorption layer and the first N region 08 of the N-type GaAs absorption layer, and the first P region 07 and the first N region 08 of the bottom cell 18 An N region 08 is sequentially away from the substrate 01 .

所述窗口层15为AlGaAs(Ga0.51In0.49P)层。 The window layer 15 is an AlGaAs (Ga 0.51 In 0.49 P) layer.

所述顶电池20为基于GaAs的PN结电池,包括P型GaAs吸收层的第二P区13与N型GaAs吸收层的第二N区14,且顶电池20的第二P区13、第二N区14均依次远离衬底01。 The top cell 20 is a GaAs-based PN junction cell, including the second P region 13 of the P-type GaAs absorption layer and the second N region 14 of the N-type GaAs absorption layer, and the second P region 13 of the top cell 20, the second The two N regions 14 are sequentially away from the substrate 01 .

所述GaAs接触层16为N型的GaAs。 The GaAs contact layer 16 is N-type GaAs.

根据按图1的结构制备获得电池的串联电阻比在相同电压输出情况下通过引线连接的多个单PN结构电池的串联电阻更低,有利于电池接收更高的光功率密度并提高电池效率,因此上述结构具有比PN结电池更高的转换效率,具有很好的实际应用价值。 According to the structure prepared in Figure 1, the series resistance of the battery is lower than that of multiple single PN structure batteries connected by leads under the same voltage output, which is beneficial to the battery receiving higher optical power density and improving battery efficiency. Therefore, the above structure has a higher conversion efficiency than the PN junction battery, and has good practical application value.

图3是本发明提供的双结GaAs叠层激光光伏电池第一具体实施方式的产品结构截面示意图。 Fig. 3 is a schematic cross-sectional view of the product structure of the first embodiment of the double-junction GaAs laminated laser photovoltaic cell provided by the present invention.

所述双结GaAs叠层激光光伏电池产品,在所述双结GaAs叠层激光光伏电池结构上进一步包括正电极窗口,所述正电极窗口依次贯穿所述GaAs接触层16直至显露出导电层02。 The double-junction GaAs stacked laser photovoltaic cell product further includes a positive electrode window on the double-junction GaAs stacked laser photovoltaic cell structure, and the positive electrode window sequentially penetrates the GaAs contact layer 16 until the conductive layer 02 is exposed. .

所述双结GaAs叠层激光光伏电池产品进一步包括正电极24和负电极23,所述正电极24置于所述正电极窗口中导电层02的裸露表面上;所述负电极23置于窗口层15的裸露表面上。 The double-junction GaAs laminated laser photovoltaic cell product further includes a positive electrode 24 and a negative electrode 23, the positive electrode 24 is placed on the exposed surface of the conductive layer 02 in the window of the positive electrode; the negative electrode 23 is placed in the window layer 15 on the exposed surface.

进一步包括ZnSe/MgF或TiO2/SiO2的减反射膜25,置于所述窗口层15的裸露表面。 An anti-reflection film 25 further comprising ZnSe/MgF or TiO 2 /SiO 2 is placed on the exposed surface of the window layer 15 .

第二具体实施方式 Second specific implementation

制备结构如图1所述的双结GaAs叠层激光光伏电池,包括步骤: The preparation of the double-junction GaAs laminated laser photovoltaic cell with the structure shown in Figure 1 includes the steps of:

(1) 在半绝缘GaAs衬底01上生长N型GaAs导电层02; (1) Grow N-type GaAs conductive layer 02 on semi-insulating GaAs substrate 01;

(2) 在N型GaAs导电层02上生长N型AlGaAs((Al)GaInP)第三势垒层03; (2) growing an N-type AlGaAs ((Al)GaInP) third barrier layer 03 on the N-type GaAs conductive layer 02;

(3) 在第三势垒层03上生长N型掺杂浓度大于1×1019cm-3的第一GaAs(Ga0.51In0.49P)层04,再生长P型掺杂浓度大于1×1019cm-3的第一(Al)GaAs层05,形成第一隧穿结17; (3) On the third barrier layer 03, grow the first GaAs (Ga 0.51 In 0.49 P) layer 04 with an N-type doping concentration greater than 1×10 19 cm -3 , and then grow a P-type doping concentration greater than 1×10 A first (Al)GaAs layer 05 of 19 cm −3 to form a first tunnel junction 17;

(4) 在第一(Al)GaAs层05上生长第一隧穿结17的P型AlGaAs((Al)GaInP)第一势垒层06,也可作为底电池18的背场层; (4) growing the P-type AlGaAs ((Al)GaInP) first barrier layer 06 of the first tunnel junction 17 on the first (Al)GaAs layer 05, which can also be used as the back field layer of the bottom cell 18;

(5) 在上述第一势垒层06上生长P型GaAs吸收层的第一P区07,在P型GaAs吸收层的第一P区07上生长N型GaAs吸收层的第一N区08,形成一个PN结,作为底电池18; (5) grow the first P region 07 of the P-type GaAs absorption layer on the above-mentioned first barrier layer 06, and grow the first N region 08 of the N-type GaAs absorption layer on the first P region 07 of the P-type GaAs absorption layer , forming a PN junction as the bottom cell 18;

(6) 在底电池18上生长N型AlGaAs((Al)GaInP)的第四势垒层09; (6) grow the fourth barrier layer 09 of N-type AlGaAs ((Al)GaInP) on the bottom cell 18;

(7) 在第四势垒层09上生长N型掺杂浓度1×1019cm-3以上的第二GaAs(Ga0.51In0.49P)层10,再生长P型掺杂浓度1×1019cm-3以上的第二(Al)GaAs层11,形成第二隧穿结19; (7) On the fourth barrier layer 09, grow the second GaAs (Ga 0.51 In 0.49 P) layer 10 with an N-type doping concentration of 1×10 19 cm -3 or more, and then grow a P-type doping concentration of 1×10 19 A second (Al)GaAs layer 11 of more than cm −3 to form a second tunnel junction 19;

(8) 在第二(Al)GaAs层11上生长第二隧穿结19的P型AlGaAs((Al)GaInP)的第二势垒层12,也可作为顶电池20的背场层; (8) The second barrier layer 12 of P-type AlGaAs ((Al)GaInP) growing the second tunnel junction 19 on the second (Al)GaAs layer 11 can also be used as the back field layer of the top cell 20;

(9) 在上述第二势垒层12上生长P型GaAs吸收层的第二P区13,在第二P区13上生长N型GaAs吸收层的第二N区14,形成一个PN结,作为顶电池20; (9) grow the second P region 13 of the P-type GaAs absorption layer on the above-mentioned second potential barrier layer 12, grow the second N region 14 of the N-type GaAs absorption layer on the second P region 13, form a PN junction, as the top cell 20;

(10) 在第二N区14上生长N型AlxGa1-xAs(Ga0.51In0.49P)的窗口层15; (10) growing a window layer 15 of N-type Al x Ga 1-x As (Ga 0.51 In 0.49 P) on the second N region 14;

(11) 在上述窗口层15上生长N型高掺杂浓度的GaAs接触层16,用作欧姆接触。 (11) An N-type highly doped GaAs contact layer 16 is grown on the above-mentioned window layer 15 for use as an ohmic contact.

上述步骤(1)至(11)均采用MOCVD或MBE方法制备所述双结GaAs叠层激光光伏电池。 The above steps (1) to (11) all adopt the MOCVD or MBE method to prepare the double-junction GaAs laminated laser photovoltaic cell.

若步骤(1)至(11)中的生长均采用MOCVD法, 则所述N型掺杂的掺杂原子为Si、Se、S以及Te中任意一种,所述P型掺杂的掺杂原子为Zn、Mg以及C中任意一种。 If the growth in steps (1) to (11) all adopts MOCVD method, then the doping atoms of the N-type doping are any one of Si, Se, S and Te, and the doping atoms of the P-type doping The atom is any one of Zn, Mg and C.

若步骤(1)至(11)中的生长均采用MBE法生长,则所述N型掺杂的掺杂原子为Si、Se、S、Sn以及Te中任意一种,所述P型掺杂的掺杂原子为Be、Mg以及C中任意一种。 If the growth in steps (1) to (11) is all grown by the MBE method, the dopant atoms of the N-type doping are any one of Si, Se, S, Sn and Te, and the P-type doping The dopant atom is any one of Be, Mg and C.

进一步应用电池标准工艺进行双结GaAs叠层激光光伏电池的制备,包括步骤: Further application of battery standard technology for the preparation of double-junction GaAs laminated laser photovoltaic cells, including steps:

(12) 如图2所示,按照电池标准工艺,通过干法或湿法刻蚀方法从GaAs接触层16向衬底01方向刻蚀,直至显露出N型衬底01表面,再通过填胶或氧化硅等材料进行隔离,形成隔离槽22; (12) As shown in Figure 2, according to the battery standard process, etch from the GaAs contact layer 16 to the substrate 01 by dry or wet etching until the surface of the N-type substrate 01 is exposed, and then fill it with glue or silicon oxide and other materials to form isolation grooves 22;

(13) 如图3所示,按照电池标准工艺,通过干法或湿法刻蚀方法从GaAs接触层16向衬底01方向刻蚀,直至显露出导电层02表面,形成电池的正电极窗口; (13) As shown in Figure 3, according to the battery standard process, etch from the GaAs contact layer 16 to the substrate 01 by dry or wet etching until the surface of the conductive layer 02 is exposed to form the positive electrode window of the battery ;

(14) 按照电池标准工艺,电池的负电极23和正电极24通过电子束蒸发、热蒸发或磁控溅射等方式制备,所述负电极23和正电极24的均为AuGe/Ni/Au;Ag;Au金属材料,并分别与GaAs接触层16和导电层02形成欧姆接触;  (14) According to the battery standard process, the negative electrode 23 and the positive electrode 24 of the battery are prepared by electron beam evaporation, thermal evaporation or magnetron sputtering, etc., and the negative electrode 23 and the positive electrode 24 are all AuGe/Ni/Au; Ag ; Au metal material, and form ohmic contact with GaAs contact layer 16 and conductive layer 02 respectively;

(15) 按照电池标准工艺,采用干法或湿法刻蚀方法将除负电极23正下方GaAs接触层16以外的GaAs接触层16去除,直至显露出窗口层15的表面; (15) According to the battery standard process, the GaAs contact layer 16 except the GaAs contact layer 16 directly below the negative electrode 23 is removed by dry or wet etching until the surface of the window layer 15 is exposed;

(16) 按照电池标准工艺,电池的减反射膜25通过化学气相淀积、蒸发或溅射的方法在裸露的窗口层15上制备ZnSe/MgF或TiO2/SiO2减反射膜25,且减反射膜25的高度低于GaAs接触层16的高度; (16) According to the battery standard process, the anti-reflection film 25 of the battery is prepared on the exposed window layer 15 by chemical vapor deposition, evaporation or sputtering. ZnSe/MgF or TiO 2 /SiO 2 anti-reflection film 25, and The height of the reflective film 25 is lower than the height of the GaAs contact layer 16;

(17) 按照电池标准工艺,采用电极引线26将电池进行相邻单元正电极24与负电极23互联实现电池串联。 (17) According to the battery standard process, the battery is connected to the positive electrode 24 and the negative electrode 23 of the adjacent unit by using the electrode lead 26 to realize the series connection of the battery.

接下来给出本发明的一实施例。 Next, an embodiment of the present invention is given.

一种双结叠层激光光伏电池的制作方法,结构如图1所示,具体包括下列步骤: A method for manufacturing a double-junction laminated laser photovoltaic cell, the structure of which is shown in Figure 1, specifically comprising the following steps:

一、应用MOCVD或MBE的方法生长GaAs双结叠层激光光伏电池。 1. Use MOCVD or MBE to grow GaAs double-junction laminated laser photovoltaic cells.

1)、采用半绝缘GaAs衬底01,厚度范围在200至500微米; 1), using semi-insulating GaAs substrate 01, with a thickness ranging from 200 to 500 microns;

2)、进入MOCVD或MBE的生长室,先生长一层厚度范围为1000nm至5000nm的N型GaAs导电层02,掺杂浓度范围为1×1018cm-3至1×1019cm-32) Enter the growth chamber of MOCVD or MBE, and first grow an N-type GaAs conductive layer 02 with a thickness ranging from 1000nm to 5000nm, and a doping concentration ranging from 1×10 18 cm -3 to 1×10 19 cm -3 ;

3)、在导电层02上生长掺杂浓度1×1018cm-3以上的厚度范围为10nm至50nm的N型AlGaAs((Al)GaInP)的第三势垒层03; 3) On the conductive layer 02, grow a third barrier layer 03 of N-type AlGaAs ((Al)GaInP) with a doping concentration of 1×10 18 cm −3 or more and a thickness ranging from 10 nm to 50 nm;

4)、在第三势垒层03上生长N型掺杂浓度大于1×1019cm-3的厚度范围为10nm至50nm的第一GaAs(Ga0.51In0.49P)层04,再生长P型掺杂浓度大于1×1019cm-3的约10nm至50nm的第一(Al)GaAs层05,形成第一隧穿结17,使底电池18的第一P区07和下面的N型GaAs的导电层02能够很好连接; 4) On the third barrier layer 03, grow the first GaAs (Ga 0.51 In 0.49 P) layer 04 with an N-type doping concentration greater than 1×10 19 cm -3 and a thickness ranging from 10 nm to 50 nm, and then grow a P-type Doping the first (Al) GaAs layer 05 with a concentration greater than 1×10 19 cm −3 of about 10 nm to 50 nm to form a first tunnel junction 17 so that the first P region 07 of the bottom cell 18 and the underlying N-type GaAs The conductive layer 02 can be well connected;

