[go: up one dir, main page]

CN113600024A - 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法 - Google Patents

一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法 Download PDF

Info

Publication number
CN113600024A
CN113600024A CN202110923241.3A CN202110923241A CN113600024A CN 113600024 A CN113600024 A CN 113600024A CN 202110923241 A CN202110923241 A CN 202110923241A CN 113600024 A CN113600024 A CN 113600024A
Authority
CN
China
Prior art keywords
permeable membrane
oxygen
bismuth
powder
mixed conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110923241.3A
Other languages
English (en)
Inventor
罗惠霞
张超
黄彦昊
曾令勇
何溢懿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110923241.3A priority Critical patent/CN113600024A/zh
Publication of CN113600024A publication Critical patent/CN113600024A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明设计和制备了一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料,属于无机功能陶瓷制造技术领域。该含铋双相混合导体透氧膜材料的通式为Ce0.9Pr0.1O2‑δ‑Pr0.6Sr0.4Fe1‑xBixO3‑δ(CPO‑PSF1‑xBxO;x=0.01,0.025,0.05,0.10,0.15,0.20);首先通过“溶胶‑凝胶一锅法”制备粉体,将粉体在马弗炉中950℃下煅烧12小时得到前驱体粉末,然后将前驱体粉末压片烧结,得到最后所需的混合导体透氧膜。通过调控Bi元素与Fe元素的比例,从而得到所需的含铋双相混合导体透氧膜材料。本发明制备的透氧膜材料在氦气/二氧化碳等气体吹扫下具有良好稳定性,且在二氧化碳腐蚀性气氛下透氧量损失较小。本发明可以作为新型气体分离材料和碳捕捉材料应用于高温复杂气氛用氧行业,例如富氧燃烧,水分解及甲烷偶联等领域。

Description

一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧 膜材料及其制备方法
技术领域
本发明属于功能陶瓷制造技术领域,具体涉及一种化学成分Ce0.9Pr0.1O2-δ-Pr0.6Sr0 4Fe1-xBixO3-δ双相混合导体透氧膜材料及其制备方法。
背景技术
混合导体透氧膜(OTMs)是一种环保、高效的空气分离膜,可以有效地分离氧气和捕捉二氧化碳,并且具备一定的催化活性。作为一种致密的陶瓷膜,以钙钛矿膜为例,在中高温条件下同时具有氧离子和电子导电性,因此可以在氧浓度梯度的作用下高选择性地透过氧气,从而连续、低成本地生产高纯度氧气。混合导体透氧膜在富氧燃烧、甲烷部分氧化(POM)和水分解产氢耦合等方面有巨大潜力,其中对应用于富氧燃烧的透氧膜来说,耐CO2稳定性是比较重要的衡量指标。
大多数A位含有碱金属元素(如Ba元素)的透氧膜在高温CO2气氛中很容易形成碳酸盐杂质相,降低了膜体材料的稳定性以及透氧性能。而B位含Co元素的透氧膜在高温下有较大的膨胀系数,降低了透氧膜材料的结构稳定性。
为了在保持高透氧量的前提下,尽可能提高混合导体透氧膜材料的稳定性,研究人员做出了许多努力。首先是使用La、Pr等稀土金属阳离子部分掺杂A位的碱金属元素,以及降低B 位中Co元素的含量,Caro等人研究了Pr0.6Sr0.4CoxFe1-xO3-δ(0≤x≤1)体系,证明无Co体系稳定性更强,之后又通过耐二氧化碳气氛的萤石相与钙钛矿相耦合,开发出了Ce0 9Pr0.1O2-δ- Pr0.6Sr0.4FeO3-δ双相透氧膜,进一步提升了稳定性,但透氧量较低。Du等人则开发了Ce0.9La0.1O2-δ-La0.6Sr0.4FeO3-δ透氧膜,可在900℃CO2气氛下保持0.2mL cm-2min-1的透氧量超过15小时。最近,罗惠霞课题组采用酸性更强(碱性更弱)或更稳定的过渡金属组分部分取代B位中的原始过渡金属组分,研发了Ce0 9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xAlxO3-δ、Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xInxO3-δ和 Ce0.85Pr0.1Cu0.05O2-δ-Pr0.6Sr0.4Fe1-xCuxO3-δ等双相混合导体透氧膜材料,体系可达到1mL cm-2min-1的透氧量,并持续工作100小时以上。
Bi元素位于第六周期的第五主族,外层电子排布为4f145d106s26p3,但由于6s轨道强钻穿效应导致的惰性电子效应,6s轨道的两个电子难以失去,所以Bi3+为稳定价态,与Fe、Al和In 元素类似,掺杂至B位可产生氧空位。高温下铋的氧化物δ-Bi2O3本身也即含有大量氧空位,是极好的氧离子导体,有利于氧气在透氧膜中的扩散传输。此外,Bi2O3也常常被用作催化剂,如Liu等人通过纳米Bi2O3催化电解还原CO2为HCOOH,这种催化活性对应用于碳捕捉更加有利。Shao等人研究了BaBixCo0.2Fe0.8-xO3-δ单相透氧膜,可达到0.8mL cm-2min-1以上的透氧量,但稳定性较差。据此,本专利发明了一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(CPO-PSF1-xBxO,x=0.01,0.025,0.05,0.10,0.15, 0.20)。
发明内容
针对现有技术存在的缺陷,本发明的目的是一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法。
为达上述目的,本发明采用如下技术方案:
一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料具有以下的组成:
Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10,0.15,0.20)
一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料的制备方法,具有以下的工艺过程:
(1)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ对应的硝酸盐溶于去离子水中,充分搅拌待其溶解后,向烧杯中加入一水合柠檬酸作为螯合剂和乙二醇作为分散剂,其中溶液中的金属离子、柠檬酸、乙二醇的物质的量之比为1∶2∶2;
(2)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续加热蒸发直至转变成凝胶,将凝胶放入140℃烘箱中烘干24h得到干凝胶,并将其充分研磨后放入坩埚在 600℃保温8小时煅烧除去有机物;
(3)研磨粉末后放入坩埚,在950℃煅烧10h得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0 4Fe1- xBixO3-δ的粉末;
(4)将粉末在10MPa下压片得到饼状片体,将片体以1℃/min缓慢升温到1400℃(x= 0.01,0.025,0.05),及1350℃(x=0.10,0.15),1300℃(x=0.20)煅烧5h,烧结得到致密的双相混合导体透氧膜,砂纸打磨得到高稳定性、二氧化碳气氛下透氧量损失小的含铋混合导体透氧膜。
与现行技术相比,本技术制备的含铋双相混合导体透氧膜材料表面致密,无明显裂纹、缺陷及通孔,具备优秀的机械性能,且其能够在He/CO2等低氧、腐蚀性气氛中稳定存在50h。同时,通过本技术制备的含铋的双相混合导体透氧膜材料具备良好的透氧性能。例如,0.6mm 的所述的混合导体透氧膜材料Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.99Bi0.01O3-δ,在氦气作为吹扫气,1000℃的工作条件下,可获得0.71mL cm-2min-1的透氧速率,并保持50h稳定不变。
附图说明
图1为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末的室温XRD图谱;
图2为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末的XRD精修结果;
图3为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜材料的SEM照片;
图4为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜材料的BSEM照片
图5为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.20) 含铋双相混合导体透氧膜材料以He作为吹扫气时透氧量随温度的变化。
图6为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.20) 含铋双相混合导体透氧膜材料以CO2作为吹扫气时透氧量随温度的变化。
图7为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10. 0.15,0.20)含铋双相混合导体透氧膜粉末在800℃下Ar气氛中煅烧24h后的XRD结果。
图8为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10. 0.15,0.20)含铋双相混合导体透氧膜粉末在900℃下Ar气氛中煅烧24h后的XRD结果。
图9为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末在1000℃下Ar气氛中煅烧24h后的XRD结果。
图10为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末在800℃下CO2气氛中煅烧24小时后的XRD结果。
图11为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末在900℃下CO2气氛中煅烧24h后的XRD结果。
图12为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜粉末在1000℃下CO2气氛中煅烧24h后的XRD结果。
图13为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0 6Sr0 4Fe1-xBixO3-δx=0.01,0.025,0.05,0.10, 0.15,0.20)含铋双相混合导体透氧膜材料的EDS照片
图14为本发明所述方法制备的Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05)含铋双相混合导体透氧膜在1000℃下透氧量随时间稳定性曲线。
具体实施方式
下面通过附图和实施例对本发明做进一步阐明,但本发明所述的保护范围不限于所示内容。
实施例1:
精确称量4.1057g Ce(NO3)3·6H2O,1.8656g Pr(NO3)3·6H2O,2.1336g Fe(NO3)3·9H2O. 0.4538g Sr(NO3)2,0.0261g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.99Bi0.01O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
实施例2:
精确称量4.1057g Ce(NO3)3·6H2O,1.8514g Pr(NO3)3·6H2O,2.0800g Fe(NO3)3·9H2O, 0.4492g Sr(NO3)2,0.0647g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.975Bi0.025O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
实施例3:
精确称量4.1057g Ce(NO3)3·6H2O,1.8283g Pr(NO3)3·6H2O,1.9932g Fe(NO3)3·9H2O, 0.4418g Sr(NO3)2,0.1272g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.95Bi0.05O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1400℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
实施例4:
精确称量4.1057g Ce(NO3)3·6H2O,1.7844g Pr(NO3)3·6H2O,1.8277g Fe(NO3)3·9H2O. 0.4276g Sr(NO3)2,0.2463g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.9Bi0.1O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1350℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
实施例5:
精确称量4.1057g Ce(NO3)3·6H2O,1.7433g Pr(NO3)3·6H2O,1.6725g Fe(NO3)3·9H2O, 0.4143g Sr(NO3)2,0.3579g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.85Bi0.15O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1350℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
实施例6:
精确称量4.1057g Ce(NO3)3·6H2O,1.7046g Pr(NO3)3·6H2O,1.5267g Fe(NO3)3·9H2O. 0.4018g Sr(NO3)2,0.4629g Bi(NO3)3·5H2O,8.7669g一水合柠檬酸,搅拌溶液直至变成澄清透明,将烧杯放在磁力搅拌器上,持续加热蒸发直至转变成凝胶,然后将凝胶放入140℃烘箱中烘干24小时得到蓬松干凝胶,并将其充分研磨后放入坩埚在600℃保温8小时煅烧除去有机物。将煅烧后的粉末充分研磨后放入坩埚,在950℃条件下煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.8Bi0.2O3-δ的粉末,将粉末在10MPa下压片得到饼状片体,将片体缓慢升温在1300℃煅烧5小时烧结得到致密的双相陶瓷透氧膜材料,砂纸打磨得到高稳定性的含铋双相混合导体透氧膜。
评价实验:
当空气流量为150mL min-1,吹扫气体为49mL min-1He+1mL min-1Ne,60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr0.6Sr0.4Fe0.99Bi0.01O3-δ在1000℃获得了0.71mL cm-2min-1的透氧量,而且整个体系均能够在复杂工作环境氛围中稳定存在超过50小时,性能无下降。

Claims (6)

1.一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料,其特征在于具有以下的化学式及重量百分比:
60wt.%Ce0.9Pr0.1O2-δ-40wt.%Pr0.6Sr0.4Fe1-xBixO3-δ(x=0.01,0.025,0.05,0.10,0.15,0.20)。
2.一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料,其特征在于具有以下的工艺和步骤:
(a)按照化学计量比依次称量Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ对应的硝酸盐溶于去离子水中,充分搅拌待其溶解后,向烧杯中加入一水合柠檬酸作为螯合剂和乙二醇作为分散剂,其中溶液中的金属离子、柠檬酸、乙二醇的物质的量之比为1∶2∶2;
(b)搅拌溶液直至变成澄清透明,将烧杯放在加热型磁力搅拌器上,持续加热蒸发直至溶液转变为凝胶,将凝胶放入140℃烘箱中烘干24h得到干凝胶,并将其充分研磨后放入坩埚,并在600℃保温8h煅烧除去有机物;
(c)得到粉末研磨后放入坩埚,在950℃煅烧10小时得到Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1- xBixO3-δ的粉末;
(d)将粉末在10MPa下压片得到饼状片体,将片体以1℃/min缓慢升温到1400℃(x=0.01,0.025,0.05),及1350℃(x=0.10,0.15),1300℃(x=0.20)煅烧5h,烧结得到致密的双相混合导体透氧膜,砂纸打磨得到高稳定性的含铋混合导体透氧膜。
3.根据权利要求2所述的溶液中的金属离子、柠檬酸、乙二醇的物质的量比为1∶2∶2。
4.根据权利要求2所述Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe1-xBixO3-δ烧结温度为1400℃(x=0.01,0.025,0.05),及1350℃(x=0.10,0.15),1300℃(x=0.20)。
5.根据权利要求2所述的1400℃(x=0.01,0.025,0.05),及1350℃(x=0.10,0.15),1300℃(x=0.20)煅烧程序:升温速率为1摄氏度每分钟,保温300分钟,降温速率为1摄氏度每分钟。
6.根据权利要求1-2中所述的方法制得的具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料其用于稳定性的性能分析。
CN202110923241.3A 2021-08-04 2021-08-04 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法 Pending CN113600024A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110923241.3A CN113600024A (zh) 2021-08-04 2021-08-04 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110923241.3A CN113600024A (zh) 2021-08-04 2021-08-04 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113600024A true CN113600024A (zh) 2021-11-05

Family

ID=78340415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110923241.3A Pending CN113600024A (zh) 2021-08-04 2021-08-04 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113600024A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332964B1 (en) * 1996-12-31 2001-12-25 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating
CN1465429A (zh) * 2002-06-27 2004-01-07 中国科学院大连化学物理研究所 一种双相混合导体透氧膜
CN101774824A (zh) * 2010-01-21 2010-07-14 上海大学 混合导体透氧陶瓷膜空气侧表面改性方法
CN104492278A (zh) * 2014-11-03 2015-04-08 景德镇陶瓷学院 一种高稳定性高渗透性致密陶瓷透氧膜及其制备方法
CN108682884A (zh) * 2018-04-27 2018-10-19 山东理工大学 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
CN113121230A (zh) * 2021-05-10 2021-07-16 中山大学 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332964B1 (en) * 1996-12-31 2001-12-25 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating
CN1465429A (zh) * 2002-06-27 2004-01-07 中国科学院大连化学物理研究所 一种双相混合导体透氧膜
CN101774824A (zh) * 2010-01-21 2010-07-14 上海大学 混合导体透氧陶瓷膜空气侧表面改性方法
CN104492278A (zh) * 2014-11-03 2015-04-08 景德镇陶瓷学院 一种高稳定性高渗透性致密陶瓷透氧膜及其制备方法
CN108682884A (zh) * 2018-04-27 2018-10-19 山东理工大学 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
CN113121230A (zh) * 2021-05-10 2021-07-16 中山大学 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法

Similar Documents

Publication Publication Date Title
EP1027916A1 (en) Mixed conducting cubic perovskite for ceramic ion transport membrane
CN106943888B (zh) 一种阴离子掺杂的萤石型钨酸基混合导体透氢膜材料及其制备方法与应用
CN107198973B (zh) 一种可提高co2气氛下透氧稳定性的铁基陶瓷透氧膜的制备方法
CN109437882B (zh) 掺杂La元素和Cu元素的BaFeO3-δ基陶瓷透氧膜材料及其制备方法
EP3147262B1 (en) A perovskite-based oxide for oxygen storage and a method for preparation thereof
CN104829231A (zh) 一种萤石-钙钛矿型双相混合导体透氧膜材料及其制备方法
CN111205079A (zh) 一种镧掺杂钇铝石榴石陶瓷及其制备方法
CN104258740B (zh) B位掺杂Ca元素的BaFeO3-δ基陶瓷透氧膜材料
Yang et al. Preparation and electrochemical performance of alkaline earth metal-doped Nd2Ce2O7 proton conductor hydrogen separation membranes
CN101596414A (zh) 一种含钽钙钛矿混合导体透氧膜及其制法和应用
CN103602105A (zh) 一种用于透氧膜表面改性的萤石型涂层材料及其制备方法
CN106083045A (zh) 一种抗co2腐蚀的双相混合导体透氧膜材料及其制备方法
CN106966728B (zh) 一种阴离子掺杂的K2NiF4型混合导体透氧膜材料及其制备方法与应用
CN113121230A (zh) 一种高稳定性的含铟双相混合导体透氧膜材料及其制备方法
CN100588636C (zh) 一种a位缺位的钙钛矿型陶瓷透氧膜材料
CN113600024A (zh) 一种具有耐二氧化碳的、高稳定性的含铋双相混合导体透氧膜材料及其制备方法
CN101269954B (zh) 一种B位掺杂Sn、Fe的BaCoO3基的钙钛矿型陶瓷透氧膜材料
CN113264768A (zh) 一种高透氧量的铜基双相混合导体透氧膜材料及其制备方法
CN113121231A (zh) 一种具有良好稳定性的含铝双相混合导体透氧膜材料及其制备方法
Yang et al. Equilibrium of oxygen sorption on perovskite-type lanthanum cobaltite sorbent
CN101279842B (zh) 一种用于甲烷部分氧化反应的钙钛矿型陶瓷透氧膜材料
JP4320531B2 (ja) 酸素分離用混合伝導性複合酸化物およびその製造方法
CN112299835A (zh) 一种a位部分掺杂碱金属离子钙钛矿透氧膜材料的制备方法
CN114988875B (zh) 高氧通量的含铜双相混合导体透氧膜材料及其制备方法
CN111389242B (zh) 无钴抗co2毒化的高透氧量双相透氧膜材料、其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211105

WD01 Invention patent application deemed withdrawn after publication