CN114444426A - Chip design method, device, storage medium and electronic equipment - Google Patents
Chip design method, device, storage medium and electronic equipment Download PDFInfo
- Publication number
- CN114444426A CN114444426A CN202011204863.2A CN202011204863A CN114444426A CN 114444426 A CN114444426 A CN 114444426A CN 202011204863 A CN202011204863 A CN 202011204863A CN 114444426 A CN114444426 A CN 114444426A
- Authority
- CN
- China
- Prior art keywords
- dummy metal
- layer
- timing path
- critical timing
- dummy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013461 design Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000003860 storage Methods 0.000 title claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 541
- 229910052751 metal Inorganic materials 0.000 claims abstract description 541
- 230000004888 barrier function Effects 0.000 claims abstract description 165
- 150000002739 metals Chemical class 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 392
- 230000003071 parasitic effect Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 23
- 230000003068 static effect Effects 0.000 description 20
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000012938 design process Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004429 Calibre Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/392—Floor-planning or layout, e.g. partitioning or placement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/32—Circuit design at the digital level
- G06F30/33—Design verification, e.g. functional simulation or model checking
- G06F30/3315—Design verification, e.g. functional simulation or model checking using static timing analysis [STA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/394—Routing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/398—Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Architecture (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本申请属于电子设备技术领域,尤其涉及一种芯片设计方法、装置、存储介质及电子设备。The present application belongs to the technical field of electronic equipment, and in particular relates to a chip design method, device, storage medium and electronic equipment.
背景技术Background technique
在芯片(即集成电路)制造过程中,为了保证可制造性,金属图层(Metal Layer)需要满足最低密度要求。而用作互联的金属图层密度通常较低,需加入额外的虚设金属(Dummy Metal)。在先进工艺中,加入虚设金属会引入寄生电容从而影响到关键时序路径(Critical Timing Path),导致芯片频率降低。针对这个问题,相关技术中一般有两种解决方案,该两种解决方案的芯片设计时间都较长。In the manufacturing process of chips (ie integrated circuits), in order to ensure the manufacturability, the metal layer (Metal Layer) needs to meet the minimum density requirements. The density of metal layers used for interconnection is usually lower, and additional dummy metal needs to be added. In advanced processes, adding dummy metal will introduce parasitic capacitance and affect the critical timing path (Critical Timing Path), resulting in lower chip frequency. For this problem, there are generally two solutions in the related art, and the chip design time of the two solutions is relatively long.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种芯片设计方法、装置、存储介质及电子设备,可以节省芯片设计时长。Embodiments of the present application provide a chip design method, device, storage medium, and electronic device, which can save chip design time.
第一方面,本申请实施例提供一种芯片设计方法,应用于电子设备,包括:In a first aspect, an embodiment of the present application provides a chip design method, which is applied to an electronic device, including:
确定出芯片的布局布线中的关键时序路径;Determine the critical timing path in the layout and routing of the chip;
对所述关键时序路径设置虚设金属阻挡层(Dummy Metal Block Layer);setting a dummy metal block layer on the critical timing path;
在所述虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。A dummy metal is arranged outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
第二方面,本申请实施例提供一种芯片设计装置,应用于电子设备,包括:In a second aspect, an embodiment of the present application provides a chip design device, which is applied to electronic equipment, including:
确定模块,用于确定出芯片的布局布线中的关键时序路径;Determine the module to determine the critical timing path in the layout and routing of the chip;
第一设置模块,用于对所述关键时序路径设置虚设金属阻挡层;a first setting module, configured to set a dummy metal barrier layer on the critical timing path;
第二设置模块,用于在所述虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。The second setting module is configured to set dummy metal at a position outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
第三方面,本申请实施例提供一种存储介质,其上存储有计算机程序,当所述计算机程序在计算机上执行时,使得所述计算机执行本申请实施例提供的芯片设计方法。In a third aspect, an embodiment of the present application provides a storage medium on which a computer program is stored, and when the computer program is executed on a computer, the computer is made to execute the chip design method provided by the embodiment of the present application.
第四方面,本申请实施例还提供一种电子设备,包括存储器和处理器,所述处理器通过调用所述存储器中存储的计算机程序,用于执行本申请实施例提供的芯片设计方法。In a fourth aspect, an embodiment of the present application further provides an electronic device, including a memory and a processor, where the processor is configured to execute the chip design method provided by the embodiment of the present application by invoking a computer program stored in the memory.
在本申请实施例中,电子设备可以确定出芯片的布局布线中的关键时序路径,对该关键时序路径设置虚设金属阻挡层,设置虚设金属阻挡层的目的是为了在该虚设金属阻挡层标记的区域内不设置虚设金属,而在该虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。由于在虚设金属阻挡层标记的区域内不设置虚设金属,这样可以防止标记区域内的关键时序路径与虚设金属之间产生互容,即可以防止标记区域内的关键时序路径与虚设金属之间产生寄生电容,从而可以防止关键时序路径的时序变差,进而减少时序的修改时间,同时,还省去了在虚设金属阻挡层标记的区域内设置虚设金属的时间,这样可以大大节省芯片设计过程中设置虚设金属的时间。另外,通过在虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属,以达到金属图层最小密度规则要求。因此,本申请实施例针对关键时序路径设置虚设金属阻挡层的方式,通过在金属阻挡层标记的区域内不设置虚设金属,而在金属阻挡层标记的区域范围外布线密度小于预设密度阈值的位置设置虚设金属,可以节省芯片设计时长。In this embodiment of the present application, the electronic device can determine a critical timing path in the layout and wiring of the chip, and set a dummy metal barrier layer on the critical timing path, and the purpose of setting the dummy metal barrier layer is to mark on the dummy metal barrier layer. No dummy metal is arranged in the area, and dummy metal is arranged outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold. Since no dummy metal is provided in the area marked by the dummy metal barrier layer, mutual capacitance between the critical timing path in the marked area and the dummy metal can be prevented, that is, the generation between the critical timing path and the dummy metal in the marked area can be prevented. The parasitic capacitance can prevent the timing deterioration of the critical timing path, thereby reducing the timing modification time. At the same time, it also saves the time for setting dummy metal in the area marked by the dummy metal barrier layer, which can greatly save the chip design process. Set the time for the dummy metal. In addition, the dummy metal is set outside the range of the dummy metal barrier layer where the layout and wiring density is less than the preset density threshold, so as to meet the minimum density rule requirement of the metal layer. Therefore, in the embodiment of the present application, for the method of setting the dummy metal barrier layer for the critical timing path, the dummy metal is not provided in the area marked by the metal barrier layer, and the wiring density outside the area marked by the metal barrier layer is less than the preset density threshold. Dummy metal is set at the position, which can save the time of chip design.
附图说明Description of drawings
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其有益效果显而易见。The technical solutions of the present application and the beneficial effects thereof will be apparent through the detailed description of the specific embodiments of the present application in conjunction with the accompanying drawings.
图1是相关技术中第一种解决方案的流程示意图。FIG. 1 is a schematic flowchart of a first solution in the related art.
图2是相关技术中第二种解决方案的流程示意图。FIG. 2 is a schematic flowchart of the second solution in the related art.
图3是本申请实施例提供的芯片设计方法的流程示意图。FIG. 3 is a schematic flowchart of a chip design method provided by an embodiment of the present application.
图4是本申请实施例提供的含有关键时序路径的布线的示意图。FIG. 4 is a schematic diagram of a wiring including a critical timing path provided by an embodiment of the present application.
图5是本申请实施例提供的设置虚设金属阻挡层后的布线示意图。FIG. 5 is a schematic diagram of wiring after the dummy metal barrier layer is provided according to an embodiment of the present application.
图6是本申请实施例提供的设置虚设金属阻挡层后的另一布线示意图。FIG. 6 is another schematic diagram of wiring provided by an embodiment of the present application after the dummy metal barrier layer is provided.
图7是本申请实施例提供的对关键时序路径设置虚设金属阻挡层后的布线示意图。FIG. 7 is a schematic diagram of wiring after a dummy metal barrier layer is provided on a critical timing path according to an embodiment of the present application.
图8是本申请实施例提供的对关键时序路径设置虚设金属阻挡层后的另一布线示意图。FIG. 8 is another schematic diagram of wiring after a dummy metal barrier layer is provided on a critical timing path according to an embodiment of the present application.
图9为本申请实施例提供的不对关键时序路径进行保护的布线示意图。FIG. 9 is a schematic diagram of wiring without protection of critical timing paths according to an embodiment of the present application.
图10为本申请实施例提供的不对关键时序路径进行保护的另一布线示意图。FIG. 10 is another schematic diagram of wiring without protection of critical timing paths according to an embodiment of the present application.
图11为本申请实施例提供的在M6金属图层引入同层虚设金属寄生电容的平面示意图。FIG. 11 is a schematic plan view of introducing a dummy metal parasitic capacitance of the same layer into an M6 metal layer according to an embodiment of the present application.
图12为本申请实施例提供的在M6金属图层引入同层虚设金属寄生电容的立体示意图。FIG. 12 is a schematic three-dimensional schematic diagram of introducing a dummy metal parasitic capacitance of the same layer into an M6 metal layer according to an embodiment of the present application.
图13为本申请实施例提供的在M6金属图层引入上下层虚设寄生电容的截面示意图。13 is a schematic cross-sectional view of introducing dummy parasitic capacitances of upper and lower layers into an M6 metal layer according to an embodiment of the present application.
图14为本申请实施例提供的M6金属图层引入上下层虚设寄生电容的立体示意图。FIG. 14 is a schematic three-dimensional schematic diagram of introducing dummy parasitic capacitances of upper and lower layers into the M6 metal layer provided by the embodiment of the present application.
图15为本申请实施例提供的保护关键时序路径后设置虚设金属的示意图。FIG. 15 is a schematic diagram of setting a dummy metal after protecting a critical timing path according to an embodiment of the present application.
图16为本申请实施例提供的保护关键时序路径后设置虚设金属的另一示意图。FIG. 16 is another schematic diagram of setting a dummy metal after protecting a critical timing path according to an embodiment of the present application.
图17为本申请实施例提供的消除同层虚设金属的寄生电容的平面示意图。FIG. 17 is a schematic plan view of eliminating parasitic capacitance of dummy metal in the same layer according to an embodiment of the present application.
图18为本申请实施例提供的消除同层虚设金属的寄生电容的立体示意图。FIG. 18 is a schematic three-dimensional schematic diagram of eliminating parasitic capacitance of dummy metal in the same layer according to an embodiment of the present application.
图19为本申请实施例提供的消除上下层虚设金属的寄生电容的截面示意图。FIG. 19 is a schematic cross-sectional view of eliminating parasitic capacitance of upper and lower dummy metals according to an embodiment of the present application.
图20为本申请实施例提供的消除上下层虚设金属的寄生电容的立体示意图。FIG. 20 is a schematic three-dimensional schematic diagram of eliminating parasitic capacitance of upper and lower dummy metals according to an embodiment of the present application.
图21为本申请实施例提供的芯片设计方法的另一流程示意图。FIG. 21 is another schematic flowchart of a chip design method provided by an embodiment of the present application.
图22是本申请实施例提供的芯片设计装置的结构示意图。FIG. 22 is a schematic structural diagram of a chip design apparatus provided by an embodiment of the present application.
图23是本申请实施例提供的电子设备的结构示意图。FIG. 23 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
图24是本申请实施例提供的电子设备的另一结构示意图。FIG. 24 is another schematic structural diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
请参照图示,其中相同的组件符号代表相同的组件,本申请的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。Please refer to the drawings, wherein the same component symbols represent the same components, and the principles of the present application are exemplified by being implemented in a suitable computing environment. The following description is based on illustrated specific embodiments of the present application and should not be construed as limiting other specific embodiments of the present application not detailed herein.
在芯片(即集成电路)制造过程中,为了保证可制造性,防止芯片在制造过程中由于曝光过渡或不足而导致的蚀刻失败,金属图层(Metal Layer)需要满足最低密度要求。金属图层指的是集成电路版图设计中用于代表金属互连线的层。而用作互联的金属图层密度通常较低,需设置额外的虚设金属(Dummy Metal)。In the manufacturing process of a chip (ie, an integrated circuit), in order to ensure manufacturability and prevent etching failure of the chip due to excessive or insufficient exposure during the manufacturing process, the metal layer needs to meet the minimum density requirements. Metal layer refers to the layer used to represent metal interconnect lines in integrated circuit layout design. The density of metal layers used for interconnection is usually lower, and additional dummy metal needs to be set.
在先进工艺中,设置虚设金属会引入寄生电容从而影响到关键时序路径(Critical Timing Path)的时序,使关键时序路径的时序变差,导致芯片频率降低。针对这个问题,相关技术中一般有两种解决方案,该两种解决方案的芯片设计时间都较长。In an advanced process, setting the dummy metal will introduce parasitic capacitance and affect the timing of the critical timing path (Critical Timing Path), which will deteriorate the timing of the critical timing path and reduce the chip frequency. For this problem, there are generally two solutions in the related art, and the chip design time of the two solutions is relatively long.
请参阅图1,图1是相关技术中第一种解决方案的流程示意图。该第一解决方案采用PR工具进行芯片的布局布线(Placement and Routing,PR);将布局布线的数据导出为GDS(Graphic Design System)格式的文件,该GDS也可以即为图形设计系统,是一种二进制的数据库文件格式,用于集成电路版图数据交互。然后,在GDS格式文件的布图的相应位置设置虚设金属,虚设金属指的是在集成电路版图设计中,为了达到金属图层最小密度规则要求,在集成电路版图上金属连线密度低的区域插入的金属图形。之后,当静态时序分析(Static Timing Analysis,STA)通过后,结束该芯片的布局布线设计流程,当静态时序分析未通过时,采用工程修改修时序。Please refer to FIG. 1 , which is a schematic flowchart of a first solution in the related art. The first solution uses a PR tool for chip placement and routing (PR); the data of the placement and routing is exported into a file in GDS (Graphic Design System) format, and the GDS can also be a graphic design system, which is a A binary database file format used for the interaction of integrated circuit layout data. Then, set a dummy metal in the corresponding position of the layout of the GDS format file. The dummy metal refers to the area with low metal connection density on the integrated circuit layout in order to meet the requirements of the minimum density rule of the metal layer in the layout design of the integrated circuit. Inserted metal graphics. After that, when the static timing analysis (Static Timing Analysis, STA) is passed, the layout and routing design flow of the chip is ended, and when the static timing analysis fails, the engineering modification is used to repair the timing.
该第一种解决方案中,先加入虚设金属,静态时序分析检查时序违规路径,再使用工程修改(Engineering Change Order,ECO)修时序。该第一解决方案在设计的最后阶段,再修时序。时序收敛更复杂,且设计时间太长。In the first solution, dummy metal is added first, static timing analysis checks timing violation paths, and then engineering change order (ECO) is used to repair timing. The first solution is to fix the timing in the final stage of the design. Timing closure is more complex and the design time is too long.
请参阅图2,图2是相关技术中第二种解决方案的流程示意图。该第二种解决方案中,采用PR工具进行芯片的布局布线;根据布局布线的数据,通过人工编写出设计规则检查(Design Rule Check,DRC)规则文件,该设计规则检查规则文件中规定了哪些位置需要加虚设金属,哪些位置不能加虚设金属。根据该设计规则检查规则文件在相应的位置设置虚设金属。这种情况下,一般都会通过静态时序分析。但由于设计规则检查规则文件太大,占用过多磁盘空间,并且导致设置虚设金属的运行时间太长。Please refer to FIG. 2 , which is a schematic flowchart of the second solution in the related art. In the second solution, the PR tool is used for chip layout and wiring; according to the layout and wiring data, a Design Rule Check (DRC) rule file is manually written, and what are specified in the design rule check rule file Dummy metals need to be added to the positions, and dummy metals cannot be added to which positions. Dummy metals are placed in the corresponding locations according to the design rule check rule file. In this case, static timing analysis is generally performed. But because the design rule check rules file is too large, it takes up too much disk space, and it takes too long to set up the dummy metal.
为了解决上述问题,本申请实施例通过在PR工具中针对关键时序路径设置虚设金属阻挡层,该虚设金属阻挡层作为阻挡层,用于阻挡虚设金属生成工具在其盖住的地方产生虚设金属图形。本申请实施例既可以节省芯片设计时长,又可以保持良好时序。以下将进行详细说明。In order to solve the above-mentioned problems, in the embodiment of the present application, a dummy metal barrier layer is set in the PR tool for the critical timing path, and the dummy metal barrier layer is used as a barrier layer to prevent the dummy metal generation tool from generating a dummy metal pattern at the place covered by the dummy metal barrier layer. . The embodiments of the present application can not only save the chip design time, but also maintain good timing. A detailed description will be given below.
可以理解的是,本申请实施例的执行主体可以是诸如智能手机、平板电脑、笔记本电脑或台式电脑等的电子设备。It can be understood that, the execution body of the embodiment of the present application may be an electronic device such as a smart phone, a tablet computer, a notebook computer, or a desktop computer.
请参阅图3,图3是本申请实施例提供的芯片设计方法的流程示意图。该芯片设计方法可以应用于电子设备中。该芯片设计方法的流程可以包括:Please refer to FIG. 3 , which is a schematic flowchart of a chip design method provided by an embodiment of the present application. The chip design method can be applied to electronic equipment. The flow of the chip design method may include:
101、确定出芯片的布局布线中的关键时序路径。101. Determine a critical timing path in the layout and routing of the chip.
比如,比如,在对芯片进行布局布线时,一般都会使用专门的布局布线软件,例如,采用PR工具进行芯片的布局布线。具体而言,PR工具可以安装在电子设备上,该PR工具是一种布局布线工具,即是一种芯片布局布线的软件工具,采用该PR工具可以进行芯片的布局布线。当完成芯片的布局布线后,将得到芯片布局布线的数据。For example, when the chip is placed and routed, special placement and routing software is generally used, for example, a PR tool is used to perform the chip placement and routing. Specifically, a PR tool can be installed on an electronic device. The PR tool is a placement and routing tool, that is, a software tool for chip placement and routing. The PR tool can be used to perform chip placement and routing. When the layout and wiring of the chip is completed, the data of the layout and wiring of the chip will be obtained.
然后,根据布局布线的数据,可以确定出芯片的布局布线中的关键时序路径。比如,请参阅图4,图4是本申请实施例提供的含有关键时序路径的布线的示意图。图4中有填充点的路径是关键时序路径Critical Timing Path,未填充的路径是正常时序路径NormalTiming Path。Then, according to the layout and routing data, the critical timing paths in the layout and routing of the chip can be determined. For example, please refer to FIG. 4 , which is a schematic diagram of a wiring including a critical timing path provided by an embodiment of the present application. The path with filling points in Figure 4 is the Critical Timing Path, and the unfilled path is the Normal Timing Path.
102、对关键时序路径设置虚设金属阻挡层。102. Set a dummy metal barrier layer on the critical timing path.
比如,采用PR工具对关键时序路径设置虚设金属阻挡层,该虚设金属阻挡层可以阻挡虚设金属生成工具在其盖住的地方产生虚设金属图形。该虚设金属阻挡层是虚拟的,不是物理存在的层,可以看作是一个标记(marker),通过PR工具设置该标记,该标记可以标记关键时序路径周围的区域,即该虚设金属阻挡层仅仅是一个起到保护作用的标记,不是一个实体。设置虚设金属阻挡层的目的是为了在该虚设金属阻挡层标记的区域内不设置虚设金属,而在虚设金属阻挡层标记的区域范围外的其他区域设置虚设金属。For example, a PR tool is used to set a dummy metal barrier layer on the critical timing path, and the dummy metal barrier layer can prevent the dummy metal generation tool from generating dummy metal patterns where it covers. The dummy metal barrier layer is virtual, not a physical layer, and can be regarded as a marker. The marker is set by the PR tool, and the marker can mark the area around the critical timing path, that is, the dummy metal barrier layer is only is a protective marker, not an entity. The purpose of disposing the dummy metal barrier layer is not to dispose dummy metal in the area marked by the dummy metal barrier layer, but to dispose dummy metal in other areas outside the area marked by the dummy metal barrier layer.
可以理解的是,由于在该虚设金属阻挡层标记的区域内不设置虚设金属,这样不仅可以防止虚设金属阻挡层标记的区域内的关键时序路径与虚设金属之间产生互容,即可以防止关键时序路径与虚设金属之间产生寄生电容,从而可以保护关键时序路径的时序,防止关键时序路径的时序变差,进而可以减少时序的修改时间,同时还由于省去了在虚设金属阻挡层标记的区域内设置虚设金属的时间,因此可以大大节省芯片设计过程中设置虚设金属的时间。而在虚设金属阻挡层标记的区域范围外的其他区域设置虚设金属,是为了达到金属图层最小密度规则要求。It can be understood that since no dummy metal is provided in the area marked by the dummy metal barrier layer, it can not only prevent mutual capacitance between the critical timing path and the dummy metal in the area marked by the dummy metal barrier layer, but also prevent the critical The parasitic capacitance is generated between the timing path and the dummy metal, so that the timing of the critical timing path can be protected, and the timing of the critical timing path can be prevented from deteriorating, thereby reducing the modification time of the timing. The time for setting the dummy metal in the area can greatly save the time for setting the dummy metal in the chip design process. The purpose of setting the dummy metal in other areas outside the area marked by the dummy metal barrier layer is to meet the requirements of the minimum density rule of the metal layer.
请参阅图5,图5是本申请实施例提供的设置虚设金属阻挡层后的布线示意图。图5中的M5和M6表示的是两个不同金属图层上的时序路径。M6金属图层位于M5金属层的上层,M5金属图层上的两条时序路径在水平方向上是相互平行的,M6金属图层上的三条时序路径(包含了一条关键时序路径和两条正常时序路径)时竖直方向上是相互平行的,M5金属图层上的时序路径与M6金属图层上的时序路径在垂直投影方向上是垂直相交的,形成了纵横交错布线,该方式的布线可以减少不必要的层间串扰,保证芯片的直流电压降(DC Drop,IR-Drop)性能,对于提升芯片性能起到积极的作用。Please refer to FIG. 5 . FIG. 5 is a schematic diagram of wiring after the dummy metal barrier layer is provided according to an embodiment of the present application. M5 and M6 in Figure 5 represent timing paths on two different metal layers. The M6 metal layer is located on the upper layer of the M5 metal layer. The two timing paths on the M5 metal layer are parallel to each other in the horizontal direction. The three timing paths on the M6 metal layer (including one critical timing path and two normal The timing paths are parallel to each other in the vertical direction. The timing paths on the M5 metal layer and the timing paths on the M6 metal layer intersect vertically in the vertical projection direction, forming a criss-cross wiring. It can reduce unnecessary interlayer crosstalk, ensure the DC Drop (IR-Drop) performance of the chip, and play a positive role in improving the performance of the chip.
请参阅图6,图6是本申请实施例提供的设置虚设金属阻挡层后的另一布线示意图。图6中的M6和M7表示的是两个不同金属图层上的时序路径。M7金属图层位于M6金属图层的上层。M7金属图层上的两条时序路径在水平方向上相互平行,M7金属图层上的时序路径与M6金属图层上的时序路径在垂直投影方向上是垂直相交的,形成了纵横交错布线,该方式的布线可以减少不必要的层间串扰,保证芯片的直流电压降性能,对于提升芯片性能起到积极的作用。Please refer to FIG. 6 . FIG. 6 is another schematic diagram of wiring after the dummy metal barrier layer is provided according to an embodiment of the present application. M6 and M7 in Figure 6 represent timing paths on two different metal layers. The M7 metal layer is on top of the M6 metal layer. The two timing paths on the M7 metal layer are parallel to each other in the horizontal direction. The timing path on the M7 metal layer and the timing path on the M6 metal layer are vertically intersected in the vertical projection direction, forming a criss-cross wiring. The wiring in this way can reduce unnecessary crosstalk between layers, ensure the DC voltage drop performance of the chip, and play a positive role in improving the performance of the chip.
可以理解的是,M5、M6和M7表示的是三个不同金属图层上的时序路径,即M5金属图层上的时序路径、M6金属图层上的时序路径和M7金属图层上的时序路径。其中,M7金属图层位于最上层,M6金属图层位于中间一层,M5金属图层位于最下面一层。换言之,M7金属图层、M6金属图层和M5金属图层从上至下依次层叠设置。M6金属图层位于M7金属图层和M5金属图层之间。It is understandable that M5, M6 and M7 represent the timing paths on three different metal layers, namely the timing paths on the M5 metal layer, the timing paths on the M6 metal layer and the timing paths on the M7 metal layer. path. Among them, the M7 metal layer is on the top layer, the M6 metal layer is on the middle layer, and the M5 metal layer is on the bottom layer. In other words, the M7 metal layer, the M6 metal layer, and the M5 metal layer are sequentially stacked from top to bottom. The M6 metal layer is located between the M7 metal layer and the M5 metal layer.
比如,以其中的M6金属图层为例,请参阅图7和图8,图7是本申请实施例提供的对关键时序路径设置虚设金属阻挡层后的布线示意图。图8是本申请实施例提供的对关键时序路径设置虚设金属阻挡层后的另一布线示意图。图7和图8中对M6金属图层上的关键时序路径Critical Timing Path M6的四周和上下设置虚设金属阻挡层M5~7Dummy MetalBlock Layer,由于虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域覆盖了关键时序路径Critical Timing Path M6的全部,在虚设金属阻挡层M5~7Dummy MetalBlock Layer标记的区域内不设置虚设金属,即在标记的区域覆盖的范围内不设置虚设金属,这样不仅可以防止关键时序路径Critical Timing Path M6与虚设金属之间产生寄生电容,因此可以保证关键时序路径Critical Timing Path M6的时序不会变差,防止芯片的频率降低,进而减少时序的修改时间,同时还由于省去了在标记的区域覆盖的范围内设置虚设金属的时间,因此可以大大节省芯片设计过程中设置虚设金属的时间。由于虚设金属阻挡层M5~7Dummy Metal Block Layer是虚拟的,因此图7和图8中画的是虚线。For example, taking the M6 metal layer as an example, please refer to FIG. 7 and FIG. 8 . FIG. 7 is a schematic diagram of wiring after a dummy metal barrier layer is provided on a critical timing path according to an embodiment of the present application. FIG. 8 is another schematic diagram of wiring after a dummy metal barrier layer is provided on a critical timing path according to an embodiment of the present application. In Fig. 7 and Fig. 8, the dummy metal barrier layers M5-7Dummy MetalBlock Layer are set around and above and below the critical timing path on the M6 metal layer, because the area marked by the dummy metal barrier layer M5-7Dummy Metal Block Layer covers All of the critical timing path Critical Timing Path M6 is included, and no dummy metal is set in the area marked by the dummy metal barrier layer M5 to 7 Dummy MetalBlock Layer, that is, no dummy metal is set within the range covered by the marked area, which can not only prevent critical timing Parasitic capacitance is generated between the path Critical Timing Path M6 and the dummy metal, so it can ensure that the timing of the critical timing path Critical Timing Path M6 will not be deteriorated, preventing the frequency of the chip from being reduced, thereby reducing the timing modification time, and also because it saves The time for setting the dummy metal in the range covered by the marked area can greatly save the time for setting the dummy metal in the chip design process. Since the dummy metal blocking layers M5 to 7 are virtual, the dotted lines are drawn in FIG. 7 and FIG. 8 .
103、在虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。103. Set a dummy metal at a position outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
比如,请参阅图9,图9为本申请实施例提供的不对关键时序路径进行保护的布线示意图。其中,M5 Dummy为在M5金属图层上设置的虚设金属,M6 Dummy为在M6金属图层上设置的虚设金属。M5金属图层上设置的虚设金属M5 Dummy与M5金属图层上的时序路径是相互平行的,具体地,M5金属图层上设置的虚设金属M5 Dummy与M5金属图层上的时序路径在水平方向上相互平行,以防止时序路径之间的交叉,这样可以提升芯片的性能。虚设金属是物理存在的实体,不是虚拟的,图9显示的M5金属图层上设置的虚设金属M5 Dummy的外框是虚线,仅仅是为了区分是M5金属图层上的虚设金属,而不表示是虚拟的。For example, please refer to FIG. 9. FIG. 9 is a schematic diagram of wiring without protection of critical timing paths according to an embodiment of the present application. Among them, M5 Dummy is the dummy metal set on the M5 metal layer, and M6 Dummy is the dummy metal set on the M6 metal layer. The dummy metal M5 Dummy set on the M5 metal layer and the timing paths on the M5 metal layer are parallel to each other. Specifically, the dummy metal M5 Dummy set on the M5 metal layer and the timing path on the M5 metal layer are horizontal The directions are parallel to each other to prevent intersections between timing paths, which can improve the performance of the chip. The dummy metal is a physical entity, not a virtual one. The outer frame of the dummy metal M5 Dummy set on the M5 metal layer shown in Figure 9 is a dotted line, which is only to distinguish the dummy metal on the M5 metal layer, not to indicate is virtual.
M6金属图层上设置的虚设金属M6 Dummy与M6金属图层上的时序路径是相互平行的。具体地,M6金属图层上设置的虚设金属M6 Dummy与M6金属图层上的时序路径在竖直方向上相互平行,以防止时序路径之间的交叉,这样可以提升芯片的性能。虚设金属是物理存在的实体,不是虚拟的,图9显示的M6金属图层上设置的虚设金属M6 Dummy的外框是虚线,仅仅是为了区分是M6金属图层上的虚设金属,而不表示是虚拟的。The dummy metal M6 Dummy set on the M6 metal layer and the timing paths on the M6 metal layer are parallel to each other. Specifically, the dummy metal M6 Dummy set on the M6 metal layer and the timing paths on the M6 metal layer are parallel to each other in the vertical direction to prevent intersection between the timing paths, which can improve the performance of the chip. The dummy metal is a physical entity, not a virtual one. The outer frame of the dummy metal M6 Dummy set on the M6 metal layer shown in Figure 9 is a dotted line, just to distinguish it as a dummy metal on the M6 metal layer, not to indicate is virtual.
图10为本申请实施例提供的不对关键时序路径进行保护的另一布线示意图。M7Dummy为在M7金属图层上设置的虚设金属。M7金属图层上设置的虚设金属M7 Dummy与M7金属图层上的时序路径是相互平行的。具体地,M7金属图层上设置的虚设金属M7 Dummy与M7金属图层上的时序路径在水平方向上相互平行,以防止时序路径之间的交叉,这样可以提升芯片的性能。虚设金属是物理存在的实体,不是虚拟的,图10显示的M7金属图层上设置的虚设金属M7 Dummy的外框是虚线,仅仅是为了区分是M7金属图层上的虚设金属,而不表示是虚拟的。FIG. 10 is another schematic diagram of wiring without protection of critical timing paths according to an embodiment of the present application. M7Dummy is the dummy metal set on the M7 metal layer. The dummy metal M7 Dummy set on the M7 metal layer and the timing paths on the M7 metal layer are parallel to each other. Specifically, the dummy metal M7 Dummy set on the M7 metal layer and the timing paths on the M7 metal layer are parallel to each other in the horizontal direction to prevent intersection between the timing paths, which can improve the performance of the chip. The dummy metal is a physical entity, not a virtual one. The outer frame of the dummy metal M7 Dummy set on the M7 metal layer shown in Figure 10 is a dotted line, just to distinguish it as a dummy metal on the M7 metal layer, not to indicate is virtual.
如果不对时序关键路径进行保护,直接设置虚设金属,这样会引入两种寄生电容,其中一种是同层的虚设金属寄生电容Cap,请参阅图11和图12,图11为本申请实施例提供的在M6金属图层引入同层虚设金属寄生电容的平面示意图;图12为本申请实施例提供的在M6金属图层引入上下层虚设寄生电容的立体示意图。If the timing critical path is not protected and dummy metal is set directly, two kinds of parasitic capacitances will be introduced, one of which is the dummy metal parasitic capacitance Cap on the same layer. Please refer to FIG. 11 and FIG. 12 . Figure 12 is a schematic plan view of introducing dummy metal parasitic capacitances of the same layer into the M6 metal layer; FIG. 12 is a three-dimensional schematic diagram of introducing dummy parasitic capacitances of upper and lower layers into the M6 metal layer according to an embodiment of the present application.
另外一种是上下层的虚设寄生电容Cap,请参阅图13和图14,图13为本申请实施例提供的在M6金属图层引入上下层虚设寄生电容的截面示意图。图14为本申请实施例提供的M6金属图层引入上下层虚设寄生电容的立体示意图。这些寄生电容会导致关键时序路径Critical Timing Path M6的时序变差,从而造成芯片的频率降低。The other is the dummy parasitic capacitance Cap of the upper and lower layers. Please refer to FIG. 13 and FIG. 14 . FIG. 13 is a schematic cross-sectional view of introducing dummy parasitic capacitances of the upper and lower layers into the M6 metal layer according to an embodiment of the present application. FIG. 14 is a schematic three-dimensional schematic diagram of introducing dummy parasitic capacitances of upper and lower layers into the M6 metal layer provided by the embodiment of the present application. These parasitic capacitances will cause the timing of the Critical Timing Path M6 to deteriorate, thereby reducing the frequency of the chip.
比如,在一种实施方式中,当对关键时序路径Critical Timing Path M6设置虚设金属阻挡层M5~7Dummy Metal Block Layer后,在该虚设金属阻挡层M5~7Dummy MetalBlock Layer标记的区域内不设置虚设金属,因此可以防止标记区域内的关键时序路径Critical Timing Path M6与虚设金属之间产生互容,即可以防止关键时序路径CriticalTiming Path M6与虚设金属之间产生寄生电容,由于不存在寄生电容,从而可以保证关键时序路径Critical Timing Path M6的时序不会变差,防止芯片的频率降低,进而减少时序的修改时间,同时还由于省去了在虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,因此可以大大节省芯片设计过程中设置虚设金属的时间。For example, in one embodiment, after the dummy metal barrier layers M5-7Dummy Metal Block Layer are set on the Critical Timing Path M6, no dummy metal is set in the area marked by the dummy metal barrier layers M5-7Dummy MetalBlock Layer , so it can prevent the mutual capacitance between the critical timing path M6 and the dummy metal in the marked area, that is, it can prevent the parasitic capacitance between the critical timing path M6 and the dummy metal. Since there is no parasitic capacitance, it can be It ensures that the timing of the critical timing path M6 will not deteriorate, preventing the frequency of the chip from being reduced, thereby reducing the modification time of the timing, and at the same time, it also eliminates the need to set the area marked by the dummy metal barrier layer M5 to 7Dummy Metal Block Layer. Therefore, the time for setting the dummy metal in the chip design process can be greatly saved.
另外,在虚设金属阻挡层M5~7Dummy Metal Block Layer范围外布局布线密度小于预设密度阈值的位置设置虚设金属,以达到金属图层最小密度规则要求。其中,预设密度阈值可以是金属图层最小密度。需要说明的是,在设置虚设金属时,可以采用虚设金属生成工具设置虚设金属,例如采用Calibre工具设置虚设金属,当然,也可以根据具体需求选择适合的虚设金属生成工具来设置预设金属,等等。In addition, a dummy metal is set outside the range of the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer where the layout and wiring density is less than the preset density threshold, so as to meet the minimum density rule requirement of the metal layer. The preset density threshold may be the minimum density of the metal layer. It should be noted that when setting the dummy metal, you can use the dummy metal generation tool to set the dummy metal. For example, use the Calibre tool to set the dummy metal. Of course, you can also select a suitable dummy metal generation tool according to specific needs to set the preset metal, etc. Wait.
比如,在一种实施方式中,当用虚设金属阻挡层M5~7Dummy Metal Block Layer保护关键时序路径Critical Timing Path M6,请参阅图15和图16,图15为本申请实施例提供的保护关键时序路径后设置虚设金属的示意图。图16为本申请实施例提供的保护关键时序路径后设置虚设金属的另一示意图。在保护关键时序路径Critical Timing Path M6的情况下,虚设金属生成工具会检测虚设金属阻挡层M5~7Dummy Metal Block Layer的位置,当检测出虚设金属阻挡层M5~7Dummy Metal Block Layer的位置后,而在该位置之外的布局布线密度小于预设密度阈值的位置设置虚设金属,以达到金属图层最小密度规则要求。For example, in one embodiment, when dummy metal barrier layers M5-7 Dummy Metal Block Layers are used to protect the critical timing path M6, please refer to FIG. 15 and FIG. 16, and FIG. 15 is the protection critical timing provided by the embodiment of the present application. Schematic of setting the dummy metal after the path. FIG. 16 is another schematic diagram of setting a dummy metal after protecting a critical timing path according to an embodiment of the present application. In the case of protecting the critical timing path Critical Timing Path M6, the dummy metal generation tool will detect the positions of the dummy metal barrier layers M5-7Dummy Metal Block Layer. A dummy metal is set at the position where the layout and wiring density outside this position is less than the preset density threshold, so as to meet the requirements of the minimum density rule of the metal layer.
由于金属阻挡层M5~7Dummy Metal Block Layer标记的区域内不设置虚设金属,使得关键时序路径Critical Timing Path M6所在的金属图层和虚设金属在同层之间、上下层之间都没有寄生电容,由于不存在寄生电容,从而可以保证关键时序路径CriticalTiming Path M6的时序不会变差,防止芯片的频率降低,进而减少时序的修改时间,同时还由于省去了在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,因此可以大大节省芯片设计过程中设置虚设金属的时间。请参阅图17和图18,图17为本申请实施例提供的消除同层虚设金属的寄生电容的平面示意图。图18为本申请实施例提供的消除同层虚设金属的寄生电容的立体示意图。请参阅图19和图20,图19为本申请实施例提供的消除上下层虚设金属的寄生电容的截面示意图。图20为本申请实施例提供的消除上下层虚设金属的寄生电容的立体示意图。Since no dummy metal is set in the area marked by the metal barrier layers M5~7Dummy Metal Block Layer, the metal layer and the dummy metal where the critical timing path M6 is located have no parasitic capacitance between the same layer and between the upper and lower layers. Since there is no parasitic capacitance, it can ensure that the timing of the critical timing path M6 will not deteriorate, preventing the frequency of the chip from being reduced, thereby reducing the modification time of the timing, and also because the metal barrier layer M5 ~ 7 Dummy Metal Block The time for setting the dummy metal in the area marked by the Layer can greatly save the time for setting the dummy metal in the chip design process. Please refer to FIG. 17 and FIG. 18 . FIG. 17 is a schematic plan view of eliminating parasitic capacitance of dummy metal in the same layer according to an embodiment of the present application. FIG. 18 is a schematic three-dimensional schematic diagram of eliminating parasitic capacitance of dummy metal in the same layer according to an embodiment of the present application. Please refer to FIG. 19 and FIG. 20 . FIG. 19 is a schematic cross-sectional view of eliminating parasitic capacitance of upper and lower dummy metals according to an embodiment of the present application. FIG. 20 is a schematic three-dimensional schematic diagram of eliminating parasitic capacitance of upper and lower dummy metals according to an embodiment of the present application.
比如,上述流程103设置虚设金属后,可以对设置虚设金属后的布局布线的数据进行静态时序分析的验证。静态时序分析是对时序进行计算、预计的工作流程,该工作流程不需要通过输入激励的方式进行仿真。静态时序分析可以检查电路中各条路径诸如毛刺、延迟路径和时钟偏移等问题。在执行完上述流程后,本申请实施例中,一般静态时序分析都能通过。若设置虚设金属后的布局布线的数据通过静态时序分析的验证,则结束当前芯片的布局布线流程。若未通过静态时序分析,则需要继续进行时序修改,直至通过静态时序分析的验证为止。For example, after the dummy metal is set in the
可以理解的是,在本申请实施例中,电子设备可以确定出芯片的布局布线中的关键时序路径Critical Timing Path M6,对该关键时序路径Critical Timing Path M6设置虚设金属阻挡层M5~7Dummy Metal Block Layer,设置虚设金属阻挡层M5~7Dummy MetalBlock Layer的目的是为了在该虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内不设置虚设金属,而在该虚设金属阻挡层M5~7Dummy Metal Block Layer范围外布局布线密度小于预设密度阈值的位置设置虚设金属。由于在该虚设金属阻挡层M5~7DummyMetal Block Layer标记的区域内不设置虚设金属,这样可以防止标记区域内的关键时序路径Critical Timing Path M6与虚设金属之间产生互容,即可以防止标记区域内的关键时序路径Critical Timing Path M6与虚设金属之间产生寄生电容,从而可以防止关键时序路径Critical Timing Path M6的时序变差,进而减少时序的修改时间,同时还省去了在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,这样可以大大节省芯片设计过程中设置虚设金属的时间。It can be understood that, in the embodiment of the present application, the electronic device can determine the critical timing path Critical Timing Path M6 in the layout and wiring of the chip, and set the dummy metal barrier layers M5 to 7 Dummy Metal Block for the critical timing path Critical Timing Path M6. Layer, the purpose of setting the dummy metal blocking layer M5-7Dummy MetalBlock Layer is to not set dummy metal in the area marked by the dummy metal blocking layer M5-7Dummy Metal Block Layer, but in the dummy metal blocking layer M5-7Dummy Metal Block Layer Dummy metals are set at locations where the placement and routing density outside the range is less than the preset density threshold. Since no dummy metal is set in the area marked by the dummy metal barrier layers M5-7 DummyMetal Block Layer, the mutual capacitance between the Critical Timing Path M6 and the dummy metal in the marked area can be prevented, that is, it can be prevented in the marked area. The parasitic capacitance is generated between the critical timing path Critical Timing Path M6 and the dummy metal, which can prevent the timing deterioration of the critical timing path Critical Timing Path M6, thereby reducing the timing modification time, and eliminating the need for the metal barrier layer M5~ The time for setting dummy metals in the area marked by the 7Dummy Metal Block Layer can greatly save the time for setting dummy metals in the chip design process.
另外,在虚设金属阻挡层M5~7Dummy Metal Block Layer范围外布局布线密度小于预设密度阈值的位置设置虚设金属,以达到金属图层最小密度规则要求。因此,本申请实施例针对关键时序路径Critical Timing Path M6设置虚设金属阻挡层的方式,通过在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内不设置虚设金属,而在金属阻挡层M5~7Dummy Metal Block Layer标记的区域范围外布线密度小于预设密度阈值的位置设置虚设金属,可以节省芯片设计时长。本申请实施例创新的提出了通过在PR工具中对关键时序路径Critical Timing Path M6设置虚设金属阻挡层M5~7Dummy Metal BlockLayer,达到在设置虚设金属过程中节省设计时间和保护关键时序路径Critical TimingPath M6。In addition, a dummy metal is set outside the range of the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer where the layout and wiring density is less than the preset density threshold, so as to meet the minimum density rule requirement of the metal layer. Therefore, in the embodiment of the present application, the dummy metal barrier layer is set for the critical timing path M6, by not arranging dummy metal in the area marked by the metal barrier layers M5-7 Dummy Metal Block Layer, and the metal barrier layers M5-7Dummy A dummy metal is set outside the area marked by the Metal Block Layer where the wiring density is less than the preset density threshold, which can save chip design time. The embodiment of the present application innovatively proposes to save design time and protect the critical timing path Critical TimingPath M6 in the process of setting the dummy metal by setting dummy metal barrier layers M5 to 7 Dummy Metal BlockLayer on the critical timing path Critical Timing Path M6 in the PR tool. .
请参阅图21,图21为本申请实施例提供的芯片设计方法的另一流程示意图。该芯片设计方法可以应用于电子设备中。该芯片设计方法的流程可以包括:Please refer to FIG. 21 , FIG. 21 is another schematic flowchart of a chip design method provided by an embodiment of the present application. The chip design method can be applied to electronic equipment. The flow of the chip design method may include:
201、进行芯片的布局布线。201. Perform chip layout and wiring.
比如,在对芯片进行布局布线时,一般都会使用专门的布局布线软件,例如,采用PR工具进行芯片的布局布线。具体而言,PR工具可以安装在电子设备上,该PR工具是一种布局布线工具,即是一种芯片布局布线的软件工具,采用该PR工具可以进行芯片的布局布线。当完成芯片的布局布线后,将得到芯片布局布线的数据。For example, when the chip is placed and routed, special placement and routing software is generally used, for example, a PR tool is used for chip placement and routing. Specifically, a PR tool can be installed on an electronic device. The PR tool is a placement and routing tool, that is, a software tool for chip placement and routing. The PR tool can be used to perform chip placement and routing. When the layout and wiring of the chip is completed, the data of the layout and wiring of the chip will be obtained.
202、根据布局布线的数据产生时序报告。202. Generate a timing report according to the layout and routing data.
比如,在芯片设计中,性能、功耗和面积是衡量芯片指标的3个因素。其中,性能直接取决于时序参数。由此可见,时序设计在后端设计中占有举足轻重的地位,因为其直接决定了芯片的性能。For example, in chip design, performance, power consumption and area are the three factors that measure chip metrics. Among them, the performance directly depends on the timing parameters. It can be seen that the timing design plays a pivotal role in the back-end design because it directly determines the performance of the chip.
当在PR工具中完成芯片的布局布线,且得到布局布线的数据后,PR工具会根据布局布线的数据产生时序报告。时序报告可以总结时序分析的结果,主要是汇报综合后时序分析发现违反时序约束的路径。违规有两种方式,一种是建立时间违规(SetupTimeViolation),一种是保持时间违规(Hold Time Violation)。After the placement and routing of the chip is completed in the PR tool and the placement and routing data is obtained, the PR tool will generate a timing report according to the placement and routing data. The timing report can summarize the results of timing analysis, mainly to report the paths that violate timing constraints found by timing analysis after synthesis. There are two ways of violation, one is SetupTimeViolation and the other is Hold Time Violation.
比如,编译工具在做静态时序分析的时候,先要有综合后/布线后的门级的电路网表。然后从输入端口和寄存器输出端开始,按照连接顺序一级一级地计算每个逻辑门的延时和总延时,直到寄存器输入端或输出端口为止。在这些时序路径中,最长的时序路径延时如果超过了规定的时长,就会报出建立时间违规的错误。在所有的时序路径中,如果时序路径延时小于规定的最短延时,则会报出保持时间违规。For example, when a compiler tool performs static timing analysis, it must first have a gate-level circuit netlist after synthesis/route. Then, starting from the input port and the output port of the register, the delay and total delay of each logic gate are calculated step by step according to the connection sequence until the input port or output port of the register is reached. Of these timing paths, the longest timing path delays longer than the specified duration and will report a setup violation error. A hold time violation is reported if the timing path delay is less than the specified minimum delay in all timing paths.
203、根据时序报告获取关键时序路径。203. Acquire a critical timing path according to the timing report.
比如,当PR工具根据布局布线的数据产生时序报告后,可以根据该时序报告获取关键时序路径,一般是通过时序报告可以直接得到关键时序路径。For example, after the PR tool generates a timing report according to the layout and routing data, it can obtain the critical timing path according to the timing report. Generally, the critical timing path can be directly obtained through the timing report.
具体而言,时序分析工具可以查找并分析设计中的所有时序路径。每条时序路径有一个起点和一个终点。起点是设计中数据被时钟沿载入的那个时间点,而终点则是数据通过了组合逻辑被另一个时间沿载入的时间点。Specifically, timing analysis tools can find and analyze all timing paths in a design. Each timing path has a start point and an end point. The starting point is the point in the design when the data is loaded by the clock edge, and the end point is the point when the data is loaded by another time edge through the combinational logic.
具体而言,起点是设计中数据由时钟边沿触发的位置。数据通过时序路径中的组合逻辑传播,然后被另一个时钟边沿在终点捕获。时序路径的起点是时序元件的时钟引脚或设计的输入端口。时钟边沿在起始点触发数据。输入端口也能被视作起点,是因为输入端口是由外部源触发的。Specifically, the starting point is the location in the design where data is triggered by a clock edge. Data propagates through combinational logic in the timing path and is then captured at the endpoint by another clock edge. The starting point of a timing path is the clock pin of a sequential element or the input port of the design. The clock edge triggers the data at the start point. An input port can also be considered a starting point because the input port is triggered by an external source.
时钟边沿在终点捕获数据。输出端口也能被视作终点,是因为输出端口的数据可以被外部源捕捉到。The clock edge captures the data at the endpoint. An output port can also be considered a destination because the data at the output port can be captured by an external source.
比如,设计中的每条路径都有一个相应的时序slack。slack是一个时间值,可以是正数,0或者负数。For example, each path in the design has a corresponding timing slack. slack is a time value that can be positive, 0 or negative.
需要注意的是,时序报告中显示的slack值是数据所需时间减去数据到达时间,当slack值是一个非常小的正值或0时,表示时序约束恰好得到满足。当slack值为负数时,芯片的频率会下降,该负数的绝对值越大,芯片的频率下降的越多。若slack值为负数,则需要改变设计来修复违规,反之,若slack值相当大,则说明此时序路径还有很多优化的机会。若是所有的时序路径都没有时序违规,则slack值都是正数。It should be noted that the slack value displayed in the timing report is the time required for the data minus the data arrival time. When the slack value is a very small positive value or 0, it means that the timing constraints are just met. When the slack value is negative, the frequency of the chip will drop. The greater the absolute value of the negative number, the more the frequency of the chip will drop. If the slack value is negative, the design needs to be changed to fix the violation, whereas if the slack value is quite large, there are still many opportunities for optimization in this timing path. If all timing paths have no timing violations, the slack value is positive.
比如,在一种实施方式中,所述根据所述时序报告获取所述关键时序路径,可以包括:For example, in an implementation manner, the acquiring the critical timing path according to the timing report may include:
在所述时序报告中获取slack值小于预设阈值的路径,并将其作为所述关键时序路径。A path whose slack value is less than a preset threshold is obtained from the timing report, and used as the critical timing path.
本申请实施例中通过设置预设阈值,将slack值小于预设阈值的路径,作为关键时序路径。比如,时序报告中记录有slack值,可以在时序报告中找到slack值小于预设阈值的路径,将该路径作为关键时序路径Critical Timing Path M6。例如,一般预设阈值为0,在时序报告中找到slack值小于0的路径,将该slack值小于0的路径作为关键时序路径Critical Timing Path M6。当然,预设阈值也可以是一个很小的正数,例如,预设阈值为0.3,在时序报告中找到slack值小于0.3的路径,将该slack值小于0.3的路径作为关键时序路径Critical Timing Path M6。又如,预设阈值为0.5,在时序报告中找到slack值小于0.5的路径,将该slack值小于0.5的路径作为关键时序路径Critical Timing Path M6。再如,预设阈值为1,在时序报告中找到slack值小于1的路径,将该slack值小于1的路径作为关键时序路径Critical Timing Path M6,等等。In this embodiment of the present application, a preset threshold is set, and a path whose slack value is less than the preset threshold is regarded as a critical timing path. For example, if the slack value is recorded in the timing report, the path with the slack value less than the preset threshold can be found in the timing report, and the path is regarded as the critical timing path Critical Timing Path M6. For example, the general preset threshold is 0, the path with the slack value less than 0 is found in the timing report, and the path with the slack value less than 0 is regarded as the critical timing path Critical Timing Path M6. Of course, the preset threshold can also be a small positive number. For example, the preset threshold is 0.3. Find the path with a slack value of less than 0.3 in the timing report, and use the path with a slack value of less than 0.3 as the critical timing path. M6. For another example, the preset threshold is 0.5, a path with a slack value less than 0.5 is found in the timing report, and the path with a slack value less than 0.5 is used as the critical timing path Critical Timing Path M6. For another example, if the preset threshold is 1, a path with a slack value less than 1 is found in the timing report, and the path with a slack value less than 1 is used as the critical timing path Critical Timing Path M6, and so on.
可以理解的是,当时序报告中只有一条路径的slack值小于预设阈值时,则只有一条关键时序路径,当时序报告中有多条路径的slack值小于预设阈值时,则存在多条关键时序路径。可以参阅图4中的关键时序路径。It is understandable that when the slack value of only one path in the timing report is less than the preset threshold, there is only one critical timing path. When the slack value of multiple paths in the timing report is less than the preset threshold, there are multiple critical timing paths. timing path. See the critical timing path in Figure 4.
204、在关键时序路径的周围设置虚设金属阻挡层。204. Set a dummy metal barrier layer around the critical timing path.
比如,在一种实施例方式中,在找到slack值小于0的路径,并将其作为关键时序路径Critical Timing Path M6后,在该关键时序路径Critical Timing Path M6的周围设置虚设金属阻挡层M5~7Dummy Metal Block Layer,也即在该关键时序路径CriticalTiming Path M6的周围为虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域。请参阅图18和图20,虚设金属阻挡层M5~7Dummy Metal Block Layer的形状与关键时序路径Critical Timing Path M6的形状可以相同,也可以不同,关键时序路径Critical TimingPath M6在虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内。For example, in one embodiment, after a path with a slack value less than 0 is found and used as the critical timing path Critical Timing Path M6, a dummy metal barrier layer M5~ is set around the critical timing path Critical Timing Path M6. 7Dummy Metal Block Layer, that is, the area marked by the dummy metal barrier layers M5 to 7Dummy Metal Block Layer around the Critical Timing Path M6. Please refer to FIG. 18 and FIG. 20. The shapes of the dummy metal barrier layers M5-7 Dummy Metal Block Layer and the critical timing path Critical Timing Path M6 can be the same or different. The critical timing path Critical TimingPath M6 is in the dummy metal barrier layer M5- Within the area marked by the 7Dummy Metal Block Layer.
比如,在另一种实施方式中,在找到slack值小于0.3的路径,并将其作为关键时序路径Critical Timing Path M6后,在该关键时序路径Critical Timing Path M6的周围设置虚设金属阻挡层M5~7Dummy Metal Block Layer,也即在该关键时序路径CriticalTiming Path M6的周围为虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域。请参阅图18和图20,虚设金属阻挡层M5~7Dummy Metal Block Layer的形状与关键时序路径Critical Timing Path M6的形状可以相同,也可以不同,关键时序路径Critical TimingPath M6在虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内。For example, in another embodiment, after finding a path with a slack value less than 0.3 and using it as the critical timing path Critical Timing Path M6, a dummy metal barrier layer M5~ 7Dummy Metal Block Layer, that is, the area marked by the dummy metal barrier layers M5 to 7Dummy Metal Block Layer around the Critical Timing Path M6. Please refer to FIG. 18 and FIG. 20. The shapes of the dummy metal barrier layers M5-7 Dummy Metal Block Layer and the critical timing path Critical Timing Path M6 can be the same or different. Within the area marked by the 7Dummy Metal Block Layer.
比如,在其他实施方式中,在找到slack值小于0.5的路径,并将其作为关键时序路径Critical Timing Path M6后,在该关键时序路径Critical Timing Path M6的周围设置虚设金属阻挡层M5~7Dummy Metal Block Layer,也即在该关键时序路径CriticalTiming Path M6的周围为虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域。请参阅图18和图20,虚设金属阻挡层M5~7Dummy Metal Block Layer的形状与关键时序路径Critical Timing Path M6的形状可以相同,也可以不同,关键时序路径Critical TimingPath M6在虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内。For example, in other embodiments, after a path with a slack value less than 0.5 is found and used as the critical timing path Critical Timing Path M6, dummy metal barrier layers M5 to 7 Dummy Metal are set around the critical timing path Critical Timing Path M6 Block Layer, that is, the area marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer around the Critical Timing Path M6. Please refer to FIG. 18 and FIG. 20. The shapes of the dummy metal barrier layers M5-7 Dummy Metal Block Layer and the critical timing path Critical Timing Path M6 can be the same or different. The critical timing path Critical TimingPath M6 is in the dummy metal barrier layer M5- Within the area marked by the 7Dummy Metal Block Layer.
比如,在一种实施方式中,所述在所述关键时序路径的周围设置所述虚设金属阻挡层,可以包括:For example, in one embodiment, the disposing the dummy metal barrier layer around the critical timing path may include:
在所述关键时序路径的四周和上下设置所述虚设金属阻挡层。The dummy metal barrier layer is disposed around and above the critical timing path.
可以理解的是,通过在关键时序路径的四周和上下设置虚设金属阻挡层,比如,在关键时序路径Critical Timing Path M6的四周和上下设置虚设金属阻挡层M5~7DummyMetal Block Layer,这样可以扩大虚设金属阻挡层标记的区域的覆盖范围,便于虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域将关键时序路径Critical TimingPath M6全部覆盖,以防止关键时序路径Critical Timing Path M6由于未被全部覆盖,导致未被覆盖的位置与预设金属之间产生寄生电容的问题,因此通过将标记的区域全部覆盖住关键时序路径Critical Timing Path M6,这样可以进一步防止关键时序路径CriticalTiming Path M6与虚设金属之间产生寄生电容,从而可以防止关键时序路径CriticalTiming Path M6的时序变差,防止芯片的频率降低,进而减少时序的修改时间。It can be understood that by setting dummy metal barrier layers around and above and below the critical timing path, for example, setting dummy metal barrier layers M5 to 7DummyMetal Block Layer around and above and below the critical timing path Critical Timing Path M6, this can expand the dummy metal. The coverage of the area marked by the barrier layer is convenient for the area marked by the dummy metal barrier layer M5 to 7 Dummy Metal Block Layer to completely cover the critical timing path Critical TimingPath M6, so as to prevent the critical timing path Critical Timing Path M6 from not being fully covered. There is a problem of parasitic capacitance between the covered position and the preset metal. Therefore, by covering all the marked areas on the critical timing path Critical Timing Path M6, it can further prevent parasitic generation between the critical timing path and the dummy metal. Therefore, the timing of the critical timing path M6 can be prevented from deteriorating, and the frequency of the chip can be prevented from being reduced, thereby reducing the modification time of the timing.
比如,在一种实施方式中,关键时序路径Critical Timing Path M6的形状和虚设金属阻挡层M5~7Dummy Metal Block Layer的形状可以均为长方体形状。关键时序路径Critical Timing Path M6在虚设金属阻挡层M5~7Dummy Metal Block Layer标记的长方体形状的内部。类似于一个大的长方体内部设有一个小的长方体。通过将虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域的形状设置为规则图形形状,其不仅可以减小虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域的空间体积,还可以简化虚设金属阻挡层的设置过程,即简化布设虚设金属阻挡层的过程。For example, in one embodiment, the shape of the critical timing path M6 and the shapes of the dummy metal barrier layers M5 - 7 Dummy Metal Block Layer may both be rectangular parallelepiped shapes. The critical timing path M6 is inside the rectangular parallelepiped shape marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer. Similar to a large cuboid with a small cuboid inside. By setting the shape of the area marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer as a regular graphic shape, it can not only reduce the space volume of the area marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer, but also simplify the dummy metal The setting process of the barrier layer is to simplify the process of laying the dummy metal barrier layer.
比如,在一种实施方式中,虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域如要全部覆盖关键时序路径Critical Timing Path M6的话,一般要满足如下条件:虚设金属阻挡层M5~7Dummy Metal Block Layer的长度大于关键时序路径CriticalTiming Path M6的长度,虚设金属阻挡层M5~7Dummy Metal Block Layer的宽度大于关键时序路径Critical Timing Path M6的宽度,虚设金属阻挡层M5~7Dummy Metal BlockLayer的高度为关键时序路径Critical Timing Path M6所在金属图层M6、位于关键时序路径Critical Timing Path M6所在金属图层的上一层金属图层M7以及位于关键时序路径Critical Timing Path M6所在金属图层的下一层金属图层M5的高度之和。For example, in one embodiment, if the area marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer is to completely cover the critical timing path M6, the following conditions must generally be met: the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer The length of Layer is greater than the length of the critical timing path CriticalTiming Path M6, the width of the dummy metal barrier layer M5-7Dummy Metal Block Layer is greater than the width of the critical timing path Critical Timing Path M6, and the height of the dummy metal barrier layer M5-7Dummy Metal BlockLayer is the critical timing The metal layer M6 where the path Critical Timing Path M6 is located, the metal layer M7 located on the upper layer of the metal layer where the Critical Timing Path M6 is located, and the metal map on the next layer of the metal layer where the Critical Timing Path M6 is located The sum of the heights of layer M5.
关于虚设金属阻挡层M5~7Dummy Metal Block Layer的长度和宽度的设计,是为了保证虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域在长度和宽度方向上能全部覆盖住关键时序路径Critical Timing Path M6,另外,高度的设计不仅可以保证虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域在高度方向上能全部包覆住关键时序路径Critical Timing Path M6,还可以减小虚设金属阻挡层M5~7Dummy MetalBlock Layer的体积,节省设计成本。The design of the length and width of the dummy metal barrier layers M5-7Dummy Metal Block Layer is to ensure that the area marked by the dummy metal barrier layers M5-7Dummy Metal Block Layer can completely cover the critical timing path in the length and width directions. M6, in addition, the height design can not only ensure that the area marked by the dummy metal barrier layer M5~7 Dummy Metal Block Layer can completely cover the critical timing path M6 in the height direction, but also can reduce the dummy metal barrier layer M5~ The volume of the 7Dummy MetalBlock Layer saves design costs.
图7和图8中对M6金属图层上的关键时序路径Critical Timing Path M6的四周和上下设置虚设金属阻挡层M5~7Dummy Metal Block Layer,通过设置该虚设金属阻挡层M5~7Dummy Metal Block Layer,在该虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域内不设置虚设金属,这样可以防止M6金属图层上的关键时序路径Critical TimingPath M6的时序变差,同时由于省去了在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,这样可以大大节省芯片设计过程中设置虚设金属的时间。In FIG. 7 and FIG. 8 , the dummy metal barrier layers M5 to 7Dummy Metal Block Layer are arranged around and above and below the critical timing path Critical Timing Path M6 on the M6 metal layer. By setting the dummy metal barrier layers M5 to 7Dummy Metal Block Layer, No dummy metal is set in the area marked by the dummy metal barrier layers M5-7 Dummy Metal Block Layer, which can prevent the timing deterioration of the critical timing path M6 on the M6 metal layer. The time for setting the dummy metal in the area marked by M5~7Dummy Metal Block Layer can greatly save the time for setting the dummy metal in the chip design process.
可以理解的是,虚设金属阻挡层M5~7Dummy Metal Block Layer的尺寸比关键时序路径Critical Timing Path M6在相同方向的尺寸要大,以保证虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域把关键时序路径Critical Timing Path M6包围。虚设金属阻挡层M5~7Dummy Metal Block Layer的高度为从M5金属图层的底面到M7金属图层的上表面的高度,不仅可以保证虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域在高度方向上能全部覆盖住关键时序路径Critical Timing Path M6,还可以减小虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域的空间体积,节省设计成本。It can be understood that the size of the dummy metal barrier layers M5~7Dummy Metal Block Layer is larger than the size of the critical timing path M6 in the same direction, so as to ensure that the area marked by the dummy metal barrier layers M5~7Dummy Metal Block Layer is critical. The timing path is surrounded by Critical Timing Path M6. The height of the dummy metal barrier layers M5~7Dummy Metal Block Layer is the height from the bottom surface of the M5 metal layer to the upper surface of the M7 metal layer, which can not only ensure that the area marked by the dummy metal barrier layers M5~7Dummy Metal Block Layer is in the height direction It can completely cover the critical timing path M6, and can also reduce the space volume of the area marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer, saving design costs.
M5金属图层和M7金属图层在垂直投影方向上与虚设金属阻挡层M5~7DummyMetal Block Layer交叉的部分,都是被虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域覆盖住的区域,该区域也是不设置虚设金属的。由此可见,虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域覆盖了三个金属图层中的对应区域。可以防止被虚设金属阻挡层M5~7Dummy Metal Block Layer标记的区域覆盖的位置与虚设金属之间产生寄生电容,防止被覆盖位置的关键时序路径的时序变差,防止芯片的频率降低,进而减少时序的修改时间,同时,由于省去了在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,这样可以大大节省芯片设计过程中设置虚设金属的时间。The parts of the M5 metal layer and the M7 metal layer that intersect with the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer in the vertical projection direction are the areas covered by the areas marked by the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer. Areas also do not have dummy metals set. It can be seen that the regions marked by the dummy metal barrier layers M5-7 Dummy Metal Block Layer cover the corresponding regions in the three metal layers. It can prevent parasitic capacitance between the position covered by the area marked by the dummy metal barrier layer M5~7 Dummy Metal Block Layer and the dummy metal, prevent the timing of the critical timing path of the covered position from deteriorating, and prevent the frequency of the chip from being reduced, thereby reducing the timing. At the same time, since the time for setting dummy metals in the area marked by the metal barrier layers M5-7 Dummy Metal Block Layer is omitted, the time for setting dummy metals in the chip design process can be greatly saved.
205、将设置虚设金属阻挡层后的布局布线的数据导出为预设格式的文件。205. Export the layout and wiring data after the dummy metal barrier layer is set as a file in a preset format.
比如,在关键时序路径Critical Timing Path M6的周围设置虚设金属阻挡层M5~7Dummy Metal Block Layer后,将设置虚设金属阻挡层M5~7Dummy Metal Block Layer后的布局布线的数据导出为预设格式的文件,以便于对该预设格式的文件进行后续操作。For example, after setting the dummy metal barrier layers M5 to 7Dummy Metal Block Layer around the Critical Timing Path M6, export the layout and routing data after setting the dummy metal barrier layers M5 to 7Dummy Metal Block Layer as a file in a preset format , to facilitate subsequent operations on the preset format file.
比如,该预设格式可以是GDS格式,在关键时序路径Critical Timing Path M6的周围设置虚设金属阻挡层M5~7Dummy Metal Block Layer后,将设置虚设金属阻挡层M5~7Dummy Metal Block Layer后的布局布线的数据导出为GDS格式的文件,以便于对该GDS格式的文件进行后续操作。For example, the preset format may be the GDS format. After setting the dummy metal barrier layers M5 to 7Dummy Metal Block Layer around the Critical Timing Path M6, the layout and wiring after the dummy metal barrier layers M5 to 7Dummy Metal Block Layer will be arranged. The data is exported to a file in GDS format to facilitate subsequent operations on the file in GDS format.
206、检测预设格式的文件中的虚设金属阻挡层的位置。206. Detect the position of the dummy metal barrier layer in the file in the preset format.
比如,通过虚设金属生成工具检测预设格式的文件中的虚设金属阻挡层M5~7Dummy Metal Block Layer的位置,例如通过Calibre工具检测GDS格式的文件中的虚设金属阻挡层M5~7Dummy Metal Block Layer的位置。检测该虚设金属阻挡层M5~7DummyMetal Block Layer的位置是为了不在该位置标记的区域内设置虚设金属,以防止关键时序路径Critical Timing Path M6与虚设金属产生寄生电容,保证关键时序路径CriticalTiming Path M6的时序不会变差,防止芯片的频率降低,进而减少时序的修改时间,同时,由于省去了在金属阻挡层M5~7Dummy Metal Block Layer标记的区域内设置虚设金属的时间,这样可以大大节省芯片设计过程中设置虚设金属的时间。For example, the positions of the dummy metal barrier layers M5-7Dummy Metal Block Layer in the file of the preset format are detected by the dummy metal generation tool, for example, the positions of the dummy metal barrier layers M5-7Dummy Metal Block Layer in the file of GDS format are detected by the Calibre tool. Location. The purpose of detecting the positions of the dummy metal barrier layers M5~7DummyMetal Block Layer is to not set dummy metal in the area marked by this position, so as to prevent the critical timing path Critical Timing Path M6 and the dummy metal from generating parasitic capacitance, and ensure the critical timing path Critical Timing Path M6. The timing will not deteriorate, preventing the frequency of the chip from being reduced, thereby reducing the modification time of the timing. At the same time, since the time for setting dummy metal in the area marked by the metal barrier layer M5~7 Dummy Metal Block Layer is omitted, it can greatly save the chip. Time to set up the dummy metal during the design process.
207、在关键时序路径所在的金属图层、位于关键时序路径所在金属图层的上一层金属图层以及位于关键时序路径所在金属图层的下一层金属图层中除虚设金属阻挡层之外的布局布线密度小于预设密度阈值的位置设置一条或多条虚设金属。207. Except for the dummy metal barrier layer in the metal layer where the critical timing path is located, the metal layer located at the upper layer of the metal layer where the critical timing path is located, and the metal layer located at the next layer of the metal layer where the critical timing path is located; One or more dummy metals are set at the positions where the layout and wiring density is less than the preset density threshold.
比如,在关键时序路径Critical Timing Path M6所在的金属图层M6、位于关键时序路径Critical Timing Path M6所在金属图层M6的上一层金属图层以及位于关键时序路径Critical Timing Path M6所在金属图层M6的下一层金属图层M5中除虚设金属阻挡层M5~7Dummy Metal Block Layer之外的布局布线密度小于预设密度阈值的位置设置一条或多条虚设金属。For example, the metal layer M6 where the critical timing path Critical Timing Path M6 is located, the metal layer above the metal layer M6 where the critical timing path Critical Timing Path M6 is located, and the metal layer where the critical timing path Critical Timing Path M6 is located. One or more dummy metals are set at positions where the layout and wiring density is less than the preset density threshold except for the dummy metal barrier layers M5 to 7 Dummy Metal Block Layer in the next metal layer M5 of M6.
比如,在一种实施方式中,每条虚设金属与其在同一金属图层上的时序路径相互平行,这样可以防止同一金属层上的布线交叉,提升芯片的性能。例如,M5金属图层上的虚设金属与M5金属图层上的两条时序路径是相互平行的,这样可以防止M5金属层上的布线交叉,提升芯片的性能。具体地,M5金属图层上的虚设金属与M5金属图层上的时序路径在水平方向是相互平行的,M5金属图层上的多条虚设金属在水平方向上排成一排。For example, in one embodiment, each dummy metal and its timing paths on the same metal layer are parallel to each other, which can prevent the wirings on the same metal layer from crossing and improve the performance of the chip. For example, the dummy metal on the M5 metal layer and the two timing paths on the M5 metal layer are parallel to each other, which can prevent the wiring on the M5 metal layer from crossing and improve the performance of the chip. Specifically, the dummy metal on the M5 metal layer and the timing paths on the M5 metal layer are parallel to each other in the horizontal direction, and the dummy metals on the M5 metal layer are arranged in a row in the horizontal direction.
M6金属图层上的虚设金属分别与M6金属图层上的关键时序路径和两条时序路径是相互平行的,这样可以防止M6金属层上的布线交叉,提升芯片的性能。具体地,M6金属图层上的虚设金属分别与M6金属图层上的关键时序路径和两条时序路径在竖直方向上是相互平行的。M6金属图层上的多条虚设金属可以在竖直方向排成一排,M6金属图层上设置了四排,每一排均由多条虚设金属在竖直方向上排列而成。The dummy metal on the M6 metal layer is parallel to the critical timing path and the two timing paths on the M6 metal layer respectively, which can prevent the wirings on the M6 metal layer from crossing and improve the performance of the chip. Specifically, the dummy metal on the M6 metal layer is respectively parallel to the critical timing path and the two timing paths on the M6 metal layer in the vertical direction. The plurality of dummy metals on the M6 metal layer can be arranged in a row in the vertical direction, and four rows are set on the M6 metal layer, and each row is formed by a plurality of dummy metals arranged in the vertical direction.
M7金属图层上的虚设金属排与M7金属图层上的两条时序路径是相互平行的,这样可以防止M7金属层上的布线交叉,提升芯片的性能。具体地,M7金属图层上的虚设金属与M7金属图层上的两条时序路径在水平方向上是相互平行的。M7金属图层上的多条虚设金属在水平方向排成一排,等等。通过设置虚设金属,可以提升金属图层的密度,以满足最低密度要求。The dummy metal row on the M7 metal layer and the two timing paths on the M7 metal layer are parallel to each other, which can prevent the wirings on the M7 metal layer from crossing and improve the performance of the chip. Specifically, the dummy metal on the M7 metal layer and the two timing paths on the M7 metal layer are parallel to each other in the horizontal direction. Multiple strips of dummy metal on the M7 metal layer are lined up horizontally, and so on. By setting a dummy metal, the density of the metal layer can be increased to meet the minimum density requirement.
上述流程207设置虚设金属后,可以对设置虚设金属后的布局布线的数据进行静态时序分析的验证。静态时序分析是对时序进行计算、预计的工作流程,该工作流程不需要通过输入激励的方式进行仿真。静态时序分析可以检查电路中各条路径诸如毛刺、延迟路径和时钟偏移等问题。在执行完上述流程后,本申请实施例中,一般静态时序分析都能通过。若设置虚设金属后的布局布线的数据通过静态时序分析的验证,则结束当前芯片的布局布线流程。若未通过静态时序分析,则需要继续进行时序修改,直至通过静态时序分析的验证为止。After the dummy metal is set in the
可以理解的是,首先,本申请实施例创新的提出了通过在PR工具中对关键时序路径Critical Timing Path M6设置虚设金属阻挡层M5~7Dummy Metal Block Layer,其次,由于将对关键时序路径Critical Timing Path M6设置虚设金属阻挡层M5~7Dummy MetalBlock Layer的操作放在PR工具中进行,在后期设置虚设金属时,可以直接采用虚设金属生成工具设置虚设金属,而在虚设金属阻挡层覆盖的区域内不设置虚设金属,这样达到在设置虚设金属过程中既可以节省芯片的设计时间,又可以保证关键时序路径CriticalTiming Path M6的时序不会变差,从而维持芯片的良好频率。It can be understood that, first, the embodiment of the present application innovatively proposes to set dummy metal barrier layers M5 to 7 Dummy Metal Block Layers for the critical timing path Critical Timing Path M6 in the PR tool. Path M6 sets the dummy metal barrier layer M5~7 Dummy MetalBlock Layer operation in the PR tool. When setting the dummy metal in the later stage, you can directly use the dummy metal generation tool to set the dummy metal, and in the area covered by the dummy metal barrier layer does not Setting the dummy metal can not only save the design time of the chip during the process of setting the dummy metal, but also ensure that the timing of the critical timing path CriticalTiming Path M6 will not deteriorate, so as to maintain a good frequency of the chip.
另外,本申请实施例提供的方案可以对不同工艺节点均有效,并且工艺越先进收益越大,而不局限于上述的情形。In addition, the solutions provided by the embodiments of the present application may be effective for different process nodes, and the more advanced the process, the greater the benefits, and is not limited to the above-mentioned situation.
请参阅图22,图22为本申请实施例提供的芯片设计装置的结构示意图。该芯片设计装置可以应用于电子设备。芯片设计装置300可以包括:确定模块301,第一设置模块302,第二设置模块303。Please refer to FIG. 22 , which is a schematic structural diagram of a chip design apparatus provided by an embodiment of the present application. The chip design device can be applied to electronic equipment. The
确定模块301,用于确定出芯片的布局布线中的关键时序路径;A
第一设置模块302,用于对所述关键时序路径设置虚设金属阻挡层;a
第二设置模块303,用于在所述虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。The
在一种实施方式中,所述确定模块301还可以用于:In one embodiment, the determining
进行芯片的布局布线;Perform chip layout and wiring;
根据所述布局布线的数据产生时序报告;generating a timing report according to the placement and routing data;
根据所述时序报告获取所述关键时序路径。Obtain the critical timing path according to the timing report.
在一种实施方式中,所述确定模块301还可以用于:In one embodiment, the determining
在所述时序报告中找到slack值小于预设阈值的路径,并将其作为所述关键时序路径。Find a path with a slack value less than a preset threshold in the timing report, and use it as the critical timing path.
在一种实施方式中,所述第一设置模块302还可以用于:In one embodiment, the
在所述关键时序路径的周围设置所述虚设金属阻挡层。The dummy metal barrier layer is disposed around the critical timing path.
在一种实施方式中,所述第一设置模块302还可以用于:In one embodiment, the
在所述关键时序路径的四周和上下设置所述虚设金属阻挡层。The dummy metal barrier layer is disposed around and above the critical timing path.
比如,在一种实施方式中,所述虚设金属阻挡层的长度大于所述关键时序路径的长度,所述虚设金属阻挡层的宽度大于所述关键时序路径的宽度,所述虚设金属阻挡层的高度为所述关键时序路径所在金属图层、位于所述关键时序路径所在金属图层的上一层金属图层以及位于所述关键时序路径所在金属图层的下一层金属图层的高度之和。For example, in one embodiment, the length of the dummy metal barrier layer is greater than the length of the critical timing path, the width of the dummy metal barrier layer is greater than the width of the critical timing path, and the width of the dummy metal barrier layer is greater than that of the critical timing path. The height is the difference between the heights of the metal layer where the critical timing path is located, the metal layer located at the upper layer of the metal layer where the critical timing path is located, and the metal layer located at the next layer of the metal layer where the critical timing path is located. and.
比如,在一种实施方式中,所述关键时序路径的形状和虚设金属阻挡层的形状均为长方体形状。For example, in one embodiment, the shape of the critical timing path and the shape of the dummy metal barrier layer are both rectangular parallelepiped shapes.
在一种实施方式中,所述第一设置模块302还可以用于:In one embodiment, the
将设置所述虚设金属阻挡层后的布局布线的数据导出为预设格式的文件。The data of the layout and wiring after the dummy metal barrier layer is set is exported as a file in a preset format.
在一种实施方式中,所述第二设置模块303还可以用于:In one embodiment, the
检测所述预设格式的文件中的虚设金属阻挡层的位置;detecting the position of the dummy metal barrier layer in the file of the preset format;
在所述关键时序路径所在的金属图层、位于所述关键时序路径所在金属图层的上一层金属图层以及位于所述关键时序路径所在金属图层的下一层金属图层中除所述虚设金属阻挡层之外的布局布线密度小于预设密度阈值的位置设置一条或多条虚设金属。In the metal layer where the critical timing path is located, the metal layer located at the upper layer of the metal layer where the critical timing path is located, and the metal layer located at the next layer of the metal layer where the critical timing path is located One or more dummy metals are arranged at positions outside the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
比如,在一种实施方式中,每条所述虚设金属与其在同一金属图层上的时序路径相互平行。For example, in one embodiment, each dummy metal and its timing paths on the same metal layer are parallel to each other.
本申请实施例提供一种计算机可读的存储介质,其上存储有计算机程序,当所述计算机程序在计算机上执行时,使得所述计算机执行如本实施例提供的芯片设计方法中的流程。Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed on a computer, causes the computer to execute the process in the chip design method provided by this embodiment.
本申请实施例还提供一种电子设备,包括存储器和处理器,所述处理器通过调用所述存储器中存储的计算机程序,用于执行本实施例提供的芯片设计方法中的流程。An embodiment of the present application further provides an electronic device, including a memory and a processor, and the processor is configured to execute the process in the chip design method provided by the present embodiment by invoking a computer program stored in the memory.
例如,上述电子设备可以是诸如平板电脑或者智能手机等移动终端,也可以是诸如笔记本电脑或台式电脑等的终端设备。请参阅图23,图23为本申请实施例提供的电子设备的结构示意图。For example, the above electronic device may be a mobile terminal such as a tablet computer or a smart phone, or a terminal device such as a notebook computer or a desktop computer. Please refer to FIG. 23 , which is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
该电子设备400可以包括存储器401、处理器402等部件。本领域技术人员可以理解,图23中示出的电子设备结构并不构成对电子设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。The
存储器401可用于存储应用程序和数据。存储器401存储的应用程序中包含有可执行代码。应用程序可以组成各种功能模块。处理器402通过运行存储在存储器401的应用程序,从而执行各种功能应用以及数据处理。
处理器402是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器401内的应用程序,以及调用存储在存储器401内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。The
在本实施例中,电子设备中的处理器402会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行代码加载到存储器401中,并由处理器402来运行存储在存储器401中的应用程序,从而执行:In this embodiment, the
确定出芯片的布局布线中的关键时序路径;Determine the critical timing path in the layout and routing of the chip;
对所述关键时序路径设置虚设金属阻挡层;setting a dummy metal barrier layer on the critical timing path;
在所述虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。A dummy metal is arranged outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
请参阅图24,电子设备400可以包括存储器401、处理器402、显示屏403、供电模块404、麦克风405、扬声器406等部件。Referring to FIG. 24 , the
存储器401可用于存储应用程序和数据。存储器401存储的应用程序中包含有可执行代码。应用程序可以组成各种功能模块。处理器402通过运行存储在存储器401的应用程序,从而执行各种功能应用以及数据处理。
处理器402是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器401内的应用程序,以及调用存储在存储器401内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。The
显示屏403可以用于显示诸如文字、图像等信息,当为触摸显示屏时还可以用于接收用户的触摸操作。The
供电模块404可用于为电子设备的各个部件提供电力支持,从而保障各个部件的正常运行。The
麦克风405可用于接收周围环境中的声音信号,例如可以用于接收用户发出的语音。The
扬声器406可以用于播放声音信号。
在本实施例中,电子设备中的处理器402会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行代码加载到存储器401中,并由处理器402来运行存储在存储器401中的应用程序,从而执行:In this embodiment, the
确定出芯片的布局布线中的关键时序路径;Determine the critical timing path in the layout and routing of the chip;
对所述关键时序路径设置虚设金属阻挡层;setting a dummy metal barrier layer on the critical timing path;
在所述虚设金属阻挡层范围外布局布线密度小于预设密度阈值的位置设置虚设金属。A dummy metal is arranged outside the range of the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
在一种实施方式中,所述处理器402执行所述确定出芯片的布局布线中的关键时序路径时,可以执行:进行芯片的布局布线;根据所述布局布线的数据产生时序报告;根据所述时序报告获取所述关键时序路径。In one embodiment, when the
在一种实施方式中,所述处理器402执行根据所述时序报告获取关键时序路径时,可以执行:在所述时序报告中找到slack值小于预设阈值的路径,并将其作为所述关键时序路径。In an implementation manner, when the
在一种实施方式中,所述处理器402执行所述对所述关键时序路径设置虚设金属阻挡层时,可以执行:在所述关键时序路径的周围设置所述虚设金属阻挡层。In an embodiment, when the
在一种实施方式中,所述处理器402执行在所述关键时序路径的周围设置所述虚设金属阻挡层时,可以执行:在所述关键时序路径的四周和上下设置所述虚设金属阻挡层。In one embodiment, when the
在一种实施方式中,所述虚设金属阻挡层的长度大于所述关键时序路径的长度,所述虚设金属阻挡层的宽度大于所述关键时序路径的宽度,所述虚设金属阻挡层的高度为所述关键时序路径所在金属图层、位于所述关键时序路径所在金属图层的上一层金属图层以及位于所述关键时序路径所在金属图层的下一层金属图层的高度之和。In one embodiment, the length of the dummy metal barrier layer is greater than the length of the critical timing path, the width of the dummy metal barrier layer is greater than the width of the critical timing path, and the height of the dummy metal barrier layer is The sum of the heights of the metal layer where the critical timing path is located, the metal layer located above the metal layer where the critical timing path is located, and the metal layer located at the next layer of the metal layer where the critical timing path is located.
在一种实施方式中,所述关键时序路径的形状和虚设金属阻挡层的形状均为长方体形状。In one embodiment, the shape of the critical timing path and the shape of the dummy metal barrier layer are both rectangular parallelepiped shapes.
在一种实施方式中,所述处理器402执行在所述对所述关键时序路径设置虚设金属阻挡层,所述虚设金属阻挡层用于保护所述关键时序路径之后,所述处理器402还可以执行:In one embodiment, after the
将设置所述虚设金属阻挡层后的布局布线的数据导出为预设格式的文件。The data of the layout and wiring after the dummy metal barrier layer is set is exported as a file in a preset format.
在一种实施方式中,所述处理器402执行在所述虚设金属阻挡层范围外外布局布线密度小于预设密度阈值的位置设置虚设金属时,可以执行:In one embodiment, when the
检测所述预设格式的文件中的虚设金属阻挡层的位置;detecting the position of the dummy metal barrier layer in the file of the preset format;
在所述关键时序路径所在的金属图层、位于所述关键时序路径所在金属图层的上一层金属图层以及位于所述关键时序路径所在金属图层的下一层金属图层中除所述虚设金属阻挡层之外的布局布线密度小于预设密度阈值的位置设置一条或多条虚设金属。In the metal layer where the critical timing path is located, the metal layer located at the upper layer of the metal layer where the critical timing path is located, and the metal layer located at the next layer of the metal layer where the critical timing path is located One or more dummy metals are arranged at positions outside the dummy metal barrier layer where the layout and wiring density is less than a preset density threshold.
在一种实施方式中,每条所述虚设金属与其在同一金属图层上的时序路径相互平行。In one embodiment, each of the dummy metals and their timing paths on the same metal layer are parallel to each other.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对芯片设计方法的详细描述,此处不再赘述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the detailed description of the chip design method above, which will not be repeated here.
本申请实施例提供的所述芯片设计装置与上文实施例中的芯片设计方法属于同一构思,在所述芯片设计装置上可以运行所述芯片设计方法实施例中提供的任一方法,其具体实现过程详见所述芯片设计方法实施例,此处不再赘述。The chip design apparatus provided in the embodiment of the present application and the chip design method in the above embodiment belong to the same concept, and any method provided in the chip design method embodiment can be executed on the chip design apparatus. For details of the implementation process, see the chip design method embodiment, which is not repeated here.
需要说明的是,对本申请实施例所述芯片设计方法而言,本领域普通技术人员可以理解实现本申请实施例所述芯片设计方法的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述计算机程序可存储于一计算机可读取存储介质中,如存储在存储器中,并被至少一个处理器执行,在执行过程中可包括如所述芯片设计方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)等。It should be noted that, for the chip design method described in the embodiments of the present application, those of ordinary skill in the art can understand that all or part of the process for implementing the chip design method described in the embodiments of the present application can be controlled by a computer program. To complete, the computer program can be stored in a computer-readable storage medium, such as a memory, and executed by at least one processor, and the execution process can include processes such as the embodiments of the chip design method. . The storage medium may be a magnetic disk, an optical disk, a read only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), and the like.
对本申请实施例的所述芯片设计装置而言,其各功能模块可以集成在一个处理芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中,所述存储介质譬如为只读存储器,磁盘或光盘等。For the chip design apparatus of the embodiments of the present application, each functional module may be integrated into one processing chip, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium, such as a read-only memory, a magnetic disk or an optical disk, etc. .
以上对本申请实施例所提供的一种芯片设计方法、装置、存储介质以及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The chip design method, device, storage medium, and electronic device provided by the embodiments of the present application are described in detail above. The principles and implementations of the present application are described with specific examples. The descriptions of the above embodiments are only It is used to help understand the method and the core idea of the present application; meanwhile, for those skilled in the art, according to the idea of the present application, there will be changes in the specific embodiments and application scope. In summary, this specification The content should not be construed as a limitation on this application.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011204863.2A CN114444426A (en) | 2020-11-02 | 2020-11-02 | Chip design method, device, storage medium and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011204863.2A CN114444426A (en) | 2020-11-02 | 2020-11-02 | Chip design method, device, storage medium and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114444426A true CN114444426A (en) | 2022-05-06 |
Family
ID=81358405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011204863.2A Pending CN114444426A (en) | 2020-11-02 | 2020-11-02 | Chip design method, device, storage medium and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114444426A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114722768A (en) * | 2022-06-08 | 2022-07-08 | 珠海妙存科技有限公司 | Chip virtual component design method and device |
CN116579280A (en) * | 2023-07-11 | 2023-08-11 | 中科亿海微电子科技(苏州)有限公司 | Time sequence performance adjusting method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030226757A1 (en) * | 2002-06-07 | 2003-12-11 | Smith Taber H. | Dummy fill for integrated circuits |
US20120284679A1 (en) * | 2011-05-03 | 2012-11-08 | Lsi Corporation | Intelligent dummy metal fill process for integrated circuits |
CN109411465A (en) * | 2017-08-17 | 2019-03-01 | 联华电子股份有限公司 | Semiconductor structure and design method of virtual pattern layout |
CN110717309A (en) * | 2019-10-10 | 2020-01-21 | 天津飞腾信息技术有限公司 | Redundant metal filling method, device, equipment and computer readable storage medium |
-
2020
- 2020-11-02 CN CN202011204863.2A patent/CN114444426A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030226757A1 (en) * | 2002-06-07 | 2003-12-11 | Smith Taber H. | Dummy fill for integrated circuits |
US20120284679A1 (en) * | 2011-05-03 | 2012-11-08 | Lsi Corporation | Intelligent dummy metal fill process for integrated circuits |
CN109411465A (en) * | 2017-08-17 | 2019-03-01 | 联华电子股份有限公司 | Semiconductor structure and design method of virtual pattern layout |
CN110717309A (en) * | 2019-10-10 | 2020-01-21 | 天津飞腾信息技术有限公司 | Redundant metal filling method, device, equipment and computer readable storage medium |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114722768A (en) * | 2022-06-08 | 2022-07-08 | 珠海妙存科技有限公司 | Chip virtual component design method and device |
CN114722768B (en) * | 2022-06-08 | 2022-09-30 | 珠海妙存科技有限公司 | Chip virtual component design method and device |
CN116579280A (en) * | 2023-07-11 | 2023-08-11 | 中科亿海微电子科技(苏州)有限公司 | Time sequence performance adjusting method and device |
CN116579280B (en) * | 2023-07-11 | 2023-10-20 | 中科亿海微电子科技(苏州)有限公司 | Time sequence performance adjusting method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107066681B (en) | Integrated circuit and computer-implemented method of manufacturing an integrated circuit | |
US8769452B2 (en) | Parasitic extraction in an integrated circuit with multi-patterning requirements | |
US8527930B2 (en) | Generating and using route fix guidance | |
JP4655240B2 (en) | Timing analysis support device | |
US11176306B2 (en) | Methods and systems to perform automated Integrated Fan-Out wafer level package routing | |
CN107436965A (en) | The computer implemented method of integrated design circuit | |
CN114444426A (en) | Chip design method, device, storage medium and electronic equipment | |
KR102717096B1 (en) | Integrated circuit and computer-implemented method for manufacturing the same | |
US8191027B2 (en) | Validation of an integrated circuit for electro static discharge compliance | |
KR20180127141A (en) | Computer-implemented method and computing system for designing integrated circuit and method of manufacturing integrated circuit | |
KR20180028252A (en) | Integrated Circuit Designing System and Method of Manufacturing Integrated Circuit | |
US7698671B2 (en) | Method for designing semiconductor integrated circuits having air gaps. | |
JP5444985B2 (en) | Information processing device | |
US7308667B2 (en) | LSI physical designing method, program, and apparatus | |
US12164855B2 (en) | Metal routing techniques | |
US8555232B2 (en) | Wire routing using virtual landing pads | |
JP2009237904A (en) | Method for creating design data for semiconductor integrated circuit | |
WO2014106040A1 (en) | Pattern-based power-and-ground (pg) routing and via creation | |
Xiong et al. | Extended global routing with RLC crosstalk constraints | |
US9026974B2 (en) | Semiconductor integrated circuit partitioning and timing | |
US10509888B1 (en) | System and method for forming integrated device | |
CN116595940A (en) | Method and device for detecting validity of pre-wiring resource, storage medium and electronic equipment | |
JP2007273847A (en) | Method and apparatus for designing semiconductor integrated circuit device | |
JP3177958B2 (en) | Layout design system and layout design method | |
JP2009283618A (en) | Method of designing layout for integrated circuit device and method of manufacturing the device, micro cell, integrated circuit device, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |