CN112909072B - Transient voltage suppression diode structure and manufacturing method thereof - Google Patents
Transient voltage suppression diode structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN112909072B CN112909072B CN201911226196.5A CN201911226196A CN112909072B CN 112909072 B CN112909072 B CN 112909072B CN 201911226196 A CN201911226196 A CN 201911226196A CN 112909072 B CN112909072 B CN 112909072B
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- type epitaxial
- epitaxial layer
- diode structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001052 transient effect Effects 0.000 title claims abstract description 58
- 230000001629 suppression Effects 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000002347 injection Methods 0.000 claims abstract description 117
- 239000007924 injection Substances 0.000 claims abstract description 117
- 239000002184 metal Substances 0.000 claims abstract description 75
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims description 30
- 238000002513 implantation Methods 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 286
- 230000008569 process Effects 0.000 description 18
- 230000003071 parasitic effect Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/20—Breakdown diodes, e.g. avalanche diodes
- H10D8/25—Zener diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/021—Manufacture or treatment of breakdown diodes
- H10D8/022—Manufacture or treatment of breakdown diodes of Zener diodes
Landscapes
- Electrodes Of Semiconductors (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种二极管结构,尤其涉及一种瞬态电压抑制二极管结构及其制造方法。The invention relates to a diode structure, and in particular to a transient voltage suppression diode structure and a manufacturing method thereof.
背景技术Background Art
瞬态电压抑制二极管也称为TVS二极管(transient-voltage-suppression(TVS)diode),是一种保护用的电子零件,可以保护电器设备不受导线引入的电压尖峰破坏。近年來,随着电子系统发展越来越精致的趋势之下,对于TVS组件的需求就越來越迫切。Transient voltage suppression diodes, also known as TVS diodes, are protective electronic components that can protect electrical equipment from voltage spikes introduced by wires. In recent years, as electronic systems have become more sophisticated, the demand for TVS components has become more urgent.
传统的TVS组件是以齐纳二极管(Zener diode)来担任组件击穿后引导电流,使其不至于流入被保护电路。齐纳二极管具有漏电流大、接面电容大等特性,其中而应用于TVS组件中的齐纳二极管系趋向于低电压应用发展。Traditional TVS components use Zener diodes to guide current after component breakdown, so that it does not flow into the protected circuit. Zener diodes have characteristics such as large leakage current and large junction capacitance. Among them, Zener diodes used in TVS components tend to be developed for low voltage applications.
图1公开公知的瞬态电压抑制二极管结构的截面图。其以齐纳二极管作为瞬态电压抑制二极管组件的保护机制。如图所示,TVS组件1的结构依序堆栈有连接接地端GND的底部金属层11、P+型基层12、N型外延层13、N+型埋入层14、N-型外延层15、电介质层(interlayer dielectric,ILD)16、顶部金属层17以及保护层(passivation layer)18。其中顶部金属层17组配形成有输入输出端I/O以及工作电压端Vcc。输入输出端I/O下则对应设置有N+型注入层20及P+型注入层21,嵌设于N-型外延层15,且连接至输入输出端I/O。工作电压端Vcc下对应设置有N+型注入层22以及深层N+型注入层23,嵌设于N-型外延层15内,且通过氧化绝缘部19隔离。值得注意的是,在公知TVS组件1的结构中,工作电压端Vcc的电压与P+型基层12以及N型外延层13所架构的齐纳二极管相关。然而当N-型外延层15的厚度很厚时,通过一般的掺杂(doping)及驱入(drive-in)程序,并不易增加N+型注入层22以及深层N+型注入层23在N-型外延层15内的浓度,以获取低击穿电压的齐纳二极管结构。FIG1 discloses a cross-sectional view of a known transient voltage suppression diode structure. It uses a Zener diode as a protection mechanism for the transient voltage suppression diode component. As shown in the figure, the structure of the TVS component 1 is stacked in sequence with a bottom metal layer 11 connected to the ground terminal GND, a P+ type base layer 12, an N-type epitaxial layer 13, an N+ type buried layer 14, an N-type epitaxial layer 15, a dielectric layer (interlayer dielectric, ILD) 16, a top metal layer 17 and a passivation layer 18. The top metal layer 17 is assembled to form an input/output terminal I/O and a working voltage terminal Vcc. Under the input/output terminal I/O, an N+ type injection layer 20 and a P+ type injection layer 21 are correspondingly arranged, embedded in the N-type epitaxial layer 15, and connected to the input/output terminal I/O. Under the working voltage terminal Vcc, an N+ type injection layer 22 and a deep N+ type injection layer 23 are correspondingly arranged, embedded in the N-type epitaxial layer 15, and isolated by an oxidized insulating portion 19. It is worth noting that in the structure of the conventional TVS device 1, the voltage of the working voltage terminal Vcc is related to the Zener diode constructed by the P+ type base layer 12 and the N type epitaxial layer 13. However, when the thickness of the N-type epitaxial layer 15 is very thick, it is not easy to increase the concentration of the N+ type injection layer 22 and the deep N+ type injection layer 23 in the N-type epitaxial layer 15 through the general doping and drive-in process to obtain a Zener diode structure with a low breakdown voltage.
有鉴于此,实有必要在提供一种瞬态电压抑制二极管结构及其制造方法,以解决前述问题,并获取低击穿电压的齐纳二极管结构。In view of this, it is necessary to provide a transient voltage suppression diode structure and a manufacturing method thereof to solve the above-mentioned problems and obtain a Zener diode structure with a low breakdown voltage.
发明内容Summary of the invention
本发明的目的在于提供一种瞬态电压抑制二极管结构及其制造方法。通过多个多晶柱结构的导入,解决瞬态电压抑制二极管结构在一般掺杂及驱入程序中,浓度不易控制及增加的问题。多晶柱结构可进一步降低深层注入的距离,避免驱入后浓度减少的问题,有效降低工艺的难度。此外,多晶柱结构更可降低例如N-型外延层的寄生电阻,进一步提升瞬态电压抑制二极管结构的性能。The object of the present invention is to provide a transient voltage suppressor diode structure and a manufacturing method thereof. By introducing multiple polycrystalline column structures, the problem of difficult control and increase of concentration in the general doping and driving process of the transient voltage suppressor diode structure is solved. The polycrystalline column structure can further reduce the distance of deep injection, avoid the problem of concentration reduction after driving, and effectively reduce the difficulty of the process. In addition, the polycrystalline column structure can further reduce the parasitic resistance of, for example, an N-type epitaxial layer, further improving the performance of the transient voltage suppressor diode structure.
为达前述目的,本发明提供一种瞬态电压抑制二极管结构。其包括基板、至少一N-型外延层,第一金属层、第一N+型注入层、深层N+型注入层以及多个多晶柱。至少一N-型外延层设置于基板上。第一金属层设置于至少一N-型外延层上,且组配形成一工作电压端。第一N+型注入层于空间上对应于工作电压端,嵌设于至少一N-型外延层,且组配连接至第一金属层的工作电压端。深层N+型注入层于空间上对应于工作电压端,嵌设于至少一N-型外延层,且与第一N+型注入层之间具有一间隔距离。多个多晶柱于空间上对应于工作电压端,嵌设于至少一N-型外延层,且贯穿第一N+型注入层,其中每一多晶柱具有彼此相对的一第一端以及一第二端,第一端接触连接至第一金属层的工作电压端,第二端至少部分贯穿深层N+型注入层,且接触连接至深层N+型注入层。To achieve the above-mentioned purpose, the present invention provides a transient voltage suppression diode structure. It includes a substrate, at least one N-type epitaxial layer, a first metal layer, a first N+ type injection layer, a deep N+ type injection layer and a plurality of polycrystalline columns. At least one N-type epitaxial layer is disposed on the substrate. The first metal layer is disposed on at least one N-type epitaxial layer and is assembled to form an operating voltage terminal. The first N+ type injection layer corresponds to the operating voltage terminal in space, is embedded in at least one N-type epitaxial layer, and is assembled and connected to the operating voltage terminal of the first metal layer. The deep N+ type injection layer corresponds to the operating voltage terminal in space, is embedded in at least one N-type epitaxial layer, and has a spacing distance between it and the first N+ type injection layer. A plurality of polycrystalline columns spatially correspond to the working voltage end, are embedded in at least one N-type epitaxial layer, and penetrate the first N+ type injection layer, wherein each polycrystalline column has a first end and a second end opposite to each other, the first end is in contact with the working voltage end of the first metal layer, and the second end at least partially penetrates the deep N+ type injection layer and is in contact with the deep N+ type injection layer.
于一实施例中,基板包括一P+型基层,以及一N型外延层,设置于P+型基层上,且连接至至少一N-型外延层。In one embodiment, the substrate includes a P+ type base layer, and an N type epitaxial layer disposed on the P+ type base layer and connected to at least one N- type epitaxial layer.
于一实施例中,基板还包括一第二金属层,连接至P+型基层,与第一金属层彼此相反,且组配形成一接地端。In one embodiment, the substrate further includes a second metal layer connected to the P+ type base layer, opposite to the first metal layer, and assembled to form a ground terminal.
于一实施例中,瞬态电压抑制二极管结构还包括一电介质层,设置于至少一N-型外延层与第一金属层之间。In one embodiment, the transient voltage suppression diode structure further includes a dielectric layer disposed between the at least one N-type epitaxial layer and the first metal layer.
于一实施例中,第一金属层还组配形成一输入输出端,瞬态电压抑制二极管结构还包括一第二N+型注入层以及一P+型注入层,分别嵌设于至少一N-型外延层,其中第一金属层的输入输出端穿过电介质层分别连接至第二N+型注入层以及P+型注入层。In one embodiment, the first metal layer is also assembled to form an input and output terminal, and the transient voltage suppression diode structure also includes a second N+ type injection layer and a P+ type injection layer, which are respectively embedded in at least one N-type epitaxial layer, wherein the input and output terminals of the first metal layer are respectively connected to the second N+ type injection layer and the P+ type injection layer through the dielectric layer.
于一实施例中,瞬态电压抑制二极管结构还包括一N+型埋入层,设置于N型外延层以及至少一N-型外延层之间,且N+型埋入层于空间上对应于P+型注入层以及多个多晶柱。In one embodiment, the TVS diode structure further includes an N+ buried layer disposed between the N epitaxial layer and at least one N- epitaxial layer, and the N+ buried layer spatially corresponds to the P+ implanted layer and the plurality of polycrystalline pillars.
于一实施例中,瞬态电压抑制二极管结构还包括一保护层,设置于第一金属层上,且部分暴露第一金属层,以分别定义工作电压端以及输入输出端。In one embodiment, the transient voltage suppression diode structure further includes a protection layer disposed on the first metal layer and partially exposing the first metal layer to respectively define the working voltage terminal and the input and output terminals.
于一实施例中,第二N+型注入层以及P+型注入层之间更设置有至少一氧化绝缘部,至少一氧化绝缘部贯穿至少一N-型外延层、N型外延层以及部分的P+型基层。In one embodiment, at least one oxide insulating portion is disposed between the second N+ type injection layer and the P+ type injection layer, and the at least one oxide insulating portion penetrates at least one N- type epitaxial layer, the N type epitaxial layer and a portion of the P+ type base layer.
为达前述目的,本发明另提供一种瞬态电压抑制二极管结构的制造方法,其包括步骤:(a)提供一基板;(b)形成至少一N-型外延层,设置于基板上;(c)形成一第一N+型注入层,嵌设于至少一N-型外延层;(d)部分蚀刻至少一N-型外延层以及第一N+型注入层,以形成多个柱形沟,贯穿第一N+型注入层以及部分的至少一N-型外延层;(e)形成一深层N+型注入层,嵌设于至少一N-型外延层,且与第一N+型注入层之间具有一间隔距离;(f)以一多晶硅材料填入多个柱形沟,以形成多个多晶柱,嵌设于至少一N-型外延层,且贯穿第一N+型注入层;以及(g)形成一第一金属层,设置于至少一N-型外延层上,其中第一金属层于空间上对应第一N+型注入层、多个多晶柱以及深层N+型注入层之处组配形成一工作电压端,其中每一多晶柱具有彼此相对的一第一端以及一第二端,第一端接触连接至第一金属层的工作电压端,第二端至少部分贯穿深层N+型注入层,且接触连接至深层N+型注入层。To achieve the above-mentioned object, the present invention further provides a method for manufacturing a transient voltage suppressor diode structure, which comprises the following steps: (a) providing a substrate; (b) forming at least one N-type epitaxial layer disposed on the substrate; (c) forming a first N+ type injection layer embedded in the at least one N-type epitaxial layer; (d) partially etching the at least one N-type epitaxial layer and the first N+ type injection layer to form a plurality of columnar grooves penetrating the first N+ type injection layer and a portion of the at least one N-type epitaxial layer; (e) forming a deep N+ type injection layer embedded in the at least one N-type epitaxial layer and having a spacing distance between the deep N+ type injection layer and the first N+ type injection layer; f) filling a plurality of columnar grooves with a polysilicon material to form a plurality of polycrystalline pillars, which are embedded in at least one N-type epitaxial layer and penetrate the first N+ type injection layer; and (g) forming a first metal layer, which is disposed on at least one N-type epitaxial layer, wherein the first metal layer is assembled to form an operating voltage end at a location spatially corresponding to the first N+ type injection layer, the plurality of polycrystalline pillars and the deep N+ type injection layer, wherein each polycrystalline pillar has a first end and a second end opposite to each other, the first end is in contact with the operating voltage end of the first metal layer, and the second end at least partially penetrates the deep N+ type injection layer and is in contact with the deep N+ type injection layer.
于一实施例中,步骤(b)还包括步骤(b0)形成一N+型埋入层,其中N+型埋入层设置于基板与至少一N-型外延层之间。In one embodiment, step (b) further includes step (b0) of forming an N+ type buried layer, wherein the N+ type buried layer is disposed between the substrate and at least one N- type epitaxial layer.
于一实施例中,步骤(c)还包括步骤(c0)形成一第二N+型注入层以及一P+型注入层,嵌设于至少一N-型外延层,其中第一金属层于空间对应第二N+型注入层以及P+型注入层之处组配形成一输入输出端,其中第一金属层的输入输出端穿过一电介质层分别连接至第二N+型注入层以及P+型注入层。In one embodiment, step (c) also includes step (c0) of forming a second N+ type injection layer and a P+ type injection layer, which are embedded in at least one N-type epitaxial layer, wherein the first metal layer is assembled to form an input-output end at a location corresponding to the second N+ type injection layer and the P+ type injection layer in space, wherein the input-output end of the first metal layer is respectively connected to the second N+ type injection layer and the P+ type injection layer through a dielectric layer.
于一实施例中,瞬态电压抑制二极管结构的制造方法还包括步骤(h)形成一保护层,设置于第一金属层上,且部分暴露第一金属层,以分别定义工作电压端以及输入输出端。In one embodiment, the method for manufacturing a transient voltage suppressor diode structure further includes step (h) forming a protection layer disposed on the first metal layer and partially exposing the first metal layer to respectively define the operating voltage terminal and the input and output terminals.
于一实施例中,基板包括一P+型基层以及一N型外延层,且N型外延层设置于P+型基层上,且至少一N-型外延层形成于N型外延层上。In one embodiment, the substrate includes a P+ type base layer and an N type epitaxial layer, wherein the N type epitaxial layer is disposed on the P+ type base layer, and at least one N- type epitaxial layer is formed on the N type epitaxial layer.
于一实施例中,步骤(d)还包括步骤(d0)部分蚀刻至少一N-型外延层以及基板,并填覆一氧化物,以形成至少一氧化绝缘部,其中至少一氧化绝缘部贯穿至少一N-型外延层、N型外延层以及部分的P+型基层。In one embodiment, step (d) also includes step (d0) of partially etching at least one N-type epitaxial layer and the substrate, and filling an oxide to form at least one oxidized insulating portion, wherein the at least one oxidized insulating portion penetrates at least one N-type epitaxial layer, the N-type epitaxial layer and a portion of the P+ type base layer.
于一实施例中,步骤(d)还包括步骤(d1)形成一电介质层,设置于至少一N-型外延层上。In one embodiment, step (d) further includes step (d1) of forming a dielectric layer disposed on at least one N-type epitaxial layer.
于一实施例中,制造方法还包括步骤(i)形成一第二金属层,连接至P+型基层,与第一金属层彼此相反,且组配形成一接地端。In one embodiment, the manufacturing method further includes step (i) forming a second metal layer connected to the P+ type base layer, opposite to the first metal layer, and assembled to form a ground terminal.
本发明的有益效果在于,本发明提供一种瞬态电压抑制二极管结构及其制造方法。通过多个多晶柱结构的导入,解决瞬态电压抑制二极管结构在一般掺杂及驱入程序中,浓度不易控制及增加的问题。多晶柱结构可进一步降低深层注入的距离,避免驱入后浓度减少的问题,有效降低工艺的难度。The beneficial effect of the present invention is that the present invention provides a transient voltage suppression diode structure and a manufacturing method thereof. By introducing multiple polycrystalline column structures, the problem of difficult control and increase of concentration in the transient voltage suppression diode structure in general doping and driving procedures is solved. The polycrystalline column structure can further reduce the distance of deep injection, avoid the problem of concentration reduction after driving, and effectively reduce the difficulty of the process.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1公开公知的瞬态电压抑制二极管结构的截面图。FIG. 1 discloses a cross-sectional view of a known transient voltage suppressor diode structure.
图2公开本发明较佳实施例的瞬态电压抑制二极管结构。FIG. 2 discloses a transient voltage suppression diode structure according to a preferred embodiment of the present invention.
图3A至图3I公开本发明较佳实施例的瞬态电压抑制二极管结构的制造流程示意图。3A to 3I disclose a schematic diagram of the manufacturing process of a transient voltage suppression diode structure according to a preferred embodiment of the present invention.
图4公开本发明较佳实施例的瞬态电压抑制二极管结构的制造方法的流程图。FIG. 4 discloses a flow chart of a method for manufacturing a transient voltage suppression diode structure according to a preferred embodiment of the present invention.
附图标记如下:The reference numerals are as follows:
1:TVS组件1: TVS components
11:底部金属层11: Bottom metal layer
12:P+型基层12: P+ type base
13:N型外延层13: N-type epitaxial layer
14:N+型埋入层14: N+ type buried layer
15:N-型外延层15: N-type epitaxial layer
16:电介质层16: Dielectric layer
17:顶部金属层17: Top metal layer
18:保护层18: Protective layer
19:氧化绝缘部19: Oxidation insulation
20:N+型注入层20: N+ type injection layer
21:P+型注入层21: P+ type injection layer
22:N+型注入层22: N+ type injection layer
23:深层N+型注入层23: Deep N+ type injection layer
3:瞬态电压抑制二极管结构3: Transient Voltage Suppression Diode Structure
30:基板30: Substrate
31:第二金属层31: Second metal layer
32:P+型基层32: P+ type base
33:N型外延层33: N-type epitaxial layer
34:N+型埋入层34: N+ type buried layer
35:N-型外延层35: N-type epitaxial layer
36:电介质层36: Dielectric layer
37:第一金属37: First Metal
38:保护层38: Protective layer
39:氧化绝缘部39: Oxidation insulation
40:第二N+型注入层40: Second N+ type injection layer
41:P+型注入层41: P+ type injection layer
42:第一N+型注入层42: First N+ type injection layer
43:深层N+型注入层43: Deep N+ type injection layer
44:多晶柱44: Polycrystalline column
44a:第一端44a: First end
44b:第二端44b: Second end
44c:柱形沟44c: Columnar groove
D:间隔距离D: Interval
GND:接地端GND: Ground terminal
I/O:输入输出端I/O: Input and output
Vcc:工作电压端Vcc: working voltage terminal
S1~S10:步骤S1~S10: Steps
具体实施方式DETAILED DESCRIPTION
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本发明能够在不同的方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及附图在本质上当作说明之用,而非用于限制本发明。Some typical embodiments that embody the features and advantages of the present invention will be described in detail in the following description. It should be understood that the present invention can be varied in various ways without departing from the scope of the present invention, and the description and drawings are essentially for illustrative purposes rather than for limiting the present invention.
图2公开本发明较佳实施例的瞬态电压抑制二极管结构。于本实施例中,瞬态电压抑制二极管结构3,包括有基板30、至少一N-型外延层35、第一金属37、第一N+型注入层42、深层N+型注入层43以及多个多晶柱44。至少一N-型外延层35设置于基板30上。于本实施例中,基板30例如包括有P+型基层32以及N型外延层33。N型外延层33设置于P+型基层上32,且连接至至少一N-型外延层35。此外,瞬态电压抑制二极管结构3还包括一N+型埋入层34,设置该N型外延层33以及至少一N-型外延层35之间。第一金属层37设置于至少一N-型外延层35上,且组配形成一工作电压端Vcc以及一输入输出端I/O。于本实施例中,第一金属层37与至少一N-型外延层35之间还设置有一电介质层36,然而本发明并不以此为限。FIG2 discloses a transient voltage suppressor diode structure of a preferred embodiment of the present invention. In this embodiment, the transient voltage suppressor diode structure 3 includes a substrate 30, at least one N-type epitaxial layer 35, a first metal 37, a first N+ type injection layer 42, a deep N+ type injection layer 43 and a plurality of polycrystalline pillars 44. At least one N-type epitaxial layer 35 is disposed on the substrate 30. In this embodiment, the substrate 30 includes, for example, a P+ type base layer 32 and an N-type epitaxial layer 33. The N-type epitaxial layer 33 is disposed on the P+ type base layer 32 and is connected to the at least one N-type epitaxial layer 35. In addition, the transient voltage suppressor diode structure 3 also includes an N+ type buried layer 34 disposed between the N-type epitaxial layer 33 and the at least one N-type epitaxial layer 35. The first metal layer 37 is disposed on the at least one N-type epitaxial layer 35 and is assembled to form a working voltage terminal Vcc and an input/output terminal I/O. In this embodiment, a dielectric layer 36 is further disposed between the first metal layer 37 and the at least one N-type epitaxial layer 35 , but the invention is not limited thereto.
于本实施例中,瞬态电压抑制二极管结构3还包括一保护层38,设置于第一金属层37上,且部分暴露第一金属层37,以分别定义出工作电压端Vcc以及输入输出端I/O。当然,本发明亦不以此为限。其中,于本实施例中,第一N+型注入层42、深层N+型注入层43以及多个多晶柱44的结构均对应于第一金属层37的工作电压端Vcc。于本实施例中,第一N+型注入层42,于空间上对应于工作电压端Vcc,嵌设于至少一N-型外延层35,且组配连接至第一金属层37的工作电压端Vcc。深层N+型注入层43,于空间上对应于第一金属层37的工作电压端Vcc,嵌设于至少一N-型外延层35,且连接N+型埋入层34,并与第一N+型注入层42之间具有一间隔距离D。换言之,深层N+型注入层43相较于第一N+型注入层42,更以一间隔距离D深度嵌设于至少一N-型外延层35,并与N+型埋入层34连接。In the present embodiment, the transient voltage suppression diode structure 3 further includes a protection layer 38, which is disposed on the first metal layer 37 and partially exposes the first metal layer 37 to respectively define the working voltage terminal Vcc and the input/output terminal I/O. Of course, the present invention is not limited thereto. In the present embodiment, the structures of the first N+ type injection layer 42, the deep N+ type injection layer 43 and the plurality of polycrystalline pillars 44 all correspond to the working voltage terminal Vcc of the first metal layer 37. In the present embodiment, the first N+ type injection layer 42 corresponds to the working voltage terminal Vcc in space, is embedded in at least one N-type epitaxial layer 35, and is assembled and connected to the working voltage terminal Vcc of the first metal layer 37. The deep N+ type injection layer 43 corresponds to the working voltage terminal Vcc of the first metal layer 37 in space, is embedded in at least one N-type epitaxial layer 35, and is connected to the N+ type buried layer 34, and has a spacing distance D between it and the first N+ type injection layer 42. In other words, compared with the first N+ type implantation layer 42 , the deep N+ type implantation layer 43 is further embedded in at least one N− type epitaxial layer 35 at a spacing distance D and connected to the N+ type buried layer 34 .
值得注意的是,多个多晶柱44,于空间上同样对应于第一金属层37的工作电压端Vcc,嵌设于至少一N-型外延层35,且贯穿电介质层36以及第一N+型注入层42。其中每一多晶柱44具有彼此相对的一第一端44a以及一第二端44b,第一端44a接触连接至第一金属层37的工作电压端Vcc,第二端44b则至少部分贯穿深层N+型注入层43,且接触连接至深层N+型注入层43。其中多晶柱44的结构,贯穿第一N+型注入层42,通过一般的掺杂(doping)及驱入(drive-in)程序,有助于控制增加深层N+型注入层43在至少一N-型外延层35内的浓度,以获取低电压的齐纳二极管结构。此外,深层N+型注入层43更可通过多个多晶柱44的结构形成电连接,有助于降低至少一N-型外延层35的寄生电阻(parasitic resistance)。换言之,通过多个多晶柱44结构的导入,解决瞬态电压抑制二极管结构3在一般掺杂及驱入程序中,例如深层N+型注入层43的浓度不易控制及增加的问题,同时降低深层N+型注入层43深层注入的距离,避免驱入后浓度减少的问题,有效降低工艺的难度。此外,多晶柱44的结构更降低N-型外延层35的寄生电阻(parasitic resistance),进一步提升瞬态电压抑制二极管结构3的性能。It is worth noting that a plurality of polycrystalline pillars 44 are spatially corresponding to the working voltage terminal Vcc of the first metal layer 37, are embedded in at least one N-type epitaxial layer 35, and penetrate the dielectric layer 36 and the first N+ type injection layer 42. Each polycrystalline pillar 44 has a first end 44a and a second end 44b opposite to each other, the first end 44a is in contact with and connected to the working voltage terminal Vcc of the first metal layer 37, and the second end 44b at least partially penetrates the deep N+ type injection layer 43 and is in contact with and connected to the deep N+ type injection layer 43. The structure of the polycrystalline pillar 44 penetrates the first N+ type injection layer 42, and through the general doping and drive-in process, it is helpful to control and increase the concentration of the deep N+ type injection layer 43 in at least one N-type epitaxial layer 35, so as to obtain a low voltage Zener diode structure. In addition, the deep N+ type injection layer 43 can be electrically connected through the structure of multiple polycrystalline pillars 44, which helps to reduce the parasitic resistance of at least one N-type epitaxial layer 35. In other words, by introducing multiple polycrystalline pillars 44 structures, the problem of the concentration of the deep N+ type injection layer 43 being difficult to control and increase in the general doping and driving process of the transient voltage suppression diode structure 3 is solved, and at the same time, the deep injection distance of the deep N+ type injection layer 43 is reduced to avoid the problem of concentration reduction after driving, effectively reducing the difficulty of the process. In addition, the structure of the polycrystalline pillars 44 further reduces the parasitic resistance of the N-type epitaxial layer 35, further improving the performance of the transient voltage suppression diode structure 3.
于本实施例中,基板30还包括一第二金属层31,连接至P+型基层32,与第一金属层37彼此相反,且组配形成一接地端GND。另一方面,需说明的是,对应于第一金属层37的输入输出端I/O处,该瞬态电压抑制二极管结构3还包括一第二N+型注入层40以及一P+型注入层41,分别嵌设于该至少一N-型外延层35。其中第一金属层37的输入输出端I/O穿过电介质层36分别连接至第二N+型注入层40以及P+型注入层41。另外,N+型埋入层34于空间上则对应于P+型注入层41以及多个多晶柱44。又于本实施例中,第二N+型注入层40以及P+型注入层41之间更设置有至少一氧化绝缘部39,至少一氧化绝缘部39沟贯穿至少一N-型外延层35、N型外延层33以及部分的P+型基层32。此外,至少一氧化绝缘部39亦可作为界定瞬态电压抑制二极管结构3的边界,然而其非限制本发明的必要技术特征,于此不赘述。需说明的是,P+型注入层41、第二N+型注入层40、多个多晶柱44以及氧化绝缘部39的数量及相对位置均可视实应用需求调制,本发明并不以此为限。In this embodiment, the substrate 30 further includes a second metal layer 31, connected to the P+ type base layer 32, opposite to the first metal layer 37, and assembled to form a ground terminal GND. On the other hand, it should be noted that, corresponding to the input and output terminals I/O of the first metal layer 37, the transient voltage suppression diode structure 3 further includes a second N+ type injection layer 40 and a P+ type injection layer 41, which are respectively embedded in the at least one N-type epitaxial layer 35. The input and output terminals I/O of the first metal layer 37 are respectively connected to the second N+ type injection layer 40 and the P+ type injection layer 41 through the dielectric layer 36. In addition, the N+ type buried layer 34 corresponds to the P+ type injection layer 41 and the plurality of polycrystalline pillars 44 in space. In the present embodiment, at least one oxide insulating portion 39 is further provided between the second N+ type injection layer 40 and the P+ type injection layer 41, and the at least one oxide insulating portion 39 groove penetrates at least one N-type epitaxial layer 35, the N-type epitaxial layer 33 and a portion of the P+ type base layer 32. In addition, at least one oxide insulating portion 39 can also be used as a boundary defining the transient voltage suppression diode structure 3, but it is not a necessary technical feature to limit the present invention and is not described in detail here. It should be noted that the number and relative positions of the P+ type injection layer 41, the second N+ type injection layer 40, the plurality of polycrystalline pillars 44 and the oxide insulating portion 39 can be modulated according to actual application requirements, and the present invention is not limited thereto.
对应于前述瞬态电压抑制二极管结构3,本发明亦同时公开一提出一种瞬态电压抑制二极管结构3的制造方法。图3A至图3I公开本发明较佳实施例的瞬态电压抑制二极管结构的制造流程示意图。图4公开本发明较佳实施例的瞬态电压抑制二极管结构的制造方法的流程图。参考图2、图3A至图3I以及图4。首先,于步骤S1中,提供一基板30。如图3A所示,基板30包括P+型基层32以及N型外延层33,其中N型外延层33设置于P+型基层32上。接着,于步骤S2中,利用例如注入(implant)及驱入(drive-in)的程序,于N型外延层33上形成一N+型埋入层34,如图3B所示。而于步骤S3中,形成至少一N-型外延层35,设置于基板30的N型外延层33上,并使N+型埋入层34设置于基板30的N型外延层33与至少一N-型外延层35之间,且N型外延层33连接至至少一N-型外延层35,如图3C所示。Corresponding to the above-mentioned transient voltage suppression diode structure 3, the present invention also discloses a manufacturing method of a transient voltage suppression diode structure 3. FIG. 3A to FIG. 3I disclose a schematic diagram of the manufacturing process of the transient voltage suppression diode structure of a preferred embodiment of the present invention. FIG. 4 discloses a flow chart of the manufacturing method of the transient voltage suppression diode structure of a preferred embodiment of the present invention. Refer to FIG. 2, FIG. 3A to FIG. 3I and FIG. 4. First, in step S1, a substrate 30 is provided. As shown in FIG. 3A, the substrate 30 includes a P+ type base layer 32 and an N type epitaxial layer 33, wherein the N type epitaxial layer 33 is disposed on the P+ type base layer 32. Next, in step S2, an N+ type buried layer 34 is formed on the N type epitaxial layer 33 by using a process such as implant and drive-in, as shown in FIG. 3B. In step S3, at least one N-type epitaxial layer 35 is formed and disposed on the N-type epitaxial layer 33 of the substrate 30, and the N+ type buried layer 34 is disposed between the N-type epitaxial layer 33 of the substrate 30 and the at least one N-type epitaxial layer 35, and the N-type epitaxial layer 33 is connected to the at least one N-type epitaxial layer 35, as shown in FIG. 3C.
尔后,于步骤S4中,通过例如注入(implant)的程序,于至少一N-型外延层35上分别形成一第一N+型注入层42、第二N+型注入层40以及一P+型注入层41,嵌设于至少一N-型外延层35,如图3D所示。其中第一N+型注入层42的位置于对应至一工作电压端Vcc;而第二N+型注入层40以及P+型注入层41的位置则对应至一输入输出端I/O(参见图2)。于步骤S5中,以一蚀刻程序,部分蚀刻至少一N-型外延层35以及基板30,并填覆一氧化物,以形成至少一氧化绝缘部39,如图3E所示。其中至少一氧化绝缘部39贯穿至少一N-型外延层35、N+型埋入层34、N型外延层33以及部分的P+型基层32。于本实施例中,至少一N-型外延层35上更形成一电介质层36。电介质层36用以定义第一N+型注入层42、第二N+型注入层40以及一P+型注入层41的连接区域,本发明并不以此为限。Then, in step S4, a first N+ type implantation layer 42, a second N+ type implantation layer 40 and a P+ type implantation layer 41 are respectively formed on at least one N-type epitaxial layer 35 by a process such as implantation, and are embedded in at least one N-type epitaxial layer 35, as shown in FIG3D. The position of the first N+ type implantation layer 42 corresponds to an operating voltage terminal Vcc; and the positions of the second N+ type implantation layer 40 and the P+ type implantation layer 41 correspond to an input/output terminal I/O (see FIG2). In step S5, an etching process is used to partially etch at least one N-type epitaxial layer 35 and the substrate 30, and fill an oxide to form at least one oxide insulating portion 39, as shown in FIG3E. At least one oxide insulating portion 39 penetrates at least one N-type epitaxial layer 35, the N+ type buried layer 34, the N-type epitaxial layer 33 and a portion of the P+ type base layer 32. In this embodiment, a dielectric layer 36 is further formed on at least one N-type epitaxial layer 35. The dielectric layer 36 is used to define the connection region of the first N+ type implantation layer 42, the second N+ type implantation layer 40 and the P+ type implantation layer 41, but the present invention is not limited thereto.
尔后,于步骤S6中,再以一蚀刻程序,部分蚀刻至少一N-型外延层35以及第一N+型注入层42,以形成多个柱形沟44c,贯穿第一N+型注入层42以及部分的至少一N-型外延层35,如图3F所示。于步骤S7中,通过个柱形沟44c执行一注入程序,以于柱形沟44c的底端形成一深层N+型注入层43。其中,深层N+型注入层43嵌设于至少一N-型外延层35,且与第一N+型注入层42之间保持一间隔距离D,如图3G所示。需说明的是,通过多个柱形沟44c执行注入程序,可降低深层N+型注入层43深层注入的距离,解决注入浓度不易控制及增加的问题,同时,避免驱入后浓度减少的问题,有效降低工艺的难度。尔后,于步骤S8中,以一多晶硅材料填入多个柱形沟44c,再例如以回蚀程序去除多余的多晶硅材料,以形成复个个多晶柱44,嵌设于至少一N-型外延层35,且贯穿第一N+型注入层42,如图3H所示。于本实施例中,深层N+型注入层43、第一N+型注入层42、第二N+型注入层40以及P+型注入层41的驱入(drive-in)程序可于多晶柱44形成后执行,本发明并不以此为限。值得注意的是,由于多晶柱44结构连接于深层N+型注入层43与第一N+型注入层42之间,有助于降低N-型外延层35的寄生电阻(parasitic resistance),进一步提升瞬态电压抑制二极管结构3的性能。Then, in step S6, an etching process is used to partially etch at least one N-type epitaxial layer 35 and the first N+ type injection layer 42 to form a plurality of columnar grooves 44c, which penetrate the first N+ type injection layer 42 and a portion of at least one N-type epitaxial layer 35, as shown in FIG3F. In step S7, an injection process is performed through each columnar groove 44c to form a deep N+ type injection layer 43 at the bottom of the columnar groove 44c. The deep N+ type injection layer 43 is embedded in at least one N-type epitaxial layer 35 and maintains a spacing distance D with the first N+ type injection layer 42, as shown in FIG3G. It should be noted that the injection process performed through a plurality of columnar grooves 44c can reduce the distance of the deep N+ type injection layer 43 deep injection, solve the problem of difficult control and increase of injection concentration, and at the same time, avoid the problem of concentration reduction after driving, effectively reducing the difficulty of the process. Thereafter, in step S8, a plurality of columnar grooves 44c are filled with a polysilicon material, and then, for example, the excess polysilicon material is removed by an etch-back process to form a plurality of polycrystalline pillars 44, which are embedded in at least one N-type epitaxial layer 35 and penetrate the first N+ type implantation layer 42, as shown in FIG3H. In this embodiment, the drive-in process of the deep N+ type implantation layer 43, the first N+ type implantation layer 42, the second N+ type implantation layer 40, and the P+ type implantation layer 41 can be performed after the polycrystalline pillars 44 are formed, but the present invention is not limited thereto. It is worth noting that since the polycrystalline pillars 44 are connected between the deep N+ type implantation layer 43 and the first N+ type implantation layer 42, it helps to reduce the parasitic resistance of the N-type epitaxial layer 35, and further improve the performance of the transient voltage suppressor diode structure 3.
最后,于步骤S9中,形成一第一金属层37设置于至少一N-型外延层35与电介质层36上。其中,第一金属层37于空间上对应第一N+型注入层42、多个多晶柱44以及深层N+型注入层43之处组配形成一工作电压端Vcc。每一多晶柱44具有彼此相对的一第一端44a以及一第二端44b,第一端44a接触连接至第一金属层37的工作电压端Vcc,第二端44b至少部分贯穿深层N+型注入层43,且接触连接至深层N+型注入层43。于其他实施例中,电介质层36可于第一金属层37形成前加载,定义第一金属层37连接第一N+型注入层42、第二N+型注入层40以及P+型注入层41的区域,本发明并不受限于此。Finally, in step S9, a first metal layer 37 is formed and disposed on at least one N-type epitaxial layer 35 and the dielectric layer 36. The first metal layer 37 is assembled to form an operating voltage terminal Vcc at a location corresponding to the first N+ type injection layer 42, a plurality of polycrystalline pillars 44, and the deep N+ type injection layer 43 in space. Each polycrystalline pillar 44 has a first end 44a and a second end 44b opposite to each other, the first end 44a is in contact with and connected to the operating voltage terminal Vcc of the first metal layer 37, and the second end 44b at least partially penetrates the deep N+ type injection layer 43 and is in contact with and connected to the deep N+ type injection layer 43. In other embodiments, the dielectric layer 36 can be loaded before the first metal layer 37 is formed to define the region where the first metal layer 37 is connected to the first N+ type injection layer 42, the second N+ type injection layer 40, and the P+ type injection layer 41, and the present invention is not limited thereto.
于本实施例,瞬态电压抑制二极管结构3的制造方法还包括有步骤S10,即形成一保护层38,设置于第一金属层37上,且部分暴露第一金属层37,以分别定义工作电压端Vcc以及输入输出端I/O,如图3I所示。另外,除了第一金属层37外,于相反于第一金属层37的另一面更形成有一第二金属层31,连接至基板30的P+型基层32,组配形成一接地端GND,如图2所示。当然,电介质36、第一金属层37、保护层38以及第二金属层31的形成,可视实际应用需求调制,本发明并不以此为限,且不再赘述。In this embodiment, the manufacturing method of the transient voltage suppression diode structure 3 further includes step S10, i.e. forming a protective layer 38, which is disposed on the first metal layer 37, and partially exposing the first metal layer 37, so as to define the working voltage terminal Vcc and the input and output terminal I/O respectively, as shown in FIG3I. In addition, in addition to the first metal layer 37, a second metal layer 31 is formed on the other side opposite to the first metal layer 37, connected to the P+ type base layer 32 of the substrate 30, and assembled to form a ground terminal GND, as shown in FIG2. Of course, the formation of the dielectric 36, the first metal layer 37, the protective layer 38 and the second metal layer 31 can be modulated according to the actual application requirements, and the present invention is not limited thereto and will not be repeated.
综上所述,本发明提供一种瞬态电压抑制二极管结构及其制造方法。通过多个多晶柱结构的导入,解决瞬态电压抑制二极管结构在一般掺杂及驱入程序中,浓度不易控制及增加的问题。多晶柱结构可进一步降低深层注入的距离,避免驱入后浓度减少的问题,有效降低工艺的难度。此外,多晶柱结构更可降低例如N-型外延层的寄生电阻(parasiticresistance),进一步提升瞬态电压抑制二极管结构的性能。In summary, the present invention provides a transient voltage suppressor diode structure and a manufacturing method thereof. By introducing multiple polycrystalline column structures, the problem of difficult control and increase of concentration in the general doping and driving process of the transient voltage suppressor diode structure is solved. The polycrystalline column structure can further reduce the distance of deep injection, avoid the problem of concentration reduction after driving, and effectively reduce the difficulty of the process. In addition, the polycrystalline column structure can further reduce the parasitic resistance (parasitic resistance) of, for example, an N-type epitaxial layer, further improving the performance of the transient voltage suppressor diode structure.
本发明得由本领域技术人员施匠思而为诸般修饰,然皆不脱如附权利要求所欲保护。The present invention may be modified in various ways by those skilled in the art, but all of these modifications are within the protection scope of the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911226196.5A CN112909072B (en) | 2019-12-04 | 2019-12-04 | Transient voltage suppression diode structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911226196.5A CN112909072B (en) | 2019-12-04 | 2019-12-04 | Transient voltage suppression diode structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112909072A CN112909072A (en) | 2021-06-04 |
CN112909072B true CN112909072B (en) | 2024-08-16 |
Family
ID=76104397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911226196.5A Active CN112909072B (en) | 2019-12-04 | 2019-12-04 | Transient voltage suppression diode structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112909072B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208530A (en) * | 2013-03-11 | 2013-07-17 | 江苏应能微电子有限公司 | Low capacitance super-deep groove transient voltage restraining diode structure |
CN107731818A (en) * | 2017-10-18 | 2018-02-23 | 东莞市阿甘半导体有限公司 | Transient suppression diode chip structure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6750091B1 (en) * | 1996-03-01 | 2004-06-15 | Micron Technology | Diode formation method |
US8338854B2 (en) * | 2009-03-31 | 2012-12-25 | Alpha And Omega Semiconductor Incorporated | TVS with low capacitance and forward voltage drop with depleted SCR as steering diode |
US10978869B2 (en) * | 2016-08-23 | 2021-04-13 | Alpha And Omega Semiconductor Incorporated | USB type-C load switch ESD protection |
TWI601287B (en) * | 2016-12-21 | 2017-10-01 | 新唐科技股份有限公司 | Instantaneous voltage suppression diode device and method of manufacturing same |
-
2019
- 2019-12-04 CN CN201911226196.5A patent/CN112909072B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103208530A (en) * | 2013-03-11 | 2013-07-17 | 江苏应能微电子有限公司 | Low capacitance super-deep groove transient voltage restraining diode structure |
CN107731818A (en) * | 2017-10-18 | 2018-02-23 | 东莞市阿甘半导体有限公司 | Transient suppression diode chip structure |
Also Published As
Publication number | Publication date |
---|---|
CN112909072A (en) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7679136B2 (en) | Semiconductor device and manufacturing method of the same | |
CN105702677B (en) | TVS structure for high surge and low capacitance | |
US9780188B2 (en) | Vertical semiconductor power component capable of withstanding high voltage | |
US20050218472A1 (en) | Semiconductor device manufacturing method thereof | |
US20210104510A1 (en) | Shielded gate trench mosfet with esd diode manufactured using two poly-silicon layers process | |
CN101814497A (en) | Semiconductor device | |
CN107615493A (en) | Insulator Devices with Reduced Parasitic Capacitance | |
US10439056B2 (en) | Power semiconductor device and method of manufacturing power semiconductor device | |
US8426914B2 (en) | Semiconductor device integrated with converter and package structure thereof | |
CN1419298A (en) | Asymmetric High Voltage Metal Oxide Semiconductor Components | |
US9722035B2 (en) | Method for manufacturing termination structure of semiconductor device | |
US11978793B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
TW202129981A (en) | Transient-voltage-suppression diode structure and manufacturing method thereof | |
TWI726515B (en) | Transient-voltage-suppression diode structure and manufacturing method thereof | |
CN112909072B (en) | Transient voltage suppression diode structure and manufacturing method thereof | |
JP4918063B2 (en) | Semiconductor device | |
CN112635547B (en) | A diode and a method for manufacturing the same | |
CN105097889B (en) | Terminal structure of semiconductor element and manufacturing method thereof | |
US10615251B2 (en) | Semiconductor device and manufacturing method thereof | |
CN116632003B (en) | Preparation method of ESD protection device and ESD protection device | |
CN111599859A (en) | Thyristor with overvoltage protection function and manufacturing method thereof | |
CN113140611B (en) | Transient voltage suppression diode structure and manufacturing method thereof | |
CN112086501B (en) | Diode with high electrostatic protection capability and method for forming the same | |
CN119008690A (en) | Groove gate MOSFET integrated with positive and negative asymmetric gate source ESD protection | |
CN117594444A (en) | Integrated power device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |