[go: up one dir, main page]

CN113030203B - 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法 - Google Patents

一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法 Download PDF

Info

Publication number
CN113030203B
CN113030203B CN201911345931.4A CN201911345931A CN113030203B CN 113030203 B CN113030203 B CN 113030203B CN 201911345931 A CN201911345931 A CN 201911345931A CN 113030203 B CN113030203 B CN 113030203B
Authority
CN
China
Prior art keywords
electrode
maltose
paper
solution
agnws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911345931.4A
Other languages
English (en)
Other versions
CN113030203A (zh
Inventor
孙晶
曹厚勇
郎明非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201911345931.4A priority Critical patent/CN113030203B/zh
Publication of CN113030203A publication Critical patent/CN113030203A/zh
Application granted granted Critical
Publication of CN113030203B publication Critical patent/CN113030203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4168Oxidation-reduction potential, e.g. for chlorination of water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法,属于燃料电池领域。本发明以PdNPs/NiNPs/GO/AgNWs/纸电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于麦芽糖溶液和支持电解质中,设置电位为‑0.2~1.3V,记录浓度为1mmol/L、3mmol/L、4mmol/L、5mmol/L麦芽糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化麦芽糖溶液的控制过程进行分析。本发明利用纸良好的柔韧性并结合银纳米线石墨烯良好的导电性,制得一种对麦芽糖具有高灵敏度的电极,且该电极在麦芽糖为基液时,催化效果好、灵敏度高、选择性好、结构稳定等优点,本燃料电池可用于制作随身充电宝,可用于发电厂及电动汽车等领域。

Description

一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的 方法
技术领域
本发明属于燃料电池领域,具体涉及一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法。
背景技术
燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子,电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。
燃料电池发电不受卡诺循环的限制。理论上,它的发电效率可达到85%~90%,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40%~60%。若实现热电联供,燃料的总利用率可高达80%以上。但是化学染料电池存在一定危险,且电解液不易降解,对环境存在一定影响。
发明内容
针对上述不足,本发明提供一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法,该方法以麦芽糖溶液为电解液构建糖燃料电池,具有使用安全且对环境友好的优点。
本发明以PdNPs/NiNPs/GO/AgNWs/纸电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于麦芽糖溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为1mmol/L、3mmol/L、4mmol/L、5mmol/L麦芽糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化麦芽糖溶液的控制过程进行分析。
进一步地,所述支持电解质为1mol/LKOH,pH为14。
进一步地,所述PdNPs/NiNPs/GO/AgNWs/纸电极包括:纸为基底,银纳米线为导电层,氧化石墨烯/纳米镍钯颗粒为电化学沉积层,所述纳氧化石墨烯/米钯-镍颗粒沉积在纸上。
有益效果:
本发明涉及的纸电极对于普通ITO电极相比有良好的柔韧性,石墨烯与银纳米线结合制成电极,能更好的体现出银纳米线的导电性与耐曲挠性。由于银纳米线的高表面积从而能够沉积更多的Ni离子与Pd离子,在催化麦芽糖时扩大了其对麦芽糖的接触面积,从而使其电流增大,电流的输出功率也增大,使得该电极对麦芽糖具有高灵敏度。且以麦芽糖为基准溶液时,可以展现其良好的催化性能及高选择性。且PdNPs/NiNPs/GO/AgNWs/纸电极制备方式简单快捷,成本低廉。
本发明利用纸良好的柔韧性并结合银纳米线石墨烯良好的导电性,制得一种对麦芽糖具有高灵敏度的电极,且该电极在麦芽糖为基液时,催化效果好、灵敏度高、选择性好、结构稳定等优点,本燃料电池可用于制作随身充电宝,可用于发电厂及电动汽车等领域。
附图说明
图1为基于PdNPs/NiNPs/GO/AgNWs/纸复合电极表面形貌图。
图2为麦芽糖溶液与空白溶液循环伏安曲线对比图。
图3为不同浓度麦芽糖溶液的循环伏安曲线。
图4为不同浓度的麦芽糖的标准曲线。
图5为PdNPs/NiNPs/GO/AgNWs/纸电极抗毒化曲线。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述实验试剂和材料,均可从商业途径获得。
下述实施例PdNPs/NiNPs/GO/AgNWs/纸电极的制备方法为:
用剪刀剪出10*20mm的纸,用乙醇冲洗3-5遍,烘干。
纸基片表面亲水层修饰。具体步骤如下:(1)配制质量百分数为4%PVA与7%PVP的混合水溶液;(2)将制备好的纸基片浸泡于PVA和PVP混合溶液中20min,再放入60℃的真空烘箱中干燥2h;(3)重复步骤(2)一次;(4)将纸基片放入100℃的真空烘箱中热固定20min;(5)重复步骤(2)、(4)一次,得到表面亲水层修饰的纸基片。
电极制备:
(1)将无水乙醇与水按9:1的体积比混合作为溶剂,配制浓度为0.2mg/mL的银线溶液,将石墨烯溶液均匀地铺展在纸基片表面的凹槽内,于室温下放置干燥一天以上,即制备出银纳米线/纸塑电极.
(2)采用三电极体系,用清洗后的纸电极作为工作电极,Ag/AgCl电极和铂丝电极为参比电极和对电极放入盛有0.1mol/L氧化石墨烯(GO)溶液中进行循环伏安曲线(CyclicVoltammetry,CV)扫描。电位窗为0.65—-1.5V,初始扫描电位为0.65V,扫描速率为0.05V/s,扫描循环周为11。
(3)采用三电极体系,以纳米结构的GO/AgNWs/纸纸浸入将三电极体系置于以pH=6的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的硫酸镍溶液中的混合物,采用循环伏安,设置电化学工作站电沉积参数:电位-0.2~1V,沉积圈数50圈。沉积完后用超纯水洗,氮气吹干,立刻将电极放入PH=5的硫酸和2mg/mL的硫酸钯溶液浸泡10min。10min后取出超纯水洗,氮气吹干,放置两天。
基于PdNPs/NiNPs/GO/AgNWs/纸复合电极表面形貌图如图1所示:电极上的纳米粒子颗粒大小和分布均匀,电催化性能尤为突出。
实施例1 麦芽糖溶液与空白溶液循环伏安曲线对比首先,将三电极体系置于pH为14浓度为1mol/L的KOH溶液中,利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录空白溶液的循环伏安曲线;然后,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的10mmol/L的麦芽糖待测液中利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录麦芽糖的循环伏安曲线。如附图2所示:100mV/s的扫描速度下测试PdNPs/NiNPs/GO/AgNWs/纸电极在10mmol/L的麦芽糖的催化效果。从图中可以看出PdNPs/NiNPs/GO/AgNWs/纸电极对麦芽糖催化电流为1400000μA/cm2/mol。表明PdNPs/NiNPs/GO/AgNWs/纸电极所组成的燃料能将生物能高效转换为电能。
实施例2 PdNPs/NiNPs/GO/AgNWs/纸电极对不同相同浓度的麦芽糖的循环伏安响应
依次将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的不同浓度的麦芽糖待测液中,在50mV/S的扫速下测定浓度为1mmol/L、3mmol/L、4mmol/L、5mmol/L麦芽糖的电流曲线,利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描。记录不同浓度同扫速的麦芽糖的循环伏安曲线。如附图3、附图4所示:从图中可以看出,随着浓度不断增大,纳米电极在麦芽糖溶液中的氧化电流也不断增大,氧化峰也不断升高,呈现出良好的催化麦芽糖的线性响应.麦芽糖的氧化还原反应受扩散控制。在1~10mmol/L的范围内两者之间还存在着良好的线性关系,麦芽糖的氧化峰电流与浓度的线性回归方程为I=1.3571C+6.9644,相关系数为0.9595
实施例3 电极抗毒化能力的测定
首先,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的10mm麦芽糖待测液中,利用时间电流法,在0.60V的电位下,记录麦芽糖的时间电流曲线。然如附图5所示:电流密度在开始时急剧下降。在反应开始时,它是一个快速动力学反应,因此活性位点不含吸附的麦芽糖分子。之后,新麦芽糖分子的吸附取决于通过麦芽糖氧化释放电催化位点,或者在最初几分钟(速率确定步骤)中形成的中间物质如CO,CHx等,电极催化活性位点被占据。因此,电流密度稍微降低主要是由于催化剂的中毒。此外,在整个测试期间特定电流在前300秒经历了快速下降,并且在测试结束之后仍然是平稳且温和的变化,衰减约为20%。所以电极的抗毒化能力强,结构稳定。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (2)

1.一种应用PdNPs/NiNPs/GO/AgNWs/纸可塑电极构建麦芽糖燃料电池的方法,其特征在于,该方法以PdNPs/NiNPs/GO/AgNWs/纸电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于麦芽糖溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为1mmol/L、3mmol/L、4mmol/L、5mmol/L麦芽糖的循环伏安曲线,并利用标准曲线法对电极电催化氧化麦芽糖溶液的控制过程进行分析;
所述PdNPs/NiNPs/GO/AgNWs/纸电极的制备方法为:
步骤S1:用剪刀剪出10*20mm的纸,用乙醇冲洗3-5遍,烘干;
步骤S2:纸基片表面亲水层修饰,具体步骤如下:
(1)配制质量百分数为4%PVA与7%PVP的混合水溶液;
(2)将步骤S1制备好的纸基片浸泡于PVA和PVP混合溶液中20min,再放入60℃的真空烘箱中干燥2h;
(3)重复步骤(2)一次;
(4)将纸基片放入100℃的真空烘箱中热固定20min;
(5)重复步骤(2)、(4)一次,得到表面亲水层修饰的纸基片;
步骤S3:电极制备,具体步骤如下:
(1)将无水乙醇与水按9:1的体积比混合作为溶剂,配制浓度为0.2mg/mL的银线溶液,将银线溶液均匀地铺展在纸基片表面的凹槽内,于室温下放置干燥一天以上,即制备出银纳米线/纸塑电极;
(2)采用三电极体系,用清洗后的纸电极作为工作电极,Ag/AgCl电极和铂丝电极为参比电极和对电极放入盛有0.1mol/L氧化石墨烯GO溶液中进行循环伏安曲线扫描,电位窗为0.65—-1.5V,初始扫描电位为0.65V,扫描速率为0.05V/s,扫描循环周为11;
(3)采用三电极体系,以纳米结构的GO/AgNWs/纸浸入将三电极体系置于以pH=6的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的硫酸镍溶液中的混合物中,采用循环伏安,设置电化学工作站电沉积参数:电位-0.2~1V,沉积圈数50圈,沉积完后用超纯水洗,氮气吹干,立刻将电极放入PH=5的硫酸和2mg/mL的硫酸钯溶液浸泡10min,10min后取出超纯水洗,氮气吹干,放置两天即制成PdN Ps/NiNPs/GO/AgNWs/纸电极。
2.根据权利要求1所述的一种应用PdNPs/NiNPs/GO/AgNWs/纸可塑电极构建麦芽糖燃料电池的方法,其特征在于,所述支持电解质为1mol/LKOH,pH为14。
CN201911345931.4A 2019-12-24 2019-12-24 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法 Active CN113030203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911345931.4A CN113030203B (zh) 2019-12-24 2019-12-24 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911345931.4A CN113030203B (zh) 2019-12-24 2019-12-24 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法

Publications (2)

Publication Number Publication Date
CN113030203A CN113030203A (zh) 2021-06-25
CN113030203B true CN113030203B (zh) 2023-05-30

Family

ID=76451564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911345931.4A Active CN113030203B (zh) 2019-12-24 2019-12-24 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法

Country Status (1)

Country Link
CN (1) CN113030203B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583183B (zh) * 2022-03-04 2024-05-28 大连大学 一种酸性葡萄糖燃料电池电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426941A (zh) * 2012-05-15 2013-12-04 三星电机株式会社 透明电极及包括其的电子材料
CN107154283A (zh) * 2017-04-11 2017-09-12 复旦大学 耐电迁移银纳米线复合薄膜及其制备方法
CN107507676A (zh) * 2017-09-04 2017-12-22 南京工业大学 一种基于银纳米线和pedot的纸基柔性透明电极的快速制备方法
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN109770866A (zh) * 2018-12-11 2019-05-21 东北大学 一种高灵敏度电子皮肤的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044900B2 (ja) * 2004-06-07 2012-10-10 ソニー株式会社 燃料電池、電子機器、移動体、発電システム及びコージェネレーションシステム
WO2014200428A1 (en) * 2013-06-10 2014-12-18 Nanyang Technological University Method of manufacturing a flexible and/or stretchable electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426941A (zh) * 2012-05-15 2013-12-04 三星电机株式会社 透明电极及包括其的电子材料
CN107154283A (zh) * 2017-04-11 2017-09-12 复旦大学 耐电迁移银纳米线复合薄膜及其制备方法
CN107507676A (zh) * 2017-09-04 2017-12-22 南京工业大学 一种基于银纳米线和pedot的纸基柔性透明电极的快速制备方法
CN109298046A (zh) * 2018-10-23 2019-02-01 大连大学 一种用于乙醇催化的电极及其应用
CN109770866A (zh) * 2018-12-11 2019-05-21 东北大学 一种高灵敏度电子皮肤的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于硅基纳米复合结构电极的碱性糖类燃料电池研究;赵柯洋;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》;20170515(第05期);第7-13页,20页,35-39页 *

Also Published As

Publication number Publication date
CN113030203A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
JP5792567B2 (ja) 酸素還元能を有する電極触媒
CN113571713B (zh) 一种PtZn负载氮掺杂碳催化剂及其制备方法,以及氢氧燃料电池
CN113013421A (zh) 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
CN108448128A (zh) 一种用钌基碲化物作为阴极的燃料电池膜电极及制备方法
CN104707625A (zh) Pt-Ag-Co/C催化剂的制备方法
CN113030203B (zh) 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN101783409B (zh) 阴极为碳载过渡金属螯合物催化剂的膜电极的制备方法
CN113130913B (zh) PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用
CN105428676B (zh) 用于原位拉曼光谱测试的质子交换膜燃料电池阴极结构及测试方法
CN114583183B (zh) 一种酸性葡萄糖燃料电池电极及其制备方法
CN112886023B (zh) 一种CuO-NiNPs/PET-ITO电极及其应用
CN113013420B (zh) 一种具有抗毒化能力的果糖燃料电池的制备方法
CN101140997A (zh) 一种质子交换膜燃料电池失效膜电极恢复再生的方法
CN112993266B (zh) 一种应用CuO-NiNPs/碳布可塑电极构建的构建淀粉燃料电池
CN113054206B (zh) 一种NiNPs/AuNPs/GN/AgNWs/纸可塑电极的制备方法及应用
CN113130950B (zh) 一种应用CuO/泡沫镍电极电催化氧化麦芽糖溶液构建麦芽糖燃料电池的方法
CN1571200A (zh) 碳酸氢铵造孔剂及其膜电极的制备方法
CN112886025A (zh) 一种果糖燃料电池及其构建方法
CN113130914B (zh) 乳糖燃料电池及构建该燃料电池的PtNPs/CuNPs/NiNPs/碳布可塑电极
CN113130916B (zh) 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
CN113036159A (zh) 一种基于pdms的柔性银纳米线掺杂石墨烯/纳米镍铂复合电极在燃料电池中的应用
CN113097500B (zh) 一种CuO-NiNPs/AgNWs/CNT/PDMS阳极的制备方法及其应用
CN113036158B (zh) 一种阳极构建淀粉燃料电池的方法
CN113013453B (zh) 一种构建甲醇燃料电池的方法
CN103390756A (zh) 一种质子交换膜燃料电池动态氢电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant