CN114507679A - A kind of masson pine terpenoid synthesis related enzyme gene PmDXR and the application of its promoter - Google Patents
A kind of masson pine terpenoid synthesis related enzyme gene PmDXR and the application of its promoter Download PDFInfo
- Publication number
- CN114507679A CN114507679A CN202111547981.8A CN202111547981A CN114507679A CN 114507679 A CN114507679 A CN 114507679A CN 202111547981 A CN202111547981 A CN 202111547981A CN 114507679 A CN114507679 A CN 114507679A
- Authority
- CN
- China
- Prior art keywords
- pmdxr
- gene
- promoter
- masson pine
- application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000011609 Pinus massoniana Nutrition 0.000 title claims abstract description 60
- 241000018650 Pinus massoniana Species 0.000 title claims abstract description 60
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 38
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 28
- 150000003505 terpenes Chemical class 0.000 title claims abstract description 27
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 25
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 33
- 241000219195 Arabidopsis thaliana Species 0.000 claims abstract description 29
- 241000196324 Embryophyta Species 0.000 claims abstract description 29
- 101150118992 dxr gene Proteins 0.000 claims abstract description 19
- 230000000694 effects Effects 0.000 claims abstract description 19
- 102000004190 Enzymes Human genes 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 9
- 101150054900 gus gene Proteins 0.000 claims abstract description 7
- 239000002773 nucleotide Substances 0.000 claims abstract description 7
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 7
- 238000010353 genetic engineering Methods 0.000 claims abstract description 6
- 230000014509 gene expression Effects 0.000 claims description 30
- 241000208125 Nicotiana Species 0.000 claims description 18
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 18
- 230000000243 photosynthetic effect Effects 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000009395 breeding Methods 0.000 claims description 4
- 230000001488 breeding effect Effects 0.000 claims description 4
- 235000007586 terpenes Nutrition 0.000 claims 4
- 241000219194 Arabidopsis Species 0.000 abstract description 49
- 230000009261 transgenic effect Effects 0.000 abstract description 36
- 235000011613 Pinus brutia Nutrition 0.000 abstract description 13
- 241000207746 Nicotiana benthamiana Species 0.000 abstract description 12
- 235000008331 Pinus X rigitaeda Nutrition 0.000 abstract description 11
- 241000018646 Pinus brutia Species 0.000 abstract description 11
- 241000589158 Agrobacterium Species 0.000 abstract description 9
- 229930002868 chlorophyll a Natural products 0.000 abstract description 9
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 abstract description 9
- 239000011347 resin Substances 0.000 abstract description 9
- 229920005989 resin Polymers 0.000 abstract description 9
- 230000001052 transient effect Effects 0.000 abstract description 8
- 235000021466 carotenoid Nutrition 0.000 abstract description 7
- 150000001747 carotenoids Chemical class 0.000 abstract description 7
- 229930002869 chlorophyll b Natural products 0.000 abstract description 7
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 abstract description 7
- 230000001404 mediated effect Effects 0.000 abstract description 4
- 238000011426 transformation method Methods 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- GEWDNTWNSAZUDX-UHFFFAOYSA-N Jasmonic Acid Methyl Ester Chemical compound CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 102000053187 Glucuronidase Human genes 0.000 description 12
- 108010060309 Glucuronidase Proteins 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- 230000001580 bacterial effect Effects 0.000 description 11
- 238000010186 staining Methods 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 108091092584 GDNA Proteins 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000011529 RT qPCR Methods 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 229940088597 hormone Drugs 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 5
- 241000779819 Syncarpia glomulifera Species 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000001739 pinus spp. Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 229940036248 turpentine Drugs 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000006870 ms-medium Substances 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- XJLXINKUBYWONI-NNYOXOHSSA-N NADP zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-N 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 239000008118 PEG 6000 Substances 0.000 description 3
- 241000218602 Pinus <genus> Species 0.000 description 3
- 229920002584 Polyethylene Glycol 6000 Polymers 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 229930004069 diterpene Natural products 0.000 description 3
- 125000000567 diterpene group Chemical group 0.000 description 3
- 210000001339 epidermal cell Anatomy 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000001744 histochemical effect Effects 0.000 description 3
- 229930003658 monoterpene Natural products 0.000 description 3
- 150000002773 monoterpene derivatives Chemical class 0.000 description 3
- 235000002577 monoterpenes Nutrition 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000012192 staining solution Substances 0.000 description 3
- AJPADPZSRRUGHI-RFZPGFLSSA-N 1-deoxy-D-xylulose 5-phosphate Chemical compound CC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O AJPADPZSRRUGHI-RFZPGFLSSA-N 0.000 description 2
- YFAUKWZNPVBCFF-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@](O)(CO)C)O[C@H]1N1C(=O)N=C(N)C=C1 YFAUKWZNPVBCFF-XHIBXCGHSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000218641 Pinaceae Species 0.000 description 2
- 235000005205 Pinus Nutrition 0.000 description 2
- 235000011334 Pinus elliottii Nutrition 0.000 description 2
- 241000142776 Pinus elliottii Species 0.000 description 2
- 235000011611 Pinus yunnanensis Nutrition 0.000 description 2
- 241000018652 Pinus yunnanensis Species 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 241001002356 Valeriana edulis Species 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 230000008723 osmotic stress Effects 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229930000044 secondary metabolite Natural products 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000009331 sowing Methods 0.000 description 2
- 230000004960 subcellular localization Effects 0.000 description 2
- 235000019529 tetraterpenoid Nutrition 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- UDPGUMQDCGORJQ-UHFFFAOYSA-N (2-chloroethyl)phosphonic acid Chemical compound OP(O)(=O)CCCl UDPGUMQDCGORJQ-UHFFFAOYSA-N 0.000 description 1
- UUTKICFRNVKFRG-WDSKDSINSA-N (4R)-3-[oxo-[(2S)-5-oxo-2-pyrrolidinyl]methyl]-4-thiazolidinecarboxylic acid Chemical compound OC(=O)[C@@H]1CSCN1C(=O)[C@H]1NC(=O)CC1 UUTKICFRNVKFRG-WDSKDSINSA-N 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- XMWHRVNVKDKBRG-UHNVWZDZSA-N 2-C-methyl-D-erythritol 4-(dihydrogen phosphate) Chemical compound OC[C@@](O)(C)[C@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-UHNVWZDZSA-N 0.000 description 1
- BYDVKVHIIUVENM-UHFFFAOYSA-N 3-methylbut-2-en-2-yl phosphono hydrogen phosphate Chemical compound CC(=C(C)OP(=O)(O)OP(=O)(O)O)C BYDVKVHIIUVENM-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 108090000104 Actin-related protein 3 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- VZHHNDCSESIXJW-UHFFFAOYSA-N C(=CC(C)=C)OP(=O)(O)OP(=O)(O)O Chemical compound C(=CC(C)=C)OP(=O)(O)OP(=O)(O)O VZHHNDCSESIXJW-UHFFFAOYSA-N 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 239000005976 Ethephon Substances 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 108010060155 deoxyxylulose-5-phosphate synthase Proteins 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- -1 polysaccharide polyphenol Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01267—1-Deoxy-D-xylulose-5-phosphate reductoisomerase (1.1.1.267)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了一种马尾松萜类物质合成相关酶基因PmDXR及其启动子的应用,属于植物基因工程技术领域。本发明将马尾松PmDXR基因利用农杆菌介导转化至拟南芥中,转基因拟南芥的DXR酶活性、叶绿素a、叶绿素b、类胡萝卜素含量均高于野生型拟南芥。并从马尾松中克隆得到PmDXR基因的启动子,核苷酸序列如SEQ ID NO.1所示,通过构建pBI121‑ProDXR载体,瞬时转化法侵染本氏烟草,PmDXR基因启动子能驱动GUS基因在本氏烟草根、茎、叶中表达,且启动子没有明显的组织特异性。本发明在利用基因工程技术提高松树松脂产量性状上具有重要研究价值和应用前景。
The invention discloses the application of an enzyme gene PmDXR related to the synthesis of masson terpenoid substances and a promoter thereof, and belongs to the technical field of plant genetic engineering. In the present invention, the PmDXR gene of Pinus massoniana is transformed into Arabidopsis thaliana mediated by Agrobacterium, and the DXR enzyme activity, chlorophyll a, chlorophyll b and carotenoid contents of the transgenic Arabidopsis are higher than those of the wild type Arabidopsis. And clone the promoter of PmDXR gene from Pinus massoniana, the nucleotide sequence is as shown in SEQ ID NO.1, by constructing pBI121-ProDXR carrier, the transient transformation method infects Nicotiana benthamiana, PmDXR gene promoter can drive GUS gene in It is expressed in N. benthamiana roots, stems and leaves, and the promoter has no obvious tissue specificity. The invention has important research value and application prospect in improving pine resin yield traits by using genetic engineering technology.
Description
技术领域technical field
本发明属于植物基因工程技术领域,具体涉及一种马尾松萜类物质合成相关酶基因PmDXR及其启动子的应用。The invention belongs to the technical field of plant genetic engineering, in particular to the application of PmDXR, an enzyme gene related to the synthesis of masson pine terpenoid substances, and a promoter thereof.
背景技术Background technique
马尾松(Pinus massoniana)属于松科(Pinaceae)松属双维管束松亚属,树干较直,树皮呈红褐色,裂成不规则的鳞状块片;枝条平展或斜展;针叶多为2针一束,稀3针一束,长12-20cm;叶鞘最初为褐色,然后渐变为灰黑色,宿存。雄球花呈圆柱形聚生于新枝下部苞腋;雌球花单生或2-4个聚生于新枝近顶端;球果为卵圆形或圆锥状卵圆形,成熟前后颜色会发生变化,成熟前绿色,成熟时栗褐色。在我国松属树种中马尾松的分布较为广泛,从秦岭、淮河以南,云贵高原以东的17个省(自治区、直辖市)均有分布,具有适应性强、经济价值高等特点。马尾松的经济价值不仅体现在用材方面,在林产品加工方面更是为我国带来了巨大的经济效益。马尾松可分泌大量以萜类化合物为主的次生代谢物,这些次生代谢物称为松脂,松脂是松香、松节油工业的基础原料,广泛用于溶剂、消毒剂、清洁产品、香料、涂料等工业生物产品中。Pinus massoniana (Pinus massoniana) belongs to the Pinaceae (Pinaceae) genus and subgenus Bivascular Pinus, with a straight trunk, reddish-brown bark, and cracked into irregular scaly pieces; the branches are flat or oblique; there are many needles. 2-needle bundle, 3-needle bundle, 12-20cm long; leaf sheath is brown at first, then gradually becomes gray-black and persists. The male cones are cylindrical and clustered in the bud axil at the lower part of the new branch; the female cones are solitary or 2-4 clustered near the top of the new branch; the cones are oval or conical-oval, and the color will change before and after maturity , green before maturity, chestnut brown when mature. Pinus massoniana is widely distributed among the Pinus species in my country. It is distributed in 17 provinces (autonomous regions and municipalities directly under the Central Government) from the south of the Qinling Mountains and the Huaihe River to the east of the Yunnan-Guizhou Plateau. It has the characteristics of strong adaptability and high economic value. The economic value of masson pine is not only reflected in the use of timber, but also in the processing of forest products, which has brought huge economic benefits to our country. Masson pine can secrete a large number of secondary metabolites, mainly terpenoids. These secondary metabolites are called turpentine, which is the basic raw material of rosin and turpentine industry and is widely used in solvents, disinfectants, cleaning products, fragrances, coatings. and other industrial biological products.
马尾松松脂中的萜类化合物成分主要包括单萜、倍半萜和双萜,一般存在与松树的根、茎、叶和球果中。松脂不仅能带来巨大的经济效益,其组分对针叶树的防御体系也具有重要作用。在针叶树遭受生物或非生物刺激后,松脂可从树木的树脂道释放出来,同时新的松脂又可经诱导合成。目前,我国主要有6种松树可以采割松脂,但成规模采脂的只有马尾松、湿地松(Pinus elliottii)、云南松(Pinus yunnanensis)和思茅松(Pinus kesiyavar.langbianensis),其中90%的松脂采自马尾松。我国的松脂产区以广西为主,调查显示2010年广西产区的马尾松松脂产量可占全国松脂产量的42%左右,总产量约为30万吨。为了推动松脂产业的发展,采用先进的技术筛选和培育高产脂的优良种质材料、营造高产脂工业原料林是提高松林资源利用率的有效途径。The terpenoids in masson pine resin mainly include monoterpenes, sesquiterpenes and diterpenes, which generally exist in the roots, stems, leaves and cones of pine trees. Not only does turpentine bring great economic benefits, its components also play an important role in the defense system of conifers. After conifers are subjected to biotic or abiotic stimuli, turpentine can be released from the tree's resin canal, and new turpentine can be induced to synthesize. At present, there are mainly 6 kinds of pine trees in my country that can be harvested for pine resin, but only Masson pine, Pinus elliottii (Pinus elliottii), Pinus yunnanensis (Pinus yunnanensis) and Simao pine (Pinus kesiyavar. Pine resin is collected from Masson pine. my country's pine resin production areas are mainly in Guangxi. The survey shows that in 2010, the masson pine pine resin production in Guangxi production areas accounted for about 42% of the national pine resin production, with a total output of about 300,000 tons. In order to promote the development of the pine resin industry, it is an effective way to improve the utilization rate of pine forest resources by using advanced technology to screen and cultivate high-quality germplasm materials with high lipid yield and create high-yield industrial raw material forests.
1-脱氧-D-木酮糖-5-磷酸还原异构(1-Deoxy-d-xylulose-5-phosphatereductase DXR)是MEP途径中的关键限速酶,催化MEP途径第2步反应,该酶需要辅因子烟酰胺腺嘌呤二核苷酸磷酸(NADPH)、Mn2+、Co2+或Mg2+参与作用将1-脱氧-D-木酮糖-5-磷酸合成酶(DXP)转化为萜类合成的重要前体2-甲基赤藓糖醇-4-磷酸(MEP)。MEP途径定位于质体中,主要参与单萜、二萜和四萜类化合物的生物合成。MEP途径生成异戊二烯基焦磷酸(IPP)和二甲基丙烯基二磷酸(DMAPP)的过程主要分为7步反应:第一步,丙酮酸和3-磷酸-甘油醛由1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)催化生成DXP;第二步,DXP经1-脱氧-D-木酮糖-5-磷酸还原异构酶(DXR)催化作用发生还原反应生成MEP;第三步,在NADPH存在下MEP经2-甲基-D-赤藓醇-4-磷酸胞苷酰转移酶(MCT)催化生成4-(5′-焦磷酸胞苷)-2-C-甲基-D-赤藓醇(CDP-ME);第四步,CDP-ME经4-(5′-焦磷酸胞苷)-2-C-甲基-D-赤藓醇激酶(CMK)的磷酸化作用生成4-(5′-焦磷酸胞苷)-2-C-甲基-D-赤藓醇-2-磷酸(CDP-MEP);第五步,CDP-MEP在2-甲基-D-赤藓醇-2,4-环焦磷酸合酶(MDS)作用下生成2-甲基-D-赤藓醇-2,4-环焦磷酸(MEcPP);第六步,MEcPP在1-羟基-2-甲基-2-E-丁烯基-4-焦磷酸合酶(HDS)作用下形成1-羟基-2-甲基-2-E-丁烯基-4-焦磷酸(HMBPP);最后HMBPP经1-羟基-2-甲基-2-E-丁烯基-4-焦磷酸还原酶(HDR)催化形成萜类化合物合成前体物质IPP。因此,通过马尾松的DXR基因的表达来提高下游目的产物的含量,对马尾松高产脂基因工程育种具有重要的意义。1-Deoxy-D-xylulose-5-phosphate reductase DXR (1-Deoxy-d-xylulose-5-phosphate reductase DXR) is a key rate-limiting enzyme in the MEP pathway, catalyzing the second step of the MEP pathway. The cofactor nicotinamide adenine dinucleotide phosphate (NADPH), Mn 2+ , Co 2+ or Mg 2+ is required to participate in the conversion of 1-deoxy-D-xylulose-5-phosphate synthase (DXP) into An important precursor for terpenoid synthesis, 2-methylerythritol-4-phosphate (MEP). The MEP pathway is localized in plastids and is mainly involved in the biosynthesis of monoterpenes, diterpenes and tetraterpenoids. The process of generating isoprenyl pyrophosphate (IPP) and dimethylpropenyl diphosphate (DMAPP) by MEP pathway is mainly divided into 7 steps: in the first step, pyruvate and 3-phosphate-glyceraldehyde are converted from 1-deoxygenated -D-xylulose-5-phosphate synthase (DXS) catalyzes the formation of DXP; in the second step, DXP undergoes a reduction reaction catalyzed by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) Generate MEP; in the third step, in the presence of NADPH, MEP is catalyzed by 2-methyl-D-erythritol-4-phosphocytidyltransferase (MCT) to generate 4-(5′-cytidine pyrophosphate)-2 -C-methyl-D-erythritol (CDP-ME); in the fourth step, CDP-ME is treated with 4-(5′-cytidine pyrophosphate)-2-C-methyl-D-erythritol kinase The phosphorylation of (CMK) generates 4-(5′-cytidine pyrophosphate)-2-C-methyl-D-erythritol-2-phosphate (CDP-MEP); in the fifth step, CDP-MEP is 2-Methyl-D-erythritol-2,4-cyclic pyrophosphate synthase (MDS) produces 2-methyl-D-erythritol-2,4-cyclic pyrophosphate (MEcPP); sixth In the next step, MEcPP forms 1-hydroxy-2-methyl-2-E-butenyl- 4-pyrophosphate (HMBPP); finally, HMBPP is catalyzed by 1-hydroxy-2-methyl-2-E-butenyl-4-pyrophosphate reductase (HDR) to form terpenoid synthesis precursor IPP. Therefore, the expression of DXR gene of Pinus massoniana to increase the content of downstream target products is of great significance to the genetic engineering breeding of Pinus massoniana for high lipid production.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的上述问题,本发明所要解决的技术问题在于提供一种马尾松萜类物质合成相关酶基因PmDXR及其启动子的应用。In view of the above problems existing in the prior art, the technical problem to be solved by the present invention is to provide an application of a masson pine terpenoid synthesis-related enzyme gene PmDXR and its promoter.
为了解决上述技术问题,本发明所采用的技术方案如下:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is as follows:
一种马尾松萜类物质合成相关酶基因PmDXR或马尾松萜类物质合成相关酶基因PmDXR的启动子在马尾松高产脂基因工程育种中的应用。The application of a masson pine terpenoid synthesis-related enzyme gene PmDXR or the promoter of the masson pine terpenoid synthesis-related enzyme gene PmDXR in masson pine high-fat-yielding genetic engineering breeding.
马尾松萜类物质合成相关酶基因PmDXR,其核苷酸序列见GenBank:MK969119.1。Masson pine terpenoid synthesis related enzyme gene PmDXR, the nucleotide sequence of which can be found in GenBank: MK969119.1.
DXR是MEP途径中的关键限速酶,催化MEP途径第2步反应,主要参与单萜、二萜和四萜类化合物的生物合成。本申请从马尾松中克隆得到的萜类物质合成关键限速酶基因,命名为PmDXR。DXR is a key rate-limiting enzyme in the MEP pathway, which catalyzes the second step of the MEP pathway and is mainly involved in the biosynthesis of monoterpenes, diterpenes and tetraterpenoids. The key rate-limiting enzyme gene for terpenoid synthesis cloned from Masson pine in the present application is named PmDXR.
以马尾松基因组DNA为模板扩增得到PmDXR基因起始密码子ATG上游序列1600bp,即马尾松萜类物质合成相关酶基因PmDXR的启动子,其核苷酸序列如SEQ ID NO.1所示。The 1600bp upstream sequence of the initiation codon ATG of the PmDXR gene was amplified by using the masson pine genomic DNA as the template, which is the promoter of the masson pine terpenoid synthesis-related enzyme gene PmDXR, and its nucleotide sequence is shown in SEQ ID NO.1.
马尾松萜类物质合成相关酶基因PmDXR或马尾松萜类物质合成相关酶基因PmDXR的启动子在提高植物光合色素含量中的应用。Application of the promoter of masson pine terpenoid synthesis related enzyme gene PmDXR or masson pine terpenoid synthesis related enzyme gene PmDXR in improving the content of photosynthetic pigments in plants.
马尾松萜类物质合成相关酶基因PmDXR或马尾松萜类物质合成相关酶基因PmDXR的启动子在提高植物DXR酶活性的应用。The application of the promoter of masson pine terpenoid synthesis related enzyme gene PmDXR or masson pine terpenoid synthesis related enzyme gene PmDXR in improving plant DXR enzyme activity.
进一步的,植物为马尾松或拟南芥。Further, the plant is Masson pine or Arabidopsis.
本申请以模式植物拟南芥为受体植物,成功构建pCAMBIA1302-PmDXR过表达载体,并利用农杆菌介导转化至拟南芥中,培育得到转基因拟南芥,然后测定转基因拟南芥的DXR酶活性和光合色素含量。In this application, the model plant Arabidopsis thaliana was used as the recipient plant, and the pCAMBIA1302-PmDXR overexpression vector was successfully constructed, and transformed into Arabidopsis thaliana mediated by Agrobacterium, and the transgenic Arabidopsis was cultivated to obtain the transgenic Arabidopsis thaliana, and then the DXR of the transgenic Arabidopsis was determined. Enzyme activity and photosynthetic pigment content.
马尾松萜类物质合成相关酶基因PmDXR的启动子在驱动GUS基因在植物表达中的应用。Application of the promoter of masson pine terpenoid synthesis-related enzyme gene PmDXR in driving GUS gene expression in plants.
进一步的,植物为马尾松或烟草。Further, the plant is masson pine or tobacco.
本申请将马尾松萜类物质合成相关酶基因PmDXR的启动子插入含GUS基因的表达载体pBI121,以替换表达载体中已有的启动子,构建pBI121-ProDXR载体,并以本式烟草为瞬时转化对象,将克隆得到的pBI121-ProDXR载体通过瞬时转化的方法转入烟草并进行培育,PmDXR基因启动子能驱动GUS基因在本氏烟草根、茎、叶中表达。In the present application, the promoter of the PmDXR gene of masson terpenoid synthesis-related enzymes was inserted into the expression vector pBI121 containing the GUS gene to replace the existing promoter in the expression vector, and the pBI121-ProDXR vector was constructed, and the present type of tobacco was used for transient transformation. The subject, the cloned pBI121-ProDXR vector was transformed into tobacco by transient transformation and cultivated. The PmDXR gene promoter can drive the expression of GUS gene in the roots, stems and leaves of N. benthamiana.
相比于现有技术,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明以模式植物本式烟草和拟南芥为受体植物,将马尾松PmDXR基因利用农杆菌介导转化至拟南芥中,通过培育得到转基因拟南芥,其中DXR酶活性、叶绿素a、叶绿素b、类胡萝卜素含量均高于野生型拟南芥,形态学观测发现正常生长30d的转基因及野生型拟南芥在在薹轴生长上存在差异。并构建pBI121-ProDXR载体,瞬时转化法侵染本氏烟草,并进行GUS组织化学染色分析。结果显示,PmDXR基因启动子能驱动GUS基因在本氏烟草根、茎、叶中表达,且启动子没有明显的组织特异性。具有很好的实用性,将在植物育种以及抗逆性研究中具有很好的应用前景。In the present invention, the model plants Nicotiana benthamiana and Arabidopsis thaliana are used as recipient plants, the PmDXR gene of Pinus massoniana is transformed into Arabidopsis thaliana mediated by Agrobacterium, and the transgenic Arabidopsis thaliana is obtained through cultivation, wherein the DXR enzyme activity, chlorophyll a, chlorophyll a, The contents of chlorophyll b and carotenoid were higher than those of wild-type Arabidopsis. Morphological observation found that there were differences in the growth of sprouts between the transgenic and wild-type Arabidopsis that grew normally for 30 days. The pBI121-ProDXR vector was constructed, and the transient transformation method was used to infect N. benthamiana, and GUS histochemical staining was performed. The results showed that the PmDXR gene promoter could drive the expression of GUS gene in N. benthamiana roots, stems and leaves, and the promoter had no obvious tissue specificity. It has good practicability and will have good application prospects in plant breeding and stress resistance research.
附图说明Description of drawings
图1是PmDXR基因在马尾松中的组织特异性表达图;图中,R:根;F:花;NS:幼茎;OS:老茎;NL:新叶;ML:成熟叶;X:木质部;P:韧皮部;Figure 1 is the tissue-specific expression map of PmDXR gene in Pinus massoniana; in the figure, R: root; F: flower; NS: young stem; OS: old stem; NL: new leaf; ML: mature leaf; X: xylem; P: Phloem;
图2是PmDXR基因在不同处理马尾松幼苗中的表达图;图中,(A)为机械损伤处理,(B)为15%PEG6000渗透胁迫处理,(C)为0mM H2O2胁迫处理,(D)为500μM ETH处理,(E)为1mMSA处理;(F)为100μM MeJA处理;Figure 2 is the expression map of PmDXR gene in different treatments of Pinus massoniana seedlings; in the figure, (A) is mechanical damage treatment, (B) is 15% PEG6000 osmotic stress treatment, (C) is 0 mM H 2 O 2 stress treatment, (D) is treated with 500 μM ETH, (E) is treated with 1 mM SA; (F) is treated with 100 μM MeJA;
图3是转基因拟南芥鉴定图;图中,M为NormalRunTM 250bp-II DNA ladder;1-14为转基因拟南芥;15为野生型拟南芥;16为阳性对照pCAMBIA1302-PmDXR质粒;Figure 3 is the identification map of transgenic Arabidopsis; in the figure, M is NormalRun TM 250bp-II DNA ladder; 1-14 are transgenic Arabidopsis; 15 is wild-type Arabidopsis; 16 is the positive control pCAMBIA1302-PmDXR plasmid;
图4是转基因拟南芥PmDXR基因相对表达量检测图;图中,WT为野生型拟南芥;R1-R12为转基因拟南芥;Figure 4 is a graph showing the relative expression of PmDXR gene in transgenic Arabidopsis; in the figure, WT is wild-type Arabidopsis; R1-R12 are transgenic Arabidopsis;
图5是DXR酶活性测定图;图中,WT为野生型拟南芥;R1-R12为转基因拟南芥;Figure 5 is a graph of DXR enzyme activity assay; in the figure, WT is wild-type Arabidopsis; R1-R12 are transgenic Arabidopsis;
图6是转基因植株和野生型植株光合色素含量分析图;图中,WT为野生型拟南芥;R1-R12为转基因拟南芥;Figure 6 is an analysis diagram of photosynthetic pigment content in transgenic plants and wild-type plants; in the figure, WT is wild-type Arabidopsis; R1-R12 are transgenic Arabidopsis;
图7是转基因植株和野生型植株表型观察图;图中,(A)为拟南芥莲座;(B)为拟南芥薹轴;(C)为干旱处理拟南芥;WT为野生型拟南芥,DXR为过表达PmDXR的拟南芥;a为干旱处理前土中生长20d拟南芥,b为干旱处理15d拟南芥,c为复水3天拟南芥;Figure 7 is a phenotype observation diagram of transgenic plants and wild-type plants; in the figure, (A) is Arabidopsis rosette; (B) is Arabidopsis scabbard; (C) is drought-treated Arabidopsis; WT is wild-type Arabidopsis thaliana, DXR is Arabidopsis thaliana overexpressing PmDXR; a is Arabidopsis thaliana grown in soil before drought treatment for 20 days, b is Arabidopsis thaliana after drought treatment for 15 days, and c is Arabidopsis thaliana that has been rehydrated for 3 days;
图8是PmDXR启动子扩增产物图;图中,M为DNAMarker,PRO为PmDXR启动子;Figure 8 is a diagram of the amplification product of the PmDXR promoter; in the figure, M is the DNAMarker, and PRO is the PmDXR promoter;
图9是重组质粒的电泳检测图;Fig. 9 is the electrophoresis detection figure of recombinant plasmid;
图10是不同组织的GUS染色情况图;Figure 10 is a graph of GUS staining of different tissues;
图11是PmDXR启动子激素胁迫响应分析图;Figure 11 is an analysis diagram of PmDXR promoter hormone stress response;
图12是PmDXR蛋白亚细胞定位图;图中A为绿色荧光效果图,B为叶绿体自发荧光效果图,C为明场效果图;D为叠加场效果图。Figure 12 is the subcellular localization map of PmDXR protein; A is the green fluorescence effect map in the figure, B is the chloroplast autofluorescence effect map, C is the bright field effect map; D is the superimposed field effect map.
具体实施方式Detailed ways
下面结合具体实施例对本发明进一步进行描述。下述所有引物序列方向均是5′端到3′端。The present invention will be further described below with reference to specific embodiments. All primer sequences described below are oriented 5' to 3'.
实施例1马尾松PmDXR基因(GenBank:MK969119.1)的表达模式分析Example 1 Expression pattern analysis of PmDXR gene (GenBank: MK969119.1) of Pinus massoniana
一、PmDXR基因在马尾松中的组织特异性表达1. Tissue-specific expression of PmDXR gene in Masson pine
利用qRT-PCR技术分析PmDXR基因在马尾松不同组织(根、幼茎、老茎、新叶、成熟叶、花、木质部和韧皮部)中的表达情况(图1)。将幼茎中的表达水平设为1,结果显示,PmDXR在所有组织中均有表达,且在不同组织中的表达具有差异性,PmDXR在木质部中表达最高,与成熟叶和根中PmDXR的表达量无显著差异,而显著高于其他组织中PmDXR的表达量。整体来看,木质部>根>成熟叶>新叶>韧皮部>老茎>幼茎>花。The expression of PmDXR gene in different tissues of Pinus massoniana (root, young stem, old stem, new leaf, mature leaf, flower, xylem and phloem) was analyzed by qRT-PCR technology (Figure 1). The expression level in young stems was set to 1. The results showed that PmDXR was expressed in all tissues, and the expression in different tissues was different. PmDXR had the highest expression in xylem, which was closely related to the expression of PmDXR in mature leaves and roots. There was no significant difference in the amount of PmDXR, but it was significantly higher than the expression of PmDXR in other tissues. Overall, xylem>root>mature leaf>new leaf>phloem>old stem>young stem>flower.
qRT-PCR反应体系(20μl):2μl cDNA;10μl SYBR Green Master Mix;0.4μlqPmDXR-F;0.4μl qPmDXR-R;7.2μl ddH2O。qRT-PCR reaction system (20 μl): 2 μl cDNA; 10 μl SYBR Green Master Mix; 0.4 μl qPmDXR-F; 0.4 μl qPmDXR-R; 7.2 μl ddH 2 O.
反应程序如下:95℃;2min;95℃;10sec;55℃;30sec;72℃;30sec;40个循环。The reaction program was as follows: 95 °C; 2 min; 95 °C; 10 sec; 55 °C; 30 sec; 72 °C; 30 sec; 40 cycles.
二、PmDXR基因在不同处理马尾松幼苗中的表达2. Expression of PmDXR gene in different treatments of Masson pine seedlings
分别对两年生马尾松幼苗进行逆境胁迫(机械损伤、15%PEG6000渗透胁迫、10mMH2O2)和激素处理(500μM乙烯利ETH、1mM水杨酸SA和100μM茉莉酸甲酯MeJA),并在不同时间段取样。逆境胁迫下qRT-PCR结果显示(图2中的(A)-(C)),在机械损伤处理后,除3h外,PmDXR基因的表达量在其他处理时间出现了不同程度的上调,在处理6h时表达量最高,为对照组的2.92倍。在PEG6000和H2O2处理后,PmDXR基因的表达水平在各处理时间点均有所下降。激素诱导处理下qRT-PCR结果显示(图2中的(D)-(F)),在ETH处理后,PmDXR在处理6h时略有上调。在SA处理后,PmDXR的表达量在6h时有所上调,其余处理时间点表达量均下降。在MeJA处理后,PmDXR基因的表达量在各处理时间点均有所下降。Biennial masson pine seedlings were subjected to stress stress (mechanical injury, 15% PEG6000 osmotic stress, 10 mM H 2 O 2 ) and hormone treatments (500 μM ethephon ETH, 1 mM salicylic acid SA and 100 μM methyl jasmonate MeJA), respectively, and were treated with Sampling at different time periods. The results of qRT-PCR under stress showed ((A)-(C) in Figure 2) that after mechanical injury, except for 3h, the expression of PmDXR gene was up-regulated to varying degrees at other treatment times. The expression level was the highest at 6h, which was 2.92 times that of the control group. After PEG6000 and H 2 O 2 treatment, the expression level of PmDXR gene decreased at each treatment time point. The results of qRT-PCR under hormone-induced treatment showed ((D)-(F) in Figure 2) that PmDXR was slightly up-regulated at 6 h after ETH treatment. After SA treatment, the expression of PmDXR was up-regulated at 6 h, and the expression was decreased at other treatment time points. After MeJA treatment, the expression of PmDXR gene decreased at each treatment time point.
实施例2构建马尾松PmDXR基因表达载体及转化拟南芥Example 2 Construction of Masson pine PmDXR gene expression vector and transformation of Arabidopsis thaliana
一、载体的构建1. Construction of the vector
取1ml保存于-80℃的含pCAMBIAl302载体的大肠杆菌菌液进行活化,取1-4ml过夜培养的菌液,利用质粒小提试剂盒提取质粒。取1μg提取的pCAMBIA1302质粒,利用Nco I限制性内切酶进行单酶切,根据单酶切后的pCAMBIA1302载体两端序列和PmDXR的ORF序列设计重组引物,进行PCR扩增。Take 1 ml of Escherichia coli bacteria liquid containing pCAMBIAl302 vector stored at -80°C for activation, take 1-4 ml of bacterial liquid cultured overnight, and extract plasmids using a plasmid mini-extraction kit. Take 1 μg of the extracted pCAMBIA1302 plasmid, use Nco I restriction endonuclease for single digestion, and design recombinant primers according to the sequence of the two ends of the pCAMBIA1302 vector after single digestion and the ORF sequence of PmDXR, and carry out PCR amplification.
连接体系如下:加入0.02×克隆载体碱基对数(ng)的线性化载体;0.04×插入片段碱基对数(ng)的插入片段;4μl 5×CE II Buffer;2μl Exnase II;加入ddH2O至20μl。The ligation system is as follows: add 0.02×cloning vector base pairs (ng) of linearized vector; 0.04×insert base pair (ng) insert; 4μl 5×CE II Buffer; 2μl Exnase II; add
置于PCR仪中37℃反应30min后立即置于冰上。Placed in a PCR machine at 37 °C for 30 min and immediately placed on ice.
将构建成功的重组载体质粒转化到农杆菌感受态细胞GV3101中,转化方法如下:The constructed recombinant vector plasmid was transformed into Agrobacterium competent cell GV3101, and the transformation method was as follows:
(1)取10μl重组质粒加入到100μl处于冰水混合状态的农杆菌感受态中,轻轻拨打管底混匀,依次置于冰上、液氮、37℃水浴、冰浴各5min。(1) Take 10 μl of the recombinant plasmid and add it to 100 μl of Agrobacterium competent bacteria mixed with ice and water. Gently dial the bottom of the tube to mix evenly, and place it on ice, in liquid nitrogen, in a 37°C water bath, and in an ice bath for 5 minutes each.
(2)加入700μl LB液体培养基放置于28℃恒温摇床振荡培养2.5h。(2) Add 700 μl of LB liquid medium and place it at 28°C for 2.5 hours with shaking on a constant temperature shaker.
(3)吸取100μl左右的上清涂布于含50mg·L-1卡那霉素(Kan)、25mg·L-1利福平(Rif)的LB平板上,倒置于28℃培养箱培养2d。(3) Pipette about 100 μl of the supernatant and spread it on the LB plate containing 50 mg·L -1 kanamycin (Kan) and 25 mg·L -1 rifampicin (Rif), and place it upside down in a 28°C incubator for 2 days. .
(4)挑取生长状态良好的单克隆菌落进行PCR检测,将检测阳性的单克隆菌落扩大培养,在菌液中加入等体积的50%甘油,保存于-80℃用于后续实验。(4) Picking monoclonal colonies with good growth conditions for PCR detection, expanding and culturing positive monoclonal colonies, adding an equal volume of 50% glycerol to the bacterial solution, and storing at -80°C for subsequent experiments.
二、拟南芥的播种与培养2. Sowing and Cultivation of Arabidopsis
(1)拟南芥种子消毒:在1.5ml的离心管中放入适量拟南芥种子,向离心管中加入1ml 75%乙醇,上下翻转45sec,用无菌水清洗后加入1ml 20%次氯酸钠,上下翻转5min,使用无菌水反复清洗5-6次。(1) Sterilization of Arabidopsis thaliana seeds: put an appropriate amount of Arabidopsis thaliana seeds in a 1.5ml centrifuge tube, add 1ml of 75% ethanol to the centrifuge tube, turn upside down for 45sec, wash with sterile water and add 1ml of 20% sodium hypochlorite, Flip up and down for 5 minutes, and wash with sterile water 5-6 times.
(2)播种:用1ml移液枪将消毒完毕的拟南芥种子点播在1/2MS培养基上培养。(2) Seeding: The sterilized Arabidopsis thaliana seeds were seeded on 1/2 MS medium with a 1 ml pipette.
(3)拟南芥培养:将播种完拟南芥种子的培养基密封好,在4℃黑暗条件下培养2d,然后置于人工气候培养箱待其萌发与生长。大约一周后,将培养基中生长状态良好的拟南芥幼苗转移至营养土(黑土∶蛭石∶珍珠岩=6∶2∶1)中继续培养,并用保鲜膜覆盖,第三天揭去保鲜膜。(3) Arabidopsis thaliana culture: Seal the medium on which Arabidopsis thaliana seeds were sown, cultured in the dark at 4°C for 2 days, and then placed in an artificial climate incubator for germination and growth. After about a week, the Arabidopsis seedlings in good growth condition in the medium were transferred to nutrient soil (black soil: vermiculite: perlite = 6: 2: 1) for further cultivation, and covered with plastic wrap, and the fresh-keeping was removed on the third day. membrane.
三、花序浸染法转化拟南芥3. Transformation of Arabidopsis thaliana by inflorescence dip method
(1)在超净工作台中,将含pCAMBIAl302-PmDXR重组质粒的农杆菌菌液划线培养于含50mg·L-1Kan和25mg·L-1Rif的LB平板上。(1) In an ultra-clean workbench, streak the Agrobacterium liquid containing the pCAMBIAl302-PmDXR recombinant plasmid on an LB plate containing 50 mg·L -1 Kan and 25 mg·L -1 Rif.
(2)挑取生长状态良好的单菌落,加入5ml含50mg·L-1Kan和25mg·L-1Rif的LB液体培养基,在28℃恒温摇床中200rpm培养过夜。(2) Pick a single colony with a good growth state, add 5 ml of LB liquid medium containing 50 mg·L -1 Kan and 25 mg·L -1 Rif, and cultivate overnight at 200 rpm in a constant temperature shaker at 28°C.
(3)取1ml过夜培养的菌液接种于50ml含50mg·L-1Kan和25mg·L-1Rif的LB液体培养基中,振荡培养至OD600=0.8左右。(3)
(4)将菌液倒入50ml无菌离心管中,5000rpm离心10min收集菌体,加入50ml提前配制好的渗透缓冲液悬浮菌体沉淀。(4) Pour the bacterial liquid into a 50 ml sterile centrifuge tube, centrifuge at 5000 rpm for 10 min to collect the bacterial cells, and add 50 ml of the osmotic buffer prepared in advance to suspend the bacterial cell precipitation.
(5)选取生长4周左右抽薹的拟南芥植株,去除已经开放的花蕾,将花序浸泡于侵染液中浸染30sec,浸染完成后覆盖保鲜膜。(5) Select Arabidopsis thaliana plants that have been bolted for about 4 weeks, remove the flower buds that have opened, soak the inflorescence in the infection solution for 30 sec, and cover with plastic wrap after the soaking is completed.
(6)暗培养18-20h,用清水冲洗干净后继续放在培养箱培养。(6) Incubate in the dark for 18-20h, rinse with clean water and continue to cultivate in the incubator.
(7)7-10d后,重复1-6步骤再次侵染。(7) After 7-10d, repeat steps 1-6 to infect again.
(8)待拟南芥植株的种荚变黄后收获转基因T0代种子,为促进种子成熟,在种子即将成熟时应适当控制浇水次数。(8) Harvest the transgenic T0 generation seeds after the seed pods of the Arabidopsis thaliana plants turn yellow. In order to promote the maturity of the seeds, the watering frequency should be appropriately controlled when the seeds are about to mature.
四、转基因拟南芥植株的抗性筛选4. Resistance screening of transgenic Arabidopsis plants
(1)取适量收获的T0代种子至1.5ml离心管中,向离心管中加入1ml 75%乙醇,上下翻转45sec,用无菌水清洗后加入1ml 20%次氯酸钠,上下翻转5min,使用无菌水反复清洗5-6次。(1) Take an appropriate amount of harvested T0 generation seeds into a 1.5ml centrifuge tube, add 1ml of 75% ethanol to the centrifuge tube, invert up and down for 45sec, wash with sterile water, add 1ml of 20% sodium hypochlorite, invert up and down for 5min, use sterile Wash with water 5-6 times.
(2)用1ml的移液枪将种子均匀点播在含30mg·L-1潮霉素(Hyg)的1/2MS培养基上,于4℃暗培养2d后置于人工气候培养箱培养。(2) Seeds were evenly sown on 1/2 MS medium containing 30 mg·L -1 hygromycin (Hyg) with a 1 ml pipette, cultured in the dark at 4°C for 2 days and then placed in an artificial climate incubator.
(3)大约培养2周后,将培养基中长出2片绿色真叶且根系正常生长的抗性幼苗移栽入营养土中,用保鲜膜覆盖,第三天揭去保鲜膜。(3) After about 2 weeks of culture, transplant the resistant seedlings with 2 green true leaves and normal root growth in the medium into nutrient soil, cover with plastic wrap, and remove the plastic wrap on the third day.
(4)种子成熟后单株分开收获T1代种子,继续播种筛选直至收获T2代种子以进行后续实施例操作。(4) After the seeds are mature, the seeds of the T1 generation are harvested separately for each individual plant, and the sowing and screening are continued until the seeds of the T2 generation are harvested for subsequent example operations.
五、转基因拟南芥分子水平检测5. Molecular level detection of transgenic Arabidopsis
在1/2MS(含Hyg)培养基上进行初步的抗性筛选,未成功转化的阴性植株均不能正常生长,而阳性转基因植株则可以正常生长。将可以正常生长的拟南芥幼苗移至营养土中继续培养,以叶片为材料提取基因组DNA和RNA。首先以野生型和转基因拟南芥的基因组DNA为模板进行PCR扩增,成功转入PmDXR基因的拟南芥能够扩增出与质粒扩增产物大小一致的条带(图3);然后对基因水平鉴定成功的转基因株系进行转录水平的鉴定(图4),结果表明不同转基因植株的表达水平存在差异,在检测的12株转基因拟南芥中(编号分别命名为R1-R12),编号为R8的拟南芥植株的表达量最高,其次为R12和R3。Preliminary resistance screening was carried out on 1/2MS (containing Hyg) medium, and the negative plants that were not successfully transformed could not grow normally, while the positive transgenic plants could grow normally. The Arabidopsis thaliana seedlings that could grow normally were transferred to nutrient soil for further cultivation, and genomic DNA and RNA were extracted from leaves. First, PCR amplification was carried out using the genomic DNA of wild-type and transgenic Arabidopsis as templates. Arabidopsis successfully transformed with PmDXR gene could amplify the band with the same size as the plasmid amplification product (Figure 3). The transgenic lines that were successfully identified were identified at the transcription level (Fig. 4). The results showed that there were differences in the expression levels of different transgenic plants. Among the 12 transgenic Arabidopsis tested (the numbers were named R1-R12), the numbers were The Arabidopsis plant of R8 had the highest expression level, followed by R12 and R3.
具体实施步骤如下:The specific implementation steps are as follows:
(1)剪取拟南芥新鲜叶片,使用DNAsecure新型植物基因组DNA提取试剂盒(TIANGEN)提取拟南芥基因组DNA,提取步骤严格按照说明书进行。用超微量分光光度计检测提取的拟南芥gDNA的浓度及OD260/280比值。(1) Cut the fresh leaves of Arabidopsis thaliana, and use the DNAsecure new plant genomic DNA extraction kit (TIANGEN) to extract the genomic DNA of Arabidopsis thaliana. The extraction steps are carried out in strict accordance with the instructions. The concentration and OD260/280 ratio of the extracted Arabidopsis gDNA were detected by ultra-micro spectrophotometer.
(2)以第一步得到的gDNA为模板,1302-CheckF为前引物,1302-PmDXR-R为后引物,进行PCR检测。(2) Using the gDNA obtained in the first step as a template, 1302-CheckF as a pre-primer, and 1302-PmDXR-R as a post-primer, PCR detection was performed.
引物如下序列:The primers are sequenced as follows:
1302-CheckF:ACAGTCTCAGAAGACCAAAGGGCA;1302-CheckF: ACAGTCTCAGAAGACCAAAGGGCA;
1302-PmDXR-R:ACTAGTCAGATCTACCATGGTCAGACTGTGGCAGGCTCCAAG。1302-PmDXR-R: ACTAGTCAGATCTACCATGGTCAGACTGTGGCAGGCTCCAAG.
PCR扩增反应体系(50μl):2μl拟南芥gDNA;25μl 2×Master Mix;2μl1302-CheckF;2μl 1302-PmDXR-R;19μl ddH2O。PCR amplification reaction system (50 μl): 2 μl Arabidopsis gDNA; 25
反应程序:98℃ 3min;98℃ 15sec,55℃15sec,72℃ 1min,35个循环;72℃ 5min;4℃保持。Reaction program: 98 °C for 3 min; 98 °C for 15 sec, 55 °C for 15 sec, 72 °C for 1 min, 35 cycles; 72 °C for 5 min; 4 °C hold.
(3)提取DNA水平检测阳性植株的总RNA并反转录为cDNA,通过qRT-PCR检测转基因拟南芥中PmDXR基因的相对表达量,其中,内参基因为Actin2。(3) The total RNA of the plants with positive DNA level detection was extracted and reverse transcribed into cDNA, and the relative expression of PmDXR gene in transgenic Arabidopsis was detected by qRT-PCR, wherein the internal reference gene was Actin2.
以阳性植株的马尾松幼苗为材料,利用多糖多酚植物总RNA提取试剂盒(天根生化科技有限公司)提取总RNA;当马尾松总RNA的1%琼脂糖凝胶电泳图,条带清晰,且OD260/280、OD260/230在1.8-2.1之间时,可用于基因克隆。Using the masson pine seedlings of the positive plants as the material, the total RNA was extracted by the polysaccharide polyphenol plant total RNA extraction kit (Tiangen Biochemical Technology Co., Ltd.); when the 1% agarose gel electrophoresis of the masson pine total RNA, the bands were clear. , and when OD260/280 and OD260/230 are between 1.8-2.1, it can be used for gene cloning.
以提取的RNA为模板,利用One-Step gDNA Removal and cDNASynthesis SuperMix试剂盒,按照说明书操作步骤合成cDNA第一链。Using the extracted RNA as a template, One-Step gDNA Removal and cDNASynthesis SuperMix kit, according to the instructions to synthesize the first strand of cDNA.
qRT-PCR体系与程序设置参考实施例1。Refer to Example 1 for the qRT-PCR system and program settings.
六、转基因拟南芥DXR酶活性和光合色素含量的测定6. Determination of DXR enzyme activity and photosynthetic pigment content in transgenic Arabidopsis
将转基因成功的拟南芥幼苗与野生型拟南芥幼苗同时培养在人工气候培养箱中。以拟南芥叶片为材料,由上海沪鼎生物科技有限公司测定转基因拟南芥的DXR酶活性、叶绿素a、叶绿素b和类胡萝卜素的含量。酶活性测定结果如图5所示,转基因拟南芥的DXR酶活性均高于野生型拟南芥,其中R5、R11和R12的DXR酶活性显著高于野生型拟南芥。R5的酶活性最高,达到了野生型的1.7倍,R11和R12的DXR酶活性约为野生型的1.5倍。这些结果说明PmDXR基因转化拟南芥后提升了DXR的酶活性。光合色素含量测定结果如图6所示,转基因拟南芥的叶绿素a、叶绿素b、类胡萝卜素含量较野生型均有提高。转基因拟南芥的叶绿素a含量是野生型的1.1-1.7倍,其中R1、R6、R7、R8、R12的叶绿素a含量显著高于野生型,R12的叶绿素a含量最高,为野生型的1.7倍,其次为R7,叶绿素a含量为野生型的1.4倍。转基因拟南芥的叶绿素b含量是野生型的1.3-2.0倍,除R5、R11外,其余转基因植株的叶绿素b含量均显著或极显著高于野生型,R4的叶绿素b含量最高。所有转基因拟南芥的类胡萝卜素含量均显著或极显著高于野生型,它们的类胡萝卜素含量是野生型的1.2-1.4倍,其中R1的类胡萝卜素含量最高,达210.4pg/ml。The transgenic Arabidopsis seedlings and wild-type Arabidopsis seedlings were simultaneously cultivated in an artificial climate incubator. Using Arabidopsis leaves as materials, the DXR enzyme activity, chlorophyll a, chlorophyll b and carotenoid contents of transgenic Arabidopsis were determined by Shanghai Huding Biotechnology Co., Ltd. The results of enzyme activity assay are shown in Figure 5. The DXR enzyme activities of transgenic Arabidopsis were higher than those of wild-type Arabidopsis, and the DXR enzyme activities of R5, R11 and R12 were significantly higher than those of wild-type Arabidopsis. The enzyme activity of R5 was the highest, reaching 1.7 times that of the wild type, and the DXR enzyme activities of R11 and R12 were about 1.5 times that of the wild type. These results indicated that PmDXR gene transformed Arabidopsis thaliana to enhance the enzymatic activity of DXR. The results of the determination of photosynthetic pigment content are shown in Figure 6. The contents of chlorophyll a, chlorophyll b and carotenoid in transgenic Arabidopsis were all higher than those of the wild type. The chlorophyll a content of transgenic Arabidopsis was 1.1-1.7 times that of the wild type, and the chlorophyll a content of R1, R6, R7, R8, and R12 was significantly higher than that of the wild type, and the chlorophyll a content of R12 was the highest, which was 1.7 times that of the wild type. , followed by R7, the content of chlorophyll a was 1.4 times that of the wild type. The chlorophyll b content of transgenic Arabidopsis was 1.3-2.0 times that of the wild type. Except for R5 and R11, the chlorophyll b content of other transgenic plants was significantly or extremely significantly higher than that of the wild type, and the chlorophyll b content of R4 was the highest. The carotenoid content of all transgenic Arabidopsis was significantly or extremely significantly higher than that of the wild type, and their carotenoid content was 1.2-1.4 times that of the wild type. The carotenoid content of R1 was the highest, reaching 210.4pg/ml.
七、转基因拟南芥表型观察7. Phenotype observation of transgenic Arabidopsis
在相同的培养条件下培养转基因拟南芥和野生型拟南芥,正常生长30d后观察其莲座和薹轴生长差异(图7)。表型观察未发现过表达PmDXR的拟南芥与野生型拟南芥的莲座生长有明显差异,但薹轴生长存在差异,转基因拟南芥的薹轴明显低于野生型拟南芥。干旱处理拟南芥15d后发现,转基因拟南芥在缺水15d时的生长状况较野生型好,复水3d后,转基因拟南芥与野生型拟南芥均能逐渐恢复。Transgenic Arabidopsis and wild-type Arabidopsis were cultured under the same culture conditions, and the differences in the growth of rosettes and sprouts were observed after 30 days of normal growth (Fig. 7). Phenotypic observation did not reveal significant difference in rosette growth between PmDXR-overexpressing Arabidopsis thaliana and wild-type Arabidopsis thaliana, but there were differences in scabbard growth. After drought treatment of Arabidopsis for 15 days, it was found that the growth of transgenic Arabidopsis was better than that of the wild type when dehydrated for 15 days. After 3 days of rehydration, both the transgenic and wild type Arabidopsis could gradually recover.
实施例3马尾松PmDXR启动子片段的克隆及在烟草中瞬时表达Example 3 Cloning of PmDXR promoter fragment of Pinus massoniana and transient expression in tobacco
一、马尾松gDNA的提取1. Extraction of masson pine gDNA
使用DNAsecure新型植物基因组DNA提取试剂盒(TIANGEN)提取马尾松幼苗的基因组DNA,具体操作步骤需严格按照说明书进行。提取完成后,用超微量分光光度计检测马尾松gDNA的浓度和OD260/280比值。The genomic DNA of Masson pine seedlings was extracted using the DNAsecure new plant genomic DNA extraction kit (TIANGEN). After extraction, the concentration and OD260/280 ratio of Masson pine gDNA were detected by ultra-micro spectrophotometer.
二、PmDXR基因启动子引物设计2. Design of PmDXR Gene Promoter Primer
根据PmDXR基因序列设计3条退火温度较高的特异性下游引物pPmDXR-SP1、pPmDXR-SP2和pPmDXR-SP3,其中pPmDXR-SP2位于pPmDXR-SP1的内侧,pPmDXR-SP3位于pPmDXR-SP2的内侧。根据测序结果获得的侧翼序列设计特异性引物pPmDXR-F和pPmDXR-R。According to the PmDXR gene sequence, three specific downstream primers with higher annealing temperature, pPmDXR-SP1, pPmDXR-SP2 and pPmDXR-SP3, were designed, where pPmDXR-SP2 was located inside pPmDXR-SP1, and pPmDXR-SP3 was located inside pPmDXR-SP2. Specific primers pPmDXR-F and pPmDXR-R were designed according to the flanking sequences obtained from the sequencing results.
引物序列如下:The primer sequences are as follows:
pPmDXR-SP1:GTGAAGATGGCAGAGTCGCAGGAA;pPmDXR-SP1: GTGAAGATGGCAGAGTCGCAGGAA;
pPmDXR-SP2:GCGAGTGTAGGGTGGAGGCTTATT;pPmDXR-SP2:GCGAGTGTAGGGTGGAGGCTTATT;
pPmDXR-SP3:GGGCGGAGGATAAGACAAAGAAGA;pPmDXR-SP3:GGGCGGAGGATAAGACAAAGAAGA;
pPmDXR-F:TGGTAATGCAATGAAGTTGGGAGG;pPmDXR-F:TGGTAATGCAATGAAGTTGGGAGG;
pPmDXR-R:GGGGTGGAAAGGGGCGGAGGATAA。pPmDXR-R: GGGGTGGAAAGGGGCGGAGGATAA.
参照Genome Walking试剂盒说明书进行3轮PCR扩增,具体PCR反应体系及程序设置如下:Carry out 3 rounds of PCR amplification according to the instructions of the Genome Walking kit. The specific PCR reaction system and program settings are as follows:
(1)第一轮PCR反应液(50μl)配制如下:4μl gDNA;8μl dNTP Mixture(2.5mMeach);5μl 10×LA PCR Buffer II(Mg2+plus);0.5μl LA Taq;1μl AP1 Primer;1μl SP1Primer;30.5μl ddH2O。(1) The first-round PCR reaction solution (50 μl) was prepared as follows: 4 μl gDNA; 8 μl dNTP Mixture (2.5 mMeach); 5
(2)第一轮PCR反应条件如下:94℃1min;98℃1min;94℃30sec,64℃1min,72℃2min,共5个循环;94℃30sec,25℃3min,72℃2min;94℃30sec,64℃1min,72℃2min,94℃30sec,64℃1min,72℃2min,94℃30sec,44℃1min,72℃2min,共15个循环;72℃10min。(2) The first round PCR reaction conditions are as follows: 94℃ for 1min; 98℃ for 1min; 94℃ for 30sec, 64℃ for 1min, 72℃ for 2min, a total of 5 cycles; 94℃ for 30sec, 25℃ for 3min, 72℃ for 2min; 94℃ 30sec, 64℃ for 1min, 72℃ for 2min, 94℃ for 30sec, 64℃ for 1min, 72℃ for 2min, 94℃ for 30sec, 44℃ for 1min, 72℃ for 2min, a total of 15 cycles; 72℃ for 10min.
(3)第二轮PCR反应液(50μl)配制如下:1μl第一轮PCR反应液;8μl dNTP Mixture(2.5mM each);5μl 10×LA PCR Buffer II(Mg2+plus);0.5μl LA Taq;1μl AP1 Primer;1μl SP2 Primer;33.5μl ddH2O。(3) The second round PCR reaction solution (50 μl) was prepared as follows: 1 μl first round PCR reaction solution; 8 μl dNTP Mixture (2.5mM each); 5
(4)第二轮PCR反应条件如下:94℃30sec,64℃1min,72℃2min,94℃30sec,64℃1min,72℃2min,94℃30sec,44℃1min,72℃2min,共15个循环;72℃10min。(4) The reaction conditions of the second round of PCR are as follows: 94℃ for 30sec, 64℃ for 1min, 72℃ for 2min, 94℃ for 30sec, 64℃ for 1min, 72℃ for 2min, 94℃ for 30sec, 44℃ for 1min, 72℃ for 2min, a total of 15 cycles Cycle; 10min at 72°C.
(5)第三轮PCR反应液(50μl)配制如下:1μl第二轮PCR反应液;8μl dNTP Mixture(2.5mM each);5μl 10×LA PCR Buffer II(Mg2+plus);0.5μl LA Taq;1μl AP1 Primer;1μl SP3 Primer;33.5μl ddH2O。(5) The third round PCR reaction solution (50 μl) was prepared as follows: 1 μl second round PCR reaction solution; 8 μl dNTP Mixture (2.5mM each); 5
(6)第三轮PCR反应条件如下:94℃30sec,641min,72℃2min,94℃30sec,64℃1min,72℃2min,94℃30sec,44℃1min,72℃2min,共15个循环;72℃10min。(6) The third round PCR reaction conditions are as follows: 94°C for 30sec, 641min, 72°C for 2min, 94°C for 30sec, 64°C for 1min, 72°C for 2min, 94°C for 30sec, 44°C for 1min, 72°C for 2min, a total of 15 cycles; 72°C for 10 minutes.
(7)凝胶电泳检测PCR产物、切胶回收目的条带、连接转化及阳性检测参照上述实施例操作过程,将菌检阳性的菌液送至北京擎科生物科技有限公司测序。(7) Gel electrophoresis detects PCR products, gel cutting to recover the target band, ligation transformation and positive detection Referring to the operation process of the above-mentioned embodiment, the bacterial liquid with positive bacterial detection is sent to Beijing Qingke Biotechnology Co., Ltd. for sequencing.
三、马尾松PmDXR启动子序列验证3. Validation of PmDXR promoter sequence of Masson pine
PCR扩增验证启动子全长的PCR反应体系(50μl)如下:2μl gDNA;25μl 2×Master Mix;2μl pPmDXR-F;2μl pPmDXR-R;19μl ddH2O。The PCR reaction system (50 μl) to verify the full length of the promoter by PCR amplification is as follows: 2 μl gDNA; 25
PCR程序设置如下:98℃3min;98℃15sec,55℃15sec,72℃ 1min,共35个循环;72℃ 5min;4℃保持。The PCR program was set as follows: 98°C for 3 min; 98°C for 15 sec, 55°C for 15 sec, 72°C for 1 min, a total of 35 cycles; 72°C for 5 min; 4°C hold.
PmDXR基因启动子扩增产物1.2%琼脂糖凝胶电泳见图8,测的核苷酸序列如如SEQID NO.1所示。1.2% agarose gel electrophoresis of the PmDXR gene promoter amplification product is shown in Figure 8, and the measured nucleotide sequence is shown in SEQ ID NO.1.
四、pBI121-ProDXR重组载体的构建4. Construction of pBI121-ProDXR recombinant vector
以pBI121-ProDXR-F和pBI121-ProDXR-R(ProDXR指PmDXR基因的启动子)为引物扩增得到两端带有酶切位点的PmDXR启动子片段,使用Hind III和Xba I限制性内切酶双酶切pBI121质粒,酶切产物与插入片段连接后转化大肠杆菌感受态细胞TreliefTM5d,PCR检测单克隆菌落(图9)。随后对检测阳性的菌液进行测序验证,测序结果表明pBI121-ProDXR载体构建成功。Using pBI121-ProDXR-F and pBI121-ProDXR-R (ProDXR refers to the promoter of the PmDXR gene) as primers, amplify the PmDXR promoter fragment with restriction sites at both ends, and use Hind III and Xba I for restriction endonucleation The pBI121 plasmid was digested with double enzymes, and the digested product was ligated with the inserted fragment and transformed into E. coli competent cells Trelief TM 5d, and the single clone colonies were detected by PCR (Fig. 9). The positive bacterial liquid was then verified by sequencing, and the sequencing results showed that the pBI121-ProDXR vector was successfully constructed.
引物序列如下:The primer sequences are as follows:
pBI121-ProDXR-F:GACCATGATTACGCCAAGCTTTGGTAATGCAATGAAGTTGGGA;pBI121-ProDXR-F:GACCATGATTACGCCAAGCTTTGGTAATGCAATGAAGTTGGGA;
pBI121-ProDXR-R:ACCACCCGGGGATCCTCTAGAGGGGTGGAAAGGGGCGGA。pBI121-ProDXR-R: ACCACCCGGGGATCCTCTAGAGGGGTGGAAAGGGGCGGA.
质粒酶切反应体系(50μl)如下:1μg pBI121质粒;5μl10×QuickCut Buffer;1μlHind III;1μl Xba I;加入ddH2O至50μl。The plasmid digestion reaction system (50 μl) is as follows: 1 μg pBI121 plasmid; 5
五、农杆菌介导法瞬时转化烟草V. Agrobacterium-mediated transient transformation of tobacco
将构建成功的pBI121-ProDXR重组质粒转化到农杆菌感受态细胞EHAl05中,挑取单菌落进行菌液PCR鉴定。将检测阳性的单克隆菌落扩大培养至OD600=0.8左右后转化本氏烟草,具体方法如下:The successfully constructed pBI121-ProDXR recombinant plasmid was transformed into Agrobacterium competent cell EHA105, and a single colony was picked for PCR identification. The positive monoclonal colonies are expanded and cultured to about OD 600 =0.8 and then transformed into Nicotiana benthamiana. The specific method is as follows:
(1)5000rpm离心10min收集菌体,加入50ml瞬时转化重悬液悬浮菌体沉淀,黑暗条件静置3h。(1) The cells were collected by centrifugation at 5000 rpm for 10 min, and 50 ml of transient transformation resuspension was added to suspend the cell pellet, and the cells were allowed to stand in the dark for 3 h.
(2)将生长健壮的本氏烟草组培苗叶片制成叶盘,并将烟草的根和茎剪成小段,为避免失水萎蔫,将准备好的叶片、茎、根放置在无菌水中待用。(2) The leaves of the tissue cultured N. benthamiana seedlings with strong growth are made into leaf discs, and the roots and stems of the tobacco are cut into small sections. In order to avoid dehydration and wilting, the prepared leaves, stems and roots are placed in sterile water. stand-by.
(3)在无菌滤纸上吸干水分,将准备好的烟草叶片、根、茎置于重悬液中,轻轻摇晃10min左右,用镊子取出,并用无菌滤纸吸干,然后将侵染过的烟草叶片、根、茎置于烟草共培养培养基上,于黑暗条件培养24h。(3) Drain the water on sterile filter paper, place the prepared tobacco leaves, roots and stems in the re-suspension, shake gently for about 10 minutes, take out with tweezers, and blot dry with sterile filter paper, and then the infected The treated tobacco leaves, roots and stems were placed on tobacco co-cultivation medium and cultured in the dark for 24 h.
六、不同激素处理烟草叶片6. Treatment of tobacco leaves with different hormones
暗培养24h后,将烟草叶片转移至分别含有100μmol·L-1MeJA和100μmol·L-1ABA、1mmol·L-1GA的MS培养基上培养36h,以放置在MS0培养基上的叶片作为对照。After 24 hours of dark culture, tobacco leaves were transferred to MS medium containing 100 μmol·L -1 MeJA, 100 μmol·L -1 ABA, and 1 mmol·L -1 GA, respectively, for 36 hours to place leaves on MS 0 medium. as comparison.
七、β-葡萄糖醛酸糖苷酶(GUS)组织化学染色Seven, β-glucuronidase (GUS) histochemical staining
将本氏烟草的叶片、根、茎分别放入5ml离心管中,加入适量GUS染色液,加入的GUS染色液需没过实验材料,37℃避光染色16h,倒掉染色液后加入70%乙醇进行脱色,每隔3h换一次乙醇,脱色完成后在体视显微镜下观察烟草的染色情况并拍照记录。GUS组织化学染色分析结果表明(图10),GV3101空菌株阴性对照没有GUS蓝色信号,pBI121瞬时转化烟草根、茎、叶的GUS染色颜色最深,pBI121-ProDXR瞬时转化的烟草经GUS染色后其根、茎、叶均呈现蓝色,但较阳性对照pBI121的染色颜色浅。由此说明proPmDXR可以驱动GUS基因在烟草根、茎、叶中表达。Put the leaves, roots and stems of Nicotiana benthamiana into a 5ml centrifuge tube respectively, add an appropriate amount of GUS staining solution, the GUS staining solution added must be less than the experimental material, dye at 37°C for 16h in the dark, pour out the staining solution and add 70% Ethanol was used for decolorization, and the ethanol was changed every 3 h. After the decolorization was completed, the staining of tobacco was observed under a stereomicroscope and photographed for recording. The results of GUS histochemical staining analysis (Fig. 10) showed that the negative control of GV3101 empty strain had no GUS blue signal, and the GUS staining of tobacco roots, stems and leaves transiently transformed with pBI121 was the darkest. The roots, stems and leaves were all blue, but the staining color was lighter than that of the positive control pBI121. This indicates that proPmDXR can drive the expression of GUS gene in tobacco roots, stems and leaves.
将共培养24h的烟草叶片转移至分别含有100μmol·L-1MeJA、100μmol·L-1ABA、1mmol·L-1GA的MS培养基上处理36h,GUS染色后观察染色结果,分析不同激素对PmDXR启动子的影响。结果表明(图11),经ABA、MeJA处理后,ProDXR驱动的GUS染色效果强于对照,颜色较未作处理的烟草叶片深,GA处理后GUS染色效果与未作处理相较略弱。Tobacco leaves co-cultured for 24 h were transferred to MS medium containing 100 μmol·L -1 MeJA, 100 μmol·L -1 ABA, and 1 mmol·L -1 GA for 36 h. The staining results were observed after GUS staining, and the effect of different hormones on the effects of different hormones was analyzed. Effects of the PmDXR promoter. The results showed (Fig. 11) that after ABA and MeJA treatment, the GUS staining effect driven by ProDXR was stronger than that of the control, and the color was darker than that of untreated tobacco leaves, and the GUS staining effect after GA treatment was slightly weaker than that of untreated tobacco leaves.
实施例4马尾松PmDXR蛋白亚细胞定位Example 4 Subcellular localization of PmDXR protein of Pinus massoniana
pBI121-GFP载体上包含绿色荧光蛋白基因,可作为标记基因同目的基因连接表达。根据pBI121-GFP载体序列与PmDXR基因的ORF序列(删除终止密码子)设计重组引物。利用瞬时转化法将PmDXR-GFP转化至本氏烟草叶片中,在人工气候培养箱中暗培养2d,用激光共聚焦显微镜检测荧光GFP在细胞中的表达位置。结果显示,pBI121-GFP空载体定位在整个烟草叶表皮细胞中,PmDXR-GFP定位在烟草叶表皮细胞的叶绿体中(图12)。The pBI121-GFP vector contains the green fluorescent protein gene, which can be used as a marker gene to link with the target gene for expression. Recombination primers were designed according to the pBI121-GFP vector sequence and the ORF sequence of the PmDXR gene (stop codon deleted). Transient transformation method was used to transform PmDXR-GFP into N. benthamiana leaves, which were cultured in the dark in an artificial climate incubator for 2 days, and the expression position of fluorescent GFP in cells was detected by laser confocal microscope. The results showed that the pBI121-GFP empty vector was localized in the entire tobacco leaf epidermal cells, and PmDXR-GFP was localized in the chloroplasts of the tobacco leaf epidermal cells (Fig. 12).
具体操作如下:The specific operations are as follows:
(1)在含50mg·L-1Kan和25mg·L-1Rif的LB平板上划线培养含PmDXR-GFP重组质粒的农杆菌。(1) Agrobacterium containing PmDXR-GFP recombinant plasmid was streaked on LB plates containing 50 mg·L -1 Kan and 25 mg·L -1 Rif.
(2)挑取生长状态良好的单菌落于20ml含50mg·L-1Kan和25mg·L-1Rif的LB液体培养基中,振荡培养至OD600=0.8左右(同时培养P19菌株)。(2) Pick a single colony with good growth state in 20ml of LB liquid medium containing 50mg·L -1 Kan and 25mg·L -1 Rif, and shake to culture to about OD 600 =0.8 (culture P19 strain at the same time).
(3)将菌液转移至50ml无菌离心管中,在高速冷冻离心机中4℃,5000rpm离心10min以收集菌体。(3) Transfer the bacterial liquid to a 50 ml sterile centrifuge tube, and centrifuge in a high-speed refrigerated centrifuge at 4°C and 5000 rpm for 10 min to collect the bacterial cells.
(4)向离心管中加入与菌液等体积的瞬时转化重悬液,涡旋混匀后,与P19重悬液等体积混合,室温避光放置3h。(4) Add an equal volume of transient transformation resuspension to the centrifuge tube, vortex and mix, mix with an equal volume of P19 resuspension, and place at room temperature for 3 hours in the dark.
(5)用一次性注射器将重悬液注射入本氏烟草叶片,室温下暗培养48h。(5) Inject the resuspended liquid into N. benthamiana leaves with a disposable syringe, and incubate in the dark for 48 hours at room temperature.
(6)用激光共聚焦显微镜LSM710观察本氏烟草叶表皮细胞中GFP融合蛋白的瞬时表达。(6) The transient expression of GFP fusion protein in N. benthamiana leaf epidermal cells was observed by laser confocal microscope LSM710.
序列表sequence listing
<110> 南京林业大学<110> Nanjing Forestry University
<120> 一种马尾松萜类物质合成相关酶基因PmDXR及其启动子的应用<120> A kind of masson pine terpenoid synthesis-related enzyme gene PmDXR and the application of its promoter
<130> 1<130> 1
<160> 10<160> 10
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1600<211> 1600
<212> DNA<212> DNA
<213> PmDXR基因启动子(Artificial)<213> PmDXR gene promoter (Artificial)
<400> 1<400> 1
tggtaatgca atgaagttgg gagggggagg tcacgggttc gacctgccct ccgcccatcc 60tggtaatgca atgaagttgg gagggggagg tcacgggttc gacctgccct ccgcccatcc 60
cttaatacat ttttccgccc attgaatttt ccattcaatt atttacatat atggggattt 120cttaatacat ttttccgccc attgaatttt ccattcaatt atttacatat atggggattt 120
ggatatagtt caatgccttt ggatttacta tggaattata tatatttcta aaaaatacaa 180ggatatagtt caatgccttt ggatttacta tggaattata tattatttcta aaaaatacaa 180
tttccacata atattcatca tgaacccata attccacctt ggaggacatt gggcaatttc 240tttccacata atattcatca tgaacccata attccacctt ggaggacatt gggcaatttc 240
accttcacac agccaaattg gcaaatccta aagtgacact tgtcacaacc ttattggaaa 300accttcacac agccaaattg gcaaatccta aagtgacact tgtcacaacc ttattggaaa 300
atactaaaga agattcccat catgctcact gtactgccat gtcatcattc tgtcctgttt 360atactaaaga agattcccat catgctcact gtactgccat gtcatcattc tgtcctgttt 360
agaaaaacga acaacaggca ttttctcctt catccaaact cggtttttag tgaaacgaat 420agaaaaacga acaacaggca ttttctcctt catccaaact cggtttttag tgaaacgaat 420
tgcattgtga tcgtcttgac gagacagaca cagtcgtaca tgtttcgagc caatacaaga 480tgcattgtga tcgtcttgac gagacagaca cagtcgtaca tgtttcgagc caatacaaga 480
actttgattt tttgatgccc taaatttctc aacataacgc acccattccc aaagcacaaa 540actttgattt tttgatgccc taaatttctc aacataacgc acccattccc aaagcacaaa 540
tgccaatggt caaaacccat taaaactaaa agtaatggaa tgctgcatat agtctatgcc 600tgccaatggt caaaacccat taaaactaaa agtaatggaa tgctgcatat agtctatgcc 600
aaaatttttg gattaagcat gatccacttt aatagatgga atatcttctg cctgaaccac 660aaaatttttg gattaagcat gatccacttt aatagatgga atatcttctg cctgaaccac 660
aatgaagacc gactctaaga gatctttaag agtaagatgt gagagccatg ggtgtagggc 720aatgaagacc gactctaaga gatctttaag agtaagatgt gagagccatg ggtgtagggc 720
atccttaaag gatctagact gagaggaaga gggcacaccc cagcctttgg ctccatcgtt 780atccttaaag gatctagact gagaggaaga gggcacaccc cagcctttgg ctccatcgtt 780
taatcttgaa attaaaaagc ttgaagcatc cttggttatg ccataatcat cgagcaaatt 840taatcttgaa attaaaaagc ttgaagcatc cttggttatg ccataatcat cgagcaaatt 840
tctttcttga agctacctac cactgtgaag gagttgcata aacatggagg ggattcccat 900tctttcttga agctacctac cactgtgaag gagttgcata aacatggagg ggattcccat 900
ccgatcttga attctagcta cgagtgaaga gaccatgtta gcgaatttca cctaaatata 960ccgatcttga attctagcta cgagtgaaga gaccatgtta gcgaatttca cctaaatata 960
taaaataccc cctgagattg gtctcacaaa gaccaaaatg ttcaagaggt ttctgtcctc 1020taaaataccc cctgagattg gtctcacaaa gaccaaaatg ttcaagaggt ttctgtcctc 1020
agcttgaatg catgaagaac cctatgacaa aagaagttcc ccttgatttc aatgatctac 1080agcttgaatg catgaagaac cctatgacaa aagaagttcc ccttgatttc aatgatctac 1080
aacaattaca ccaagatgag ggggattcaa acaaaatgtc gagtcttgaa gcaaaaaatc 1140aacaattaca ccaagatgag ggggattcaa acaaaatgtc gagtcttgaa gcaaaaaatc 1140
ttccacaaac agggtggcag tggctcaagg cattagggtt tccatcgcga taactaaaaa 1200ttccacaaac agggtggcag tggctcaagg cattagggtt tccatcgcga taactaaaaa 1200
cttcgattta atttttcata tttttattta tgaaaactac tcttaaaata aatctcaatt 1260cttcgattta atttttcata ttttttattta tgaaaactac tcttaaaata aatctcaatt 1260
ctttatttct aataattatt aaaaatattt tgaaattatt aaattattaa aatattcggt 1320ctttatttct aataattatt aaaaatattt tgaaattatt aaattattaa aatattcggt 1320
tgcctggctc tctaggcaag gccccctcaa acgcacttta ctattatcaa gtcaacatca 1380tgcctggctc tctaggcaag gccccctcaa acgcacttta ctattatcaa gtcaacatca 1380
ttatcgagtc aacaccatta gttagttata tgtatagaag tgacacatgt acaacgggac 1440ttatcgagtc aacaccatta gttagttata tgtatagaag tgacacatgt acaacgggac 1440
atgaaaatta ttgacacagt ggaaatgggt agccgtggga aagatacccc tgtattttgg 1500atgaaaatta ttgacacagt ggaaatgggt agccgtggga aagatacccc tgtattttgg 1500
agtttagcgg aggaacgcaa atggcattcc gcatggtgtc caattccact actacattgc 1560agtttagcgg aggaacgcaa atggcattcc gcatggtgtc caattccact actacattgc 1560
ttgattcttc tttgtcttat cctccgcccc tttccacccc 1600ttgattcttc tttgtcttat cctccgcccc tttccacccc 1600
<210> 2<210> 2
<211> 24<211> 24
<212> DNA<212> DNA
<213> 1302-CheckF(Artificial)<213> 1302-CheckF(Artificial)
<400> 2<400> 2
acagtctcag aagaccaaag ggca 24acagtctcag aagaccaaag ggca 24
<210> 3<210> 3
<211> 42<211> 42
<212> DNA<212> DNA
<213> 1302-PmDXR-R(Artificial)<213> 1302-PmDXR-R(Artificial)
<400> 3<400> 3
actagtcaga tctaccatgg tcagactgtg gcaggctcca ag 42actagtcaga tctaccatgg tcagactgtg gcaggctcca ag 42
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> pPmDXR-SP1(Artificial)<213> pPmDXR-SP1(Artificial)
<400> 4<400> 4
gtgaagatgg cagagtcgca ggaa 24gtgaagatgg cagagtcgca ggaa 24
<210> 5<210> 5
<211> 24<211> 24
<212> DNA<212> DNA
<213> pPmDXR-SP2(Artificial)<213> pPmDXR-SP2(Artificial)
<400> 5<400> 5
gcgagtgtag ggtggaggct tatt 24gcgagtgtag ggtggaggct tatt 24
<210> 6<210> 6
<211> 24<211> 24
<212> DNA<212> DNA
<213> pPmDXR-SP3(Artificial)<213> pPmDXR-SP3(Artificial)
<400> 6<400> 6
gggcggagga taagacaaag aaga 24gggcggagga taagacaaag aaga 24
<210> 7<210> 7
<211> 24<211> 24
<212> DNA<212> DNA
<213> pPmDXR-F(Artificial)<213> pPmDXR-F(Artificial)
<400> 7<400> 7
tggtaatgca atgaagttgg gagg 24tggtaatgca atgaagttgg gagg 24
<210> 8<210> 8
<211> 24<211> 24
<212> DNA<212> DNA
<213> pPmDXR-R(Artificial)<213> pPmDXR-R(Artificial)
<400> 8<400> 8
ggggtggaaa ggggcggagg ataa 24ggggtggaaa ggggcggagg ataa 24
<210> 9<210> 9
<211> 43<211> 43
<212> DNA<212> DNA
<213> pBI121-ProDXR-F(Artificial)<213> pBI121-ProDXR-F(Artificial)
<400> 9<400> 9
gaccatgatt acgccaagct ttggtaatgc aatgaagttg gga 43gaccatgatt acgccaagct ttggtaatgc aatgaagttg gga 43
<210> 10<210> 10
<211> 39<211> 39
<212> DNA<212> DNA
<213> pBI121-ProDXR-R(Artificial)<213> pBI121-ProDXR-R(Artificial)
<400> 10<400> 10
accacccggg gatcctctag aggggtggaa aggggcgga 39accacccggg gatcctctag aggggtggaa aggggcgga 39
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111547981.8A CN114507679B (en) | 2021-12-16 | 2021-12-16 | Pinus massoniana terpenoid synthesis related enzyme gene PmDXR and application of promoter thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111547981.8A CN114507679B (en) | 2021-12-16 | 2021-12-16 | Pinus massoniana terpenoid synthesis related enzyme gene PmDXR and application of promoter thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114507679A true CN114507679A (en) | 2022-05-17 |
CN114507679B CN114507679B (en) | 2023-06-30 |
Family
ID=81547612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111547981.8A Expired - Fee Related CN114507679B (en) | 2021-12-16 | 2021-12-16 | Pinus massoniana terpenoid synthesis related enzyme gene PmDXR and application of promoter thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114507679B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117088952A (en) * | 2023-07-26 | 2023-11-21 | 南京林业大学 | Pinus massoniana PmSND4 gene and expression protein and application thereof |
CN117088952B (en) * | 2023-07-26 | 2025-03-25 | 南京林业大学 | A Masson pine PmSND4 gene and its expression protein and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765129B1 (en) * | 1999-04-27 | 2004-07-20 | Basf Aktiengesellschaft | Overexpression of a DNA sequence coding for a 1-desoxy-d-xylulose-5-phosphate reductoisomerase in plants |
CN103087972A (en) * | 2013-02-01 | 2013-05-08 | 天津工业生物技术研究所 | Recombinant microorganism for generating terpenoid and construction method thereof |
CN105039344A (en) * | 2015-08-31 | 2015-11-11 | 华南农业大学 | DXR promoter for lily flower part peculiarities and wound inductions and application of DXR promoter |
-
2021
- 2021-12-16 CN CN202111547981.8A patent/CN114507679B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765129B1 (en) * | 1999-04-27 | 2004-07-20 | Basf Aktiengesellschaft | Overexpression of a DNA sequence coding for a 1-desoxy-d-xylulose-5-phosphate reductoisomerase in plants |
CN103087972A (en) * | 2013-02-01 | 2013-05-08 | 天津工业生物技术研究所 | Recombinant microorganism for generating terpenoid and construction method thereof |
CN105039344A (en) * | 2015-08-31 | 2015-11-11 | 华南农业大学 | DXR promoter for lily flower part peculiarities and wound inductions and application of DXR promoter |
Non-Patent Citations (4)
Title |
---|
朱灵芝: "马尾松PmDXR基因的克隆与功能分析", 《中国优秀硕士学位论文全文数据库(电子期刊)》 * |
朱灵芝等: "马尾松PmDXR基因密码子偏好性分析", 《林业科学研究》 * |
金蓉等: "1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因", 《细胞生物学杂志》 * |
陈晓明: "马尾松产脂相关基因挖掘及表达规律研究", 《中国博士学位论文全文数据库(电子期刊)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117088952A (en) * | 2023-07-26 | 2023-11-21 | 南京林业大学 | Pinus massoniana PmSND4 gene and expression protein and application thereof |
CN117088952B (en) * | 2023-07-26 | 2025-03-25 | 南京林业大学 | A Masson pine PmSND4 gene and its expression protein and application |
Also Published As
Publication number | Publication date |
---|---|
CN114507679B (en) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107099540B (en) | NtFERL gene influencing tobacco pigment content and application thereof | |
CN110819639A (en) | Tobacco low-temperature early-flowering related gene NtDUF599 and application thereof | |
CN104770294B (en) | A kind of protocorm based on the sprouting of iris seed is the breeding method of acceptor | |
CN103320464B (en) | Method for generating hairy roots by efficiently inducing trifoliate orange by agrobacterium rhizogenes and application of method | |
CN113621625B (en) | Application of sesame SiERF103 gene in enhancing plant resistance | |
CN114703198A (en) | Cloning and application of tomato transport protein SlZIF1 | |
CN102010877B (en) | Agrobacterium rhizogenes K599-mediated chrysanthemum transgenic method | |
CN110257401B (en) | Application of PtrMYB119 Gene in Populus Trichosanthes in Improving Drought Tolerance of Tobacco | |
CN106755084A (en) | A kind of quick transgenic method of tea tree | |
CN114507679B (en) | Pinus massoniana terpenoid synthesis related enzyme gene PmDXR and application of promoter thereof | |
CN116622737A (en) | Pinus massoniana PmAP2/ERF gene and its expression protein and application | |
JP2007312635A (en) | Tree with enhanced citrate secretion and method for producing the same | |
CN113215191A (en) | Agrobacterium-mediated genetic transformation method for toona sinensis | |
CN104988176B (en) | Method for improving gum content of eucommia ulmoides | |
LU507759B1 (en) | LOW-TEMPERATURE RESPONSE GENE NtSAP9 OF NICOTIANA TABACUM L. AND APPLICATION THEREOF | |
CN114807161B (en) | Rice polyol transporter gene OsPLT5, polyol transporter thereof, application and amplification primer | |
CN114875043B (en) | A kind of birch BpPIF4 gene involved in adventitious root development and its application | |
CN114231538B (en) | Radix rehmanniae RcMYB3 gene and application thereof in improving anthocyanin content of plants | |
CN117568396B (en) | Application of overexpression of Populus tomentosa strigolactone receptor PtoD14 gene in increasing wood yield | |
CN114350675B (en) | LuNAC gene for regulating and controlling synthesis of flax secondary wall and application thereof | |
AU2021107266A4 (en) | A method of vacuum infiltration assisting agrobacterium-mediated genetic transformation of sugarcane | |
CN116042701A (en) | Exogenous expression system mediated by bamboo mosaic virus and its application | |
CN117230111A (en) | Construction method and application of passion fruit virus mediated gene silencing system | |
CN118773202A (en) | A Masson pine tandem zinc finger structure PmTZF1 gene and its expression protein and application | |
CN119192317A (en) | Transcription factor PtoWRKY11 regulating vascular secondary development in Populus tomentosa stems and its application and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230630 |