CN111628033B - Method for manufacturing photoelectric detection device - Google Patents
Method for manufacturing photoelectric detection device Download PDFInfo
- Publication number
- CN111628033B CN111628033B CN202010471023.6A CN202010471023A CN111628033B CN 111628033 B CN111628033 B CN 111628033B CN 202010471023 A CN202010471023 A CN 202010471023A CN 111628033 B CN111628033 B CN 111628033B
- Authority
- CN
- China
- Prior art keywords
- region
- doped region
- epitaxial layer
- doped
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 72
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 238000012545 processing Methods 0.000 claims abstract description 6
- 238000002161 passivation Methods 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 24
- 238000010791 quenching Methods 0.000 claims description 20
- 230000000171 quenching effect Effects 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 12
- 238000005476 soldering Methods 0.000 claims description 10
- 239000002019 doping agent Substances 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 238000005468 ion implantation Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/147—Shapes of bodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
技术领域Technical field
本申请涉及半导体技术领域,特别涉及一种光电探测装置的制造方法。The present application relates to the field of semiconductor technology, and in particular to a method of manufacturing a photoelectric detection device.
背景技术Background technique
本部分的描述仅提供与本申请公开相关的背景信息,而不构成现有技术。The description in this section only provides background information related to the disclosure of the present application and does not constitute prior art.
低通量光子探测技术是一种可探测较低光通量密度(例如,10-19~10-6W/mm2)的光信号的光子探测技术,其可应用于许多领域,例如,医学成像(特别是,正电子发射断层成像(PET))、国土安全、高能物理实验和其它成像等关键领域。Low-flux photon detection technology is a photon detection technology that can detect light signals with lower light flux density (for example, 10 -19 ~ 10 -6 W/mm 2 ), which can be applied to many fields, such as medical imaging ( In particular, key areas include positron emission tomography (PET), homeland security, high-energy physics experiments and other imaging.
在低通量光子探测技术领域中,硅光电倍增器(Silicon Photomultiplier,简称SiPM)由于具有较高的探测效率、卓越的单光子响应和分辨能力、体积小、易于集成、工作电压低、不受磁场干扰、可靠性好、成本低廉等诸多优点而在近年来受到很大关注。目前主要通过以下方式来制造硅光电倍增器:(1)在作为衬底的晶圆上形成P型外延层;(2)在P型外延层上形成深N阱(DNW)并且在DNW中间和边缘处形成多个N阱(NWELL);(3)在最外围的N阱外侧形成P阱(PWELL);(4)在中间的NWELL上方形成P+型掺杂区并且在边缘处的NWELL上方形成N+型掺杂区;(5)在各个P+型掺杂区、N+型掺杂区之间形成浅沟槽隔离区(STI),其中,所形成的P阱(PWELL)以及P+型掺杂区构成该硅光电倍增器的电极。利用上述方法制造的硅光电倍增器如图1所示。In the field of low-flux photon detection technology, silicon photomultipliers (SiPM) have high detection efficiency, excellent single-photon response and resolution capabilities, small size, easy integration, low operating voltage, and are not susceptible to It has attracted great attention in recent years due to its many advantages such as magnetic field interference, good reliability, and low cost. At present, silicon photomultipliers are mainly manufactured in the following ways: (1) forming a P-type epitaxial layer on a wafer as a substrate; (2) forming a deep N-well (DNW) on the P-type epitaxial layer and forming a deep N-well (DNW) in the middle of the DNW and Multiple N wells (NWELL) are formed at the edge; (3) P wells (PWELL) are formed outside the outermost N well; (4) P+ type doped regions are formed above the middle NWELL and above the NWELL at the edge. N+ type doped region; (5) A shallow trench isolation region (STI) is formed between each P+ type doped region and N+ type doped region, in which the formed P well (PWELL) and P+ type doped region The electrodes that make up the silicon photomultiplier. The silicon photomultiplier manufactured using the above method is shown in Figure 1.
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:In the process of implementing this application, the inventor discovered that there are at least the following problems in the prior art:
利用现有方法制造的硅光电倍增器中的PN结一般由靠近硅材料表面的高浓度P(或N)型掺杂区和位于其下方的较低掺杂的N(或P)阱构成,其结深较浅,耗尽区宽度较窄,因此对波长较短的蓝紫光探测效率较高,但是对波长较长的光子(例如,红光及近红外光)的探测效率较低。The PN junction in silicon photomultipliers manufactured using existing methods generally consists of a high-concentration P (or N)-type doped region close to the surface of the silicon material and a lower-doped N (or P) well located below it. The junction depth is shallow and the depletion region width is narrow, so the detection efficiency of blue-violet light with shorter wavelength is higher, but the detection efficiency of photons with longer wavelength (such as red light and near-infrared light) is low.
发明内容Contents of the invention
本申请实施例的目的是提供一种光电探测装置的制造方法,以提供适合于对波长较长的光子进行探测的装置。The purpose of the embodiments of the present application is to provide a method for manufacturing a photoelectric detection device, so as to provide a device suitable for detecting photons with longer wavelengths.
为了解决上述技术问题,本申请实施例提供了一种光电探测装置的制造方法,该方法可以包括:In order to solve the above technical problems, embodiments of the present application provide a method for manufacturing a photoelectric detection device. The method may include:
在所制备的第一衬底上生长出外延层,其中,所述外延层和所述第一衬底均呈第一导电类型;Grow an epitaxial layer on the prepared first substrate, wherein both the epitaxial layer and the first substrate are of a first conductivity type;
在所述外延层中的远离所述第一衬底的一侧形成呈与所述第一导电类型相反的第二导电类型的第一掺杂区和第二掺杂区以及呈所述第一导电类型的第三掺杂区,其中,所述第二掺杂区位于所述第一掺杂区与所述第三掺杂区之间,并且所述第一掺杂区与所述第一衬底和所述外延层中的与所述第一掺杂区对应的第一区域构成第一感光元件,以及所述第二掺杂区与所述第一衬底和所述外延层中的与所述第二掺杂区对应的第二区域构成第二感光元件;A first doping region and a second doping region of a second conductivity type opposite to the first conductivity type are formed on a side of the epitaxial layer away from the first substrate and are in the first conductivity type. A third doped region of conductivity type, wherein the second doped region is located between the first doped region and the third doped region, and the first doped region and the first doped region The first region in the substrate and the epitaxial layer corresponding to the first doped region constitutes a first photosensitive element, and the second doped region and the first region in the first substrate and the epitaxial layer The second region corresponding to the second doped region constitutes a second photosensitive element;
在所述外延层的所述一侧上方形成与所述第一感光元件对应的反射结构;Form a reflective structure corresponding to the first photosensitive element above the side of the epitaxial layer;
对所述第一衬底进行处理以露出所述外延层中的与所述一侧相对的另一侧;processing the first substrate to expose another side of the epitaxial layer opposite to the one side;
对所述外延层的所述另一侧进行掺杂处理以形成呈所述第一导电类型的第四掺杂区;Perform a doping process on the other side of the epitaxial layer to form a fourth doped region of the first conductivity type;
在所述第四掺杂区的下方制备与所述第一掺杂区、所述第二掺杂区以及所述第三掺杂区分别连接的第一焊盘、第二焊盘以及第三焊盘,其中,所述第一焊盘构成所述光电探测装置的用作输出端的第一电极,所述第二焊盘构成所述光电探测装置的第二电极,以及所述第三焊盘构成所述光电探测装置的第三电极。A first bonding pad, a second bonding pad and a third bonding pad respectively connected to the first doping region, the second doping region and the third doping region are prepared below the fourth doping region. a soldering pad, wherein the first soldering pad constitutes a first electrode used as an output end of the photoelectric detection device, the second soldering pad constitutes a second electrode of the photoelectric detecting device, and the third soldering pad Constituting the third electrode of the photoelectric detection device.
可选地,形成所述第一掺杂区、所述第二掺杂区以及所述第三掺杂区的步骤包括:Optionally, the step of forming the first doped region, the second doped region and the third doped region includes:
确定出所述外延层中的远离所述第一衬底的外表面上的第一有源区、第二有源区以及第三有源区,其中,所述第二有源区位于所述第一有源区和所述第三有源区之间;A first active area, a second active area and a third active area on the outer surface of the epitaxial layer away from the first substrate are determined, wherein the second active area is located on the between the first active area and the third active area;
利用预设工艺从所述第一有源区和所述第二有源区往所述外延层中掺入第二掺杂剂以形成所述第一掺杂区和所述第二掺杂区,并且利用所述预设工艺从所述第三有源区往所述外延层中掺入第一掺杂剂以形成所述第三掺杂区。Using a preset process, a second dopant is doped into the epitaxial layer from the first active region and the second active region to form the first doped region and the second doped region. , and use the preset process to dope a first dopant into the epitaxial layer from the third active region to form the third doped region.
可选地,所述预设工艺包括离子注入工艺或扩散掺杂工艺。Optionally, the preset process includes an ion implantation process or a diffusion doping process.
可选地,形成所述反射结构的步骤包括:Optionally, the step of forming the reflective structure includes:
在所述外延层的所述一侧上沉积第一钝化层;depositing a first passivation layer on the side of the epitaxial layer;
在所述第一钝化层上的与所述第一掺杂区对应的位置处形成反射区;forming a reflective region on the first passivation layer at a position corresponding to the first doped region;
在形成所述反射区之后,在所述第一钝化层上沉积第二钝化层,其中,形成有所述反射区的所述第一钝化层和所述第二钝化层构成所述反射结构。After forming the reflective region, a second passivation layer is deposited on the first passivation layer, wherein the first passivation layer and the second passivation layer in which the reflective region is formed constitute Describe the reflective structure.
可选地,在形成所述反射区之前,所述方法还包括:Optionally, before forming the reflective area, the method further includes:
在所述第一钝化层中形成与所述第一掺杂区和所述第二掺杂区分别连接的多个第一金属互连线,并且在多个所述第一金属互连线下方形成贯穿所述第一钝化层和所述外延层的填充有第一金属的第一通孔。A plurality of first metal interconnection lines respectively connected to the first doping region and the second doping region are formed in the first passivation layer, and in the plurality of first metal interconnection lines A first through hole filled with a first metal is formed below, penetrating the first passivation layer and the epitaxial layer.
可选地,制备所述第一焊盘、所述第二焊盘以及所述第三焊盘的步骤包括:Optionally, the steps of preparing the first bonding pad, the second bonding pad and the third bonding pad include:
在所述第四掺杂区的下方沉积第三钝化层,并且在所述第三钝化层中的分别与所述第一掺杂区以及所述第一通孔对应的位置处形成填充有所述第一金属的第二通孔,其中,在所述第一通孔对应的位置处形成的第二通孔与所述第一通孔连通;A third passivation layer is deposited under the fourth doped region, and filling is formed in the third passivation layer at positions corresponding to the first doped region and the first through hole. There is a second through hole of the first metal, wherein the second through hole formed at a position corresponding to the first through hole is connected to the first through hole;
在所形成的所述第二通孔的下方形成第二金属互连线;forming a second metal interconnection line below the formed second through hole;
在形成有所述第二金属互连线的所述第三钝化层的下方沉积第四钝化层,并且对所述第四钝化层进行刻蚀以露出所述第一金属互连线的一部分,其中,在与所述第一掺杂区、所述第二掺杂区和所述第三掺杂区对应的位置处露出的所述第二金属互连线分别形成了所述第一焊盘、所述第二焊盘和所述第三焊盘。depositing a fourth passivation layer under the third passivation layer in which the second metal interconnection line is formed, and etching the fourth passivation layer to expose the first metal interconnection line A part of the structure, wherein the second metal interconnection lines exposed at positions corresponding to the first doped region, the second doped region and the third doped region respectively form the third A bonding pad, the second bonding pad and the third bonding pad.
可选地,所述方法还包括:Optionally, the method also includes:
在所述外延层的所述一侧上方制备分别与所述第一感光元件和所述第二感光元件连接的淬灭元件。Quenching elements connected to the first photosensitive element and the second photosensitive element respectively are prepared above the side of the epitaxial layer.
可选地,制备所述淬灭元件的步骤包括:Optionally, the step of preparing the quenching element includes:
在所述外延层的所述一侧上的特定区域上沉积多晶硅,并且对所述多晶硅进行刻蚀和掺杂处理以获得所述淬灭元件;depositing polysilicon on a specific area on the side of the epitaxial layer, and etching and doping the polysilicon to obtain the quenching element;
在所述淬灭元件上方形成填充有所述第一金属的第三通孔,以与所述第一金属互连线连接。A third through hole filled with the first metal is formed above the quenching element to connect with the first metal interconnection line.
可选地,所述方法还包括:Optionally, the method also includes:
在外延层中的远离衬底的一侧形成将所述第一掺杂区、所述第二掺杂区和所述第三掺杂区间隔开的隔离区。An isolation region is formed in the epitaxial layer on a side away from the substrate to separate the first doped region, the second doped region and the third doped region.
可选地,形成所述隔离区的步骤包括:Optionally, the step of forming the isolation area includes:
对所述外延层中的远离所述第一衬底的外表面上的无源区进行刻蚀以形成沟槽,所述无源区位于用于形成所述第一掺杂区至所述第三掺杂区的多个有源区之间;An inactive region on the outer surface of the epitaxial layer away from the first substrate is etched to form a trench. The inactive region is located between the first doped region and the first doped region. Between multiple active regions in the three-doped region;
往所述沟槽中填充特定材料以形成所述隔离区。A specific material is filled into the trench to form the isolation region.
可选地,在形成所述第一掺杂区至所述第三掺杂区之前,所述方法还包括:Optionally, before forming the first to third doped regions, the method further includes:
在所述第一区域和/或所述第二区域内形成呈所述第一导电类型的掩埋层。A buried layer of the first conductivity type is formed in the first region and/or the second region.
可选地,在形成所述第一掺杂区至所述第三掺杂区之前,所述方法还包括:Optionally, before forming the first to third doped regions, the method further includes:
在所述外延层内形成与所述第一掺杂区、所述第二掺杂区和/或所述第三掺杂区分别对应的第一阱区、第二阱区和/或第三阱区。A first well region, a second well region and/or a third well region respectively corresponding to the first doped region, the second doped region and/or the third doped region are formed in the epitaxial layer. well region.
可选地,在对所述第一衬底进行处理之前,所述方法还包括:Optionally, before processing the first substrate, the method further includes:
将所述反射结构与所制备的第二衬底相键合。The reflective structure is bonded to the prepared second substrate.
可选地,所述方法还包括:Optionally, the method also includes:
在所述第四掺杂区下方的与所述第一感光元件和/或所述第二感光元件对应的位置处制备凸透镜。A convex lens is prepared below the fourth doped region at a position corresponding to the first photosensitive element and/or the second photosensitive element.
由以上本申请实施例提供的技术方案可见,本申请实施例通过在外延层中的远离第一衬底的一侧形成呈第二导电类型的第一掺杂区、第二掺杂区以及呈第一导电类型的第三掺杂区,其中,第二掺杂区位于第一掺杂区和第三掺杂区之间,这使得第一掺杂区与第三掺杂区被第二掺杂区间隔开,并且仅将与第一掺杂区连接的第一焊盘作为该光电探测装置的输出端,所以与第一掺杂区与第三掺杂区相邻的情况相比,这使得在所制成的光电探测装置处于工作状态时,可以增大在第一感光元件内部形成的PN结中的耗尽区的宽度,并且可以减小器件内部噪声对该PN结的影响,从而可以提高对波长较长的光子的探测效率,并且通过在在外延层的所述一侧上方的与第一掺杂区对应的位置处形成反射结构,使得可以对穿过第一掺杂区的光子进行反射,从而可以进一步提高光子的探测效率。It can be seen from the technical solutions provided by the above embodiments of the present application that the embodiments of the present application form a first doped region of the second conductivity type, a second doped region of the second conductive type and a second doped region on the side of the epitaxial layer away from the first substrate. A third doped region of the first conductivity type, wherein the second doped region is located between the first doped region and the third doped region, which causes the first doped region and the third doped region to be doped by the second The impurity regions are spaced apart, and only the first pad connected to the first doping region is used as the output end of the photodetection device. Therefore, compared with the case where the first doping region and the third doping region are adjacent, this So that when the manufactured photoelectric detection device is in working state, the width of the depletion region in the PN junction formed inside the first photosensitive element can be increased, and the influence of the internal noise of the device on the PN junction can be reduced, thereby The detection efficiency of photons with longer wavelengths can be improved, and by forming a reflective structure above the side of the epitaxial layer at a position corresponding to the first doped region, it is possible to detect photons passing through the first doped region. The photons are reflected, thereby further improving the photon detection efficiency.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present application or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some of the embodiments recorded in this application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting any creative effort.
图1是现有技术中的一种硅光电倍增器的结构示意图;Figure 1 is a schematic structural diagram of a silicon photomultiplier in the prior art;
图2是本申请实施例提供的一种光电探测装置的制造方法的流程图;Figure 2 is a flow chart of a manufacturing method of a photoelectric detection device provided by an embodiment of the present application;
图3是利用图2中的制造方法得到的一种光电探测装置中的部分结构的示意图;Figure 3 is a schematic diagram of a partial structure of a photoelectric detection device obtained using the manufacturing method in Figure 2;
图4是本申请实施例提供的另一种光电探测装置的制造方法的流程图;Figure 4 is a flow chart of another method of manufacturing a photoelectric detection device provided by an embodiment of the present application;
图5是利用图4中的制造方法得到的一种光电探测装置中的部分结构的示意图。FIG. 5 is a schematic diagram of a partial structure of a photoelectric detection device obtained by using the manufacturing method in FIG. 4 .
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是用于解释说明本申请的一部分实施例,而不是全部的实施例,并不希望限制本申请的范围或权利要求书。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都应当属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only used to explain some of the embodiments of the present application, not all of them. Examples are not intended to limit the scope or claims of this application. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts should fall within the scope of protection of this application.
需要说明的是,当元件被称为“设置在”另一个元件上,它可以直接设置在另一个元件上或者也可以存在居中的元件。当元件被称为“连接/耦接”至另一个元件,它可以是直接连接/耦接至另一个元件或者可能同时存在居中元件。本文所使用的术语“连接/耦接”可以包括电气和/或机械物理连接/耦接。本文所使用的术语“包括/包含”指特征、步骤或元件的存在,但并不排除一个或更多个其它特征、步骤或元件的存在或添加。本文所使用的术语“和/或”包括一个或多个相关所列项目的任意的和所有的组合。本文所使用的术语“上”和“下”、“上方”和“下方”只是相对概念,根据不同的观察方位或放置位置,上或上方也可以分别是指下或下方,反之亦然。It should be noted that when an element is referred to as being "disposed on" another element, it can be directly located on the other element or intervening elements may also be present. When an element is referred to as being "connected/coupled" to another element, it can be directly connected/coupled to the other element or intervening elements may also be present. As used herein, the term "connected/coupled" may include electrical and/or mechanical physical connections/couplings. The term "comprises" as used herein refers to the presence of features, steps or elements but does not exclude the presence or addition of one or more other features, steps or elements. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. The terms "upper" and "lower", "upper" and "lower" used in this article are only relative concepts. Depending on different viewing directions or placement positions, upper or upper may also refer to lower or lower respectively, and vice versa.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体实施例的目的,而并不是旨在限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the application.
在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of this application, the terms "first", "second", "third", etc. are only used for descriptive purposes and to distinguish similar objects. There is no order between them, and they cannot be understood as indicating or implies relative importance. Furthermore, in the description of the present application, unless otherwise stated, the meaning of “plurality” is two or more.
在本申请的描述中,第一导电类型可以是指P型掺杂,其主要依靠空穴导电,第二导电类型可以是指N型掺杂,其主要靠电子导电,替换地,第一导电类型可以是指N型掺杂,第二导电类型可以是指P型掺杂。另外,“P+”和“P-”可以分别是指与P型掺杂区的掺杂浓度相比相对更高和更低的掺杂浓度,而“N+”和“N-”可以分别是指与N型掺杂区的掺杂浓度相比相对更高和更低的掺杂浓度,例如,P+型和N+型掺杂层/区的掺杂浓度可以为1x1019~1x1021cm-3,P型和N型掺杂层/区的掺杂浓度可以为1x1016~1x1018cm-3。除另有说明之外,否则具有同一导电类型的掺杂区或掺杂层可以具有相同或不同的掺杂浓度,具有不同导电类型的掺杂区或掺杂层也可以具有相同或不同的掺杂浓度。In the description of this application, the first conductivity type may refer to P-type doping, which mainly relies on holes to conduct electricity, and the second conductivity type may refer to N-type doping, which mainly relies on electrons to conduct electricity. Alternatively, the first conductivity type Type may refer to N-type doping, and the second conductivity type may refer to P-type doping. In addition, “P+” and “P-” may respectively refer to relatively higher and lower doping concentrations compared to the doping concentration of the P-type doping region, and “N+” and “N-” may refer to respectively Relatively higher and lower doping concentrations compared to the doping concentration of the N-type doped region, for example, the doping concentrations of the P+-type and N+-type doped layers/regions can be 1x10 19 ~ 1x10 21 cm -3 , The doping concentration of the P-type and N-type doped layers/regions can be 1x10 16 ~ 1x10 18 cm -3 . Unless otherwise stated, doped regions or doped layers with the same conductivity type may have the same or different doping concentrations, and doped regions or doped layers with different conductivity types may also have the same or different doping concentrations. impurity concentration.
下面结合附图对本申请实施例提供的用于光子探测的光电探测装置的制造方法进行详细的描述。The manufacturing method of the photoelectric detection device for photon detection provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
如图2和图3所示,本申请的一实施例提供了一种光电探测装置的制造方法,其可以包括如下步骤:As shown in Figures 2 and 3, one embodiment of the present application provides a method for manufacturing a photoelectric detection device, which may include the following steps:
S1:在所制备的第一衬底上生长出外延层。S1: Grow an epitaxial layer on the prepared first substrate.
在利用第一掺杂剂制备出具有第一导电类型(例如,P型)的第一衬底之后,可以利用第一掺杂剂在该第一衬底的外表面生长出与第一衬底具有相同导电类型的外延层,也就是说,外延层和第一衬底均呈第一导电类型,但所形成的外延层内的掺杂浓度可以低于第一衬底内的掺杂浓度。关于如何制备衬底以及在衬底的外表面生长外延层的方法,可以参照现有技术,在此不再赘叙。After using the first dopant to prepare the first substrate having the first conductivity type (for example, P type), the first dopant may be used to grow a layer on the outer surface of the first substrate that is consistent with the first substrate. The epitaxial layer has the same conductivity type, that is, the epitaxial layer and the first substrate both have the first conductivity type, but the doping concentration in the formed epitaxial layer may be lower than the doping concentration in the first substrate. Regarding how to prepare the substrate and the method of growing the epitaxial layer on the outer surface of the substrate, reference can be made to the existing technology, which will not be described again here.
S2:在外延层中的远离第一衬底的一侧形成呈与第一导电类型相反的第二导电类型的第一掺杂区和第二掺杂区以及呈第一导电类型的第三掺杂区。S2: Form a first doping region and a second doping region of a second conductivity type opposite to the first conductivity type and a third doping region of the first conductivity type on a side of the epitaxial layer away from the first substrate. Miscellaneous area.
在第一衬底上生长出外延层之后,可以在外延层中的远离第一衬底的一侧形成呈与第一导电类型相反的第二导电类型的第一掺杂区和第二掺杂区以及呈第一导电类型的第三掺杂区。如图3所示,所形成的第一掺杂区与第一衬底和外延层中的与第一掺杂区对应的第一区域(即,第一掺杂区下方的区域)可以构成用于探测光子的第一感光元件,以及所形成的第二掺杂区与第一衬底和外延层中的与第二掺杂区对应的第二区域(即,第二掺杂区下方的区域)构成用于探测光子的第二感光元件。After the epitaxial layer is grown on the first substrate, a first doping region of a second conductivity type opposite to the first conductivity type and a second doping region may be formed on a side of the epitaxial layer away from the first substrate. region and a third doped region of the first conductivity type. As shown in FIG. 3 , the formed first doped region, the first substrate and the first region in the epitaxial layer corresponding to the first doped region (that is, the region below the first doped region) may be constituted by The first photosensitive element for detecting photons, the formed second doped region, the first substrate and the second region in the epitaxial layer corresponding to the second doped region (ie, the region below the second doped region ) constitutes a second photosensitive element for detecting photons.
可以按照以下过程来执行该步骤:You can perform this step by following the following procedure:
首先,可以确定出外延层中的远离第一衬底的外表面上的用于形成掺杂区的区域,即,多个有源区。多个有源区可以包括第一有源区、第二有源区和第三有源区。其中,第二有源区位于第一有源区与第三有源区之间。例如,可以将外延层的外表面上的中间部分区域确定为第一有源区,将外延层的外表面上的两侧边缘区域确定为第三有源区,并且将第一有源区和第三有源区之间的部分区域确定为第二有源区,但不限于这些位置。另外,第一有源区、第二有源区和第三有源区的数量、尺寸和具体位置可以根据外延层的尺寸并结合实际需求来确定,或者也可以根据在外延层内形成的阱区和/或掩埋层来确定。First, regions for forming doping regions, that is, a plurality of active regions, on the outer surface of the epitaxial layer away from the first substrate can be determined. The plurality of active areas may include a first active area, a second active area, and a third active area. Wherein, the second active area is located between the first active area and the third active area. For example, the middle partial area on the outer surface of the epitaxial layer can be determined as the first active area, the edge areas on both sides of the outer surface of the epitaxial layer can be determined as the third active area, and the first active area and Partial areas between the third active areas are determined as second active areas, but are not limited to these locations. In addition, the number, size and specific position of the first active region, the second active region and the third active region can be determined according to the size of the epitaxial layer and combined with actual needs, or can also be determined according to the wells formed in the epitaxial layer. area and/or buried layer.
然后,可以利用预设工艺从所确定的第一有源区和第二有源区往外延层中掺入第二掺杂剂以形成呈与第一导电类型相反的第二导电类型的第一掺杂区和第二掺杂区,并且可以利用预设工艺从所确定的第三有源区往外延层中掺入第一掺杂剂以形成呈第一导电类型的第三掺杂区。所形成的第一掺杂区、第二掺杂区以及第三掺杂区的掺杂浓度和深度可以根据实际需求来确定,但三者的掺杂浓度均可以高于外延层的掺杂浓度。该预设工艺可以是离子注入工艺或扩散掺杂工艺,但也不限于这两种工艺。关于这两种工艺的详细描述可以参照现有技术中的相关描述,在此不再赘叙。Then, a second dopant may be doped into the epitaxial layer from the determined first active region and the second active region using a preset process to form a first conductivity type of a second conductivity type opposite to the first conductivity type. a doped region and a second doped region, and a first dopant can be doped into the epitaxial layer from the determined third active region using a preset process to form a third doped region of the first conductivity type. The doping concentration and depth of the formed first doped region, the second doped region and the third doped region can be determined according to actual needs, but the doping concentrations of the three can all be higher than the doping concentration of the epitaxial layer. . The preset process may be an ion implantation process or a diffusion doping process, but is not limited to these two processes. For detailed descriptions of these two processes, reference can be made to the relevant descriptions in the prior art and will not be repeated here.
另外,可以将多个有源区之间的区域确定为无源区。也就是说,外延层的外表面由无源区和有源区构成。In addition, an area between a plurality of active areas may be determined as an inactive area. That is to say, the outer surface of the epitaxial layer consists of passive areas and active areas.
S3:在外延层的所述一侧上方形成与第一感光元件对应的反射结构。S3: Form a reflective structure corresponding to the first photosensitive element above the side of the epitaxial layer.
在形成第一掺杂区之后,可以在外延层的所述一侧上方形成反射结构。具体地,可以在外延层的一侧沉积第一钝化层,然后可以在第一钝化层上的与第一掺杂区对应的位置处形成反射区,例如,可以通过在该位置处沉积具有较高反射率的金属材料或多层结构的介电材料来形成反射区,最后可以在第一钝化层上沉积第二钝化层,其中,形成有反射区的第一钝化层和第二钝化层构成反射结构。After forming the first doped region, a reflective structure may be formed over the side of the epitaxial layer. Specifically, a first passivation layer may be deposited on one side of the epitaxial layer, and then a reflective region may be formed on the first passivation layer at a position corresponding to the first doped region, for example, by depositing A metal material with a higher reflectivity or a dielectric material with a multi-layer structure is used to form a reflective region. Finally, a second passivation layer can be deposited on the first passivation layer, wherein the first passivation layer with the reflective region and The second passivation layer forms a reflective structure.
通过利用该反射结构,可以对该光电探测装置的下侧射入的并且穿过第一掺杂区的光子进行反射,从而可以提高光子探测效率。By utilizing the reflective structure, photons incident on the lower side of the photodetection device and passing through the first doped region can be reflected, thereby improving the photon detection efficiency.
另外,在形成反射区之前,该方法还可以包括:In addition, before forming the reflective area, the method may also include:
在所述第一钝化层中形成与第一掺杂区和第二掺杂区分别连接的多个第一金属互连线,并且在多个第一金属互连线下方形成贯穿第一钝化层和所述外延层的填充有第一金属的多个第一通孔。具体地,可以在第一钝化层上的位于第一掺杂区和第二掺杂区的两侧边缘的上方和/或相邻掺杂区之间的空隙上方并且位于反射区下方的位置处进行刻蚀以形成第一通孔,并且往第一通孔中填充第一金属(例如,钨,但不限于此);然后在多个第一通孔上方分别形成第一金属互连线;接着,可以在各个第一金属互连线下方形成贯穿第一钝化层和外延层的第一通孔,并且往所形成的第一通孔中填充第一金属。所形成的填充有第一金属的第一通孔形成第一掺杂区和第二掺杂区与后续形成的对应焊盘之间的连接通道。A plurality of first metal interconnection lines respectively connected to the first doping region and the second doping region are formed in the first passivation layer, and a penetrating first passivation line is formed under the plurality of first metal interconnection lines. A plurality of first through holes of the first metal are filled in the epitaxial layer and the epitaxial layer. Specifically, it can be at a position on the first passivation layer above the edges on both sides of the first doped region and the second doped region and/or above the gap between adjacent doped regions and below the reflective region. Etching is performed to form a first through hole, and a first metal (for example, tungsten, but not limited to this) is filled into the first through hole; and then first metal interconnection lines are respectively formed above the plurality of first through holes. ; Then, a first via hole penetrating the first passivation layer and the epitaxial layer may be formed under each first metal interconnection line, and the first metal may be filled into the formed first via hole. The formed first through hole filled with the first metal forms a connection channel between the first doped region and the second doped region and the subsequently formed corresponding pad.
S4:对第一衬底进行处理以露出外延层的另一侧。S4: The first substrate is processed to expose the other side of the epitaxial layer.
在外延层上形成第一掺杂区至第三掺杂区之后,可以对第一衬底上的背对外延层的一侧进行处理以露出外延层中的与形成有第一掺杂区至第三掺杂区的一侧相对的另一侧。After the first to third doped regions are formed on the epitaxial layer, a side of the first substrate facing away from the epitaxial layer may be processed to expose the first to third doped regions in the epitaxial layer. One side of the third doped region is opposite the other side.
关于如何对第一衬底进行处理以露出外延层的另一侧的具体方法可以参照现有技术中的相关工艺,在此不再赘叙。Regarding the specific method of processing the first substrate to expose the other side of the epitaxial layer, reference may be made to related processes in the prior art, which will not be described again here.
S5:对外延层的另一侧进行掺杂处理以形成呈第一导电类型的第四掺杂区。S5: Perform doping treatment on the other side of the epitaxial layer to form a fourth doped region of the first conductivity type.
在露出外延层的另一侧之后,可以采用离子注入工艺等预设工艺从另一侧往外延层内注入第一掺杂剂以形成呈第一导电类型的第四掺杂区,该第四掺杂区的掺杂浓度高于外延层的掺杂浓度。After the other side of the epitaxial layer is exposed, a preset process such as an ion implantation process can be used to inject a first dopant into the epitaxial layer from the other side to form a fourth doping region of the first conductivity type. The doping concentration of the doped region is higher than that of the epitaxial layer.
所形成的第四掺杂区可以用于替代第一衬底,其中的对应区域可以成为第一感光元件和第二感光元件的一部分。The formed fourth doped region can be used to replace the first substrate, and corresponding regions therein can become part of the first photosensitive element and the second photosensitive element.
S6:在第四掺杂区的下方形成与第一掺杂区、第二掺杂区以及第三掺杂区分别连接的第一焊盘、第二焊盘以及第三焊盘。S6: Form a first bonding pad, a second bonding pad and a third bonding pad respectively connected to the first doping region, the second doping region and the third doping region under the fourth doping region.
在形成第一掺杂区、第二掺杂区以及第三掺杂区之后,可以在第四掺杂区的下方形成与第一掺杂区、第二掺杂区以及第三掺杂区分别连接的第一焊盘、第二焊盘以及第三焊盘,并且形成第一焊盘与第一掺杂区、第二焊盘与第二掺杂区以及第三焊盘与第三掺杂区之间的金属互连线。该步骤可以具体执行如下:可以在第四掺杂区下方沉积第三钝化层,在第三钝化层中的位于第三掺杂区下方的位置以及与第一通孔对应的位置处分别形成第二通孔,其中,贯穿第一钝化层和外延层的第一通孔与在第三钝化层上形成的对应第二通孔连通,也就是说,这个第二通孔从其形成位置处贯穿第三钝化层和第四掺杂区以与第一通孔连通,然后往所形成的第二通孔中填充第一金属,接着在这些第二通孔下方形成多个第二金属互连线,然后可以在第三钝化层下方沉积第四钝化层,并且对第四钝化层进行刻蚀以露出每个第二金属互连线的一部分,在与第一掺杂区至第三掺杂区分别对应的区域露出的第二金属互连线分别构成了第一焊盘至第三焊盘,这些填充有第一金属的第一通孔和第二通孔以及第一金属互连线和第二互连线实现了各个掺杂区与对应焊盘之间的连接。After the first doping region, the second doping region and the third doping region are formed, the first doping region, the second doping region and the third doping region may be formed under the fourth doping region. The first bonding pad, the second bonding pad and the third bonding pad are connected, and the first bonding pad and the first doping region, the second bonding pad and the second doping region, and the third bonding pad and the third doping region are formed. Metal interconnect lines between areas. This step may be specifically performed as follows: a third passivation layer may be deposited below the fourth doped region, at a position below the third doping region and a position corresponding to the first through hole in the third passivation layer. A second through hole is formed, wherein the first through hole penetrating the first passivation layer and the epitaxial layer is connected to the corresponding second through hole formed on the third passivation layer, that is, this second through hole is formed from the second through hole. The formation position penetrates the third passivation layer and the fourth doping region to communicate with the first through holes, and then fills the first metal into the formed second through holes, and then forms a plurality of third through holes under these second through holes. two metal interconnect lines, a fourth passivation layer may then be deposited beneath the third passivation layer, and the fourth passivation layer may be etched to expose a portion of each second metal interconnect line, after being doped with the first The second metal interconnection lines exposed in the regions corresponding to the impurity region to the third doping region respectively constitute the first to third pads. These first through holes and second through holes filled with the first metal and The first metal interconnection line and the second interconnection line realize the connection between each doped region and the corresponding pad.
另外,可以根据所形成的第一掺杂区和第二掺杂区的数量,在第四掺杂区下方沉积多个由第三钝化层、第二金属互连线和第四钝化层构成的叠层。In addition, a plurality of third passivation layers, second metal interconnect lines and fourth passivation layers may be deposited under the fourth doping region according to the number of the first doped regions and the second doped regions. composed of stacked layers.
此外,第一焊盘可以构成该光电探测装置的用作输出端的第一电极,第二焊盘可以构成该光电探测装置的第二电极,其极性与第一电极相同,例如,二者均为阴极,第三焊盘可以构成该光电探测装置的第三电极,其极性与第一电极和第二电极相反,例如,其为阳极。在实际应用中,通过向第一电极、第二电极和第三电极施加电压,可以使得该光电探测装置测量从目标对象发出的光子,并且根据第一电极输出的测量结果,可以确定该光电探测装置测得的光子数。In addition, the first soldering pad may constitute a first electrode serving as an output terminal of the photoelectric detection device, and the second soldering pad may constitute a second electrode of the photoelectric detecting device, the polarity of which is the same as that of the first electrode, for example, both Being the cathode, the third pad may constitute a third electrode of the photodetection device, and its polarity is opposite to the first electrode and the second electrode, for example, it is the anode. In practical applications, by applying voltage to the first electrode, the second electrode and the third electrode, the photodetection device can be caused to measure photons emitted from the target object, and according to the measurement result output by the first electrode, the photodetection device can be determined The number of photons measured by the device.
在本申请的另一实施例中,如图4和图5所示,在步骤S2之前,该方法还可以包括以下步骤:In another embodiment of the present application, as shown in Figures 4 and 5, before step S2, the method may further include the following steps:
S11:在外延层内形成与第一掺杂区和/或第二掺杂区对应的呈第一导电类型的掩埋层。S11: Form a buried layer of the first conductivity type corresponding to the first doped region and/or the second doped region in the epitaxial layer.
在外延层内形成第一掺杂区和/或第二掺杂区之前,可以在外延层内形成呈第一导电类型的掩埋层(例如,P型掩埋层或N型掩埋层),该掩埋层可以位于第一掺杂区和/或第二掺杂区的下方。也就是说,首先在外延层内形成至少一个掩埋层,然后可以在掩埋层的上方形成第一掺杂区和/或第二掺杂区。关于在外延层内形成掩埋层的具体方式,可以参照现有技术中的相关描述,在此不再赘叙。Before forming the first doped region and/or the second doped region in the epitaxial layer, a buried layer of a first conductivity type (for example, a P-type buried layer or an N-type buried layer) may be formed in the epitaxial layer. The layer may be located beneath the first doped region and/or the second doped region. That is to say, at least one buried layer is first formed in the epitaxial layer, and then the first doped region and/or the second doped region may be formed above the buried layer. Regarding the specific manner of forming the buried layer in the epitaxial layer, reference may be made to the relevant descriptions in the prior art, which will not be described again here.
通过在第一掺杂区和/或第二掺杂区下方形成掩埋层,可以提高在第一感光元件和第二感光元件内的PN结中的耗尽区的宽度,从而可以提高光子吸收深度范围和光子探测效率。By forming a buried layer under the first doped region and/or the second doped region, the width of the depletion region in the PN junction within the first photosensitive element and the second photosensitive element can be increased, thereby increasing the photon absorption depth. range and photon detection efficiency.
在本申请的另一实施例中,如图4和图5所示,在步骤S2之前,该方法还可以包括以下步骤:In another embodiment of the present application, as shown in Figures 4 and 5, before step S2, the method may further include the following steps:
S12:在外延层内形成与第一掺杂区、第二掺杂区和/或第三掺杂区分别对应的第一阱区、第二阱区和/或第三阱区。S12: Form a first well region, a second well region and/or a third well region respectively corresponding to the first doping region, the second doping region and/or the third doping region in the epitaxial layer.
在外延层的一侧上形成第一掺杂区、第二掺杂区和第三掺杂区之前,可以先在外延层内的预设位置处形成第一阱区、第二阱区和/或第三阱区。其中,这些阱区可以位于第一掺杂区、第二掺杂区和/或第三掺杂区的外侧,并且可以分别包围第一掺杂区、第二掺杂区和/或第三掺杂区的至少一部分。具体地:Before forming the first doped region, the second doped region and the third doped region on one side of the epitaxial layer, the first well region, the second well region and/or the first well region may be formed at preset positions in the epitaxial layer. or third well region. Wherein, these well regions may be located outside the first doping region, the second doping region and/or the third doping region, and may respectively surround the first doping region, the second doping region and/or the third doping region. at least part of the complex area. specifically:
在确定出外延层上的将要形成第一掺杂区、第二掺杂区和第三掺杂区的位置之后,可以根据所确定的位置确定出外延层内部的与将要形成的第一掺杂区、第二掺杂区和/或第三掺杂区的位置对应的第一预设位置、第二预设位置和/或第三预设位置。After determining the positions on the epitaxial layer where the first doping region, the second doping region and the third doping region are to be formed, the first doping region inside the epitaxial layer and the to-be-formed first doping region can be determined based on the determined positions. The first preset position, the second preset position and/or the third preset position corresponding to the positions of the region, the second doped region and/or the third doped region.
然后,可以在这些预设位置处分别形成与第一掺杂区、第二掺杂区和/或第三掺杂区对应的第一阱区、第二阱区和/或第三阱区。具体地,可以从第一有源区和/或第二有源区往外延层内的第一预设位置和/或第二预设位置进行第一离子注入,以形成第一阱区和/或第二阱区,例如,N阱,也可以从第三有源区往外延层内的第三预定位置处进行第二离子注入,以形成第三阱区,例如,P阱。其中,第一阱区和第二阱区的掺杂浓度可以相同,但均低于第一掺杂区和第二掺杂区的掺杂浓度;第三阱区的掺杂浓度也可以低于第三掺杂区的掺杂浓度。Then, the first well region, the second well region and/or the third well region corresponding to the first doping region, the second doping region and/or the third doping region may be respectively formed at these preset positions. Specifically, first ions may be implanted from the first active region and/or the second active region to the first preset position and/or the second preset position in the epitaxial layer to form the first well region and/or the second preset position in the epitaxial layer. Or the second well region, for example, N well, may also perform second ion implantation from the third active region to a third predetermined position in the epitaxial layer to form a third well region, for example, P well. Wherein, the doping concentration of the first well region and the second well region may be the same, but both are lower than that of the first doping region and the second doping region; the doping concentration of the third well region may also be lower than The doping concentration of the third doped region.
另外,也可以预先确定出第一预设位置至第三预设位置,然后在这些预设位置处分别形成对应的阱区,再根据所形成的阱区来确定第一掺杂区、第二掺杂区和第三掺杂区的位置。In addition, the first preset position to the third preset position can also be determined in advance, and then corresponding well regions are respectively formed at these preset positions, and the first doping region and the second doping region are determined based on the formed well regions. The location of the doped region and the third doped region.
通过形成第一阱区和第二阱区,可以分别形成对第一掺杂区和第二掺杂区的保护,通过形成第三阱区,可以增强第三掺杂区至衬底之间的导电性。By forming the first well region and the second well region, the first doped region and the second doped region can be protected respectively. By forming the third well region, the connection between the third doped region and the substrate can be enhanced. Conductivity.
需要说明的是,该步骤S12可以在步骤S11之前或之后执行。虽然图5中示出了,掩埋层在阱区下方,但实际上掩埋层也可以在相邻的阱区之间,在此并没有限制。It should be noted that step S12 can be executed before or after step S11. Although FIG. 5 shows that the buried layer is below the well region, in fact, the buried layer can also be between adjacent well regions, and there is no limitation here.
在本申请的另一实施例中,如图4和图5所示,在步骤S2之前,该方法还可以包括以下步骤:In another embodiment of the present application, as shown in Figures 4 and 5, before step S2, the method may further include the following steps:
S13:在外延层中的远离衬底的一侧上形成用于将第一掺杂区、第二掺杂区和第三掺杂区间隔开的隔离区。S13: Form an isolation region for separating the first doped region, the second doped region and the third doped region on a side of the epitaxial layer away from the substrate.
在外延层中的所述一侧形成第一掺杂区、第二掺杂区和第三掺杂区之前,可以首先确定出该外表面上的无源区,然后在这些无源区上形成隔离区。具体地,可以对至少一个无源区进行刻蚀以形成沟槽,并且往沟槽中填充特定材料(例如,氧化物或氮化物),从而可以形成隔离区(例如,STI)。所形成的隔离区可以直接与对应的掺杂区耦接或分离,从而可以提升电学性能或降低噪声。相应地,在步骤S2中,可以根据无源区的位置来确定有源区的位置,例如,可以将多个无源区之间的区域确定为有源区,然后可以在有源区上形成对应的掺杂区。Before forming the first doped region, the second doped region and the third doped region on the side of the epitaxial layer, inactive regions on the outer surface may first be determined and then formed on the inactive regions. quarantine area. Specifically, at least one passive region may be etched to form a trench, and a specific material (eg, oxide or nitride) may be filled into the trench, so that an isolation region (eg, STI) may be formed. The formed isolation region can be directly coupled or separated from the corresponding doped region, thereby improving electrical performance or reducing noise. Correspondingly, in step S2, the position of the active area can be determined according to the position of the inactive area. For example, the area between multiple inactive areas can be determined as the active area, and then an area can be formed on the active area. corresponding doped region.
在本申请的另一实施例中,如图4和图5所示,在步骤S3之前,该方法还可以包括以下步骤:In another embodiment of the present application, as shown in Figures 4 and 5, before step S3, the method may further include the following steps:
S21:在外延层的所述一侧上方制备分别与第一感光元件和第二感光元件连接的淬灭元件。S21: Prepare quenching elements respectively connected to the first photosensitive element and the second photosensitive element above the side of the epitaxial layer.
淬灭元件可以是指以下元件:在第一感光元件和第二感光元件由于探测到大量光子而产生某种物理现象(例如,雪崩击穿现象)时,对第一感光元件和第二感光元件进行淬灭而使第一感光元件和第二感光元件恢复正常探测能力。该淬灭元件可以是电阻或场效应晶体管,并且当淬灭元件为电阻时,可以位于无源区(或隔离区)的上方,而当淬灭元件为场效应晶体管时,其可以位于第一有源区和第二有源区的两侧边缘的上方。此时,第一感光元件和第二感光元件可以是单光子雪崩二极管,该光电探测装置可以是背照式硅光电倍增器。The quenching element may refer to the following element: when the first photosensitive element and the second photosensitive element produce a certain physical phenomenon (for example, avalanche breakdown phenomenon) due to the detection of a large number of photons, the first photosensitive element and the second photosensitive element Quenching is performed to restore the normal detection capabilities of the first photosensitive element and the second photosensitive element. The quenching element can be a resistor or a field effect transistor, and when the quenching element is a resistor, it can be located above the passive region (or isolation region), and when the quenching element is a field effect transistor, it can be located on the first above both edges of the active area and the second active area. At this time, the first photosensitive element and the second photosensitive element may be single photon avalanche diodes, and the photodetection device may be a back-illuminated silicon photomultiplier.
通过在外延层的一侧形成第一掺杂区至第三掺杂区来获得第一感光元件和第二感光元件之后,可以在所述一侧的上方制备与第一感光元件和第二感光元件对应的淬灭元件。具体地,可以在外延层的一侧上的特定区域沉积多晶硅,并且对所沉积的多晶硅进行刻蚀和掺杂处理等,从而获得淬灭元件。该特定区域可以位于第一有源区和第二有源区的两侧边缘的上方(未示出),或者可以位于外延层的外表面上的无源区(或隔离区)的上方。After obtaining the first photosensitive element and the second photosensitive element by forming the first to third doped regions on one side of the epitaxial layer, the first photosensitive element and the second photosensitive element can be prepared above the side The quenching element corresponding to the element. Specifically, polysilicon can be deposited in a specific area on one side of the epitaxial layer, and the deposited polysilicon can be etched, doped, etc., to obtain a quenching element. The specific area may be located above both side edges of the first active area and the second active area (not shown), or may be located above an inactive area (or isolation area) on the outer surface of the epitaxial layer.
关于对多晶硅进行刻蚀和掺杂处理的具体过程,可以参照现有技术中的相关描述。Regarding the specific process of etching and doping polysilicon, reference may be made to relevant descriptions in the prior art.
然后,可以在淬灭元件上方形成填充有第一金属的第三通孔,通过该第三通孔可以与第一金属互连线欧姆接触,从而实现与对应的第一掺杂区或第二掺杂区的连接。Then, a third through hole filled with the first metal may be formed above the quenching element, through which the third through hole may be in ohmic contact with the first metal interconnection line, thereby achieving connection with the corresponding first doping region or the second Connection of doped areas.
需要说明的是,虽然图中没有示出,但多个由淬灭元件、对应的第一掺杂区以及实现二者之间连接的第一金属互连线所构成的支路之间通过其中的第一金属互连线并联并经由第二金属互连线连接至第一焊盘。It should be noted that, although not shown in the figure, a plurality of branches composed of quenching elements, corresponding first doped regions, and first metal interconnection lines connecting the two pass through them. The first metal interconnection lines are connected in parallel and connected to the first pad via the second metal interconnection line.
在本申请的另一实施例中,如图4和图5所示,在步骤S4之前,该方法还可以包括以下步骤:In another embodiment of the present application, as shown in Figures 4 and 5, before step S4, the method may further include the following steps:
S31:将反射结构与所制备的第二衬底键合。S31: Bond the reflective structure to the prepared second substrate.
在形成反射结构后,可以将反射结构键合在所制备的另一衬底(即,第二衬底)上。具体地,将反射结构中的第二钝化层键合在第二衬底上,使得第二衬底可以对包括反射结构、第一感光元件、第二感光元件等所有组件进行支撑。After the reflective structure is formed, the reflective structure may be bonded to another prepared substrate (ie, the second substrate). Specifically, the second passivation layer in the reflective structure is bonded to the second substrate, so that the second substrate can support all components including the reflective structure, the first photosensitive element, the second photosensitive element, etc.
在本申请的另一实施例中,在步骤S6之后,该方法还可以包括以下步骤(图中未示出):In another embodiment of the present application, after step S6, the method may further include the following steps (not shown in the figure):
S61:在第四掺杂区下方的与第一感光元件和/或第二感光元件对应的位置处制备凸透镜。S61: Prepare a convex lens at a position corresponding to the first photosensitive element and/or the second photosensitive element under the fourth doped region.
在形成第四掺杂区之后,可以在第四掺杂区下方的与第一感光元件和/或第二感光元件对应的位置处制备凸透镜以聚光,从而可以提高第一感光元件和/或第二感光元件的光子探测效率。After the fourth doped region is formed, a convex lens can be prepared below the fourth doped region at a position corresponding to the first photosensitive element and/or the second photosensitive element to condense light, so that the first photosensitive element and/or the second photosensitive element can be improved. Photon detection efficiency of the second photosensitive element.
所制备的凸透镜的中心可以对准第一感光元件或第二感光元件的中心,其光路可以避开第一金属互连线,并且当该光电探测装置还设置有淬灭元件的时候,其光路也可以避开淬灭元件。The center of the prepared convex lens can be aligned with the center of the first photosensitive element or the second photosensitive element, its optical path can avoid the first metal interconnection line, and when the photoelectric detection device is also provided with a quenching element, its optical path Quenching elements can also be avoided.
关于如何制备凸透镜,可以参照现有技术中的描述。Regarding how to prepare a convex lens, reference can be made to the description in the prior art.
通过上述描述可以看出,本申请实施例通过在外延层中远离第一衬底的一侧形成有呈第二导电类型的第一掺杂区、第二掺杂区以及位于第二掺杂区外侧的呈第一导电类型的第三掺杂区,这使得第一掺杂区与第三掺杂区被第二掺杂区间隔开,并且仅将与第一掺杂区连接的第一焊盘作为该光电探测装置的输出端,所以与第一掺杂区与第三掺杂区相邻的情况相比,这使得在所得到的光电探测装置处于工作状态时,可以增大在第一感光元件内部形成的PN结中的耗尽区的宽度,并且可以减小器件内部噪声对该PN结的影响,从而可以提高对波长较长的光子的探测效率。而且,通过在在外延层的一侧上方的与第一掺杂区对应的位置处形成反射结构,使得可以对穿过第一掺杂区的光子进行反射,从而可以进一步提高光子的探测效率。It can be seen from the above description that in the embodiment of the present application, a first doped region of the second conductivity type, a second doped region and a second doped region located on the side of the epitaxial layer away from the first substrate are formed. The third doped region on the outside is of the first conductivity type, which causes the first doped region and the third doped region to be separated by the second doped region, and only the first solder connected to the first doped region is The disk serves as the output end of the photodetection device, so compared with the situation where the first doping region and the third doping region are adjacent, this makes it possible to increase the output of the first doping region when the resulting photodetection device is in the working state. The width of the depletion region in the PN junction formed inside the photosensitive element can reduce the impact of device internal noise on the PN junction, thereby improving the detection efficiency of longer wavelength photons. Furthermore, by forming a reflective structure above one side of the epitaxial layer at a position corresponding to the first doped region, photons passing through the first doped region can be reflected, thereby further improving the photon detection efficiency.
需要说明的是,图3和图5中仅示出了该光电探测装置的一部分,其另一部分可以与所示出的部分对称,并且图中示出的组件(例如,第一感光元件和第二感光元件)的数量仅是示意,该光电探测装置可以包括更多第一感光元件和第二感光元件。It should be noted that only a part of the photodetection device is shown in FIGS. 3 and 5 , and the other part may be symmetrical to the shown part, and the components shown in the figures (for example, the first photosensitive element and the The number of two photosensitive elements) is only illustrative, and the photoelectric detection device may include more first photosensitive elements and second photosensitive elements.
上述实施例阐明的系统、装置、模块、单元等,具体可以由芯片和/或实体(例如,分立元件)实现,或者由具有某种功能的产品来实现。为了描述的方便,描述以上装置时以功能分为各种层分别描述。当然,在实施本申请实施例时可以把各层的功能集成在同一个或多个芯片中实现。The systems, devices, modules, units, etc. explained in the above embodiments may be implemented by chips and/or entities (for example, discrete components), or by products with certain functions. For the convenience of description, when describing the above device, the functions are divided into various layers and described separately. Of course, when implementing the embodiments of the present application, the functions of each layer can be integrated into one or more chips.
虽然本申请提供了如上述实施例或附图所述的组件,但基于常规或者无需创造性的劳动在所述装置中可以包括更多或者更少的组件。Although the present application provides components as described in the above embodiments or drawings, more or fewer components may be included in the device based on routine or without creative efforts.
虽然本申请提供了如上述实施例或流程图所述的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。Although this application provides method operation steps as described in the above embodiments or flow charts, more or fewer operation steps may be included in the method based on routine or without creative effort. In steps where there is no necessary causal relationship logically, the execution order of these steps is not limited to the execution order provided by the embodiments of the present application.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。Each embodiment in this specification is described in a progressive manner. The same and similar parts between the various embodiments can be referred to each other. Each embodiment focuses on its differences from other embodiments.
上述实施例是为便于该技术领域的普通技术人员能够理解和使用本申请而描述的。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本申请不限于上述实施例,本领域技术人员根据本申请的揭示,不脱离本申请范畴所做出的改进和修改都应该在本申请的保护范围之内。The above embodiments are described to facilitate understanding and use of the present application by those of ordinary skill in the technical field. It is obvious that those skilled in the art can easily make various modifications to these embodiments and apply the general principles described herein to other embodiments without inventive efforts. Therefore, this application is not limited to the above embodiments. Based on the disclosure of this application, improvements and modifications made by those skilled in the art without departing from the scope of this application should be within the protection scope of this application.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010471023.6A CN111628033B (en) | 2020-05-28 | 2020-05-28 | Method for manufacturing photoelectric detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010471023.6A CN111628033B (en) | 2020-05-28 | 2020-05-28 | Method for manufacturing photoelectric detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111628033A CN111628033A (en) | 2020-09-04 |
CN111628033B true CN111628033B (en) | 2023-10-10 |
Family
ID=72260873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010471023.6A Active CN111628033B (en) | 2020-05-28 | 2020-05-28 | Method for manufacturing photoelectric detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111628033B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114300494B (en) * | 2021-12-29 | 2023-09-26 | 杭州海康微影传感科技有限公司 | Photodiode, photodiode detector and manufacturing method thereof |
CN119364915B (en) * | 2024-12-12 | 2025-03-18 | 成都中微达信科技有限公司 | Photodiode, diode assembly and optical filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103299437A (en) * | 2010-09-08 | 2013-09-11 | 爱丁堡大学评议会 | Single photon avalanche diode for CMOS circuits |
CN104570041A (en) * | 2013-10-23 | 2015-04-29 | 株式会社东芝 | Photodetector |
CN106129169A (en) * | 2016-08-12 | 2016-11-16 | 武汉京邦科技有限公司 | A kind of semiconductor optoelectronic multiplier device |
CN106981542A (en) * | 2017-03-29 | 2017-07-25 | 武汉京邦科技有限公司 | A kind of manufacture method of semiconductor optoelectronic multiplier device |
CN109659374A (en) * | 2018-11-12 | 2019-04-19 | 深圳市灵明光子科技有限公司 | Photodetector, the preparation method of photodetector, photodetector array and photodetection terminal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8368159B2 (en) * | 2011-07-08 | 2013-02-05 | Excelitas Canada, Inc. | Photon counting UV-APD |
US20140159180A1 (en) * | 2012-12-06 | 2014-06-12 | Agency For Science, Technology And Research | Semiconductor resistor structure and semiconductor photomultiplier device |
KR101964891B1 (en) * | 2013-01-28 | 2019-08-07 | 삼성전자주식회사 | Digital Silicon Photomultiplier Detector Cell |
KR20140102944A (en) * | 2013-02-15 | 2014-08-25 | 한국전자통신연구원 | Silicon photomultiplier and method for manufacturing the silicon photomultiplier |
US10636818B2 (en) * | 2018-04-04 | 2020-04-28 | Avago Technologies International Sales Pte. Limited | Semiconductor device and sensor including a single photon avalanche diode (SPAD) structure |
-
2020
- 2020-05-28 CN CN202010471023.6A patent/CN111628033B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103299437A (en) * | 2010-09-08 | 2013-09-11 | 爱丁堡大学评议会 | Single photon avalanche diode for CMOS circuits |
CN104570041A (en) * | 2013-10-23 | 2015-04-29 | 株式会社东芝 | Photodetector |
CN106129169A (en) * | 2016-08-12 | 2016-11-16 | 武汉京邦科技有限公司 | A kind of semiconductor optoelectronic multiplier device |
CN106981542A (en) * | 2017-03-29 | 2017-07-25 | 武汉京邦科技有限公司 | A kind of manufacture method of semiconductor optoelectronic multiplier device |
CN109659374A (en) * | 2018-11-12 | 2019-04-19 | 深圳市灵明光子科技有限公司 | Photodetector, the preparation method of photodetector, photodetector array and photodetection terminal |
Also Published As
Publication number | Publication date |
---|---|
CN111628033A (en) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7576371B1 (en) | Structures and methods to improve the crosstalk between adjacent pixels of back-illuminated photodiode arrays | |
JP6090060B2 (en) | Single photon avalanche diode | |
US7112465B2 (en) | Fabrication methods for ultra thin back-illuminated photodiode array | |
US10347670B2 (en) | Photodetection element | |
JP5837689B2 (en) | Photon counting UV-APD | |
CN100550405C (en) | Solid imaging device and manufacture method thereof | |
US7462553B2 (en) | Ultra thin back-illuminated photodiode array fabrication methods | |
CN105448945B (en) | Coplanar electrode photoelectric diode array and preparation method thereof | |
CN109690792A (en) | SPAD photodiode | |
CN111628034B (en) | Manufacturing method of photoelectric detection device | |
JP2017005276A (en) | Single photon avalanche diode | |
CN109891605A (en) | Avalanche photodide | |
CN113690337B (en) | Single photon avalanche diode, manufacturing method thereof and single photon avalanche diode array | |
US20230178677A1 (en) | Single-photon avalanche photodiode | |
CN111628033B (en) | Method for manufacturing photoelectric detection device | |
CN111279493B (en) | Integrated sensor for ionizing radiation and ionizing particles | |
JP2001237452A (en) | Photodiode and method of manufacturing photodiode | |
CN211980629U (en) | Semiconductor device and photodetection system | |
US8120078B2 (en) | Photodiode structure | |
CN111540804A (en) | Semiconductor device and photodetection system | |
CN111540805A (en) | Semiconductor devices and photodetection systems | |
CN114122186B (en) | Silicon photomultiplier with pixel edge and low electric field intensity and manufacturing method thereof | |
JP7199013B2 (en) | photodetector | |
CN119384049A (en) | Back-illuminated photodiode structure and preparation method, X-ray detector | |
CN118315396A (en) | Photomultiplier and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 436044 A03, Ezhou new high-tech creative city, Wutong Lake New District, Ezhou, Hubei Patentee after: Hubei Ruiguang Technology Co.,Ltd. Country or region after: China Address before: 436044 A03, Ezhou new high-tech creative city, Wutong Lake New District, Ezhou, Hubei Patentee before: HUBEI JOINBON TECHNOLOGY CO.,LTD. Country or region before: China |
|
CP03 | Change of name, title or address |