5)、在第一(Al)GaAs层05上生长掺杂浓度大于1×1018cm-3的50nm至100nm的P型AlGaAs((Al)GaInP)的第一势垒层06,并可作为底电池18的背场层; 5) On the first (Al)GaAs layer 05, a first barrier layer 06 of P-type AlGaAs ((Al)GaInP) with a doping concentration greater than 1×10 18 cm -3 of 50 nm to 100 nm is grown, and can be used as the back field layer of the bottom cell 18;

6)、在第一势垒层06上生长2500nm至3500nm的P型的掺杂浓度为5×1016cm-3至5×1017cm-3的GaAs吸收层,即第一P区07,作为底电池18的基区,再生长100nm至300nm的N型掺杂浓度为1×1017cm-3至4×1018cm-3的GaAs吸收层,即第一N区08,作为底电池18的发射区;形成一个PN结,作为底电池18; 6) On the first barrier layer 06, grow a P-type GaAs absorption layer with a doping concentration of 5×10 16 cm −3 to 5×10 17 cm −3 in a range of 2500 nm to 3500 nm, that is, the first P region 07 , As the base region of the bottom cell 18, a 100nm to 300nm GaAs absorption layer with an N-type doping concentration of 1×10 17 cm −3 to 4×10 18 cm −3 is grown again, that is, the first N region 08 to serve as the bottom cell The emission area of 18; form a PN junction, as the bottom cell 18;

7)、在第一N区08上生长掺杂浓度大于1×1018cm-3的厚度范围为20nm至100nm的N型AlGaAs((Al)GaInP)的第二隧穿结19的第四势垒层09,同时也可作为底电池18的窗口层; 7) The fourth potential of the second tunneling junction 19 of N-type AlGaAs ((Al)GaInP) grown on the first N region 08 with a doping concentration greater than 1×10 18 cm -3 and a thickness ranging from 20 nm to 100 nm The barrier layer 09 can also be used as the window layer of the bottom cell 18;

8)、在第四势垒层09上生长N型掺杂浓度大于1×1019cm-3的厚度范围为10nm至50nm的第二GaAs(Ga0.51In0.49P)层10,再生长P型掺杂浓度大于1×1019cm-3的厚度范围为10nm至50nm的第二(Al)GaAs层11,形成第二隧穿结19; 8) On the fourth barrier layer 09, grow a second GaAs (Ga 0.51 In 0.49 P) layer 10 with an N-type doping concentration greater than 1×10 19 cm -3 and a thickness ranging from 10 nm to 50 nm, and then grow a P-type Doping the second (Al)GaAs layer 11 with a thickness greater than 1×10 19 cm −3 and having a thickness ranging from 10 nm to 50 nm to form a second tunnel junction 19 ;

9)、在第二(Al)GaAs层11上生长掺杂浓度1×1018cm-3以上的50nm至100nm的P型AlGaAs((Al)GaInP)的第二势垒层12,并可作为顶电池20的背场层; 9) On the second (Al)GaAs layer 11, grow a second barrier layer 12 of P-type AlGaAs ((Al)GaInP) with a doping concentration of 1×10 18 cm -3 or more of 50nm to 100nm, which can be used as the back field layer of the top cell 20;

10)、在第二势垒层12上生长300nm至600nm的P型的掺杂浓度为5×1016至5×1017cm-3的GaAs吸收层,即第二P区13,作为顶电池20的基区,再生长100nm至300nm的N型掺杂浓度为1×1017至4×1018cm-3的GaAs吸收层,即为第二N区14,(第二P区13和第二N区14的总厚度范围为600nm至800nm),作为顶电池20的发射区;形成一个PN结,并作为顶电池20; 10) On the second barrier layer 12, grow a 300nm to 600nm P-type GaAs absorption layer with a doping concentration of 5×10 16 to 5×10 17 cm −3 , that is, the second P region 13, as the top cell 20 base region, and then grow a 100nm to 300nm GaAs absorption layer with an N-type doping concentration of 1×10 17 to 4×10 18 cm -3 , which is the second N region 14, (the second P region 13 and the second Two N regions 14 have a total thickness ranging from 600nm to 800nm), serving as the emission region of the top cell 20; forming a PN junction, and serving as the top cell 20;

11)、在第二N区14上生长1000nm至3000nm的掺杂浓度大于1×1018cm-3的N型的AlxGa1-xAs或Ga0.51In0.49P的窗口层15,其中x的范围为大于等于0.2,且小于等于1; 11) On the second N region 14, grow an N-type Al x Ga 1-x As or Ga 0.51 In 0.49 P window layer 15 with a doping concentration of 1000 nm to 3000 nm greater than 1×10 18 cm −3 , where x The range of is greater than or equal to 0.2 and less than or equal to 1;

12)、在窗口层15上生长厚度范围为100nm至300nm的掺杂浓度大于1×1018cm-3的N型GaAs接触层16,用来做欧姆接触。 12) An N-type GaAs contact layer 16 with a thickness ranging from 100 nm to 300 nm and a doping concentration greater than 1×10 18 cm −3 is grown on the window layer 15 for ohmic contact.

二、 应用标准工艺制备双结叠层激光光伏电池。 2. Prepare double-junction tandem laser photovoltaic cells by standard process.

13)、电池的隔离槽22通过干法或湿法刻蚀方法刻蚀GaAs接触层16,窗口层15,顶电池20,P型的第二势垒层12,第二隧穿结19,N型的第四势垒层09,底电池18,P型的第一势垒层06,第一隧穿结17,N型的第三势垒层03,导电层02,直至显露出半绝缘GaAs衬底01,再通过填胶或氧化硅电绝缘等材料进行隔离,如图2。 13) Etching the GaAs contact layer 16, window layer 15, top cell 20, P-type second barrier layer 12, second tunnel junction 19, N Type fourth barrier layer 09, bottom cell 18, P-type first barrier layer 06, first tunnel junction 17, N-type third barrier layer 03, conductive layer 02 until semi-insulating GaAs is exposed The substrate 01 is then isolated by filling glue or silicon oxide electrical insulation materials, as shown in Figure 2.

14)、电池的正电极窗口为通过干法或湿法刻蚀方法刻蚀GaAs接触层16,窗口层15,顶电池20,P型的第二势垒层12,第二隧穿结19,N型的第四势垒层09,底电池18,P型的第一势垒层06,第一隧穿结17,N型的第三势垒层03,直至显露出N型GaAs的导电层02,如图3。 14) The positive electrode window of the battery is to etch the GaAs contact layer 16, the window layer 15, the top battery 20, the P-type second barrier layer 12, and the second tunnel junction 19 by dry or wet etching. N-type fourth barrier layer 09, bottom cell 18, P-type first barrier layer 06, first tunnel junction 17, N-type third barrier layer 03 until the conductive layer of N-type GaAs is exposed 02, as shown in Figure 3.

15)、通过电子束蒸发、热蒸发或磁控溅射等方式制备AuGe/Ni/Au=35/10/100nm;Ag=1μm;Au=100nm金属材料的负电极23和正电极24,并形成欧姆接触,如图3。 15) Prepare the negative electrode 23 and positive electrode 24 of AuGe/Ni/Au=35/10/100nm; Ag=1μm; Au=100nm metal materials by means of electron beam evaporation, thermal evaporation or magnetron sputtering, and form ohmic contacts, as shown in Figure 3.

16)、通过干法或湿法刻蚀方法将除负电极23正下方的GaAs接触层16以外的GaAs接触层16去除,直至显露出窗口层15。 16) The GaAs contact layer 16 except the GaAs contact layer 16 directly under the negative electrode 23 is removed by dry or wet etching until the window layer 15 is exposed.

17)、通过化学气相淀积技术、蒸发或溅射方法在裸露的窗口层15上制备减反射膜25,采用ZnSe/MgF或TiO2/SiO2等作减反射膜材料,如图3。 17) Prepare an anti-reflection film 25 on the exposed window layer 15 by chemical vapor deposition technology, evaporation or sputtering, using ZnSe/MgF or TiO 2 /SiO 2 as the anti-reflection film material, as shown in Figure 3 .

18)、制备电极引线26,用电极引线26对电池进行相邻单元正电极24与负电极23互联实现电池串联,如图3。 18) Prepare the electrode lead 26, and use the electrode lead 26 to connect the positive electrode 24 and the negative electrode 23 of the adjacent cells of the battery to realize the battery connection, as shown in Figure 3.

图4A、图4B、图4C、图4D所示分别为2V、4V、6V、12V的双结GaAs叠层激光光伏电池俯视图。 FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are top views of double-junction GaAs stacked laser photovoltaic cells of 2V, 4V, 6V, and 12V, respectively.

依照本发明提供的双结GaAs叠层激光光伏电池制作方法制成的电池,通过几个电池单元串联以获得所需的输出电压。一个双结GaAs叠层激光光伏电池单元的开路电压约为2V,这样每个电池元件有几个单元串联就有约几伏的输出电压(如2、4、6、12V)。电池生长在半绝缘GaAs衬底上以便在随后的电池加工工艺中实现每个单元之间的电学隔离,然后将一个电池的正极与另一个相邻电池单元的负极相连而制作几个单元的串联连接。这样设计的结果是电池的正电极和负电极都从电池的外延面一侧引出,如此设计可减少电极的遮光比、充分吸收照射到电池光敏面上的激光能量,正电极在电池光敏面的外围,和电池底部的导电层相连。 According to the manufacturing method of the double-junction GaAs laminated laser photovoltaic cell provided by the present invention, several battery cells are connected in series to obtain the required output voltage. The open circuit voltage of a double-junction GaAs stacked laser photovoltaic cell is about 2V, so that each cell has several cells connected in series to have an output voltage of about several volts (such as 2, 4, 6, 12V). The battery is grown on a semi-insulating GaAs substrate to achieve electrical isolation between each unit in the subsequent battery processing process, and then the positive electrode of one battery is connected to the negative electrode of another adjacent battery cell to make several cells in series connect. The result of this design is that both the positive electrode and the negative electrode of the battery are drawn from the epitaxial side of the battery. This design can reduce the shading ratio of the electrodes and fully absorb the laser energy irradiated on the photosensitive surface of the battery. The positive electrode is on the photosensitive surface of the battery. The periphery is connected to the conductive layer at the bottom of the battery.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.

Claims (10)

1.一种双结GaAs叠层激光光伏电池,其特征在于,包括GaAs衬底,以及在所述衬底上依次设置的N型GaAs的导电层、第一隧穿结、底电池、第二隧穿结、顶电池、AlGaAs(Ga0.51In0.49P)的窗口层以及GaAs接触层。 1. A double-junction GaAs laminated laser photovoltaic cell is characterized in that it comprises a GaAs substrate, and a conductive layer of N-type GaAs arranged in sequence on the substrate, the first tunnel junction, the bottom cell, the second Tunneling junction, top cell, window layer of AlGaAs (Ga 0.51 In 0.49 P), and GaAs contact layer. 2.根据权利要求1所述的双结GaAs叠层激光光伏电池,其特征在于,进一步包括隔离槽,所述隔离槽为从GaAs接触层向衬底方向贯穿,直至显露出衬底,并且所述隔离槽中填充有氧化硅或聚酰亚胺胶。 2. The double-junction GaAs laminated laser photovoltaic cell according to claim 1, further comprising an isolation groove, the isolation groove penetrates from the GaAs contact layer to the substrate until the substrate is exposed, and the Silicon oxide or polyimide glue is filled in the isolation groove. 3.根据权利要求1所述的双结GaAs叠层激光光伏电池,其特征在于,所述第一隧穿结、第二隧穿结均包括按照远离衬底方向依次设置的N型GaAs(Ga0.51In0.49P)层、P型(Al)GaAs层和P型AlGaAs((Al)GaInP)层。 3. double-junction GaAs laminated laser photovoltaic cell according to claim 1, is characterized in that, described first tunnel junction, the second tunnel junction all comprise N-type GaAs (Ga 0.51 In 0.49 P) layer, P-type (Al) GaAs layer and P-type AlGaAs ((Al) GaInP) layer. 4.根据权利要求1所述的双结GaAs叠层激光光伏电池,其特征在于,所述底电池、顶电池均为基于GaAs的PN结电池,且所述底电池和顶电池各自的P区、N区均依次远离衬底。 4. double-junction GaAs lamination laser photovoltaic cell according to claim 1, is characterized in that, described bottom battery, top battery are the PN junction battery based on GaAs, and the respective P regions of described bottom battery and top battery , N regions are sequentially away from the substrate. 5.根据权利要求1所述的双结GaAs叠层激光光伏电池,其特征在于,进一步包括正电极窗口,所述正电极窗口为从GaAs接触层往导电层方向贯穿,直至显露出导电层。 5. The double-junction GaAs laminated laser photovoltaic cell according to claim 1, further comprising a positive electrode window, the positive electrode window penetrates from the GaAs contact layer to the conductive layer until the conductive layer is exposed. 6.根据权利要求1所述的双结GaAs叠层激光光伏电池,其特征在于,进一步包括ZnSe/MgF或TiO2/SiO2的减反射膜,置于所述窗口层的裸露表面上。 6 . The double-junction GaAs stacked laser photovoltaic cell according to claim 1 , further comprising an anti-reflection film of ZnSe/MgF or TiO 2 /SiO 2 placed on the exposed surface of the window layer. 7.一种如权利要求1所述的双结GaAs叠层激光光伏电池制备方法,其特征在于,包括步骤:(1)提供GaAs衬底;(2)在衬底上依次生长导电层、第一隧穿结、底电池、第二隧穿结、顶电池、窗口层与GaAs接触层。 7. A method for preparing a double-junction GaAs laminated laser photovoltaic cell as claimed in claim 1, characterized in that it comprises the steps of: (1) providing a GaAs substrate; (2) sequentially growing a conductive layer, the second A tunnel junction, bottom cell, second tunnel junction, top cell, window layer and GaAs contact layer. 8.根据权利要求7所述的双结GaAs叠层激光光伏电池的制备方法,其特征在于,进一步包括步骤:(3)采用干法或湿法刻蚀方法从GaAs接触层向衬底方向刻蚀,直至显露出衬底表面,形成隔离槽;(4)在隔离槽中填充氧化硅或聚酰亚胺胶。 8. The method for preparing a double-junction GaAs laminated laser photovoltaic cell according to claim 7, further comprising the step of: (3) using a dry or wet etching method to etch from the GaAs contact layer to the substrate. Etch until the surface of the substrate is exposed to form an isolation groove; (4) Fill the isolation groove with silicon oxide or polyimide glue. 9.根据权利要求8所述的双结GaAs叠层激光光伏电池的制备方法,其特征在于,进一步包括步骤:(5)采用干法或湿法刻蚀方法从GaAs接触层向衬底方向刻蚀,直至显露出导电层表面,形成正电极窗口。 9. The method for preparing a double-junction GaAs laminated laser photovoltaic cell according to claim 8, further comprising the step of: (5) using a dry or wet etching method to etch from the GaAs contact layer to the substrate. etch until the surface of the conductive layer is exposed to form a positive electrode window. 10.根据权利要求7所述的双结GaAs叠层激光光伏电池的制备方法,其特征在于,进一步包括步骤:采用干法或湿法刻蚀方法刻蚀指定区域的GaAs接触层,直至显露出窗口层的表面;在窗口层的裸露表面上生长减反射膜,所述生长减反射膜的方法为化学气相淀积、蒸发和溅射中任意一种。 10. The method for preparing a double-junction GaAs laminated laser photovoltaic cell according to claim 7, further comprising the step of: using a dry or wet etching method to etch the GaAs contact layer in a designated area until the exposed The surface of the window layer: growing an anti-reflection film on the exposed surface of the window layer, and the method for growing the anti-reflection film is any one of chemical vapor deposition, evaporation and sputtering.
CN2012101549784A 2012-05-18 2012-05-18 Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof Pending CN102651420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101549784A CN102651420A (en) 2012-05-18 2012-05-18 Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101549784A CN102651420A (en) 2012-05-18 2012-05-18 Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof

Publications (1)

Publication Number Publication Date
CN102651420A true CN102651420A (en) 2012-08-29

Family

ID=46693375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101549784A Pending CN102651420A (en) 2012-05-18 2012-05-18 Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof

Country Status (1)

Country Link
CN (1) CN102651420A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066159A (en) * 2013-01-11 2013-04-24 中国科学院苏州纳米技术与纳米仿生研究所 Monolithic coupling assembly preparation method based on thermophotovoltaic battery
CN103117286A (en) * 2013-01-31 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and production method thereof
CN103123923A (en) * 2013-01-31 2013-05-29 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and manufacturing method thereof
CN103247635A (en) * 2013-01-31 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell provided with PNP structure and preparation method thereof
CN104332479A (en) * 2013-07-22 2015-02-04 天津恒电空间电源有限公司 Laser powered miniature GaAs cell
CN105428456A (en) * 2015-12-08 2016-03-23 中国电子科技集团公司第十八研究所 Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN106653925A (en) * 2016-12-28 2017-05-10 中国电子科技集团公司第十八研究所 Two-junction laser battery epitaxial layer and preparation method thereof
WO2018192199A1 (en) * 2017-04-17 2018-10-25 中国科学院苏州纳米技术与纳米仿生研究所 Multi-junction laminated laser photovoltaic cell and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162987A (en) * 1999-06-30 2000-12-19 The United States Of America As Represented By The United States Department Of Energy Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
CN101783371A (en) * 2009-01-15 2010-07-21 晶元光电股份有限公司 stacked solar cells
CN102184999A (en) * 2011-04-02 2011-09-14 中国科学院苏州纳米技术与纳米仿生研究所 NPN-structure-based laser photovoltaic cell and preparation process thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162987A (en) * 1999-06-30 2000-12-19 The United States Of America As Represented By The United States Department Of Energy Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance
US20060048811A1 (en) * 2004-09-09 2006-03-09 Krut Dimitri D Multijunction laser power converter
CN101783371A (en) * 2009-01-15 2010-07-21 晶元光电股份有限公司 stacked solar cells
CN102184999A (en) * 2011-04-02 2011-09-14 中国科学院苏州纳米技术与纳米仿生研究所 NPN-structure-based laser photovoltaic cell and preparation process thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. SCHUBERT, ET AL: "High-Voltage GaAs Photovoltaic Laser Power Converters", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》, vol. 56, no. 2, 28 February 2009 (2009-02-28), pages 2 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066159A (en) * 2013-01-11 2013-04-24 中国科学院苏州纳米技术与纳米仿生研究所 Monolithic coupling assembly preparation method based on thermophotovoltaic battery
CN103117286B (en) * 2013-01-31 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and preparation method thereof
CN103123923A (en) * 2013-01-31 2013-05-29 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and manufacturing method thereof
CN103247635A (en) * 2013-01-31 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell provided with PNP structure and preparation method thereof
CN103247635B (en) * 2013-01-31 2015-12-23 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell of positive-negative-positive structure and preparation method thereof
CN103117286A (en) * 2013-01-31 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and production method thereof
CN103123923B (en) * 2013-01-31 2016-08-03 中国科学院苏州纳米技术与纳米仿生研究所 A kind of laser photovoltaic cell and preparation method thereof
CN104332479A (en) * 2013-07-22 2015-02-04 天津恒电空间电源有限公司 Laser powered miniature GaAs cell
CN104332479B (en) * 2013-07-22 2017-03-08 天津恒电空间电源有限公司 A kind of miniature GaAs battery of laser power supply
CN105428456A (en) * 2015-12-08 2016-03-23 中国电子科技集团公司第十八研究所 Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN105428456B (en) * 2015-12-08 2017-02-01 中国电子科技集团公司第十八研究所 Double-junction laminated GaAs battery with quantum well structure and preparation method therefor
CN106653925A (en) * 2016-12-28 2017-05-10 中国电子科技集团公司第十八研究所 Two-junction laser battery epitaxial layer and preparation method thereof
WO2018192199A1 (en) * 2017-04-17 2018-10-25 中国科学院苏州纳米技术与纳米仿生研究所 Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
US11245046B2 (en) * 2017-04-17 2022-02-08 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences Multi-junction tandem laser photovoltaic cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN102184999B (en) NPN-structure-based laser photovoltaic cell and preparation process thereof
CN102651416A (en) Three-knot laminated GaAs laser photovoltaic battery and preparation method thereof
CN102651420A (en) Double-junction GaAs lamination laser photovoltaic cell and fabrication method thereof
CN108604608A (en) The method of series-connected solar cells and this solar cell of manufacture
US11961930B2 (en) Crystalline silicon solar cell and preparation method therefor, and photovoltaic assembly
CN107112376A (en) Double-deck photovoltaic apparatus
CN103178132B (en) Solaode
CN105659390B (en) Solar battery structure and its manufacture method
CN103247635B (en) Laser photovoltaic cell of positive-negative-positive structure and preparation method thereof
CN108735848B (en) Multi-junction tandem laser photovoltaic cell and method of making the same
CN104009046B (en) Laser photovoltaic cell of inverted structure and preparation method thereof
CN103123923B (en) A kind of laser photovoltaic cell and preparation method thereof
CN104576772B (en) laser photovoltaic cell and manufacturing method thereof
CN103117286B (en) Laser photovoltaic cell and preparation method thereof
CN106611805A (en) Photovoltaic device and preparation method thereof, multi-junction GaAs laminated laser photovoltaic cell
CN103268893B (en) Laser photovoltaic cell of NPN structure and preparation method thereof
CN104037178A (en) GaAs laser photovoltaic cell with output voltage being 5V and making method thereof
CN105742374B (en) photovoltaic device and preparation method thereof
CN116072739B (en) Solar cell, preparation method of solar cell and photovoltaic module
CN104037251A (en) GaAs laser photovoltaic cell with output voltage being 6V and making method thereof
Hagar et al. A new approach for Multi junction solar cells from off the shelf individual cells: GaAs/Si
CN217655887U (en) Solar laminated cell
KR101172619B1 (en) Solar cell having AlN passivation layer
CN104009047B (en) A kind of laser photovoltaic cell of inverted structure and preparation method thereof
CN115954393A (en) Solar laminated cell and manufacturing method thereof, cell module and photovoltaic system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120829