CN211150576U - High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission - Google Patents
High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission Download PDFInfo
- Publication number
- CN211150576U CN211150576U CN201922090727.4U CN201922090727U CN211150576U CN 211150576 U CN211150576 U CN 211150576U CN 201922090727 U CN201922090727 U CN 201922090727U CN 211150576 U CN211150576 U CN 211150576U
- Authority
- CN
- China
- Prior art keywords
- layer
- electrode layer
- barrier
- positive electrode
- absorption layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 32
- 230000004888 barrier function Effects 0.000 claims abstract description 69
- 238000010521 absorption reaction Methods 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 239000007769 metal material Substances 0.000 claims abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 6
- 229910002704 AlGaN Inorganic materials 0.000 claims description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims description 3
- 229910004613 CdTe Inorganic materials 0.000 claims description 3
- 229910004611 CdZnTe Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 abstract description 24
- 229920000139 polyethylene terephthalate Polymers 0.000 abstract description 24
- 239000002131 composite material Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 7
- 238000010248 power generation Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005421 electrostatic potential Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本实用新型属于太阳能复合利用领域,为了解决现有技术中利用真空PETE器件的太阳能复合利用系统在高温下工作时PETE器件能量转化效率和工作寿命低,以及输出电流不足的技术问题,提供一种基于光子增强热电子发射的全固态高温太阳能光电转化结构,包括由上至下依次设置的正电极层、吸收层、势垒层和负电极层;所述吸收层采用P型重掺杂的窄禁带半导体材料;所述势垒层采用禁带宽度大于吸收层的半导体材料;所述势垒层与吸收层界面处的导带势垒小于价带势垒;所述负电极层为采用金属材料;所述正电极层采用金属材料,正电极层与吸收层部分重叠;或着,所述正电极层采用整面或栅条结构的透明金属氧化物导电膜层材料。
The utility model belongs to the field of solar energy composite utilization. In order to solve the technical problems of low energy conversion efficiency and working life of PETE devices and insufficient output current when a solar energy composite utilization system using vacuum PETE devices works at high temperature in the prior art, a solar energy composite utilization system is provided. An all-solid-state high-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission, including a positive electrode layer, an absorption layer, a barrier layer and a negative electrode layer arranged in sequence from top to bottom; the absorption layer adopts a P-type heavily doped narrow Forbidden band semiconductor material; the barrier layer adopts a semiconductor material with a forbidden band width greater than that of the absorption layer; the conduction band barrier at the interface between the barrier layer and the absorption layer is smaller than the valence band barrier; the negative electrode layer is made of metal material; the positive electrode layer is made of metal material, and the positive electrode layer and the absorption layer are partially overlapped; or, the positive electrode layer is made of a transparent metal oxide conductive film layer material with a whole surface or grid structure.
Description
技术领域technical field
本实用新型涉及太阳能复合利用电池,具体涉及一种基于光子增强热电子发射的高温太阳能光电转化结构。The utility model relates to a solar energy composite utilization battery, in particular to a high-temperature solar energy photoelectric conversion structure based on photon-enhanced thermal electron emission.
背景技术Background technique
太阳能是一种安全环保的可再生能源,在能源危机和环境恶化的大背景下,对太阳能的高效利用得到了广泛的重视和研究。光热发电和光伏发电是现有两种主要的太阳能发电方式。Solar energy is a safe and environmentally friendly renewable energy. Under the background of energy crisis and environmental degradation, the efficient use of solar energy has received extensive attention and research. Solar thermal power generation and photovoltaic power generation are the two main solar power generation methods.
光热发电是将太阳能作为热能收集,再利用热电器件将其转化为电能,光热发电能够利用太阳全谱段的能量,但是转换效率较低。光伏发电是利用光伏电池将太阳能直接转化为电能,具有较高的转化效率,但根据光电池的材料不同只能响应部分谱段的太阳光能量。Solar thermal power generation is to collect solar energy as thermal energy, and then use thermoelectric devices to convert it into electrical energy. Solar thermal power generation can utilize the energy of the full spectrum of the sun, but the conversion efficiency is low. Photovoltaic power generation uses photovoltaic cells to directly convert solar energy into electrical energy, which has high conversion efficiency, but can only respond to solar energy in part of the spectrum according to the material of photovoltaic cells.
由于光伏电池工作时会产生其无法利用的余热,若能将光伏电池的余热耦合至后端热电器件加以利用,将光伏电池和热电器件构成复合利用系统,可大幅提高总的能量转换效率。然而现有的光伏电池,其用于分类光生载流子的内建场随温度的升高迅速减小直至消失,使其转换效率随温度升高会迅速降低,无法在高温环境下工作。导致目前太阳能复合利用系统的热耦合温度很低,后端热电器件无法有效输出电能。Since photovoltaic cells will generate waste heat that cannot be used, if the waste heat of photovoltaic cells can be coupled to the back-end thermoelectric devices for use, and the photovoltaic cells and thermoelectric devices can be combined into a composite utilization system, the total energy conversion efficiency can be greatly improved. However, in existing photovoltaic cells, the built-in field for classifying photogenerated carriers decreases rapidly with the increase of temperature until it disappears, so that the conversion efficiency of the existing photovoltaic cells decreases rapidly with the increase of temperature, and cannot work in a high temperature environment. As a result, the thermal coupling temperature of the current solar energy composite utilization system is very low, and the back-end thermoelectric devices cannot effectively output electric energy.
2010年斯坦福大学的研究人员提出了一种太阳能高效利用的新概念,称之为光子增强热电子发射效应(PETE效应)。他们提出的器件由封装在真空环境下的半导体阴极和低功函数阳极构成。阴极接收聚焦光照,处于高温状态,阳极因为与阴极真空隔绝,处于低温状态。在未光照时,它和普通的热电发射器件类似,而在光照时,阴极导带将产生大量光生电子,这些电子在高温下很容易获得足够动能发射到真空,进而被阳极收集产生电流输出。电子吸收光子能量越过带隙,吸收热能发射到真空中。因为在光生电子的热电子发射过程中,同时利用了光子能量和光生热能,因此PETE器件具有很高的转化效率,理论效率高于38%。由于PETE器件能够在高温下工作,使其能与热机结合构成高效复合利用系统,经理论计算由其构成的太阳能复合利用系统的转换效率可超过50%。In 2010, researchers at Stanford University proposed a new concept for the efficient use of solar energy, called the Photon-Enhanced Thermionic Emission Effect (PETE Effect). Their proposed device consists of a semiconductor cathode and a low work function anode encapsulated in a vacuum environment. The cathode receives focused light and is in a high temperature state, and the anode is in a low temperature state because it is vacuum isolated from the cathode. When not illuminated, it is similar to an ordinary thermoelectric emitting device. When illuminated, a large number of photogenerated electrons will be generated in the cathode conduction band. These electrons can easily obtain sufficient kinetic energy at high temperature to be emitted into a vacuum, and then collected by the anode to generate a current output. Electrons absorb photon energy across the band gap, absorb thermal energy and emit into the vacuum. Because the photon energy and photo-generated heat energy are simultaneously utilized in the thermionic emission process of photo-generated electrons, the PETE device has a high conversion efficiency, and the theoretical efficiency is higher than 38%. Because the PETE device can work at high temperature, it can be combined with the heat engine to form a high-efficiency composite utilization system. The conversion efficiency of the solar energy composite utilization system composed of it can exceed 50% according to theoretical calculations.
但在实际的应用研究中发现,真空结构的PETE器件存在很多难以解决的技术难题和挑战:PETE阴极表面用于降低材料电子亲和势的激活层在高温下会分解脱附不稳定,这将降低PETE器件能量转化效率及工作寿命;使用真空结构将在大发射电流时引入空间电荷效应,降低PETE器件的输出电流;在高温条件下PETE器件的真空度将下降,这将严重影响PETE器件的工作性能和寿命,对器件真空封装工艺和清洁程度提出了苛刻的要求。以上技术难题已成为PETE效应研究的瓶颈问题,阻碍了PETE技术的实用化发展。However, in practical application research, it is found that there are many technical difficulties and challenges that are difficult to solve in the vacuum structure PETE device: the active layer on the surface of the PETE cathode used to reduce the electron affinity of the material will be decomposed and desorbed unstable at high temperature, which will Reduce the energy conversion efficiency and working life of the PETE device; the use of a vacuum structure will introduce space charge effects when the emission current is large, reducing the output current of the PETE device; under high temperature conditions, the vacuum degree of the PETE device will decrease, which will seriously affect the PETE device. The working performance and lifespan put forward strict requirements on the vacuum packaging process and cleanliness of the device. The above technical problems have become the bottleneck of PETE effect research, hindering the practical development of PETE technology.
实用新型内容Utility model content
本实用新型的主要目的在于解决现有技术中利用PETE效应的太阳能复合利用系统在高温下工作时PETE器件能量转化效率和工作寿命低,以及输出电流不足等技术问题,提供一种基于光子增强热电子发射的高温太阳能光电转化结构。The main purpose of the utility model is to solve the technical problems such as low energy conversion efficiency and working life of PETE devices and insufficient output current when the solar energy composite utilization system utilizing the PETE effect in the prior art works at high temperature, and provides a photon-enhanced thermal energy Electron-emitting high-temperature solar photoelectric conversion structure.
为实现上述目的,本实用新型提供如下技术方案:To achieve the above object, the utility model provides the following technical solutions:
一种基于光子增强热电子发射的高温太阳能电池结构,其特殊之处在于,包括由上至下依次设置的正电极层、吸收层、势垒层和负电极层;所述吸收层采用禁带宽度为0.8-2.1eV的半导体材料;所述势垒层采用禁带宽度大于吸收层的半导体材料;所述势垒层与吸收层界面处的导带势垒小于价带势垒;所述负电极层为采用金属材料;A high-temperature solar cell structure based on photon-enhanced thermionic emission, which is special in that it includes a positive electrode layer, an absorption layer, a potential barrier layer and a negative electrode layer arranged in sequence from top to bottom; the absorption layer adopts a forbidden band A semiconductor material with a width of 0.8-2.1 eV; the barrier layer adopts a semiconductor material with a forbidden band width greater than that of the absorption layer; the conduction band barrier at the interface between the barrier layer and the absorption layer is smaller than the valence band barrier; the negative The electrode layer is made of metal material;
所述正电极层采用金属材料,正电极层与吸收层部分重叠;The positive electrode layer is made of metal material, and the positive electrode layer and the absorption layer are partially overlapped;
或着,所述正电极层采用整面或栅条结构的透明金属氧化物导电膜层材料。Alternatively, the positive electrode layer is made of a transparent metal oxide conductive film layer material with a whole surface or a grid structure.
进一步地,所述正电极层与吸收层之间还设有透光的缓冲层。Further, a light-transmitting buffer layer is also arranged between the positive electrode layer and the absorption layer.
进一步地,所述吸收层采用P型重掺杂半导体材料。Further, the absorption layer adopts P-type heavily doped semiconductor material.
进一步地,所述势垒层的厚度为10-100nm。Further, the thickness of the barrier layer is 10-100 nm.
进一步地,所述正电极层上方设有聚光装置。Further, a light condensing device is arranged above the positive electrode layer.
进一步地,所述吸收层采用GaAs、CdTe、GaN或Si,对应的所述势垒层采用AlGaAs、CdZnTe、AlGaN或金刚石。Further, the absorption layer adopts GaAs, CdTe, GaN or Si, and the corresponding barrier layer adopts AlGaAs, CdZnTe, AlGaN or diamond.
与现有技术相比,本实用新型的有益效果是:Compared with the prior art, the beneficial effects of the present utility model are:
1.本发明基于光子增强热电子发射的高温太阳能光电转化结构,是一种全固态的太阳能电池结构,其电子势垒高度可以通过选择吸收层、势垒层的材料以及调整势垒层掺杂浓度的方式任意控制,不受温度升高的影响,能够在无外部制冷降温时,有效进行太阳能光电转化,作为核心器件,与聚焦装置和热机组成理想的太阳能光热复合利用系统,进一步提高转换效率;另外,其结构与传统半导体器件相似,工艺相容,可以借鉴成熟的晶体生长和芯片制作技术,有利于PETE效应应用技术的实用化。本发明的太阳能光电转化结构不存在空间电荷效应,静电势垒对于输出电流的不利影响可以通过对势垒层进行调制掺杂等方法降低甚至消除;采用宽禁带的势垒层代替真空层,由异质结界面的能带不连续构成电荷选择性势垒层结构,能够基于PETE效应分离和输出光生载流子。再者,势垒层采用禁带宽度大于吸收层的半导体材料,能与吸收层形成良好的异质结界面,负电极层能够与势垒层形成低缺陷的异质结截面,具有较低的串联电阻。1. The present invention is a high-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission, which is an all-solid-state solar cell structure, and its electron barrier height can be adjusted by selecting the materials of the absorption layer and the barrier layer and adjusting the doping of the barrier layer. The concentration method is arbitrarily controlled, and is not affected by the temperature rise. It can effectively carry out solar photoelectric conversion without external cooling. As a core device, it forms an ideal solar photothermal composite utilization system with a focusing device and a heat engine to further improve the conversion. In addition, its structure is similar to that of traditional semiconductor devices, and the process is compatible. It can learn from mature crystal growth and chip manufacturing technology, which is beneficial to the practical application of PETE effect technology. The solar photoelectric conversion structure of the present invention has no space charge effect, and the adverse effect of the electrostatic potential barrier on the output current can be reduced or even eliminated by modulating and doping the potential barrier layer. The charge-selective barrier layer structure is formed by the energy band discontinuity of the heterojunction interface, which can separate and output photogenerated carriers based on the PETE effect. Furthermore, the barrier layer is made of semiconductor materials with a band gap larger than that of the absorber layer, which can form a good heterojunction interface with the absorber layer, and the negative electrode layer can form a low-defect heterojunction cross-section with the barrier layer, which has a lower cross-section. Series resistance.
2.本实用新型的缓冲层位于正电极层和吸收层之间,用于降低此界面处由于缺陷导致的界面复合。2. The buffer layer of the present invention is located between the positive electrode layer and the absorption layer, and is used to reduce the interface recombination caused by defects at the interface.
3.本实用新型的吸收层采用P型重掺杂半导体材料,用于吸收太阳光子产生光生电子空穴对。3. The absorption layer of the present invention adopts P-type heavily doped semiconductor material, which is used for absorbing solar photons to generate photo-generated electron-hole pairs.
4.本实用新型的势垒层厚度为10-100nm,保证了光生电子是以热电子发射的方式越过势垒层。4. The thickness of the barrier layer of the present invention is 10-100 nm, which ensures that the photogenerated electrons cross the barrier layer in the way of thermal electron emission.
5.本实用新型的正电极层上方设有聚光装置,使太阳能电池结构能够在聚焦太阳光下工作。5. The positive electrode layer of the present invention is provided with a concentrating device, so that the solar cell structure can work under focused sunlight.
附图说明Description of drawings
图1为本实用新型实施例一的结构示意图;Fig. 1 is the structural representation of the first embodiment of the present utility model;
图2为本实用新型实施例二的结构示意图;Fig. 2 is the structural representation of the second embodiment of the present utility model;
图3为本实用新型实施例三的结构示意图;3 is a schematic structural diagram of
图4为本实用新型实施例二太阳能光电转化结构的能级结构图(图中箭头所示为入射光方向)。FIG. 4 is an energy level structure diagram of the solar photoelectric conversion structure according to the second embodiment of the present invention (the arrow in the figure indicates the direction of incident light).
其中,1-正电极层、2-缓冲层、3-吸收层、4-势垒层、5-负电极层。Among them, 1 - positive electrode layer, 2 - buffer layer, 3 - absorption layer, 4 - barrier layer, 5 - negative electrode layer.
具体实施方式Detailed ways
下面将结合本实用新型的实施例和附图,对本实用新型的技术方案进行清楚、完整地描述,显然,所描述的实施例并非对本实用新型的限制。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments of the present invention and the accompanying drawings. Obviously, the described embodiments do not limit the present invention.
相比于现有真空结构的PETE器件,本实用新型取消了真空层,在根本上解决了真空PETE器件面临的阴极激活层材料高温脱附、空间电荷效应降低输出电流,以及高温下难以维持高真空等问题,有利于PETE效应的实用化发展。Compared with the PETE device with the existing vacuum structure, the utility model cancels the vacuum layer, and fundamentally solves the high temperature desorption of the cathode active layer material faced by the vacuum PETE device, the space charge effect reduces the output current, and the high temperature is difficult to maintain at high temperature. Problems such as vacuum are beneficial to the practical development of PETE effect.
实施例一Example 1
如图1,一种基于光子增强热电子发射的高温太阳能光电转化结构,包括由上至下依次设置的正电极层1、吸收层3、势垒层4和负电极层5,正电极层1与吸收层3之间还设有透光的缓冲层2。正电极层1采用透明金属氧化物材料;吸收层3采用窄带宽的半导体材料,且为P型重掺杂;势垒层4为禁带宽度大于吸收层3的宽禁带半导体材料,能与吸收层的窄禁带半导体材料形成良好的异质结截面,且在吸收层3和势垒层4界面处两种半导体形成的导带势垒远小于其价带势垒,势垒层4的厚度为10nm;负电极层5为采用金属材料。As shown in Figure 1, a high-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission includes a
实施例二
如图2,一种基于光子增强热电子发射的高温太阳能光电转化结构,包括由上至下依次设置的正电极层1、吸收层3、势垒层4和负电极层5,正电极层1与吸收层3之间还设有透光的缓冲层2。正电极层1采用金属材料,正电极层1在缓冲层2的顶部分布在两侧,将缓冲层2的中部露出吸收光照;吸收层3采用窄带宽的半导体材料,且为P型重掺杂;势垒层4为禁带宽度大于吸收层3的宽禁带半导体材料,能与吸收层的窄禁带半导体材料形成良好的异质结截面,且在吸收层3和势垒层4界面处两种半导体形成的导带势垒远小于其价带势垒,势垒层4的厚度为100nm;负电极层5为采用金属材料。As shown in FIG. 2, a high-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission includes a
如图4,是实施例二太阳能光电转化结构的能级结构图,其中:EF为费米能级;Eg1为吸收层3的禁带宽度;Eg2为势垒层4的禁带宽度;ΔEC为导带能量差,即导带势垒;ΔEV为价带能量差,即价带势垒;VC为吸收层3的势垒;VA为负电极层5的势垒。Figure 4 is the energy level structure diagram of the solar photoelectric conversion structure of the second embodiment, wherein: E F is the Fermi level; E g1 is the forbidden band width of the
实施例三
如图3,一种基于光子增强热电子发射的高温太阳能光电转化结构,包括由上至下依次设置的正电极层1、吸收层3、势垒层4和负电极层5。正电极层1采用栅条结构的透光金属氧化物;吸收层3采用窄带宽的半导体材料,且为P型重掺杂;势垒层4为禁带宽度大于吸收层3的宽禁带半导体材料,能与吸收层的窄禁带半导体材料形成良好的异质结截面,且在吸收层3和势垒层4界面处两种半导体形成的导带势垒远小于其价带势垒,势垒层4的厚度为60nm;负电极层5为采用金属材料。As shown in FIG. 3 , a high-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission includes a
实施例三的吸收层3和正电极层1之间也可以设置透光的缓冲层2,用于降低此界面处由于缺陷导致的界面复合。A light-transmitting
上述实施例一至实施例三中,吸收层3用于吸收太阳光子产生光生电子空穴对,势垒层4为禁带宽度大于吸收层3的宽禁带半导体材料,其能与吸收层3的窄禁带半导体材料形成良好的异质结界面,且在界面处两种半导体形成的导带势垒远小于其价带势垒;吸收层3采用窄禁带的半导体材料,禁带宽度为0.8-2.1eV;缓冲层2位于正电极层1和吸收层3材料之间,用于降低此界面处由于缺陷导致的界面复合;正电极层1可为金属材料,或者透明导电层或者具有栅条等透光结构的金属氧化物层,其与缓冲层2或吸收层3能够形成低阻抗电接触,以降低器件的串联电阻;吸收层3和势垒层4可采用的半导体材料包括但不限于:GaAs/AlGaAs、CdTe/CdZnTe、GaN/AlGaN和Si/金刚石;负电极层5为金属层,其能够与势垒层4形成低缺陷的异质结界面,且具有较低的串联电阻。与真空PETE器件不同,其采用宽禁带半导体材料作为势垒层,代替真空层,由异质结界面的能带不连续构成电荷选择性势垒层结构,基于PETE效应分离和输出光生载流子。In the above-mentioned
基于光子增强热电子发射的高温太阳能电池可接受聚焦太阳光的直接光照,可以在正电极层1上方设置聚光装置,如聚光镜。吸收层3吸收入射的聚焦太阳光,根据内光电效应,将电子激发至吸收层3的材料导带,在价带产生空穴,由此产生光生载流子。这些光生载流子在产生之后,将被输运至吸收层3和势垒层4的异质结界面。由于势垒层4禁带宽度远大于吸收层3,其价带能量差远大于导带能量差,光生电子到达这个界面后,由于面对的导带势垒很小,能够很容易的以热电子发射的方式越过势垒层输出至外电路,而光生空穴在价带将面对很高的价带势垒,几乎无法越过势垒层输出。由于具有这种能级结构的势垒层4能够实现对光生电子的选择性输出,因此也可以称之为电荷选择性势垒层结构。为保证光生电子是以热电子发射的方式越过势垒层4,需要确保势垒层4的厚度在10-100nm之间。吸收层3采用重掺杂半导体材料、势垒层4采用宽禁带半导体材料,以保证其能带结构可在高温下得到保持,使其工作机理仍然有效。因此基于光子增强热电子发射的高温太阳能光电转化结构可以在高温条件下,有效的将太阳光能转化为电能输出。The high-temperature solar cell based on photon-enhanced thermionic emission can receive direct illumination from focused sunlight, and a condensing device, such as a condensing mirror, can be arranged above the
光子增强热电子发射的高温太阳能光电转化结构与真空结构的PETE器件相比,无需表面激活,其电子势垒高度可以通过选择吸收层3、势垒层4的材料以及调整势垒层4掺杂浓度的方式任意控制;不引入空间电荷效应,静电势垒对于输出电流的不利影响可以通过对势垒层4进行调制掺杂等方法降低甚至消除;其结构与传统半导体器件相似,工艺相容,可以借鉴成熟的晶体生长和芯片制作技术,有利于器件的实用化;作为可高温工作的光电转换器件,本实用新型的全固态PETE器件能作为核心器件,与聚焦装置和热机组成理想的太阳能光热复合利用系统,进一步提高转换效率。Compared with the PETE device of vacuum structure, the high-temperature solar photoelectric conversion structure of photon-enhanced thermionic emission does not require surface activation, and its electron barrier height can be adjusted by selecting the materials of the
以上所述仅为本实用新型的实施例,并非对本实用新型保护范围的限制,凡是利用本实用新型说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均包括在本实用新型的专利保护范围内。The above are only the embodiments of the present utility model, and are not intended to limit the scope of protection of the present utility model. Any equivalent structural transformation made by using the contents of the present utility model description and accompanying drawings, or directly or indirectly applied in other related technical fields, All are included in the scope of patent protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922090727.4U CN211150576U (en) | 2019-11-28 | 2019-11-28 | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922090727.4U CN211150576U (en) | 2019-11-28 | 2019-11-28 | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211150576U true CN211150576U (en) | 2020-07-31 |
Family
ID=71777268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922090727.4U Withdrawn - After Issue CN211150576U (en) | 2019-11-28 | 2019-11-28 | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211150576U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854231A (en) * | 2019-11-28 | 2020-02-28 | 中国科学院西安光学精密机械研究所 | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission |
-
2019
- 2019-11-28 CN CN201922090727.4U patent/CN211150576U/en not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110854231A (en) * | 2019-11-28 | 2020-02-28 | 中国科学院西安光学精密机械研究所 | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission |
CN110854231B (en) * | 2019-11-28 | 2024-05-31 | 中国科学院西安光学精密机械研究所 | A high-temperature solar photovoltaic conversion structure based on photon-enhanced thermionic emission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102184999B (en) | NPN-structure-based laser photovoltaic cell and preparation process thereof | |
CN105810772B (en) | A kind of antimony trisulfide/silicon stacked solar cell, cascade solar cell and preparation method thereof | |
CN104659137B (en) | Full-solid photon enhanced thermionic emission device | |
JP2010531064A (en) | Single PN junction tandem photovoltaic device | |
CN103560155A (en) | Compound semiconductor heterojunction solar cell based on crystalline silicon materials | |
CN108493344A (en) | Shell-and-core structure perovskite nano-wire array solar cell | |
CN107507873B (en) | A kind of vacuous solar energy electrooptical device | |
CN1431721A (en) | Solar energy conversion photocell with multi-junction and poles joined | |
CN211150576U (en) | High-temperature solar photoelectric conversion structure based on photon-enhanced thermionic emission | |
CN107017824A (en) | A kind of electric combined generating device of photoelectric heat | |
CN106876487A (en) | A kind of solar cell and solar cell module | |
JP2011077295A (en) | Junction type solar cell | |
TWI409959B (en) | Solar cell component and device thereof | |
CN102623524A (en) | A kind of semiconductor solar cell and its manufacturing method | |
CN211404511U (en) | All-solid-state photon enhanced thermionic emission photoelectric conversion device with nano spacer layer | |
CN110854231B (en) | A high-temperature solar photovoltaic conversion structure based on photon-enhanced thermionic emission | |
Zheng et al. | Inner-cascaded photovoltaic-thermionic-thermoradiative conversion for concentrated solar power | |
CN106298983A (en) | A crystalline silicon solar cell based on Si/NiOx heterojunction | |
Sarder et al. | Numerical simulation of MoSe2 based solar cell by SCAPS-1D | |
Shahryari et al. | Efficiency enhancement of heterojunction IBC solar cell: surface passivation | |
CN107403850B (en) | Multi-junction solar cell containing embedded back surface field structure and preparation method thereof | |
CN206148438U (en) | Crystalline silicon solar cell based on siNiOx heterojunction | |
CN102117849B (en) | Solar cell element and its device | |
CN106611805A (en) | Photovoltaic device and preparation method thereof, multi-junction GaAs laminated laser photovoltaic cell | |
CN217955889U (en) | Laminated battery for improving current-carrying output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20200731 Effective date of abandoning: 20240531 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20200731 Effective date of abandoning: 20240531 |