[go: up one dir, main page]

CN113831761A - 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜 - Google Patents

一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜 Download PDF

Info

Publication number
CN113831761A
CN113831761A CN202111293966.5A CN202111293966A CN113831761A CN 113831761 A CN113831761 A CN 113831761A CN 202111293966 A CN202111293966 A CN 202111293966A CN 113831761 A CN113831761 A CN 113831761A
Authority
CN
China
Prior art keywords
amino acid
nanoparticles
modified
nanoparticle
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111293966.5A
Other languages
English (en)
Other versions
CN113831761B (zh
Inventor
于有海
王�琦
陈春海
代凤娜
姚佳楠
钱广涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202111293966.5A priority Critical patent/CN113831761B/zh
Publication of CN113831761A publication Critical patent/CN113831761A/zh
Application granted granted Critical
Publication of CN113831761B publication Critical patent/CN113831761B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供了一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜,涉及超滤膜材料技术领域。本发明提供的氨基酸改性纳米粒子,包括纳米粒子、氨基酸和用于接枝所述纳米粒子和氨基酸的接枝单元,所述接枝单元为硅烷偶联剂。在本发明中,氨基酸具有有机相容及亲水性强的优点,借助硅烷偶联剂两亲特性将氨基酸接枝在纳米粒子表面,从而实现对纳米粒子的亲水性表面修饰,一方面通过纳米粒子表面包覆降低粒子间相互作用,减弱团聚作用;另一方面氨基酸在纳米粒子的表面接枝增强了材料亲水性及与有机膜基质的相容稳定性。

Description

一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜
技术领域
本发明涉及超滤膜材料技术领域,具体涉及一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜。
背景技术
超滤(Ultrafiltration,UF)是一种分离精度介于微滤(MF)与纳滤(NF)之间的低压驱动膜分离技术,因其低驱动压力(0.1~0.6MPa),高渗透通量(100~500L·m-2·h-1·bar-1)及宽分子量截留(1000~200000Da)等优点,现已广泛应用于废水处理、医药卫生及市政饮用水净化等领域。
然而在实际应用过程中,传统的制膜材料由于自身较强的疏水特性,在分离运行中容易吸附待处理液中的憎水性物质,从而导致分离膜孔的堵塞,形成膜污染而降低膜分离性能。而针对膜污染进行的膜清洗过程,一方面极大地缩短了膜使用寿命;同时也大大增加了分离膜维护成本。对聚合物膜进行亲水改性能够有效地提高分离膜的抗污染性能,在分离过程中,亲水性的膜表面易与水分子相互作用进而在膜表面形成一层水合层,有效地阻隔了憎水性污染物在膜表面的吸附作用,降低了膜污染。
共混改性是一种最简便、快速的膜亲水改性手段。而随着纳米技术的发展,越来越多具有优异表面性能的纳米材料开始受到膜研究工作者的广泛关注。由于纳米粒子高的比表面能导致纳米间团聚作用明显,从而限制了材料在纳米尺度上性能优势的展现。
发明内容
本发明的目的在于提供一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜,本发明提供的氨基酸改性纳米粒子能够减弱纳米粒子团聚作用。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种氨基酸改性纳米粒子,包括纳米粒子、氨基酸和用于接枝所述纳米粒子和氨基酸的接枝单元,所述接枝单元为硅烷偶联剂。
优选地,所述纳米粒子包括二氧化硅、二氧化钛、氧化石墨烯、三氧化二铝、氧化锌或四氧化三铁。
优选地,所述硅烷偶联剂包括乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷、γ-氨丙基甲基二乙氧基硅烷、二乙胺基代甲基三乙氧基硅烷、苯胺甲基三乙氧基硅烷或二氯甲基三乙氧基硅烷。
优选地,所述氨基酸为α-氨基酸。
优选地,以所述氨基酸改性纳米粒子的总质量为100%计,所述氨基酸的接枝量为5~15wt%。
本发明提供了上述技术方案所述氨基酸改性纳米粒子的制备方法,包括以下步骤:
将纳米粒子、硅烷偶联剂和乙醇水溶液混合,得到纳米粒子分散液;
将所述纳米粒子分散液和氨基酸水溶液混合,进行接枝反应,得到氨基酸改性纳米粒子。
优选地,所述硅烷偶联剂与纳米粒子的质量比为0.3~1.2:1。
优选地,所述氨基酸与纳米粒子的质量比为0.5~1:1。
本发明提供了上述技术方案所述氨基酸改性纳米粒子或上述技术方案所述制备方法制备得到的氨基酸改性纳米粒子在抗污超滤膜中的应用。
本发明还提供了一种抗污超滤膜,包括聚合物膜基体以及分散在所述聚合物膜基体中的氨基酸改性纳米粒子;所述氨基酸改性纳米粒子为上述技术方案所述氨基酸改性纳米粒子或上述技术方案所述制备方法制备得到的氨基酸改性纳米粒子。
本发明提供了一种氨基酸改性纳米粒子,包括纳米粒子、氨基酸和用于接枝所述纳米粒子和氨基酸的接枝单元,所述接枝单元为硅烷偶联剂。在本发明中,氨基酸具有有机相容及亲水性强的优点,借助硅烷偶联剂两亲特性将氨基酸接枝在纳米粒子表面,从而实现对纳米粒子的亲水性表面修饰,一方面通过氨基酸对纳米粒子表面进行包覆,降低粒子间相互作用,减弱团聚作用,从而更利于在聚合物膜基体中分散;另一方面氨基酸在纳米粒子的表面接枝增强了材料亲水性,在将氨基酸改性纳米粒子用于抗污超滤膜时,增强了氨基酸改性纳米粒子与聚合物膜基体的相容稳定性。
以本发明提供的氨基酸改性纳米粒子为改性填料制备抗污超滤膜,提高了抗污超滤膜的渗透性、选择性及抗污染性能。
附图说明
图1为本发明提供的氨基酸改性纳米粒子示意图;
图2为实施例1赖氨酸对二氧化硅纳米粒子改性原理图;
图3为实施例1赖氨酸对二氧化硅纳米粒子改性前、后红外光谱对比图;
图4为实施例1~3氨基酸改性二氧化硅纳米粒子与聚芳醚腈聚合物分子链间相互作用示意图;
图5为对比例1和实施例1超滤循环实验对比图;
图6为实施例1制备的PEN/K-SiO2/PVP-k30共混超滤膜截面扫描电镜图。
具体实施方式
本发明提供了一种氨基酸改性纳米粒子,包括纳米粒子、氨基酸和用于接枝所述纳米粒子和氨基酸的接枝单元,所述接枝单元为硅烷偶联剂。
在本发明中,所述氨基酸改性纳米粒子由硅烷偶联剂、氨基酸通过共价键对纳米粒子进行表面亲水性修饰。在本发明的具体实施例中,所述氨基酸改性纳米粒子如图1所示。
在本发明中,所述纳米粒子优选包括二氧化硅(SiO2)、二氧化钛(TiO2)、氧化石墨烯(GO)、三氧化二铝(Al2O3)、氧化锌(ZnO)或四氧化三铁(Fe3O4)。在本发明中,所述纳米粒子的粒径优选为10-~500nm,更优选为10~100nm。在本发明,所述纳米粒子具有活性羟基,能够利用硅烷偶联剂在纳米粒子表面接枝氨基酸。
本发明提供的氨基酸改性纳米粒子包括接枝在所述纳米粒子表面的氨基酸。在本发明中,所述氨基酸优选为α-氨基酸,更优选包括甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、赖氨酸、精氨酸、组氨酸、天冬氨酸或谷氨酸。本发明采用α-氨基酸相比于其他种类的氨基酸,能够提高接枝反应的活性。
在本发明中,以所述氨基酸改性纳米粒子的总质量为100%计,所述氨基酸的接枝量优选为5~15wt%,更优选为10~15wt%。
在本发明中,所述氨基酸通过硅烷偶联剂接枝在所述纳米粒子表面。在本发明中,所述硅烷偶联剂优选包括乙烯基三乙氧基硅烷(A-151)、乙烯基三甲氧基硅烷(A-171)、乙烯基三(β-甲氧基乙氧基)硅烷(A-172)、γ-氨丙基三甲氧基硅烷(KH-540)、γ-氨丙基三乙氧基硅烷(KH-550)、3-氨丙基三甲氧基硅烷(KH-551)、3-缩水甘油醚氧基丙基三甲氧基硅烷(KH-560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)、γ-巯丙基三乙氧基硅烷(KH-580)、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷(KH-602)、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷(KH-791)、N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷(KH-792)、γ-氨丙基甲基二乙氧基硅烷(KH-902)、二乙胺基代甲基三乙氧基硅烷(ND-22)、苯胺甲基三乙氧基硅烷(ND-42)或二氯甲基三乙氧基硅烷(ND-43)。在本发明中,以所述氨基酸改性纳米粒子的总质量为100%计,所述硅烷偶联剂的质量含量优选为10~30,更优选为20~25%。
在本发明的具体实施例中,当所述纳米粒子为二氧化硅时,所述氨基酸为赖氨酸、精氨酸或组氨酸,所述硅烷偶联剂为KH-560;当所述纳米粒子为二氧化钛时,所述氨基酸为赖氨酸,所述硅烷偶联剂为KH-570;当所述纳米粒子为氧化石墨烯时,所述氨基酸为天冬氨酸,所述硅烷偶联剂为KH-540;当所述纳米粒子为三氧化二铝时,所述氨基酸为谷氨酸,所述硅烷偶联剂为A-171;当所述纳米粒子为氧化锌时,所述氨基酸为丝氨酸,所述硅烷偶联剂为A-151。
本发明还提供了上述技术方案所述氨基酸改性纳米粒子的制备方法,包括以下步骤:
将纳米粒子、硅烷偶联剂和乙醇水溶液混合,得到纳米粒子分散液;
将所述纳米粒子分散液和氨基酸水溶液混合,进行接枝反应,得到氨基酸改性纳米粒子。
本发明将纳米粒子、硅烷偶联剂和乙醇水溶液混合,得到纳米粒子分散液。在本发明中,所述乙醇水溶液中乙醇的体积浓度优选为20%。在本发明中,所述硅烷偶联剂与纳米粒子的质量比优选为0.3~1.2:1,更优选为0.8~1.0:1。在本发明中,所述纳米粒子和乙醇水溶液的用量比优选为0.5~4g:1dL,更优选为2.5~3g:1dL。
在本发明中,所述纳米粒子、硅烷偶联剂和乙醇水溶液混合优选包括:先将纳米粒子分散在乙醇水溶液中,再加入硅烷偶联剂,然后调节体系的pH值呈酸性,加热搅拌。在本发明中,在本发明中,所述分散的方法优选包括机械搅拌、超声震荡或细胞粉碎。在本发明中,优选采用盐酸溶液调节体系的pH值;所述盐酸溶液的浓度优选为1mol/L。在本发明中,所述体系的pH值优选为3~6.5,更优选为4.5~5.3。在本发明中,所述加热搅拌的温度优选为30~80℃,更优选为60~65℃;所述加热搅拌的时间优选为4~12h,更优选为4~6h;所述加热搅拌的转速优选为300rpm。本发明调节混合体系的pH值呈酸性,能够促进硅烷偶联剂硅氧烷端基的水解,生成活性羟基官能团。
得到纳米粒子分散液后,本发明将所述纳米粒子分散液和氨基酸水溶液混合,进行接枝反应,得到氨基酸改性纳米粒子。在本发明中,所述氨基酸与纳米粒子的质量比优选为0.5~1:1,更优选为0.6~0.8:1。在本发明中,所述氨基酸水溶液中氨基酸的质量浓度优选为5~20%,更优选为10~15%。
在本发明中,所述接枝反应的温度优选为30~80℃,更优选为60~65℃;所述接枝反应的时间优选为2~24h,更优选为3~12h,进一步优选为4~8h。
本发明在所述接枝反应过程中,硅烷偶联剂在酸性条件下发生水解,生成活性羟基官能团;然后与纳米粒子表面羟基脱水缩合,实现硅烷偶联剂在纳米粒子表面的接枝(也可以称包覆);而硅烷偶联剂的环氧端则与氨基酸分子链上的活性羧基发生开环反应,从而通过硅烷偶联剂将氨基酸接枝到纳米粒子表面。
本发明优选在所述接枝反应后,将所得接枝反应体系进行固液分离,所得固体材料依次进行洗涤和干燥,得到氨基酸改性纳米粒子。在本发明中,所述固液分离的方法优选为离心。在本发明中,所述洗涤采用的试剂优选为乙醇,本发明对所述洗涤的次数没有特殊要求,洗涤至产物呈中性即可。在本发明中,所述干燥的温度优选为80℃,所述干燥的时间优选为8h。在本发明中,所述干燥优选在真空烘箱中进行。
本发明提供了上述技术方案所述氨基酸改性纳米粒子或上述技术方案所述制备方法制备得到的氨基酸改性纳米粒子在抗污超滤膜中的应用,具体优选将所述氨基酸改性纳米粒子作为改性填料制备抗污超滤膜。在本发明中,所述氨基酸改性纳米粒子在抗污超滤膜中的质量含量优选为1~8%,更优选为5~7%。
本发明还提供了一种抗污超滤膜,包括聚合物膜基体以及分散在所述聚合物膜基体中的氨基酸改性纳米粒子;所述氨基酸改性纳米粒子为上述技术方案所述氨基酸改性纳米粒子或上述技术方案所述制备方法制备得到的氨基酸改性纳米粒子。在本发明中,所述氨基酸改性纳米粒子在抗污超滤膜中的质量含量优选为1~8%,更优选为5~7%。在本发明中,所述聚合物膜基体优选包括聚砜膜、聚醚砜膜、聚联苯砜膜、聚芳醚腈膜或聚偏氟乙烯膜。
在本发明中,所述抗污超滤膜的厚度优选为50~300μm,更优选为100~200μm。
本发明还提供了一种抗污超滤膜的制备方法,包括以下步骤:
将氨基酸改性纳米粒子分散在有机溶剂中,得到均相悬浮液;所述氨基酸改性纳米粒子为上述技术方案所述氨基酸改性纳米粒子或上述技术方案所述制备方法制备得到的氨基酸改性纳米粒子;
将所述均相悬浮液和聚合物以及添加剂混合,得到铸膜液;
将所述铸膜液成膜,得到抗污超滤膜。
本发明将氨基酸改性纳米粒子分散在有机溶剂中,得到均相悬浮液。在本发明中,所述有机溶剂优选包括N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮或环丁砜。
在本发明中,所述分散的方法优选包括机械搅拌、超声震荡或细胞粉碎。
在本发明中,所述均相悬浮液中氨基酸改性纳米粒子的质量浓度优选为1~8%,更优选为5~7%。
得到均相悬浮液后,本发明将所述均相悬浮液和聚合物以及添加剂混合,得到铸膜液。在本发明中,所述聚合物优选包括聚砜、聚醚砜、聚联苯砜、聚芳醚腈或聚偏氟乙烯。在本发明中,所述聚合物的数均分子量优选为5~20万Da,更优选为10~15万Da。在本发明中,所述聚合物和氨基酸改性纳米粒子的质量比优选为0.92~1:1,更优选为0.95~0.98:1。
在本发明中,所述添加剂优选包括聚乙二醇、聚乙烯吡咯烷酮、聚乙烯醇、氯化钾或氯化铵。在本发明中,所述添加剂和聚合物的质量比优选为0~0.05:1,更优选为0.02~0.04:1。在本发明中,所述添加剂能够增加平板膜的渗透性。
本发明优选在所述均相悬浮液和聚合物以及添加剂混合后,将所得混合体系依次进行脱泡和静置,得到铸膜液。在本发明中,所述脱泡的方法优选为真空脱泡。在本发明中,所述静置的温度优选为室温,时间优选为30min。
得到铸膜液后,本发明将所述铸膜液成膜,得到抗污超滤膜。在本发明,所述铸膜液成膜优选包括:将所述铸膜液涂覆在基板材料上,除去所述有机溶剂和添加剂,得到抗污超滤膜。在本发明中,所述涂覆的环境条件优选包括:室温;空气相对湿度为30~70%。在本发明中,所述涂覆的方法优选为刮涂。在本发明中,所述基板材料优选包括玻璃板、金属板或多孔无纺布。
本发明优选在所述涂覆完成后,进行曝气,在基板材料表面形成液体膜。在本发明中,所述曝气的时间优选为30~120s,更优选为60~100s。
在本发明中,所述除去所述有机溶剂和添加剂的方法优选包括:将所述液体膜浸入去离子水凝固浴中进行相分离,通过多次、反复换水彻底置换出液体膜内有机溶剂及添加剂。
在本发明中,经过所述曝气过程形成的是液体膜,经过相分离彻底固化成型,得到抗污超滤膜。
本发明提供的氨基酸改性纳米粒子能够有效减弱纳米粒子间的团聚现象,同时纳米粒子表面接枝氨基酸进一步增大了纳米材料的亲水及与有机膜基质间的相容性。本发明通过物理共混将所述氨基酸改性纳米粒子掺杂入聚合物超滤膜基质中,实现对膜表面的亲水性修饰,制备的抗污超滤膜具有高渗透性、高选择性及优异的抗污染性能。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
赖氨酸修饰二氧化硅粒子及聚芳醚腈(PEN)共混超滤膜的制备:
将1.0g SiO2纳米粒子加入到50mL乙醇水溶液(20%,V/V)中,超声震荡分散30min得到均匀分散悬浮液;然后,向悬浮液中加入0.3g硅烷偶联剂(KH-560)和少许盐酸调节体系pH至6.5;磁力搅拌保持体系在60℃下反应6h;将5mL赖氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应3h;离心得到改性后的SiO2纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到赖氨酸改性纳米粒子(K-SiO2),K-SiO2为白色粉末。
将0.25g所述K-SiO2加入到18.75g N,N-二甲基乙酰胺中,超声震荡30min得到均相悬浮液;再加入4g聚芳醚腈(PEN,Mn为1.13×105Da)和2g聚乙烯基吡咯烷酮(PVP-k30),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PEN/K-SiO2/PVP-k30),膜厚度为100±5μm。
实施例2
精氨酸修饰二氧化硅粒子及聚芳醚腈(PEN)共混超滤膜的制备:
将1.0g SiO2纳米粒子加入到50mL乙醇水溶液(20%,V/V)中,超声震荡分散30min得到均匀分散悬浮液;然后,向悬浮液中加入0.3g硅烷偶联剂(KH-560)和少许盐酸调节体系pH至6.3;磁力搅拌保持体系在60℃下反应6h;将5mL精氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应12h;离心得到改性后的SiO2纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到精氨酸改性纳米粒子(R-SiO2),R-SiO2为白色粉末。
将0.25g所述R-SiO2加入到18.75g N,N-二甲基乙酰胺中,超声震荡30min得到均相悬浮液;再加入4g聚芳醚腈(PEN,Mn为1.13×105Da)和2g聚乙烯基吡咯烷酮(PVP-k30),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PEN/R-SiO2/PVP-k30),膜厚度为100±5μm。
实施例3
组氨酸修饰二氧化硅粒子及聚芳醚腈(PEN)共混超滤膜的制备:
将1.0g SiO2纳米粒子加入到50mL乙醇水溶液(20%,V/V)中,超声震荡分散30min得到均匀分散悬浮液;然后,向悬浮液中加入0.3g硅烷偶联剂(KH-560)和少许盐酸调节体系pH至4.5;磁力搅拌保持体系在60℃下反应6h;将5mL组氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应8h;离心得到改性后的SiO2纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到组氨酸改性纳米粒子(H-SiO2),H-SiO2为白色粉末。
将0.25g所述H-SiO2加入到18.75g N,N-二甲基乙酰胺中,超声震荡30min得到均相悬浮液;再加入4g聚芳醚腈(PEN,Mn为1.13×105Da)和2g聚乙烯基吡咯烷酮(PVP-k30),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PEN/H-SiO2/PVP-k30),膜厚度为100±5μm。
实施例4
赖氨酸修饰二氧化钛粒子及聚芳醚腈(PEN)共混超滤膜的制备:
将1.0g TiO2纳米粒子加入到50mL乙醇水溶液(20%,V/V)中,超声震荡分散1h得到均匀分散悬浮液;然后,向悬浮液中加入0.3g硅烷偶联剂(KH-570)和少许盐酸调节体系pH至5.5;磁力搅拌保持体系在80℃下反应4h;将8mL赖氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应2h;离心得到改性后的TiO2纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到赖氨酸改性纳米粒子(K-TiO2),K-TiO2为白色粉末。
将0.25g所述K-TiO2加入到18.75g N,N-二甲基乙酰胺中,超声震荡30min得到均相悬浮液;再加入4g聚芳醚腈(PEN,Mn为1.13×105Da)和2g聚乙烯基吡咯烷酮(PVP-k30),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PEN/K-TiO2/PVP-k30),膜厚度为100±5μm。
实施例5
天冬氨酸修饰氧化石墨烯粒子及聚砜(PSF)共混超滤膜的制备:
将0.8g氧化石墨烯(GO)纳米粒子加入到50mL乙醇水溶液(20%,V/V)中,超声震荡分散30min得到均匀分散悬浮液;然后,向悬浮液中加入0.5g硅烷偶联剂(KH-540)和少许盐酸调节体系pH至6.5;磁力搅拌保持体系在65℃下反应4h;将10mL天冬氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应4h;离心得到改性后的GO纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到天冬氨酸改性纳米粒子(D-GO),D-GO为黑色粉末。
将0.25g所述D-GO加入到18.75gN,N-二甲基甲酰胺中,超声震荡30min得到均相悬浮液;再加入4g聚砜(PSF,Mn为9.55×104)和2g聚乙二醇(PEG-6000),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PSF/D-GO/PEG-6000),膜厚度为100±5μm。
实施例6
谷氨酸修饰三氧化二铝粒子及聚醚砜(PES)共混超滤膜的制备:
将0.5g三氧化二铝纳米粒子加入到80mL乙醇水溶液(20%,V/V)中,细胞粉碎分散10min得到均匀分散悬浮液;然后,向悬浮液中加入0.2g硅烷偶联剂(A-171)和少许盐酸调节体系pH至6.0;磁力搅拌保持体系在80℃下反应12h;将25mL谷氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应24h;离心得到改性后的三氧化二铝纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到谷氨酸改性纳米粒子(E-Al2O3),E-Al2O3为白色粉末。
将0.25g所述E-Al2O3加入到18.75g N,N-二甲基甲酰胺中,细胞粉碎10min得到均相悬浮液;再加入4g聚醚砜(PES,Mn为1.04×105)和2g聚乙二醇(PEG-10000),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PES/E-Al2O3/PEG-10000),膜厚度为100±5μm。
实施例7
丝氨酸修饰氧化锌粒子及聚偏氟乙烯(PVDF)共混超滤膜的制备:
将0.5g氧化锌纳米粒子加入到80mL乙醇水溶液(20%,V/V)中,细胞粉碎分散10min得到均匀分散悬浮液;然后,向悬浮液中加入0.2g硅烷偶联剂(A-151)和少许盐酸调节体系pH至5.3;磁力搅拌保持体系在80℃下反应12h;将30mL丝氨酸水溶液(10%,g/g)滴加到上述反应体系中,并继续保持反应24h;离心得到改性后的氧化锌纳米粒子,并用乙醇多次离心洗涤至中性,在80℃的真空烘箱中干燥8h,得到丝氨酸改性纳米粒子(S-ZnO),S-ZnO为白色粉末。
将0.25g所述S-ZnO加入到18.75g N-甲基吡咯烷酮中,细胞粉碎10min得到均相悬浮液;再加入4g聚偏氟乙烯(PVDF,Mn为6.53×104)和2g聚乙二醇(PEG-10000),机械搅拌至各组分完全溶解得到均相铸膜液;经脱泡、静置,以125μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后;将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到抗污超滤膜(PVDF/S-ZnO/PEG-10000),膜厚度为100±5μm。
对比例1
聚芳醚腈超滤膜的制备:
将4g聚芳醚腈(PEN,Mn为1.13×105)和2gN-甲基吡咯烷酮(PVP-k30),溶于18.75gN,N-二甲基乙酰胺中,搅拌至各组分完全溶解得到均相铸膜液,脱泡后静置,以100μm刮膜器将铸膜液均匀地刮涂在洁净的玻璃板上,曝气时间30s后,将其浸入室温状态下的去离子水凝固浴中发生相分离,最终固化成膜;将固态膜继续浸泡在去离子水中48h,其间多次换水以置换聚合物膜内的残余溶剂及添加剂组分,得到聚芳醚腈超滤膜(PEN/PVP-k30),膜厚度为100±5μm。
测试例1
对比例1纯PEN超滤膜、实施例1~7制备的抗污超滤膜的分离性能及通量恢复率如表1所示。
表1对比例1纯PEN超滤膜、实施例1~7制备的抗污超滤膜的分离性能及通量恢复率
Figure BDA0003335789410000121
表1中,PWF表示纯水通量,Jp表示渗透通量,R表示截留率,FRR表示通量恢复率。
由表1中可以看出,相较于纯PEN基质膜,共混掺杂改性K-SiO2、R-SiO2、H-SiO2、K-TiO2填料所制备的PEN共混膜具有更好的渗透性能,同时保留良好的BSA截留效率;其通量恢复率显著增加,说明共混膜抗污性能明显提高。而以PSF、PES、PVDF为膜基质所制备的共混膜,虽然不同改性填料影响分离膜的选择、渗透性能,但也可以明显看到其通量恢复率明显高于纯PEN膜。说明氨基酸改性纳米粒子作为改性剂能够很好改善聚合物共混膜表面亲水性,从而提高分离膜抗污染性能。
测试例2
图2为实施例1赖氨酸对二氧化硅纳米粒子改性原理图。由图2可以看出,硅烷偶联剂酸化水解生成活性羟基,活性羟基与纳米粒子表面羟基进行脱水缩合,同时硅烷偶联剂上活性环氧端基与氨基酸上活性氨基进行开环反应。
图3为实施例1赖氨酸对二氧化硅纳米粒子改性前、后红外光谱对比图。图3两个光谱中均可明显观察到SiO2位于1106cm-1、970cm-1及806cm-1处特征吸收峰,分别归因于Si-O-Si的不对称、对称伸缩振动以及Si-OH的弯曲振动。而在改性后SiO2纳米粒子FTIR光谱中发现的位于2940cm-1、1508cm-1、1409cm-1处的三个新峰,分别对应亚甲基拉伸振动峰、氨基剪切振动峰和羧基上OH键平面弯曲振动峰。
图4为实施例1~3氨基酸改性二氧化硅纳米粒子与聚芳醚腈聚合物分子链间相互作用示意图。由图4可以看出,掺杂氨基酸改性二氧化硅纳米粒子与聚芳醚腈聚合物基体存在明显的H键相互作用。
图5为对比例1和实施例1超滤循环实验对比图。由图5可以看出,氨基酸改性二氧化硅纳米粒子掺杂聚芳醚腈复合膜具有明显的抗污持久性。
图6为实施例1制备的PEN/K-SiO2/PVP-k30共混超滤膜截面扫描电镜图(SEM)。由图6可以看出,PEN/K-SiO2/PVP-k30共混超滤膜为典型的非对称膜。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氨基酸改性纳米粒子,其特征在于,包括纳米粒子、氨基酸和用于接枝所述纳米粒子和氨基酸的接枝单元,所述接枝单元为硅烷偶联剂。
2.根据权利要求1所述的氨基酸改性纳米粒子,其特征在于,所述纳米粒子包括二氧化硅、二氧化钛、氧化石墨烯、三氧化二铝、氧化锌或四氧化三铁。
3.根据权利要求1所述的氨基酸改性纳米粒子,其特征在于,所述硅烷偶联剂包括乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷、N-(β-氨乙基)-γ-氨丙基三乙氧基硅烷、N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷、γ-氨丙基甲基二乙氧基硅烷、二乙胺基代甲基三乙氧基硅烷、苯胺甲基三乙氧基硅烷或二氯甲基三乙氧基硅烷。
4.根据权利要求1所述的氨基酸改性纳米粒子,其特征在于,所述氨基酸为α-氨基酸。
5.权利要求1~4任一项所述的氨基酸改性纳米粒子,其特征在于,以所述氨基酸改性纳米粒子的总质量为100%计,所述氨基酸的接枝量为5~15wt%。
6.权利要求1~5任一项所述氨基酸改性纳米粒子的制备方法,包括以下步骤:
将纳米粒子、硅烷偶联剂和乙醇水溶液混合,得到纳米粒子分散液;
将所述纳米粒子分散液和氨基酸水溶液混合,进行接枝反应,得到氨基酸改性纳米粒子。
7.根据权利要求6所述的制备方法,其特征在于,所述硅烷偶联剂与纳米粒子的质量比为0.3~1.2:1。
8.根据权利要求6或7所述的制备方法,其特征在于,所述氨基酸与纳米粒子的质量比为0.5~1:1。
9.权利要求1~5任一项所述氨基酸改性纳米粒子或权利要求6~8任一项所述制备方法制备得到的氨基酸改性纳米粒子在抗污超滤膜中的应用。
10.一种抗污超滤膜,包括聚合物膜基体以及分散在所述聚合物膜基体中的氨基酸改性纳米粒子;所述氨基酸改性纳米粒子为权利要求1~5任一项所述氨基酸改性纳米粒子或权利要求6~8任一项所述制备方法制备得到的氨基酸改性纳米粒子。
CN202111293966.5A 2021-11-03 2021-11-03 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜 Expired - Fee Related CN113831761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111293966.5A CN113831761B (zh) 2021-11-03 2021-11-03 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111293966.5A CN113831761B (zh) 2021-11-03 2021-11-03 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜

Publications (2)

Publication Number Publication Date
CN113831761A true CN113831761A (zh) 2021-12-24
CN113831761B CN113831761B (zh) 2022-07-01

Family

ID=78966919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111293966.5A Expired - Fee Related CN113831761B (zh) 2021-11-03 2021-11-03 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜

Country Status (1)

Country Link
CN (1) CN113831761B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249991A (zh) * 2021-12-31 2022-03-29 广东粤港澳大湾区国家纳米科技创新研究院 改性纳米二氧化钛材料及其制备方法与应用
CN114315378A (zh) * 2021-12-31 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 改性纳米氧化锌材料及其制备方法与应用、陶瓷材料与瓷砖
CN114656824A (zh) * 2022-04-15 2022-06-24 肇庆市盛浩新材料科技有限公司 一种改性纳米氧化锌粉体及其制备方法与应用
CN115029401A (zh) * 2022-06-23 2022-09-09 蚌埠星河秸秆生物科技有限公司 一种秸秆制糖联产黄腐酸有机肥的方法
US20220356065A1 (en) * 2021-04-22 2022-11-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Surface modified silanized colloidal silica particles
CN115316382A (zh) * 2022-07-08 2022-11-11 仲恺农业工程学院 一种具有导向性的改性纳米农药及其制备方法和应用
CN116445016A (zh) * 2023-04-04 2023-07-18 安徽中核桐源科技有限公司 一种耐腐蚀环保涂料及其制备方法
CN116477889A (zh) * 2023-04-23 2023-07-25 中国水利水电第九工程局有限公司 一种基于珊瑚石骨料的引水隧洞混凝土及其施工方法
CN117865802A (zh) * 2024-03-11 2024-04-12 山东顺成化学有限公司 一种4-溴丁酸乙酯的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005132A1 (de) * 2004-02-02 2005-08-18 Schill + Seilacher "Struktol" Ag Polymermischung, Verfahren und Verwendung
CN103030977A (zh) * 2012-10-11 2013-04-10 上海大学 羟基磷灰石/聚氨基酸复合粒子及其制备方法
CN104383816A (zh) * 2014-11-10 2015-03-04 东华大学 一种防污性能改善的聚合物膜及其制备方法
CN110227349A (zh) * 2019-06-12 2019-09-13 常州大学 基于功能化纳基膨润土和氨基化纳米二氧化硅改性的共混超滤膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005132A1 (de) * 2004-02-02 2005-08-18 Schill + Seilacher "Struktol" Ag Polymermischung, Verfahren und Verwendung
CN103030977A (zh) * 2012-10-11 2013-04-10 上海大学 羟基磷灰石/聚氨基酸复合粒子及其制备方法
CN104383816A (zh) * 2014-11-10 2015-03-04 东华大学 一种防污性能改善的聚合物膜及其制备方法
CN110227349A (zh) * 2019-06-12 2019-09-13 常州大学 基于功能化纳基膨润土和氨基化纳米二氧化硅改性的共混超滤膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISABLE DEL HIERRO,ET AL.: "Silanization of Iron Oxide Magnetic Nanoparticles with ionic liquids based on amino acids application as heterogeneous catalysts for Knoevenagel condensation reactions", 《MOLECULAR CATALYSIS》 *
李晔等: "氨基酸分子改性的SiO2杂化材料用于胰蛋白酶固定化", 《高等学校化学学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220356065A1 (en) * 2021-04-22 2022-11-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Surface modified silanized colloidal silica particles
CN114249991A (zh) * 2021-12-31 2022-03-29 广东粤港澳大湾区国家纳米科技创新研究院 改性纳米二氧化钛材料及其制备方法与应用
CN114315378A (zh) * 2021-12-31 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 改性纳米氧化锌材料及其制备方法与应用、陶瓷材料与瓷砖
CN114656824A (zh) * 2022-04-15 2022-06-24 肇庆市盛浩新材料科技有限公司 一种改性纳米氧化锌粉体及其制备方法与应用
CN114656824B (zh) * 2022-04-15 2023-08-11 肇庆市盛浩新材料科技有限公司 一种改性纳米氧化锌粉体及其制备方法与应用
CN115029401A (zh) * 2022-06-23 2022-09-09 蚌埠星河秸秆生物科技有限公司 一种秸秆制糖联产黄腐酸有机肥的方法
CN115316382A (zh) * 2022-07-08 2022-11-11 仲恺农业工程学院 一种具有导向性的改性纳米农药及其制备方法和应用
CN115316382B (zh) * 2022-07-08 2024-03-29 仲恺农业工程学院 一种具有导向性的改性纳米农药及其制备方法和应用
CN116445016A (zh) * 2023-04-04 2023-07-18 安徽中核桐源科技有限公司 一种耐腐蚀环保涂料及其制备方法
CN116477889A (zh) * 2023-04-23 2023-07-25 中国水利水电第九工程局有限公司 一种基于珊瑚石骨料的引水隧洞混凝土及其施工方法
CN116477889B (zh) * 2023-04-23 2024-05-14 中国水利水电第九工程局有限公司 一种基于珊瑚石骨料的引水隧洞混凝土及其施工方法
CN117865802A (zh) * 2024-03-11 2024-04-12 山东顺成化学有限公司 一种4-溴丁酸乙酯的制备方法

Also Published As

Publication number Publication date
CN113831761B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN113831761A (zh) 一种氨基酸改性纳米粒子及其制备方法和应用、抗污超滤膜
CN107583469B (zh) 含氨基改性纳米粒子的聚酰胺复合纳滤膜的制备方法
CN109019745B (zh) 一种提高多功能杂化膜颗粒负载量的制备方法
CN104383816B (zh) 一种防污性能改善的聚合物膜及其制备方法
CN111495206B (zh) 一种高通量、耐压超滤膜的制备方法
Kumari et al. Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative
CN109821427B (zh) 一种耐氯芳香聚酰胺复合纳滤膜的制备方法
CN111186881B (zh) 一种壳聚糖改性的纳米TiO2光催化超滤膜的制备方法
CN107433141A (zh) 一种具备抗污染‑自清洁、抗菌性能的多壁碳纳米管杂化超滤膜
CN103990384A (zh) 一种新型有机-无机杂化微孔分离膜的制备方法
CN110359298B (zh) 一种低盐化的活性染料的制备方法及其在喷墨印花用墨水中的应用
Wang et al. Design of a novel poly (aryl ether nitrile)-based composite ultrafiltration membrane with improved permeability and antifouling performance using zwitterionic modified nano-silica
CN117181004A (zh) 一种亲水性抗污染MXene/PVDF复合膜及其制备方法和应用
CN112516799A (zh) 一种反渗透膜及其制备方法
CN103172898B (zh) 一种聚醚酰亚胺/氨基化二氧化硅杂化膜的制备方法
CN114130197A (zh) 一种氧化石墨烯二氧化钛-多巴胺pei纳滤膜及其制备方法
CN108499374A (zh) Pvdf复合石墨烯滤芯膜及其生产工艺
Rojjanapinun et al. Rice husk ash and Zr-MOF nanoparticles improve the properties and ultrafiltration performance of PVDF nanomembranes
CN111467963B (zh) 一种聚偏氟乙烯 /Fe3O4–凹凸棒石复合超滤膜及其制备方法
CN113318603A (zh) 一种有机-无机杂化分离膜及其制备方法
CN118320634A (zh) 一种树形二氧化硅纳米刺球改性的超滤膜、其制备方法及应用
CN112221362A (zh) 具有离子团簇结构的季铵化聚砜均质膜及制备和应用
CN114618327B (zh) 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用
EP1482004B1 (en) Hydrophilized porous film and process for producing the same
CN111298662A (zh) 有机金属架桥氧化石墨烯强荷电复合超纳滤膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220701

CF01 Termination of patent right due to non-payment of annual fee