CN112939487B - Sandwich type glass microfluidic chip double-sided laser processing device and method - Google Patents
Sandwich type glass microfluidic chip double-sided laser processing device and method Download PDFInfo
- Publication number
- CN112939487B CN112939487B CN202110134083.3A CN202110134083A CN112939487B CN 112939487 B CN112939487 B CN 112939487B CN 202110134083 A CN202110134083 A CN 202110134083A CN 112939487 B CN112939487 B CN 112939487B
- Authority
- CN
- China
- Prior art keywords
- double
- glass
- layer
- laser processing
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title abstract description 15
- 239000000843 powder Substances 0.000 claims abstract description 50
- 239000002184 metal Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 45
- 238000007789 sealing Methods 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims 1
- 230000004308 accommodation Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/007—Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Micromachines (AREA)
- Laser Beam Processing (AREA)
- Joining Of Glass To Other Materials (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
技术领域technical field
本申请涉及加工装置及方法,特别是涉及夹心式玻璃微流控芯片双面激光加工装置及方法。The present application relates to a processing device and method, in particular to a double-sided laser processing device and method for a sandwich glass microfluidic chip.
背景技术Background technique
微流控芯片集成了微米级流道、微孔等结构,可以反应化学试剂、分离细胞、检测病毒,广泛应用于化学、生物医疗等领域。硅基玻璃具有化学耐高温、耐腐蚀、性能稳定等优点,是制备微流道常用的高性能材料,但其加工难度大。微流道等结构常用的加工方法为化学蚀刻、机械磨削、热压印等方法。化学刻蚀微流道需要经过表面处理、涂光刻胶、光学曝光、显影等复杂工艺获得加工辅助模板,再通过氢氟酸腐蚀得到成形的微流道,整个过程繁琐、成本高且不环保;机械磨削加工玻璃微流道需要先制造磨具微尖端,控制刀具磨具与玻璃接触时的应力;热压印成型需要在玻璃热熔软化状态成型微结构,然后再冷却固化,很难微成型玻璃点转化温度高的玻璃。而通过激光加工,能够较好的解决上述问题,但是现有的激光加工微流道是通过高能激光束聚焦到材料,烧蚀出微纳结构。玻璃等透明材料需要昂贵的紫外激光器加工,成本较低的红外激光器很难直接加工透光性强的材料(例如玻璃)。Microfluidic chips integrate micron-scale flow channels, micropores and other structures, which can react chemical reagents, separate cells, and detect viruses, and are widely used in chemical, biomedical and other fields. Silicon-based glass has the advantages of chemical high temperature resistance, corrosion resistance, and stable performance. It is a commonly used high-performance material for preparing microchannels, but its processing is difficult. Commonly used processing methods for structures such as microchannels are chemical etching, mechanical grinding, and hot embossing. Chemically etched microchannels need complex processes such as surface treatment, photoresist coating, optical exposure, and development to obtain processing auxiliary templates, and then hydrofluoric acid corrosion to obtain formed microchannels. The whole process is cumbersome, costly, and not environmentally friendly. ; Mechanical grinding and processing of glass micro-channels requires the manufacture of abrasive micro-tips to control the stress when the tool abrasives are in contact with the glass; hot embossing needs to form microstructures in the state of glass hot-melt softening, and then cool and solidify, which is difficult Micro-molded glass with a high point transition temperature. Laser processing can better solve the above-mentioned problems, but the existing laser processing microfluidic channels focus on materials with high-energy laser beams, and ablate micro-nano structures. Transparent materials such as glass require expensive ultraviolet laser processing, and it is difficult for low-cost infrared lasers to directly process materials with strong light transmission (such as glass).
发明内容Contents of the invention
基于此,本申请的目的在于,提供夹心式玻璃微流控芯片双面激光加工装置及方法,其具有结构简单且容易实现玻璃板的微结构加工的优点。Based on this, the purpose of this application is to provide a double-sided laser processing device and method for a sandwich glass microfluidic chip, which has the advantages of simple structure and easy realization of microstructure processing of glass plates.
本申请的一方面,提供一种夹心式玻璃微流控芯片双面激光加工装置,包括双层玻璃、金属粉末层、厚度控制板、夹持卡扣、密封贴以及激光发射器;In one aspect of the present application, a double-sided laser processing device for a sandwich glass microfluidic chip is provided, including double-layer glass, a metal powder layer, a thickness control plate, a clamping buckle, a sealing sticker, and a laser emitter;
所述双层玻璃之间形成有容纳间隙;An accommodating gap is formed between the double-layer glass;
所述金属粉末层平铺在该容纳间隙中;The metal powder layer is tiled in the accommodation gap;
所述厚度控制板的截面形状呈梯形,两个所述厚度控制板分别安装在所述双层玻璃的两侧,所述梯形的斜边与所述容纳间隙配合紧密;The cross-sectional shape of the thickness control plate is trapezoidal, and the two thickness control plates are respectively installed on both sides of the double-glazed glass, and the hypotenuse of the trapezoid is closely matched with the accommodation gap;
所述容纳间隙的另两侧的其一粘贴有所述密封贴;One of the other two sides of the accommodating gap is pasted with the sealing sticker;
所述夹持卡扣紧固夹持在所述双层玻璃上,并紧固夹持在所述容纳间隙对应的两侧;The clamping buckle is tightly clamped on the double-layer glass, and is firmly clamped on both sides corresponding to the accommodation gap;
所述激光发射器置于所述双层玻璃的一侧,并且所述激光发射器发出的激光束聚焦在金属粉末层上。The laser emitter is placed on one side of the double-layer glass, and the laser beam emitted by the laser emitter is focused on the metal powder layer.
本申请所述的夹心式玻璃微流控芯片双面激光加工装置,通过控制夹在双层玻璃间金属粉末的成分及厚度,控制激光在金属粉末及双层玻璃表面温度场,同时在双层玻璃表面同时加工微流道。能同时对两块玻璃进行加工,两块玻璃的配合精度高。相比于现有的激光加工微结构方法,本装置和方法操作简单、效率高,有利于玻璃微流控芯片表面微结构大批量加工。The sandwich-type glass microfluidic chip double-sided laser processing device described in this application controls the temperature field of the laser on the surface of the metal powder and the double-layer glass by controlling the composition and thickness of the metal powder sandwiched between the double-layer glass. Microfluidic channels are simultaneously processed on the glass surface. It can process two pieces of glass at the same time, and the matching precision of the two pieces of glass is high. Compared with the existing laser processing microstructure method, the device and method are simple in operation and high in efficiency, and are beneficial to mass processing of the surface microstructure of the glass microfluidic chip.
进一步地,所述双层玻璃包括两块透明玻璃板,两块所述透明玻璃板平行设置并且相对间隔,形成有所述容纳间隙;Further, the double-layer glass includes two transparent glass plates, and the two transparent glass plates are arranged in parallel and relatively spaced apart to form the accommodation gap;
所述夹持卡扣分别夹持在两个所述透明玻璃板的外侧;The clamping buckles are respectively clamped on the outer sides of the two transparent glass plates;
所述厚度控制板的两个斜面分别抵接在两个所述透明玻璃板上;The two slopes of the thickness control plate abut against the two transparent glass plates respectively;
所述密封贴粘贴在两个所述透明玻璃板上;The sealing sticker is pasted on the two transparent glass plates;
所述金属粉末层置于两个所述透明玻璃板之间的容纳间隙;The metal powder layer is placed in the accommodation gap between the two transparent glass plates;
所述激光发射器置于其一所述透明玻璃板的一侧。The laser emitter is placed on one side of the transparent glass plate.
进一步地,还包括进料漏斗,该进料漏斗与所述容纳间隙连通;Further, a feeding funnel is also included, and the feeding funnel communicates with the accommodating gap;
所述进料漏斗置于所述双层玻璃的贴有所述密封贴的对侧。The feed funnel is placed on the opposite side of the double-glazed glass to which the sealing sticker is attached.
进一步地,还包括振动平台,所述双层玻璃竖向放置在所述振动平台上,所述进料漏斗置于所述双层玻璃的上方。Further, a vibration platform is also included, the double-layer glass is vertically placed on the vibration platform, and the feeding funnel is placed above the double-layer glass.
进一步地,还包括紧固机构,所述双层玻璃平放在该紧固机构上,并与所述紧固机构安装紧固。Further, a fastening mechanism is also included, and the double-layer glass is placed on the fastening mechanism, and is installed and fastened with the fastening mechanism.
进一步地,所述紧固机构包括夹具底座、压块以及紧固螺栓;所述压块通过所述紧固螺栓紧固连接在所述夹具底座上,所述双层玻璃平放在所述夹具底座上,且所述双层玻璃的两侧分别通过所述压块压紧在所述夹具底座上。Further, the fastening mechanism includes a clamp base, a pressure block and fastening bolts; the pressure block is fastened to the clamp base through the fastening bolts, and the double-layer glass is placed flat on the clamp on the base, and the two sides of the double-glazed glass are respectively pressed on the clamp base by the pressing blocks.
进一步地,所述金属粉末层包括铜粉层、不锈钢粉层或者铁粉层。Further, the metal powder layer includes a copper powder layer, a stainless steel powder layer or an iron powder layer.
进一步地,所述夹持卡扣的截面呈“C”字形,且所述夹持卡扣为金属卡扣。Further, the cross-section of the clamping buckle is "C"-shaped, and the clamping buckle is a metal buckle.
本申请的一方面,提供一种夹心式玻璃微流控芯片双面激光加工方法,包括步骤:In one aspect of the present application, a double-sided laser processing method for a sandwich glass microfluidic chip is provided, comprising steps:
设置上述任一方案所述的夹心式玻璃微流控芯片双面激光加工装置;A double-sided laser processing device for a sandwich glass microfluidic chip as described in any of the above schemes is provided;
通过振动平台的振动,使得金属粉末从进料漏斗进入容纳间隙中,并形成所述金属粉末层;Through the vibration of the vibration platform, the metal powder enters the accommodation gap from the feeding hopper, and forms the metal powder layer;
通过旋转双层玻璃并平放在夹具底座上,发射激光并使激光束聚焦在金属粉末层内部,调节激光加工参数,金属粉末对激光能量吸收热熔,使得两块透明玻璃板加工出微结构。By rotating the double-layer glass and laying it flat on the fixture base, emitting laser and focusing the laser beam inside the metal powder layer, adjusting the laser processing parameters, the metal powder absorbs and melts the laser energy, making the two transparent glass plates process a microstructure .
进一步地,加工出微结构之后,通过稀盐酸或者稀硝酸清洗微结构表面。Further, after the microstructure is processed, the surface of the microstructure is cleaned with dilute hydrochloric acid or dilute nitric acid.
为了更好地理解和实施,下面结合附图详细说明本申请。For better understanding and implementation, the present application will be described in detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的一种使用状态立体结构示意图;FIG. 1 is a schematic diagram of a three-dimensional structure of an exemplary sandwich glass microfluidic chip double-sided laser processing device in use in the present application;
图2为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的另一种使用状态主视图;FIG. 2 is a front view of another usage state of an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application;
图3为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的一种状态的俯视图;3 is a top view of a state of an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application;
图4为本申请示例性的双层玻璃与厚度控制板的装配关系俯视示意图;Fig. 4 is a schematic top view of the assembly relationship between the exemplary double-layer glass and the thickness control panel of the present application;
图5为使用本申请示例性的夹心式玻璃微流控芯片双面激光加工装置加工成型的微结构(微流道)的示意图。FIG. 5 is a schematic diagram of a microstructure (microfluidic channel) processed and formed by using an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application.
具体实施方式Detailed ways
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present application, it should be understood that the terms "center", "longitudinal", "transverse", "upper", "lower", "front", "rear", "left", "right", " The orientation or positional relationship indicated by "vertical", "horizontal", "top", "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and The description is simplified, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed in a specific orientation, and operate, and thus should not be construed as limiting the application. In the description of the present application, unless otherwise specified, "plurality" means two or more.
图1为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的一种使用状态立体结构示意图;图2为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的另一种使用状态主视图;图3为本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的一种状态的俯视图;图4为本申请示例性的双层玻璃与厚度控制板的装配关系俯视示意图;图5为使用本申请示例性的夹心式玻璃微流控芯片双面激光加工装置加工成型的微结构(微流道)的示意图。Fig. 1 is a schematic diagram of the three-dimensional structure of an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application; Fig. 2 is a schematic diagram of the double-sided laser processing device of the sandwich type glass microfluidic chip exemplary of the present application Another front view of the use state; FIG. 3 is a top view of a state of an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application; FIG. 4 is an exemplary double-layer glass and thickness control board of the present application Fig. 5 is a schematic diagram of a microstructure (microfluidic channel) processed and formed by using an exemplary sandwich glass microfluidic chip double-sided laser processing device of the present application.
请参阅图1-图5,本申请示例性的一种夹心式玻璃微流控芯片双面激光加工装置,包括双层玻璃3、金属粉末层1、厚度控制板4、夹持卡扣5、密封贴7以及激光发射器12;Please refer to Figures 1-5, an exemplary double-sided laser processing device for sandwich glass microfluidic chips in this application, including double-
所述双层玻璃3之间形成有容纳间隙;An accommodating gap is formed between the double-
所述金属粉末层1平铺在该容纳间隙中;The
所述厚度控制板4的截面形状呈梯形,两个所述厚度控制板4分别安装在所述双层玻璃3的两侧,所述梯形的斜边与所述容纳间隙配合紧密;The cross-sectional shape of the
所述容纳间隙的另两侧的其一粘贴有所述密封贴7;One of the other two sides of the accommodating gap is pasted with the sealing sticker 7;
所述夹持卡扣5紧固夹持在所述双层玻璃3上,并紧固夹持在所述容纳间隙对应的两侧;The clamping
所述激光发射器12置于所述双层玻璃3的一侧,并且所述激光发射器12发出的激光束11聚焦在金属粉末层1上。通过调节厚度控制板4与双层玻璃3的相对深度,从而调节双层玻璃3的间距,进而实现容纳间隙的宽度的调节。The
在一些优选实施例中,所述双层玻璃3包括两块透明玻璃板,两块所述透明玻璃板平行设置并且相对间隔,形成有所述容纳间隙;In some preferred embodiments, the double-
所述夹持卡扣5分别夹持在两个所述透明玻璃板的外侧;The
所述厚度控制板4的两个斜面分别抵接在两个所述透明玻璃板上;The two slopes of the
所述密封贴7粘贴在两个所述透明玻璃板上;The seal sticker 7 is pasted on the two transparent glass plates;
所述金属粉末层1置于两个所述透明玻璃板之间的容纳间隙;The
所述激光发射器12置于其一所述透明玻璃板的一侧。The
厚度控制板4的截面呈梯形,梯形的两个斜边分别与两个对应的透明玻璃板抵接,通过调节厚度控制板4相对容纳间隙的深度,从而调节两个透明玻璃板的相对间距,进而调节容纳间隙的厚度。The cross-section of the
在一些优选实施例中,透明玻璃板为超白玻璃、K9光学玻璃或者石英玻璃等透明硬脆材质,其厚度为1-3mm。In some preferred embodiments, the transparent glass plate is made of transparent, hard and brittle materials such as ultra-clear glass, K9 optical glass or quartz glass, and its thickness is 1-3mm.
在一些优选实施例中,厚度控制板4为金属箔、聚合物等材质。In some preferred embodiments, the
在一些优选实施例中,还包括进料漏斗2,该进料漏斗2与所述容纳间隙连通;In some preferred embodiments, a
所述进料漏斗2置于所述双层玻璃3的贴有所述密封贴7的对侧。The
在一些优选实施例中,还包括振动平台6,所述双层玻璃3竖向放置在所述振动平台6上,所述进料漏斗2置于所述双层玻璃3的上方。In some preferred embodiments, a vibration platform 6 is also included, the double-
在一些优选实施例中,所述振动平台6的振动方式为超声波振动或机械振动。进一步,振动平台6的振动频率范围为1kHz-60kHz,功率为3-50W,振动时长为8s-12s。In some preferred embodiments, the vibration mode of the vibration platform 6 is ultrasonic vibration or mechanical vibration. Further, the vibration frequency range of the vibration platform 6 is 1kHz-60kHz, the power is 3-50W, and the vibration duration is 8s-12s.
在一些优选实施例中,激光发射器12为红外激光器。In some preferred embodiments,
在一些优选实施例中,还包括紧固机构,所述双层玻璃3平放在该紧固机构上,并与所述紧固机构安装紧固。In some preferred embodiments, a fastening mechanism is also included, and the double-
在一些优选实施例中,所述紧固机构包括夹具底座8、压块9以及紧固螺栓10;所述压块9通过所述紧固螺栓10紧固连接在所述夹具底座8上,所述双层玻璃3平放在所述夹具底座8上,且所述双层玻璃3的两侧分别通过所述压块9压紧在所述夹具底座8上。In some preferred embodiments, the fastening mechanism includes a
在一些优选实施例中,所述金属粉末层1包括铜粉层、不锈钢粉层或者铁粉层。In some preferred embodiments, the
在一些优选实施例中,所述夹持卡扣5的截面呈“C”字形,且所述夹持卡扣5为金属卡扣。In some preferred embodiments, the section of the clamping
在一些优选实施例中,夹持卡扣的中部形成凸部,该凸部抵接在所述厚度控制板上。In some preferred embodiments, a convex portion is formed in the middle of the clamping buckle, and the convex portion abuts against the thickness control plate.
本申请示例性的一种夹心式玻璃微流控芯片双面激光加工方法,包括步骤:An exemplary double-sided laser processing method for a sandwich glass microfluidic chip in the present application, comprising steps:
设置上述任一方案所述的夹心式玻璃微流控芯片双面激光加工装置;A double-sided laser processing device for a sandwich glass microfluidic chip as described in any of the above schemes is provided;
通过振动平台6的振动,使得金属粉末从进料漏斗2进入容纳间隙中,并形成所述金属粉末层1;Through the vibration of the vibration platform 6, the metal powder enters the accommodation gap from the
通过旋转双层玻璃3并平放在夹具底座8上,发射激光并使激光束11汇聚在金属粉末层1内部,调节激光加工参数,金属粉末对激光能量吸收热熔,使得两块透明玻璃板加工出微结构13。By rotating the double-
在一些优选实施例中,加工出微结构13之后,通过稀盐酸或者稀硝酸清洗微结构13表面。进一步的,然后,把加工完成的透明玻璃板依次放入酒精、蒸馏水等溶液中清洗。In some preferred embodiments, after the
在一些优选实施例中,所述金属粉末层1的厚度为100-300μm,根据加工玻璃熔点进行调节;当透明玻璃板为高熔点玻璃,需要适当增加金属粉末厚度,激光能量才能在靠下面的金属玻璃板上加工出微结构13。In some preferred embodiments, the thickness of the
在一些优选实施例中,所述透明玻璃板为K9玻璃等低熔点透明材料时,激光加工参数为:激光功率为1-20W,扫描速度200mm/s-900mm/s,功率百分比为10%-60%,频率20kHz-40kHz;加工次数为1-30次。In some preferred embodiments, when the transparent glass plate is a low melting point transparent material such as K9 glass, the laser processing parameters are: laser power is 1-20W, scanning speed is 200mm/s-900mm/s, and the power percentage is 10%- 60%, frequency 20kHz-40kHz; processing times 1-30 times.
所述透明玻璃板为石英玻璃等高熔点透明材料时,激光加工参数为:激光功率为3-30W,扫描速度为100mm/s-500mm/s,功率为50%-95%,频率20kHz-40kHz;加工次数为10-25次。When the transparent glass plate is a high melting point transparent material such as quartz glass, the laser processing parameters are: laser power 3-30W, scanning speed 100mm/s-500mm/s, power 50%-95%, frequency 20kHz-40kHz ; Processing times are 10-25 times.
在一些优选实施例中,金属粉末为铜粉、不锈钢粉、铁粉等对激光能量吸收率大的粉末,粉末粒度直径为1-10μm;粉末可以为干粉,也可以为湿粉。In some preferred embodiments, the metal powder is copper powder, stainless steel powder, iron powder, etc., which have a high absorption rate of laser energy, and the particle size diameter of the powder is 1-10 μm; the powder can be dry powder or wet powder.
在一些优选实施例中,封装时可以将上下两块透明玻璃板的微结构13对齐后一起封装,形成一个微流控芯片;也可以将上下两块透明玻璃板,分别覆盖表面平整的玻璃封装成两片微流控芯片,封装方法可以采用固化胶、静电键合、热压等方法。In some preferred embodiments, during packaging, the
本申请示例性的夹心式玻璃微流控芯片双面激光加工装置的工作原理:The working principle of the exemplary sandwich glass microfluidic chip double-sided laser processing device in this application:
其一、装粉末。如图1,双层玻璃3竖放,通过进料漏斗2将金属粉末填充进双层玻璃3的容纳间隙中,此时,容纳间隙的左右两侧分别通过厚度控制板4密封,并且可通过厚度控制板4调节双层玻璃3的间隙宽度;调节好间隙宽度后通过夹持卡扣5将双层玻璃3夹紧。容纳间隙的底部粘贴有密封贴7,从而使得容纳间隙的左右下三个方向都被密封紧密;通过振动平台6的振动,使得金属粉末容易进入容纳间隙,并且填充满。同时,完成金属粉填充后可以在容纳间隙的顶部粘贴密封贴7,从而将容纳间隙的四周密封。First, load powder. As shown in Figure 1, the double-
其二、激光加工。如图2,填充完成的双层玻璃3,移走进料漏斗2,贴上密封贴7使得容纳间隙四周密封。然后将双层玻璃3平放(或者卧放),激光发射器12置于双层玻璃3的上方,双层玻璃3通过压板夹紧固定在夹具底座8上。激光发射器12的激光束11汇聚,并且能量对准金属粉末层1中部,金属粉末吸收激光能量,使得金属粉末熔化,进而热熔上下两块透明玻璃板,从而加工出微结构。Second, laser processing. As shown in Fig. 2, the filled double-
其三、清洗封装。加工完成后,通过酸液清洗和除去微结构表面的金属粉末,再使用酒精或者蒸馏水冲洗,得到具有微结构的洁净的玻璃板,通过封装,最终得到微流控芯片。形成的微流道的结构图案如图4所示。Third, clean the package. After the processing is completed, the metal powder on the surface of the microstructure is cleaned and removed by acid, and then washed with alcohol or distilled water to obtain a clean glass plate with a microstructure, and finally a microfluidic chip is obtained through packaging. The structural pattern of the formed microchannel is shown in Fig. 4 .
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。The above-mentioned embodiments only express several implementation modes of the present application, and the description thereof is relatively specific and detailed, but should not be construed as limiting the scope of the patent application. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110134083.3A CN112939487B (en) | 2021-01-28 | 2021-01-28 | Sandwich type glass microfluidic chip double-sided laser processing device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110134083.3A CN112939487B (en) | 2021-01-28 | 2021-01-28 | Sandwich type glass microfluidic chip double-sided laser processing device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112939487A CN112939487A (en) | 2021-06-11 |
CN112939487B true CN112939487B (en) | 2023-03-10 |
Family
ID=76240302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110134083.3A Active CN112939487B (en) | 2021-01-28 | 2021-01-28 | Sandwich type glass microfluidic chip double-sided laser processing device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112939487B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115849724A (en) * | 2022-12-12 | 2023-03-28 | 华南理工大学 | Method for manufacturing micro-channel on glass surface by using infrared nanosecond laser |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102092931A (en) * | 2010-11-26 | 2011-06-15 | 华中科技大学 | Method and device for preparing microchannel in glass material |
CN102241201A (en) * | 2011-04-18 | 2011-11-16 | 北京工业大学 | Laser melting and etching marking device and method based on transparent material |
CN104023897A (en) * | 2011-11-08 | 2014-09-03 | 皮科塞斯公司 | Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding |
CN105880956A (en) * | 2016-06-16 | 2016-08-24 | 厦门大学 | Microchannel heat exchanger with porous bottom face of micro-pore structures and manufacturing method of microchannel heat exchanger |
CN108778695A (en) * | 2016-01-27 | 2018-11-09 | 康宁股份有限公司 | The method and apparatus of room temperature combination base material |
CN109317228A (en) * | 2018-11-01 | 2019-02-12 | 北京工业大学 | A preparation method of microfluidic chip based on laser engraving micromachining |
CN111548023A (en) * | 2020-05-12 | 2020-08-18 | 大连交通大学 | A method for micromachining glass surface using red nanosecond laser |
-
2021
- 2021-01-28 CN CN202110134083.3A patent/CN112939487B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102092931A (en) * | 2010-11-26 | 2011-06-15 | 华中科技大学 | Method and device for preparing microchannel in glass material |
CN102241201A (en) * | 2011-04-18 | 2011-11-16 | 北京工业大学 | Laser melting and etching marking device and method based on transparent material |
CN104023897A (en) * | 2011-11-08 | 2014-09-03 | 皮科塞斯公司 | Room temperature glass-to-glass, glass-to-plastic and glass-to-ceramic/semiconductor bonding |
CN108778695A (en) * | 2016-01-27 | 2018-11-09 | 康宁股份有限公司 | The method and apparatus of room temperature combination base material |
CN105880956A (en) * | 2016-06-16 | 2016-08-24 | 厦门大学 | Microchannel heat exchanger with porous bottom face of micro-pore structures and manufacturing method of microchannel heat exchanger |
CN109317228A (en) * | 2018-11-01 | 2019-02-12 | 北京工业大学 | A preparation method of microfluidic chip based on laser engraving micromachining |
CN111548023A (en) * | 2020-05-12 | 2020-08-18 | 大连交通大学 | A method for micromachining glass surface using red nanosecond laser |
Also Published As
Publication number | Publication date |
---|---|
CN112939487A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications | |
CN109789516B (en) | Bonded body of different materials and method for producing same | |
JP4104073B2 (en) | Member joining method and joining formation recognition apparatus using laser | |
JP5690051B2 (en) | Method of joining members using laser | |
US9981844B2 (en) | Method of manufacturing semiconductor device with glass pieces | |
CN112939487B (en) | Sandwich type glass microfluidic chip double-sided laser processing device and method | |
CN101544350A (en) | Microstructure used for supersonic bonding of micro-passages of polymer microflow-control chips | |
CN108723595A (en) | A kind of ultrafast laser welder and method | |
JP2008162288A (en) | Laser bonding process of members | |
Nordin et al. | Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass | |
JPS60228131A (en) | Mechanical jointing of heterogeneous synthetic resin materials | |
CN206981997U (en) | A kind of hybrid laser beam machining device of glass micro-channel | |
CN102398890B (en) | Ultrasonic processing method for a glass-based microfluidic chip | |
JP2005224688A (en) | Method for manufacturing microreactor chip | |
JP4492120B2 (en) | Microreactor chip fabrication method | |
CN105109034A (en) | Joint structure used for precise ultrasonic welding of POCT chip products | |
CN112775856B (en) | Laser-induced abrasive particle micro-jet core polishing device and processing method | |
CN106891532B (en) | A polymer sheet packaging correction tool and correction method based on laser welding technology | |
Zhang et al. | A fast crack-free bonding method for glass and silicon using laser transmission welding with a defocused beam | |
CN112351879A (en) | Method for producing bonded body of different materials and bonded body of different materials | |
JP4774552B2 (en) | Microchip manufacturing method and manufacturing apparatus | |
JP2006133003A (en) | Microchemical device and its manufacturing method | |
CN106695119B (en) | A kind of preparation system of glass micro-channel | |
CN109701673B (en) | Preparation method of three-dimensional large-scale high-precision microfluidic channel | |
US20190240917A1 (en) | Method of activating adhesives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: No.33, Guangyun Road, Nanhai District, Foshan City, Guangdong Province, 528200 Patentee after: Foshan University Country or region after: China Address before: No.33, Guangyun Road, Nanhai District, Foshan City, Guangdong Province, 528200 Patentee before: FOSHAN University Country or region before: China |