CN113621625B - Application of sesame SiERF103 gene in enhancing plant resistance - Google Patents
Application of sesame SiERF103 gene in enhancing plant resistance Download PDFInfo
- Publication number
- CN113621625B CN113621625B CN202111094686.1A CN202111094686A CN113621625B CN 113621625 B CN113621625 B CN 113621625B CN 202111094686 A CN202111094686 A CN 202111094686A CN 113621625 B CN113621625 B CN 113621625B
- Authority
- CN
- China
- Prior art keywords
- sierf103
- gene
- sesame
- resistance
- drought
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 72
- 241000196324 Embryophyta Species 0.000 title claims abstract description 62
- 235000003434 Sesamum indicum Nutrition 0.000 title claims abstract description 61
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 15
- 241000207961 Sesamum Species 0.000 title claims abstract 12
- 230000012010 growth Effects 0.000 claims abstract description 20
- 239000013598 vector Substances 0.000 claims abstract description 19
- 230000002018 overexpression Effects 0.000 claims abstract description 13
- 239000002773 nucleotide Substances 0.000 claims abstract description 4
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 4
- 230000035882 stress Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 7
- 241000589158 Agrobacterium Species 0.000 claims description 6
- 230000008641 drought stress Effects 0.000 claims description 6
- 239000013604 expression vector Substances 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 241000219194 Arabidopsis Species 0.000 abstract description 29
- 230000009261 transgenic effect Effects 0.000 abstract description 25
- 230000002068 genetic effect Effects 0.000 abstract description 6
- 230000006872 improvement Effects 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 244000000231 Sesamum indicum Species 0.000 description 49
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 241000219195 Arabidopsis thaliana Species 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 235000009367 Sesamum alatum Nutrition 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 238000010802 RNA extraction kit Methods 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- PYTKULIABVRXSC-BWBBJGPYSA-N Ser-Ser-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O PYTKULIABVRXSC-BWBBJGPYSA-N 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001146 hypoxic effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- WKOBSJOZRJJVRZ-FXQIFTODSA-N Ala-Glu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WKOBSJOZRJJVRZ-FXQIFTODSA-N 0.000 description 1
- GGNHBHYDMUDXQB-KBIXCLLPSA-N Ala-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N GGNHBHYDMUDXQB-KBIXCLLPSA-N 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 108700013974 Arabidopsis RAP2.2 Proteins 0.000 description 1
- XPSGESXVBSQZPL-SRVKXCTJSA-N Arg-Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O XPSGESXVBSQZPL-SRVKXCTJSA-N 0.000 description 1
- RWWPBOUMKFBHAL-FXQIFTODSA-N Arg-Asn-Cys Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(O)=O RWWPBOUMKFBHAL-FXQIFTODSA-N 0.000 description 1
- HKRXJBBCQBAGIM-FXQIFTODSA-N Arg-Asp-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N)CN=C(N)N HKRXJBBCQBAGIM-FXQIFTODSA-N 0.000 description 1
- JUWQNWXEGDYCIE-YUMQZZPRSA-N Arg-Gln-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O JUWQNWXEGDYCIE-YUMQZZPRSA-N 0.000 description 1
- CFGHCPUPFHWMCM-FDARSICLSA-N Arg-Ile-Trp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N CFGHCPUPFHWMCM-FDARSICLSA-N 0.000 description 1
- NLRJGXZWTKXRHP-DCAQKATOSA-N Asn-Leu-Arg Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NLRJGXZWTKXRHP-DCAQKATOSA-N 0.000 description 1
- NJIKKGUVGUBICV-ZLUOBGJFSA-N Asp-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O NJIKKGUVGUBICV-ZLUOBGJFSA-N 0.000 description 1
- ZLGKHJHFYSRUBH-FXQIFTODSA-N Asp-Arg-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O ZLGKHJHFYSRUBH-FXQIFTODSA-N 0.000 description 1
- 101100351264 Candida albicans (strain SC5314 / ATCC MYA-2876) PDC11 gene Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101150094177 Erf gene Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- TWTWUBHEWQPMQW-ZPFDUUQYSA-N Gln-Ile-Arg Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O TWTWUBHEWQPMQW-ZPFDUUQYSA-N 0.000 description 1
- KSKFIECUYMYWNS-AVGNSLFASA-N Gln-Lys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(=O)N)N KSKFIECUYMYWNS-AVGNSLFASA-N 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- TVYWVSJGSHQWMT-AJNGGQMLSA-N Ile-Leu-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N TVYWVSJGSHQWMT-AJNGGQMLSA-N 0.000 description 1
- IBMVEYRWAWIOTN-UHFFFAOYSA-N L-Leucyl-L-Arginyl-L-Proline Natural products CC(C)CC(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O IBMVEYRWAWIOTN-UHFFFAOYSA-N 0.000 description 1
- FIJMQLGQLBLBOL-HJGDQZAQSA-N Leu-Asn-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O FIJMQLGQLBLBOL-HJGDQZAQSA-N 0.000 description 1
- ZURHXHNAEJJRNU-CIUDSAMLSA-N Leu-Asp-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O ZURHXHNAEJJRNU-CIUDSAMLSA-N 0.000 description 1
- HYMLKESRWLZDBR-WEDXCCLWSA-N Leu-Gly-Thr Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O HYMLKESRWLZDBR-WEDXCCLWSA-N 0.000 description 1
- IZPVWNSAVUQBGP-CIUDSAMLSA-N Leu-Ser-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O IZPVWNSAVUQBGP-CIUDSAMLSA-N 0.000 description 1
- RIJCHEVHFWMDKD-SRVKXCTJSA-N Lys-Lys-Asn Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O RIJCHEVHFWMDKD-SRVKXCTJSA-N 0.000 description 1
- ALEVUGKHINJNIF-QEJZJMRPSA-N Lys-Phe-Ala Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 ALEVUGKHINJNIF-QEJZJMRPSA-N 0.000 description 1
- YRNRVKTYDSLKMD-KKUMJFAQSA-N Lys-Ser-Tyr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O YRNRVKTYDSLKMD-KKUMJFAQSA-N 0.000 description 1
- RJEFZSIVBHGRQJ-SRVKXCTJSA-N Met-Arg-Met Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(O)=O RJEFZSIVBHGRQJ-SRVKXCTJSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150050255 PDC1 gene Proteins 0.000 description 1
- BFYHIHGIHGROAT-HTUGSXCWSA-N Phe-Glu-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O BFYHIHGIHGROAT-HTUGSXCWSA-N 0.000 description 1
- UTAUEDINXUMHLG-FXQIFTODSA-N Pro-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@@H]1CCCN1 UTAUEDINXUMHLG-FXQIFTODSA-N 0.000 description 1
- RNEFESSBTOQSAC-DCAQKATOSA-N Pro-Ser-His Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O RNEFESSBTOQSAC-DCAQKATOSA-N 0.000 description 1
- FDMCIBSQRKFSTJ-RHYQMDGZSA-N Pro-Thr-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O FDMCIBSQRKFSTJ-RHYQMDGZSA-N 0.000 description 1
- DMNANGOFEUVBRV-GJZGRUSLSA-N Pro-Trp-Gly Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)O)C(=O)[C@@H]1CCCN1 DMNANGOFEUVBRV-GJZGRUSLSA-N 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- FMDHKPRACUXATF-ACZMJKKPSA-N Ser-Gln-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(O)=O FMDHKPRACUXATF-ACZMJKKPSA-N 0.000 description 1
- GRSLLFZTTLBOQX-CIUDSAMLSA-N Ser-Glu-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CO)N GRSLLFZTTLBOQX-CIUDSAMLSA-N 0.000 description 1
- NVNPWELENFJOHH-CIUDSAMLSA-N Ser-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)N NVNPWELENFJOHH-CIUDSAMLSA-N 0.000 description 1
- JGUWRQWULDWNCM-FXQIFTODSA-N Ser-Val-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O JGUWRQWULDWNCM-FXQIFTODSA-N 0.000 description 1
- SIEBDTCABMZCLF-XGEHTFHBSA-N Ser-Val-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SIEBDTCABMZCLF-XGEHTFHBSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- AKXBNSZMYAOGLS-STQMWFEESA-N Tyr-Arg-Gly Chemical compound NC(N)=NCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AKXBNSZMYAOGLS-STQMWFEESA-N 0.000 description 1
- BIVIUZRBCAUNPW-JRQIVUDYSA-N Tyr-Thr-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O BIVIUZRBCAUNPW-JRQIVUDYSA-N 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 108010060035 arginylproline Proteins 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000024346 drought recovery Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 108010037850 glycylvaline Proteins 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 108010080629 tryptophan-leucine Proteins 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了芝麻SiERF103基因在增强植物抗性中的应用,属于植物基因工程技术领域,其中所述芝麻SiERF103基因的核苷酸序列如SEQ ID NO.1所示,所述抗性包括抗渍害和/或抗干旱。本发明首次报道了芝麻SiERF103基因在增强植物渍害抗性和/或干旱抗性中的应用。通过构建SiERF103基因过表达载体,使其在拟南芥中过量表达,并进行干旱或渍害胁迫处理,研究发现经干旱或渍害胁迫处理后恢复正常生长条件,可使转基因拟南芥大量恢复正常生长。即本发明证实了芝麻SiERF103基因具有提高植物渍害和干旱抗性的功能。这为作物抗旱和耐渍遗传改良提供了基因资源,对于促进作物稳产具有重要意义。
The invention discloses the application of the sesame SiERF103 gene in enhancing plant resistance, and belongs to the technical field of plant genetic engineering, wherein the nucleotide sequence of the sesame SiERF103 gene is shown in SEQ ID NO.1, and the resistance includes stain resistance damage and/or drought resistance. The present invention reports for the first time the application of the sesame SiERF103 gene in enhancing plant waterlogging resistance and/or drought resistance. By constructing the overexpression vector of SiERF103 gene, it was overexpressed in Arabidopsis, and treated with drought or waterlogging stress, the study found that after drought or waterlogging stress treatment, returning to normal growth conditions can make a large amount of transgenic Arabidopsis recover Normal growth. That is, the present invention confirms that the sesame SiERF103 gene has the function of improving plant waterlogging and drought resistance. This provides genetic resources for genetic improvement of crop drought resistance and waterlogging tolerance, and is of great significance for promoting stable crop yield.
Description
技术领域technical field
本发明属于植物基因工程技术领域,具体涉及芝麻SiERF103基因在增强植物抗性中的应用。The invention belongs to the technical field of plant genetic engineering, and in particular relates to the application of sesame SiERF103 gene in enhancing plant resistance.
背景技术Background technique
芝麻(Sesamum indicum L.)是我国的特色油料作物,栽培历史久远,遍布全国各地,在世界范围内均有种植,中国是主要的生产国和贸易国,但自给不足。近年来,我国芝麻的产量下降严重,这与芝麻在生长发育过程中受到干旱、水涝等各类非生物胁迫的影响有着很大的关系。芝麻产业技术体系曾对我国大部分芝麻主产区的调查分析发现,我国芝麻常年受到渍害和干旱胁迫影响,严重影响了芝麻的生长发育,是造成芝麻减产的重要原因。因此,提高芝麻抗旱和耐渍性,促进高产稳产,对促进我国芝麻生产发展、解决总量自给不足问题尤为重要。目前关于芝麻抗旱和耐渍相关基因功能的研究还比较匮乏,分子相关的研究报道也相对较少,因此发掘芝麻抗逆功能基因,对开展芝麻抗逆分子育种、提高芝麻抗逆能力具有重要意义。Sesamum (Sesamum indicum L.) is a special oil crop in my country. It has a long history of cultivation and is planted all over the country and all over the world. China is a major producer and trading country, but its self-sufficiency is insufficient. In recent years, the yield of sesame in my country has declined seriously, which has a lot to do with the impact of various abiotic stresses such as drought and waterlogging during the growth and development of sesame. The Sesame Industry Technology System has investigated and analyzed most of the main sesame producing areas in my country and found that the sesame in our country has been affected by waterlogging and drought stress all year round, which seriously affects the growth and development of sesame and is an important reason for the reduction of sesame production. Therefore, improving the drought resistance and waterlogging tolerance of sesame and promoting high and stable yield are particularly important to promote the development of sesame production in my country and solve the problem of insufficient self-sufficiency in total amount. At present, the research on the functions of sesame drought resistance and waterlogging tolerance related genes is still relatively scarce, and there are relatively few molecular related research reports. Therefore, the discovery of sesame stress resistance functional genes is of great significance for the development of sesame stress resistance molecular breeding and the improvement of sesame stress resistance. .
植物在生长发育中时常会受到诸多环境因素的影响,当胁迫发生时,植物可以迅速激活大量的应激反应基因并合成各种功能蛋白,通过形成一系列复杂的信号网络来抵御不利的环境,维持其自身正常的生理机能,达到规避胁迫伤害的目的。转录因子是一类能与真核基因启动子区域中的顺式作用元件发生特异性结合,从而保证目的基因以特定的强度、在特定的时间与空间表达的蛋白质分子,在植物逆境抗性中发挥了重要作用。如拟南芥RAP2.2通过调控ADH1、PDC1等低氧胁迫相关基因、糖类代谢及乙烯合成相关基因的表达来抵抗低氧胁迫。水稻Sub1A-1在淹水条件下抑制乙烯的产生以及生长和新陈代谢相关基因的转录,减少淀粉和糖的分解,使植物体保持低的新陈代谢状态而存活下来。芝麻作为重要的油料作物,分离鉴定其抗逆基因对于培育抗逆芝麻新品种具有非常重要的意义。Plants are often affected by many environmental factors during their growth and development. When stress occurs, plants can quickly activate a large number of stress response genes and synthesize various functional proteins, forming a series of complex signaling networks to resist adverse environments. Maintain its own normal physiological functions to achieve the purpose of avoiding coercion damage. Transcription factors are a class of protein molecules that can specifically bind to cis-acting elements in the promoter region of eukaryotic genes, thereby ensuring the expression of the target gene at a specific intensity, at a specific time and space, and in plant stress resistance. It played an important role. For example, Arabidopsis RAP2.2 resists hypoxic stress by regulating the expression of ADH1, PDC1 and other hypoxic stress-related genes, sugar metabolism and ethylene synthesis-related genes. Rice Sub1A-1 inhibits the production of ethylene and the transcription of growth and metabolism-related genes under flooding conditions, reduces the decomposition of starch and sugar, and keeps the plant in a low metabolic state to survive. Sesame is an important oil crop, and the isolation and identification of its stress-resistant genes is of great significance for the breeding of new stress-resistant sesame varieties.
发明内容Contents of the invention
本发明针对现有技术的空白,提供了芝麻SiERF103基因在增强植物抗性中的应用,通过SiERF103基因在模式植物转基因拟南芥中的过量表达实验,首次证实了芝麻SiERF103基因具有增强植物渍害抗性和干旱抗性的功能,为植物抗旱和耐渍育种提供了基因资源。Aiming at the gap in the prior art, the present invention provides the application of the sesame SiERF103 gene in enhancing plant resistance. Through the overexpression experiment of the SiERF103 gene in the model plant transgenic Arabidopsis, it is confirmed for the first time that the sesame SiERF103 gene has the function of enhancing plant waterlogging. The functions of drought resistance and drought resistance provide genetic resources for plant drought resistance and waterlogging tolerance breeding.
本发明的目的之一在于提供了麻SiERF103基因在增强植物抗性中的应用,其中所述芝麻SiERF103基因的核苷酸序列如序列表SEQ ID NO.1所示,所述抗性包括:抗渍害和/或抗干旱。One of the purposes of the present invention is to provide the application of the sesame SiERF103 gene in enhancing plant resistance, wherein the nucleotide sequence of the sesame SiERF103 gene is shown in the sequence table SEQ ID NO.1, and the resistance includes: waterlogging and/or drought resistance.
进一步地,所述芝麻SiERF103基因编码的蛋白的氨基酸序列如序列表SEQ IDNO.2所示。Further, the amino acid sequence of the protein encoded by the sesame SiERF103 gene is shown in SEQ ID NO.2 of the sequence table.
进一步地,用于扩增所述芝麻SiERF103基因的引物序列如序列表SEQ ID NO.3-4所示。Further, the primer sequences for amplifying the sesame SiERF103 gene are shown in SEQ ID NO.3-4 in the sequence table.
本发明的目的之二在于提供了一种包含上述芝麻SiERF103基因的载体和/或细胞在增强植物渍害抗性和/或干旱抗性中的应用。The second object of the present invention is to provide an application of a vector and/or cell comprising the above-mentioned sesame SiERF103 gene in enhancing plant waterlogging resistance and/or drought resistance.
进一步地,所述包含芝麻SiERF103基因的载体为克隆载体或过表达载体。Further, the vector containing the sesame SiERF103 gene is a cloning vector or an overexpression vector.
进一步地,所述过表达载体为将芝麻SiERF103基因与植物表达载体pCAMBIA1301S连接起来构建得到的载体pCAMBIA1301S-SiERF103。Further, the overexpression vector is the vector pCAMBIA1301S-SiERF103 constructed by connecting the sesame SiERF103 gene with the plant expression vector pCAMBIA1301S.
进一步地,所述包含芝麻SiERF103基因的细胞的构建方法为:扩增得到如SEQ IDNO.1所示的芝麻SiERF103基因,双酶切获得线性化表达载体,将所述芝麻SiERF103基因与线性化载体连接并转入受体细胞中,培养筛选鉴定后得到。Further, the method for constructing the cell containing the sesame SiERF103 gene is as follows: amplify the sesame SiERF103 gene shown in SEQ ID NO. Connected and transferred into recipient cells, obtained after culture, screening and identification.
本发明的目的之三在于提供了所述芝麻SiERF103基因,或所述芝麻SiERF103基因编码的蛋白,或所述包含芝麻SiERF103基因的载体和/或细胞在增强植物耐渍害和/或耐干旱性能的应用。The third object of the present invention is to provide the sesame SiERF103 gene, or the protein encoded by the sesame SiERF103 gene, or the vector and/or cells comprising the sesame SiERF103 gene in enhancing plant waterlogging and/or drought tolerance Applications.
本发明的目的之四在于提供了一种提高植物渍害和/或干旱抗性的方法,包括:将包含芝麻SiERF103基因的过表达载体转入农杆菌感受态细胞中,并侵染植物,得到渍害和干旱抗性提高的植物。The fourth object of the present invention is to provide a method for improving waterlogging and/or drought resistance of plants, comprising: transferring the overexpression vector comprising the sesame SiERF103 gene into Agrobacterium competent cells, and infecting the plants to obtain Plants with increased resistance to waterlogging and drought.
进一步地,所述渍害和干旱抗性提高的植物在经过干旱胁迫和/或渍害胁迫处理后,可恢复正常生长。Further, the plants with improved waterlogging and drought resistance can recover to normal growth after being treated with drought stress and/or waterlogging stress.
与现有技术相比,本发明的有益效果是:本发明首次报道了芝麻SiERF103基因在增强植物抗性中的应用,具体为增强植物渍害抗性和/或干旱抗性。通过构建SiERF103基因过表达载体,使其在模式植物拟南芥中过量表达,并进行干旱或渍害胁迫处理,研究发现经干旱或渍害胁迫处理后恢复正常生长条件,可使转基因拟南芥大量恢复正常生长。即本发明证实了芝麻SiERF103基因具有提高植物渍害和干旱抗性的功能。这为作物抗旱和耐渍遗传改良提供了基因资源,对于促进作物稳产具有重要意义。Compared with the prior art, the beneficial effects of the present invention are: the present invention reports for the first time the application of the sesame SiERF103 gene in enhancing plant resistance, specifically enhancing plant waterlogging resistance and/or drought resistance. By constructing the SiERF103 gene overexpression vector, it was overexpressed in the model plant Arabidopsis thaliana, and subjected to drought or waterlogging stress treatment. It was found that the normal growth conditions could be restored after drought or waterlogging stress treatment, and the transgenic Arabidopsis thaliana Many returned to normal growth. That is, the present invention confirms that the sesame SiERF103 gene has the function of improving plant waterlogging and drought resistance. This provides genetic resources for the genetic improvement of crop drought resistance and waterlogging tolerance, which is of great significance for promoting stable crop yield.
附图说明Description of drawings
图1为本发明实施例1中包含SiERF103基因的植物表达载体pCAMBIA1301S-SiERF103的构建;Fig. 1 is the construction of the plant expression vector pCAMBIA1301S-SiERF103 comprising SiERF103 gene in Example 1 of the present invention;
图2为本发明实施例2中转SiERF103基因拟南芥T1代植株荧光定量PCR检测结果;Fig. 2 is the detection result of fluorescent quantitative PCR of T1 generation plant of Arabidopsis thaliana transgenic SiERF103 gene in Example 2 of the present invention;
图3为本发明实施例2中转SiERF103基因拟南芥抗旱性测定结果,其中图3-A为正常生长和干旱胁迫后恢复生长的转SiERF103基因拟南芥和野生型拟南芥表型;图3-B为干旱胁迫后转SiERF103基因拟南芥和野生型拟南芥的存活率;Fig. 3 is the test result of the drought resistance of the SiERF103 gene Arabidopsis in Example 2 of the present invention, wherein Fig. 3-A is the phenotype of the SiERF103 gene Arabidopsis and wild-type Arabidopsis that recover after normal growth and drought stress; Fig. 3-B is the survival rate of SiERF103 transgenic Arabidopsis and wild-type Arabidopsis after drought stress;
图4为本发明实施例2中转SiERF103基因拟南芥耐渍性测定结果,其中图4-A为正常生长和渍害胁迫后恢复生长的转SiERF103基因拟南芥和野生型拟南芥表型;图4-B为渍害胁迫后转SiERF103基因拟南芥和野生型拟南芥的存活率。Fig. 4 is the test result of the waterlogging resistance of the SiERF103 gene transgenic Arabidopsis in Example 2 of the present invention, wherein Fig. 4-A shows the phenotypes of the SiERF103 gene transgenic Arabidopsis and wild type Arabidopsis after normal growth and recovery of growth after waterlogging stress ; Figure 4-B is the survival rate of transgenic Arabidopsis thaliana and wild-type Arabidopsis after waterlogging stress.
具体实施方式Detailed ways
下面将结合本发明中的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
克隆本发明中所述的抗旱相关的基因SiERF103的方法是本领域中所常用的方法。提取mRNA的方法也有多种成熟的技术,可采用试剂盒(EASY spin Plus Plant RNA kit),其可从商业途径获得(购于Aidlab Biotechnologies Co.,Ltd)。构建本发明中所述的载体和将载体转入植株所用到的酶切、连接、花序侵染等方法也是本领域中常用技术。其中所涉及的质粒(pCAMBIA1301),转染用媒体(根癌农杆菌LBA4404和所用试剂成分如蔗糖、Kan、潮霉素等)可从商业途径获得。The method of cloning the drought-resistance-related gene SiERF103 described in the present invention is a commonly used method in the art. There are also various mature technologies for the method of extracting mRNA, and a kit (EASY spin Plus Plant RNA kit) can be used, which can be obtained from commercial sources (purchased from Aidlab Biotechnologies Co., Ltd). Methods such as enzyme cutting, ligation, and inflorescence infection used to construct the vector described in the present invention and transfer the vector into plants are also common techniques in the art. The plasmid (pCAMBIA1301) involved therein, the media for transfection (Agrobacterium tumefaciens LBA4404 and reagent components used such as sucrose, Kan, hygromycin, etc.) can be obtained from commercial sources.
实施例1芝麻SiERF103基因的获得与过表达载体构建
1、芝麻SiERF103基因的获得1. Acquisition of Sesame SiERF103 Gene
利用拟南芥ERF基因的蛋白序列,通过同源性序列比对分析,在NCBI数据库中鉴定获得114个芝麻ERF基因,其中包括SiERF103基因(基因登录号为:LOC105175593)。Using the protein sequence of Arabidopsis ERF gene, 114 sesame ERF genes were identified in the NCBI database through homologous sequence analysis, including SiERF103 gene (gene accession number: LOC105175593).
为了分析SiERF103基因在逆境抗性中的功能,根据SiERF103基因的CDS序列,设计可以扩增其完整CDS序列的引物。取初花期抗逆芝麻品种中芝75渍害胁迫7天后的根组织,用EASYspin Plus植物RNA提取试剂盒(购自Aidlab公司),提取总RNA,利用反转录酶(购自Vazyme公司)将其反转录合成cDNA(方法根据Vazyme公司反转录酶试剂说明书操作)。以反转录后的cDNA为模板,用设计的引物进行常规PCR扩增。其中设计的引物名称与序列(包含修饰碱基)如下:In order to analyze the function of SiERF103 gene in stress resistance, according to the CDS sequence of SiERF103 gene, design primers that can amplify its complete CDS sequence. Take the root tissues of the stress-resistant sesame variety Zhongzhi 75 at the initial flowering stage after 7 days of waterlogging stress, use the EASYspin Plus Plant RNA Extraction Kit (purchased from Aidlab Company) to extract total RNA, and use reverse transcriptase (purchased from Vazyme Company) to extract the total RNA. It was reverse-transcribed to synthesize cDNA (the method was operated according to the instructions of Vazyme reverse transcriptase reagent). Using the reverse-transcribed cDNA as a template, conventional PCR amplification was performed with the designed primers. The primer names and sequences (including modified bases) designed are as follows:
SiERF103FL-F:SiERF103FL-F:
AGCTTTCGCGAGCTCGGTACCATGAGAATGATTCTCAAGAAAT(如SEQ ID NO.3所示)AGCTTTCGCGAGCTCGGTACCATGAGAATGATTCTCAAGAAAT (as shown in SEQ ID NO.3)
SiERF103FL-R:SiERF103FL-R:
CAGGTCGACTCTAGAGGATCCTCAAACCATCTCACTTGACACACTAC(如SEQ ID NO.4所示)CAGGTCGACTCTAGAGGATCCTCAAACCATCTCACTTGACACACTAC (as shown in SEQ ID NO.4)
用上述引物扩增出包含SiERF103基因完整编码区的cDNA片断,将扩增得到的片段进行测序,获得SiERF103基因的核苷酸序列,如SEQ ID NO.1所示。由其编码的蛋白质的氨基酸序列如SEQ ID NO.2所示。A cDNA fragment containing the complete coding region of the SiERF103 gene was amplified with the above primers, and the amplified fragment was sequenced to obtain the nucleotide sequence of the SiERF103 gene, as shown in SEQ ID NO.1. The amino acid sequence of the protein encoded by it is shown in SEQ ID NO.2.
2、包含芝麻SiERF103基因的过表达载体构建2. Construction of an overexpression vector comprising the sesame SiERF103 gene
将上述扩增得到的芝麻SiERF103基因利用同源重组的方法与pCAMBIA1301S(本实验室提供)质粒连接构建植物表达载体,命名为pCAMBIA1301S-SiERF103(图谱如图1所示),具体操作如下:The sesame SiERF103 gene that above-mentioned amplification obtains utilizes the method for homologous recombination and pCAMBIA1301S (provided by this laboratory) plasmid connection construction plant expression vector, named pCAMBIA1301S-SiERF103 (illustration as shown in Figure 1), concrete operation is as follows:
①首先利用双酶切(KpnI和BamHI)(Takara)方法获得线性化载体,通过琼脂糖凝胶电泳和胶回收试剂盒(天根生化科技有限公司)纯化获得高纯度线性化载体。① Firstly, the linearized vector was obtained by double enzyme digestion (KpnI and BamHI) (Takara), and purified by agarose gel electrophoresis and gel recovery kit (Tiangen Biochemical Technology Co., Ltd.) to obtain a high-purity linearized vector.
②将目的片段DNA和线性化载体以3:1的摩尔比加到1.5ml的离心管中进行重组反应,混匀后在37℃水浴中放置约30min,加入10μL的反应液到从-80℃冰箱中取出已于冰上融化10min的50μL DH5a感受态细胞中,移液器轻轻混匀,再于冰上孵育20min,42℃水浴热激45秒后快速置冰上冷却2min。②Add the DNA of the target fragment and the linearized carrier to a 1.5ml centrifuge tube at a molar ratio of 3:1 for recombination reaction, mix well and place in a water bath at 37°C for about 30min, add 10μL of the reaction solution to temperature from -80°C Take out 50 μL of DH5a competent cells that have been thawed on ice for 10 minutes in the refrigerator, mix gently with a pipette, and incubate on ice for 20 minutes, heat shock in a water bath at 42°C for 45 seconds, and then quickly cool on ice for 2 minutes.
③洁净台中加入300μL LB液体培养基,37℃孵育60min。13,000rpm离心1min收集菌体,弃部分上清,用剩余的培养基将菌体重悬,用无菌涂布棒在含有Kan抗性的LB固体培养基上轻轻涂匀,37℃培养箱中倒置培养16-24h。③Add 300 μL LB liquid medium to the clean bench and incubate at 37°C for 60 minutes. Centrifuge at 13,000rpm for 1min to collect the bacteria, discard part of the supernatant, resuspend the bacteria with the remaining medium, and spread evenly on the LB solid medium containing Kan resistance with a sterile spreader, place in a 37°C incubator Inverted for 16-24h.
④挑取若干个重组反应转化的克隆进行菌落PCR鉴定,之后将鉴定为阳性的各个单菌落,分别挑取于含有Kan抗生素的液体LB培养基中37℃、200rpm培养箱中过夜培养,提取质粒或将菌液直接测序以及通过酶切电泳来鉴定载体准确性。④Pick several clones transformed by the recombination reaction for colony PCR identification, and then pick each single colony that is identified as positive, and culture them overnight in a liquid LB medium containing Kan antibiotics at 37°C and 200rpm in an incubator to extract plasmids Or directly sequence the bacterial liquid and identify the accuracy of the carrier by enzyme digestion and electrophoresis.
实施例2芝麻SiERF103基因在增强植物渍害和干旱抗性中的应用Example 2 Application of Sesame SiERF103 Gene in Enhancing Waterlogging and Drought Resistance of Plants
1、转SiERF103拟南芥材料的获得1. Acquisition of SiERF103 transgenic Arabidopsis materials
(1)重组载体转入农杆菌LBA4404(1) The recombinant vector was transformed into Agrobacterium LBA4404
①每100μL LBA4404农杆菌感受态细胞中加入2μg质粒DNA,用手轻轻拨打管底混匀,依次于冰上静置5min、液氮5min、37℃水浴5min、冰浴5min。① Add 2 μg of plasmid DNA to each 100 μL of LBA4404 Agrobacterium competent cells, gently tap the bottom of the tube to mix, and then put it on ice for 5 minutes, liquid nitrogen for 5 minutes, 37 ° C water bath for 5 minutes, and ice bath for 5 minutes.
②加入700μL无抗生素的LB液体培养基,于28℃振荡培养5h。13,000rpm离心1min收集菌体,留取100μL左右上清,轻轻吹打重悬菌体,将其均匀地涂布于含有Kan和Rif的LB固体培养基上,28℃培养箱倒置培养2天,挑取若干个阳性克隆,用实施例1中的引物SiERF103FL-F/R进行菌落PCR,验证载体pCAMBIA1301S-SiERF103已转入根癌农杆菌LBA4404中。②Add 700 μL of LB liquid medium without antibiotics, and shake and culture at 28°C for 5h. Centrifuge at 13,000 rpm for 1 min to collect the bacteria, take about 100 μL of the supernatant, gently blow and blow the resuspended bacteria, spread it evenly on the LB solid medium containing Kan and Rif, and culture it upside down in a 28°C incubator for 2 days. Pick several positive clones, and perform colony PCR with the primer SiERF103FL-F/R in Example 1 to verify that the vector pCAMBIA1301S-SiERF103 has been transformed into Agrobacterium tumefaciens LBA4404.
(2)拟南芥培养(2) Arabidopsis culture
①根据实验需要数出一定数量的拟南芥种子装于无菌的1.5mL离心管中。①According to the experimental needs, count out a certain number of Arabidopsis seeds and put them in a sterile 1.5mL centrifuge tube.
②加入1mL 75%乙醇,上下颠倒混匀,弃上清,重复1次。放入37℃200rpm摇床中摇10min表面灭菌。② Add 1mL 75% ethanol, mix up and down, discard the supernatant, and repeat once. Put it into a 37°C 200rpm shaker and shake for 10min to sterilize the surface.
③弃75%乙醇,加入1mL 95%乙醇,上下颠倒混匀,弃上清,并重复1次。在超净工作台中,向各管种子加入300-500μL无水乙醇,用1mL移液器将种子和无水乙醇一同喷洒到无菌滤纸上。③ Discard 75% ethanol, add 1mL 95% ethanol, mix up and down, discard the supernatant, and repeat once. In an ultra-clean bench, add 300-500 μL of absolute ethanol to each tube of seeds, and spray the seeds and absolute ethanol onto sterile filter paper with a 1 mL pipette.
④待乙醇挥发完,用牙签将已干的拟南芥种子点播于准备好的MS培养基的平板上。④ After the ethanol has evaporated, sow the dried Arabidopsis seeds on the prepared MS medium plate with a toothpick.
⑤将平板封口,黑暗条件下倒置于4℃春化48h,春化结束后,将平板置于光照培养箱中竖直培养,出苗一周后即可移栽。⑤Seal the plate and place it upside down at 4°C for vernalization for 48 hours in the dark. After vernalization, place the plate in a light incubator for vertical cultivation, and transplant the seedlings one week after emergence.
⑥用镊子将幼苗栽入小盆的土中,先用保鲜膜保湿48h,置于植物生长间中培养直至拟南芥生长抽薹时(约一个月),用于转化实验。⑥Use tweezers to plant the seedlings into the soil in a small pot, first use plastic wrap to keep moisture for 48 hours, place them in the plant growth room and cultivate them until Arabidopsis thaliana grows and bolts (about one month) for transformation experiments.
(3)遗传转化(3) Genetic transformation
①农杆菌活化:在20mL的LB液体培养基中分别加入20μL Rif和Kan,摇匀并接菌,28℃220rpm震荡活化8-10h。① Agrobacterium activation: Add 20 μL of Rif and Kan to 20 mL of LB liquid medium, shake well and inoculate the bacteria, shake and activate at 28°C and 220 rpm for 8-10 hours.
②农杆菌扩大培养:在200mL的LB液体培养基中分别加入200μL Rif和Kan,再加入5-10mL的活化菌液,28℃220rpm震荡培养14-16h,至OD值为1.6-2.0,4500rpm离心10min,沉淀菌体弃上清,自然晾干。② Agrobacterium expansion culture: add 200μL Rif and Kan to 200mL LB liquid medium respectively, then add 5-10mL activated bacteria solution, shake and culture at 28℃220rpm for 14-16h, until the OD value is 1.6-2.0, centrifuge at 4500rpm After 10 minutes, the precipitated cells were discarded and the supernatant was discarded, and dried naturally.
③在沉淀菌体中加入100mL 5%蔗糖溶液重悬菌体,移液器吹打均匀、重悬菌体。③Add 100mL of 5% sucrose solution to the precipitated cells to resuspend the cells, pipette evenly to resuspend the cells.
④将离心瓶中菌液加到平皿中,再加入100mL 5%蔗糖溶液,转化前加入40μLSilwet-L-77(0.02%),晃动平皿混匀。④ Add the bacterial liquid in the centrifuge bottle to the plate, then add 100 mL of 5% sucrose solution, add 40 μL Silwet-L-77 (0.02%) before transformation, and shake the plate to mix.
⑤将拟南芥花序合拢,浸入平皿,轻轻晃动15s。⑤ Close the inflorescences of Arabidopsis thaliana, immerse in the plate, and shake gently for 15 seconds.
⑥用黑袋子将植株套好,避光保湿24h。⑥ Cover the plants with a black bag and keep them protected from light for 24 hours.
⑦一周后再重复转化一次。⑦Repeat the transformation one week later.
(4)T1代阳性植株筛选和荧光定量PCR检测(4) T1 generation positive plant screening and fluorescent quantitative PCR detection
种植拟南芥T0代所收获的种子,将其消毒,接种含30mg/L潮霉素的MS筛选培养基(添加25mg/L头孢霉素抑菌)上22℃光照培养7-10天,筛选获得阳性植株(幼苗和根系都正常生长的植株),将阳性苗移栽到土壤中,用保鲜膜盖上2-3天后揭膜,然后正常生长。Plant the harvested seeds of Arabidopsis thaliana T0 generation, sterilize them, inoculate MS screening medium containing 30 mg/L hygromycin (adding 25 mg/L cephalosporin for antibacterial) and cultivate under light at 22°C for 7-10 days, and select Obtain positive plants (plants with normal growth of seedlings and root systems), transplant the positive seedlings into the soil, cover them with plastic wrap for 2-3 days, then remove the film, and then grow normally.
取阳性转基因植株和野生型拟南芥植株的幼嫩叶片,用RNA提取试剂盒(北京艾德莱生物科技有限公司)提取叶片总RNA,然后用反转录试剂盒(南京诺唯赞生物科技有限公司)获得cDNA,以各自cDNA为模板,以拟南芥β-actin为内参,其中β-actin基因的引物包括:Take the young leaves of positive transgenic plants and wild-type Arabidopsis plants, use the RNA extraction kit (Beijing Aidelai Biotechnology Co., Ltd.) to extract total RNA from the leaves, and then use the reverse transcription kit (Nanjing Novizan Biotechnology Co., Ltd.) to obtain cDNA, with the respective cDNA as a template and Arabidopsis β-actin as an internal reference, wherein the primers for the β-actin gene include:
actin-F:5’-CCCGCTATGTATGTCGCCA-3’(如SEQ ID NO.7所示);actin-F: 5'-CCCGCTATGTATGTCGCCA-3' (as shown in SEQ ID NO.7);
actin-R:5’-AACCCTCGTAGATTGGCACAG-3’(如SEQ ID NO.8所示);actin-R: 5'-AACCCTCGTAGATTGGCACAG-3' (as shown in SEQ ID NO.8);
用SiERF103特异引物SiERF103QRT-F/R:With SiERF103 specific primer SiERF103QRT-F/R:
SiERF103QRT-F:5’-GAACTACAGAGGCGTGAG-3’(SEQ ID NO.5所示);SiERF103QRT-F: 5'-GAACTACAGAGGCGTGAG-3' (shown in SEQ ID NO.5);
SiERF103QRT-R:5’-TTATCGTAAGCCAAAGC-3’(SEQ ID NO.6所示)。SiERF103QRT-R: 5'-TTATCGTAAGCCAAAGC-3' (shown in SEQ ID NO.6).
对目标基因进行qRT-PCR表达验证(qRT-PCR Mix:南京诺唯赞生物科技有限公司;仪器:Roche480)。qRT-PCR expression verification of the target gene (qRT-PCR Mix: Nanjing Nuoweizan Biotechnology Co., Ltd.; instrument: Roche 480).
qRT-PCR检测结果如图2所示,结果表明,以野生型植株为对照,SiERF103基因在检测的3个转基因拟南芥株系(SiERF103-OE#1,-OE#2,-OE#3)中的表达量均显著提高。The results of qRT-PCR detection are shown in Figure 2. The results showed that, using wild-type plants as controls, the SiERF103 gene was detected in three transgenic Arabidopsis lines (SiERF103-
将SiERF103超量表达的转基因T1代植株进行单株收种,将T1代阳性植株收获的种子继续进行潮霉素筛选获得T2代阳性植株并单株收种。继续繁殖,直至获得纯合的SiERF103超量表达转基因材料。The transgenic T1 generation plants overexpressing SiERF103 were harvested as a single plant, and the seeds harvested from the positive plants of the T1 generation were further screened with hygromycin to obtain positive plants of the T2 generation and harvested as a single plant. Continue to breed until a homozygous SiERF103 overexpression transgenic material is obtained.
2、转基因拟南芥抗旱性测定2. Determination of drought resistance of transgenic Arabidopsis
待T3代纯合转基因拟南芥生长至3对叶时期,分别对拟南芥转基因植株和野生型拟南芥植株进行干旱胁迫(即不浇水)处理14天,然后复水恢复生长7天,观察并统计各组恢复正常生长的株数,计算存活率。其中转基因家系和野生型材料各进行3次重复试验,每个重复对27株植株进行胁迫处理。After the homozygous transgenic Arabidopsis thaliana of the T3 generation grew to the stage of three pairs of leaves, the transgenic Arabidopsis plants and the wild-type Arabidopsis plants were subjected to drought stress (i.e. no watering) treatment for 14 days, and then rewatered to resume growth for 7 days , observe and count the number of plants that returned to normal growth in each group, and calculate the survival rate. The transgenic family and the wild-type material were repeated 3 times, and 27 plants were subjected to stress treatment in each repetition.
抗旱性测定结果如图3所示,结果显示,复水后野生型仅有5-7株恢复正常,而转基因材料有23-26株恢复,经计算,约90%的转SiERF103基因的拟南芥株系恢复正常生长,而野生型拟南芥只有约22%的植株存活。该结果表明芝麻SiERF103基因的过量表达可以显著提高植物的抗旱能力。The results of the drought resistance test are shown in Figure 3. The results showed that only 5-7 plants of the wild type returned to normal after rehydration, while 23-26 plants of the transgenic materials recovered. It was calculated that about 90% of the plants of the Arabidopsis transgenic SiERF103 gene The thaliana lines returned to normal growth, while only about 22% of wild-type Arabidopsis plants survived. The results indicated that the overexpression of SiERF103 gene in sesame can significantly improve the drought resistance of plants.
3、转基因拟南芥耐渍性测定3. Determination of water resistance of transgenic Arabidopsis
待T3代纯合转基因拟南芥生长至3对叶时期,分别对拟南芥转基因植株和野生型拟南芥植株进行渍害胁迫处理18天,渍害胁迫处理具体为:将种植植株的盒子置于水中,水高于土表面0.5cm,确保植物根部浸没于水中;然后恢复正常生长7天。观察并统计各组恢复正常生长的株数,计算存活率。其中转基因家系和野生型材料各进行3次重复试验,每个重复对27株植株进行胁迫处理。After the homozygous transgenic Arabidopsis thaliana of the T3 generation grew to the stage of three pairs of leaves, the transgenic Arabidopsis plants and the wild-type Arabidopsis plants were subjected to waterlogging stress treatment for 18 days. Place in water, the water is 0.5cm higher than the soil surface, to ensure that the plant roots are submerged in water; then resume normal growth for 7 days. The number of plants returning to normal growth in each group was observed and counted, and the survival rate was calculated. The transgenic family and the wild-type material were repeated 3 times, and 27 plants were subjected to stress treatment in each repetition.
耐渍性测定结果如图4所示,结果显示,经正常处理7天后,野生型有6-9株恢复,转基因材料有18-24株恢复。经计算,75%以上的SiERF103超表达转基因株系逐渐恢复至正常生长,而野生型拟南芥只有约25%恢复正常,表明芝麻SiERF103基因的过量表达可以提高植物的耐渍能力。The results of the stain resistance test are shown in Figure 4. The results showed that after 7 days of normal treatment, 6-9 strains of the wild type recovered, and 18-24 strains of the transgenic material recovered. According to calculations, more than 75% of SiERF103 overexpressed transgenic lines gradually returned to normal growth, while only about 25% of wild-type Arabidopsis returned to normal, indicating that the overexpression of SiERF103 gene in sesame can improve the water resistance of plants.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention.
序列表sequence listing
<110> 中国农业科学院油料作物研究所<110> Institute of Oil Crops, Chinese Academy of Agricultural Sciences
<120> 芝麻SiERF103基因在增强植物抗性中的应用<120> Application of Sesame SiERF103 Gene in Enhancing Plant Resistance
<160> 8<160> 8
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 435<211> 435
<212> DNA<212>DNA
<213> 芝麻(Sesamum indicum L.)<213> Sesamum (Sesamum indicum L.)
<400> 1<400> 1
atgagaatga ttctcaagaa atcgtattac accaactcct caacgaggcc tgatgcctta 60atgagaatga ttctcaagaa atcgtattac accaactcct caacgaggcc tgatgcctta 60
aacacttctt cgcatcagat caggagtcag agttttaacc tccgcccgtc tcattccgtc 120aacacttctt cgcatcagat caggagtcag agttttaacc tccgcccgtc tcattccgtc 120
acaaagaaga actacagagg cgtgaggcgg cggccctggg ggaagttcgc agccgagatt 180acaaagaaga actacagagg cgtgaggcgg cggccctggg ggaagttcgc agccgagatt 180
cgggactcca accggcaggg ggcaagaata tggctgggga cattcgaaac agccgaagaa 240cgggactcca accggcaggg ggcaagaata tggctgggga cattcgaaac agccgaagaa 240
gctgctttgg cttacgataa ggcggcattt agaatgcgag gcacaaaggc tctcctcaat 300gctgctttgg cttacgataa ggcggcattt agaatgcgag gcacaaaggc tctcctcaat 300
ttccctcctg aaatcgtggc tgctgctgct tcttcatcga gcactccaac acttgatcgc 360ttccctcctg aaatcgtggc tgctgctgct tcttcatcga gcactccaac acttgatcgc 360
gatcaaaaac atttggataa ttctagaaac tgtttgtctg atgatgcaag tagtgtgtca 420gatcaaaaac atttggataa ttctagaaac tgtttgtctg atgatgcaag tagtgtgtca 420
agtgagatgg tttga 435agtgagatgg tttga 435
<210> 2<210> 2
<211> 144<211> 144
<212> PRT<212> PRT
<213> 芝麻(Sesamum indicum L.)<213> Sesamum (Sesamum indicum L.)
<400> 2<400> 2
Met Arg Met Ile Leu Lys Lys Ser Tyr Tyr Thr Asn Ser Ser Thr ArgMet Arg Met Ile Leu Lys Lys Ser Tyr Tyr Thr Asn Ser Ser Thr Arg
1 5 10 151 5 10 15
Pro Asp Ala Leu Asn Thr Ser Ser His Gln Ile Arg Ser Gln Ser PhePro Asp Ala Leu Asn Thr Ser Ser His Gln Ile Arg Ser Gln Ser Phe
20 25 30 20 25 30
Asn Leu Arg Pro Ser His Ser Val Thr Lys Lys Asn Tyr Arg Gly ValAsn Leu Arg Pro Ser His Ser Val Thr Lys Lys Asn Tyr Arg Gly Val
35 40 45 35 40 45
Arg Arg Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Ser AsnArg Arg Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Ser Asn
50 55 60 50 55 60
Arg Gln Gly Ala Arg Ile Trp Leu Gly Thr Phe Glu Thr Ala Glu GluArg Gln Gly Ala Arg Ile Trp Leu Gly Thr Phe Glu Thr Ala Glu Glu
65 70 75 8065 70 75 80
Ala Ala Leu Ala Tyr Asp Lys Ala Ala Phe Arg Met Arg Gly Thr LysAla Ala Leu Ala Tyr Asp Lys Ala Ala Phe Arg Met Arg Gly Thr Lys
85 90 95 85 90 95
Ala Leu Leu Asn Phe Pro Pro Glu Ile Val Ala Ala Ala Ala Ser SerAla Leu Leu Asn Phe Pro Pro Glu Ile Val Ala Ala Ala Ala Ser Ser
100 105 110 100 105 110
Ser Ser Thr Pro Thr Leu Asp Arg Asp Gln Lys His Leu Asp Asn SerSer Ser Thr Pro Thr Leu Asp Arg Asp Gln Lys His Leu Asp Asn Ser
115 120 125 115 120 125
Arg Asn Cys Leu Ser Asp Asp Ala Ser Ser Val Ser Ser Glu Met ValArg Asn Cys Leu Ser Asp Asp Ala Ser Ser Val Ser Ser Glu Met Val
130 135 140 130 135 140
<210> 3<210> 3
<211> 43<211> 43
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
agctttcgcg agctcggtac catgagaatg attctcaaga aat 43agctttcgcg agctcggtac catgagaatg attctcaaga aat 43
<210> 4<210> 4
<211> 47<211> 47
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
caggtcgact ctagaggatc ctcaaaccat ctcacttgac acactac 47caggtcgact ctagaggatc ctcaaaccat ctcacttgac acactac 47
<210> 5<210> 5
<211> 18<211> 18
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
gaactacaga ggcgtgag 18gaactacaga ggcgtgag 18
<210> 6<210> 6
<211> 17<211> 17
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
ttatcgtaag ccaaagc 17ttatcgtaag ccaaagc 17
<210> 7<210> 7
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
cccgctatgt atgtcgcca 19cccgctatgt atgtcgcca 19
<210> 8<210> 8
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
aaccctcgta gattggcaca g 21aaccctcgta gattggcaca g 21
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111094686.1A CN113621625B (en) | 2021-09-17 | 2021-09-17 | Application of sesame SiERF103 gene in enhancing plant resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111094686.1A CN113621625B (en) | 2021-09-17 | 2021-09-17 | Application of sesame SiERF103 gene in enhancing plant resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113621625A CN113621625A (en) | 2021-11-09 |
CN113621625B true CN113621625B (en) | 2023-05-23 |
Family
ID=78390361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111094686.1A Active CN113621625B (en) | 2021-09-17 | 2021-09-17 | Application of sesame SiERF103 gene in enhancing plant resistance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113621625B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114561404B (en) * | 2022-04-20 | 2023-06-16 | 河南农业大学 | Apple MdSHN1 gene and application thereof in improving waterlogging tolerance of plants |
CN116731139B (en) * | 2023-06-20 | 2024-03-22 | 西南大学 | Application of Populus tomentosa PtoERF15 gene in regulating poplar drought resistance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110607315A (en) * | 2018-05-28 | 2019-12-24 | 中国农业科学院油料作物研究所 | A kind of sesame gene related to drought resistance and its application |
CN109306353A (en) * | 2018-11-06 | 2019-02-05 | 中国农业科学院油料作物研究所 | Sesame Drought Resistance Gene SiSAM1 and Its Application |
CN109337915A (en) * | 2018-11-23 | 2019-02-15 | 中国农业科学院油料作物研究所 | Drought and salt tolerance gene SiMYB75 in sesame and its encoded protein and application |
-
2021
- 2021-09-17 CN CN202111094686.1A patent/CN113621625B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113621625A (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106868021B (en) | Gene OsNAC1 for controlling rice seed size and application thereof | |
CN104829700A (en) | Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof | |
CN110205332B (en) | An encoding gene for enhancing plant tolerance to cadmium toxicity and reducing plant cadmium content and its application | |
CN106222182B (en) | The IbERF5 genes of coding sweet potato ERF transcription and application | |
CN110628808A (en) | Arabidopsis AtTCP5 Gene and Its Application in Regulating Plant Height | |
CN110643618A (en) | Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance | |
CN104327173B (en) | Cotton WRKY transcription factor GarWRKY22 for regulating and controlling plant salt tolerance and application | |
CN113621625B (en) | Application of sesame SiERF103 gene in enhancing plant resistance | |
CN107746846A (en) | The IbABF4 genes of coding sweet potato bZIP transcription factors and application | |
CN111593058A (en) | Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus | |
CN111087457A (en) | Protein NGR5 for improving nitrogen use efficiency and crop yield and its encoding gene and application | |
CN109762795A (en) | A Drought Resistance-Related Sesame Gene SiGolS2 and Its Application | |
CN110938617B (en) | Lilium regale LrPAL-1 gene and application thereof | |
CN102719449A (en) | Clone of apple resistance-related gene MdSIMYB1 and application thereof | |
CN105671058B (en) | The gene of coding sweet potato ERF transcription and application | |
CN102154338B (en) | Gene GhMKK5 capable of improving bacterial resistance of transgenic crops and application thereof | |
CN104140462B (en) | Plant salt endurance associated protein GhSnRK2-6 and encoding gene thereof and application | |
CN115011631B (en) | Protein regulating drought resistance of maize seedlings and its encoding gene and application | |
WO2013010368A1 (en) | Use of rice aerenchyma formation key gene oslsd2 | |
CN113957085B (en) | Application of clematis isoprenoyl transferase PT1 gene, and overexpression Arabidopsis thaliana strain and construction method thereof | |
CN111995668B (en) | Corn WRKY transcription factor ZmWRKY112 and coding gene and application thereof | |
CN110760522B (en) | AK209 gene and its coded protein and application in resisting stress and increasing yield | |
CN105175522B (en) | Crowtoe AP2/ERF transcription factors and its encoding gene and application | |
CN113322260A (en) | Application of sorghum gene SbbZIP51 in regulation and control of salt tolerance | |
CN106480068B (en) | Duckweed transcription factor LmMYB gene and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |