[go: up one dir, main page]

CN111524966B - 一种降低高压互连影响的横向高压器件 - Google Patents

一种降低高压互连影响的横向高压器件 Download PDF

Info

Publication number
CN111524966B
CN111524966B CN202010358929.7A CN202010358929A CN111524966B CN 111524966 B CN111524966 B CN 111524966B CN 202010358929 A CN202010358929 A CN 202010358929A CN 111524966 B CN111524966 B CN 111524966B
Authority
CN
China
Prior art keywords
type doped
doped impurity
region
impurity
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010358929.7A
Other languages
English (en)
Other versions
CN111524966A (zh
Inventor
周锌
师锐鑫
乔明
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN202010358929.7A priority Critical patent/CN111524966B/zh
Publication of CN111524966A publication Critical patent/CN111524966A/zh
Application granted granted Critical
Publication of CN111524966B publication Critical patent/CN111524966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • H10D30/655Lateral DMOS [LDMOS] FETs having edge termination structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs
    • H10D30/657Lateral DMOS [LDMOS] FETs having substrates comprising insulating layers, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/60Impurity distributions or concentrations

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种降低高压互连影响的横向高压器件,包括第一型掺杂杂质接触区、第二型掺杂杂质接触区、第一型掺杂杂质阱区、第二型掺杂杂质阱区、第一型掺杂杂质外延层、第一型掺杂杂质漂移区、绝缘埋层、第二型掺杂杂质衬底、源电极、栅电极、漏电极、栅氧化层、硅局部氧化隔离氧化层,器件高压互连区的漂移区设置为线性变掺杂,降低高压互连线对器件表面电场的影响,提高器件击穿电压。

Description

一种降低高压互连影响的横向高压器件
技术领域
本发明属于半导体功率器件领域,具体涉及一种降低高压互连影响的横向高压器件。
背景技术
器件设计的样式大部分为跑道型,主要分为两部分区域:高压互连区和非高压互连区,其中高压互连区指的是高压互连线(High Voltage Interconnection,简称HVI)下方的区域结构。当高压互连线跨过横向双扩散金属氧化物半导体场效应管LDMOS(LateralDouble-Diffused MOSFET)等高压器件的漂移区时,会导致电场线在器件表面的某个地方过于集中,从而使器件提前发生击穿,无法达到预期耐压值。因此研究一种降低高压互连影响的横向高压器件具有重大的意义。
发明内容
本发明针对在高压互连电路中,高压互连线跨过横向器件表面时,导致电场线在器件局部区域过于集中,在器件表面产生感应电荷,使漂移区难以完全耗尽,造成器件提前发生击穿的问题,提供一种降低高压互连影响的横向高压器件。本发明通过改变高压互连区漂移区掺杂方式,设计高压互连区的漂移区掺杂浓度为线性分布,从而降低源端电场峰值,提高漏端电场峰值,优化表面电场分布,提高器件击穿电压。
为了实现上述发明目的,技术方案如下:
一种降低高压互连影响的横向高压器件,包括非高压互连区结构和高压互连区结构;
非高压互连区结构包括第二型掺杂杂质衬底8、在第二型掺杂杂质衬底8上形成的绝缘埋层7,在绝缘埋层7上形成第一型掺杂杂质外延层5,在第一型掺杂杂质外延层5左侧通过离子注入形成第二型掺杂杂质阱区3,置于第二型掺杂杂质阱区3内部表面重掺杂的第一型掺杂杂质接触区1及第一型掺杂杂质接触区1相邻的第二型掺杂杂质接触区2,在第一型掺杂杂质外延层5的右侧通过离子注入形成的第一型掺杂杂质阱区4,置于第一型掺杂杂质阱区4内部表面重掺杂的第一型掺杂杂质接触区1,第一型掺杂杂质外延层5表面的硅局部氧化隔离氧化层12,栅氧化层11置于硅局部氧化隔离氧化层12左侧的半导体器件表面,栅氧化层11覆盖第二型掺杂杂质阱区3右侧表面,并覆盖部分第一型掺杂杂质接触区1及部分第一型掺杂杂质外延层5表面,栅电极10置于栅氧化层11之上并覆盖部分硅局部氧化隔离氧化层12,源电极9位于第二型掺杂杂质阱区3中的第一型掺杂杂质接触区1和第二型掺杂杂质接触区2表面的上方,并将第一型掺杂杂质接触区1和第二型掺杂杂质接触区2短接,漏电极13位于第一型掺杂杂质阱区4内的第一型掺杂杂质接触区1的表面;
高压互连区结构包括第二型掺杂杂质衬底8、在第二型掺杂杂质衬底8上形成的绝缘埋层7,在绝缘埋层7上形成通过离子注入形成的第一型掺杂杂质漂移区,第一型掺杂杂质漂移区从左到右依次包括第一型掺杂杂质漂移区a、第一型掺杂杂质漂移区b、第一型掺杂杂质漂移区c、第一型掺杂杂质漂移区d、第一型掺杂杂质漂移区e,在第一型掺杂杂质漂移区a左侧通过离子注入形成第二型掺杂杂质阱区3,置于第二型掺杂杂质阱区3内部表面重掺杂的第二型掺杂杂质接触区2,在第一型掺杂杂质漂移区e的右侧通过离子注入形成的第一型掺杂杂质阱区4,置于第一型掺杂杂质阱区4内部表面重掺杂的第一型掺杂杂质接触区1,第一型掺杂杂质漂移区表面设有硅局部氧化隔离氧化层12,栅氧化层11置于硅局部氧化隔离氧化层12左侧的半导体器件表面,栅氧化层11覆盖第二型掺杂杂质阱区3右侧表面,并覆盖部分第二型掺杂杂质接触区2及部分第一型掺杂杂漂移区表面,栅电极10置于栅氧化层11 之上并覆盖部分硅局部氧化隔离氧化层12,源电极9位于第二型掺杂杂质阱区3中的第二型掺杂杂质接触区2表面的上方,漏电极13位于第一型掺杂杂质阱区4内的第一型掺杂杂质接触区1的表面,并且跨过器件表面。
作为优选方式,所述器件结构的非高压互连区的第一型掺杂杂质外延层5和高压互连区的第一型掺杂杂质漂移区的掺杂浓度不同,在不影响非高压互连区耐压的同时,优化高压互连区表面电场分布,提高器件击穿电压。
作为优选方式,所述器件的非高压互连区第一型掺杂杂质外延层5和高压互连区的第一型掺杂杂质漂移区是在不同的工艺步骤中形成。
作为优选方式,所述器件高压互连区的第一型掺杂杂质漂移区a、第一型掺杂杂质漂移区b、第一型掺杂杂质漂移区c、第一型掺杂杂质漂移区d、第一型掺杂杂质漂移区e的掺杂浓度依次递增,其目的在于降低源端电场峰值,提高漏端电场峰值。
作为优选方式,所述的第一型掺杂杂质为施主型,第二型掺杂杂质为受主型时,此时,电极相对源极偏置在正电位;所述第一型掺杂杂质为受主型,第二型掺杂杂质为施主型时,此时,电极相对于源极偏置在负电位。
本发明的有益效果为:通过设计高压互连区漂移区为线性变掺杂分布,优化源极和漏极的表面电场分布,提高器件的击穿电压。
附图说明
图1为本发明实施例提供的一种降低高压互连影响的横向高压器件的跑道型版图结构示意图;
图2为沿本发明图1中AB线的截面示意图,即非高压互连区器件结构示意图;
图3为沿本发明图1中AC线的截面示意图,即高压互连区器件结构示意图;
图4为本发明实施例高压互连区第一型掺杂杂质漂移区掺杂浓度分布示意图。
1为第一型掺杂杂质接触区,2为第二型掺杂杂质接触区,3为第二型掺杂杂质阱区,4 为第一型掺杂杂质阱区,5为第一型掺杂杂质外延层,61为第一型掺杂杂质漂移区a,62为第一型掺杂杂质漂移区b,63为第一型掺杂杂质漂移区c,64为第一型掺杂杂质漂移区d,65 为第一型掺杂杂质漂移区e,7为绝缘埋层,8为第二型掺杂杂质衬底,9为源电极,10为栅电极,11为栅氧化层,12为硅局部氧化隔离氧化层,13为漏电极。
具体实施方式
如图1所示,器件结构主要包括两部分:沿图1中AB线截面的非高压互连区结构和沿图1中AC线截面的高压互连区结构;
非高压互连区结构包括第二型掺杂杂质衬底8、在第二型掺杂杂质衬底8上形成的绝缘埋层7,在绝缘埋层7上形成第一型掺杂杂质外延层5,在第一型掺杂杂质外延层5左侧通过离子注入形成第二型掺杂杂质阱区3,置于第二型掺杂杂质阱区3内部表面重掺杂的第一型掺杂杂质接触区1及第一型掺杂杂质接触区1相邻的第二型掺杂杂质接触区2,在第一型掺杂杂质外延层5的右侧通过离子注入形成的第一型掺杂杂质阱区4,置于第一型掺杂杂质阱区4内部表面重掺杂的第一型掺杂杂质接触区1,第一型掺杂杂质外延层5表面的硅局部氧化隔离氧化层12,栅氧化层11置于硅局部氧化隔离氧化层12左侧的半导体器件表面,栅氧化层11覆盖第二型掺杂杂质阱区3右侧表面,并覆盖部分第一型掺杂杂质接触区1及部分第一型掺杂杂质外延层5表面,栅电极10置于栅氧化层11之上并覆盖部分硅局部氧化隔离氧化层12,源电极9位于第二型掺杂杂质阱区3中的第一型掺杂杂质接触区1和第二型掺杂杂质接触区2表面的上方,并将第一型掺杂杂质接触区1和第二型掺杂杂质接触区2短接,漏电极13位于第一型掺杂杂质阱区4内的第一型掺杂杂质接触区1的表面;
高压互连区结构包括第二型掺杂杂质衬底8、在第二型掺杂杂质衬底8上形成的绝缘埋层7,在绝缘埋层7上形成通过离子注入形成的第一型掺杂杂质漂移区,第一型掺杂杂质漂移区从左到右依次包括第一型掺杂杂质漂移区a、第一型掺杂杂质漂移区b、第一型掺杂杂质漂移区c、第一型掺杂杂质漂移区d、第一型掺杂杂质漂移区e,在第一型掺杂杂质漂移区a左侧通过离子注入形成第二型掺杂杂质阱区3,置于第二型掺杂杂质阱区3内部表面重掺杂的第二型掺杂杂质接触区2,在第一型掺杂杂质漂移区e的右侧通过离子注入形成的第一型掺杂杂质阱区4,置于第一型掺杂杂质阱区4内部表面重掺杂的第一型掺杂杂质接触区1,第一型掺杂杂质漂移区表面设有硅局部氧化隔离氧化层12,栅氧化层11置于硅局部氧化隔离氧化层12左侧的半导体器件表面,栅氧化层11覆盖第二型掺杂杂质阱区3右侧表面,并覆盖部分第二型掺杂杂质接触区2及部分第一型掺杂杂漂移区表面,栅电极10置于栅氧化层11 之上并覆盖部分硅局部氧化隔离氧化层12,源电极9位于第二型掺杂杂质阱区3中的第二型掺杂杂质接触区2表面的上方,漏电极13位于第一型掺杂杂质阱区4内的第一型掺杂杂质接触区1的表面,并且跨过器件表面。
所述器件结构的非高压互连区的第一型掺杂杂质外延层5和高压互连区的第一型掺杂杂质漂移区的掺杂浓度不同,在不影响非高压互连区耐压的同时,优化高压互连区表面电场分布,提高器件击穿电压。
所述器件的非高压互连区第一型掺杂杂质外延层5和高压互连区的第一型掺杂杂质漂移区是在不同的工艺步骤中形成。
所述器件高压互连区的第一型掺杂杂质漂移区a、第一型掺杂杂质漂移区b、第一型掺杂杂质漂移区c、第一型掺杂杂质漂移区d、第一型掺杂杂质漂移区e的掺杂浓度依次递增,其目的在于降低源端电场峰值,提高漏端电场峰值。
所述的第一型掺杂杂质为施主型,第二型掺杂杂质为受主型时,此时,电极相对源极偏置在正电位;所述第一型掺杂杂质为受主型,第二型掺杂杂质为施主型时,此时,电极相对于源极偏置在负电位。
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。

Claims (4)

1.一种降低高压互连影响的横向高压器件,其特征在于:包括非高压互连区结构和高压互连区结构;
非高压互连区结构包括第二型掺杂杂质衬底(8)、在第二型掺杂杂质衬底(8)上形成的绝缘埋层(7),在绝缘埋层(7)上形成第一型掺杂杂质外延层(5),在第一型掺杂杂质外延层(5)左侧通过离子注入形成第二型掺杂杂质阱区(3),置于第二型掺杂杂质阱区(3)内部表面重掺杂的第一型掺杂杂质接触区(1)及第一型掺杂杂质接触区(1)相邻的第二型掺杂杂质接触区(2),在第一型掺杂杂质外延层(5)的右侧通过离子注入形成的第一型掺杂杂质阱区(4),置于第一型掺杂杂质阱区(4)内部表面重掺杂的第一型掺杂杂质接触区(1),第一型掺杂杂质外延层(5)表面的硅局部氧化隔离氧化层(12),栅氧化层(11)置于硅局部氧化隔离氧化层(12)左侧的半导体器件表面,栅氧化层(11)覆盖第二型掺杂杂质阱区(3)右侧表面,并覆盖部分第二型掺杂杂质阱区(3)内部表面的第一型掺杂杂质接触区(1)及部分第一型掺杂杂质外延层(5)表面,栅电极(10)置于栅氧化层(11)之上并覆盖部分硅局部氧化隔离氧化层(12),源电极(9)位于第二型掺杂杂质阱区(3)中的第一型掺杂杂质接触区(1)和第二型掺杂杂质接触区(2)表面的上方,并将第二型掺杂杂质阱区(3)内部表面的第一型掺杂杂质接触区(1)和第二型掺杂杂质接触区(2)短接,漏电极(13)位于第一型掺杂杂质阱区(4)内的第一型掺杂杂质接触区(1)的表面;
高压互连区结构包括第二型掺杂杂质衬底(8)、在第二型掺杂杂质衬底(8)上形成的绝缘埋层(7),在绝缘埋层(7)上形成通过离子注入形成的第一型掺杂杂质漂移区,第一型掺杂杂质漂移区从左到右依次包括第一型掺杂杂质漂移区a(61)、第一型掺杂杂质漂移区b(62)、第一型掺杂杂质漂移区c(63)、第一型掺杂杂质漂移区d(64)、第一型掺杂杂质漂移区e(65),在第一型掺杂杂质漂移区a(61)左侧通过离子注入形成第二型掺杂杂质阱区(3),置于第二型掺杂杂质阱区(3)内部表面重掺杂的第二型掺杂杂质接触区(2),在第一型掺杂杂质漂移区e(65)的右侧通过离子注入形成的第一型掺杂杂质阱区(4),置于第一型掺杂杂质阱区(4)内部表面重掺杂的第一型掺杂杂质接触区(1),第一型掺杂杂质漂移区表面设有硅局部氧化隔离氧化层(12),栅氧化层(11)置于硅局部氧化隔离氧化层(12)左侧的半导体器件表面,栅氧化层(11)覆盖第二型掺杂杂质阱区(3)右侧表面,并覆盖部分第二型掺杂杂质接触区(2)及部分第一型掺杂杂质漂移区表面,栅电极(10)置于栅氧化层(11)之上并覆盖部分硅局部氧化隔离氧化层(12),源电极(9)位于第二型掺杂杂质阱区(3)中的第二型掺杂杂质接触区(2)表面的上方,漏电极(13)位于第一型掺杂杂质阱区(4)内的第一型掺杂杂质接触区(1)的表面,并且跨过器件表面;
所述器件高压互连区的第一型掺杂杂质漂移区a(61)、第一型掺杂杂质漂移区b(62)、第一型掺杂杂质漂移区c(63)、第一型掺杂杂质漂移区d(64)、第一型掺杂杂质漂移区e(65)的掺杂浓度依次递增。
2.根据权利要求1所述的一种降低高压互连影响的横向高压器件,其特征在于:非高压互连区的第一型掺杂杂质外延层(5)和高压互连区的第一型掺杂杂质漂移区的掺杂浓度不同。
3.根据权利要求1所述的一种降低高压互连影响的横向高压器件,其特征在于:所述器件的非高压互连区第一型掺杂杂质外延层(5)和高压互连区的第一型掺杂杂质漂移区是在不同的工艺步骤中形成。
4.根据权利要求1至3任意一项所述的一种降低高压互连影响的横向高压器件,其特征在于:所述的第一型掺杂杂质为施主型,第二型掺杂杂质为受主型时,此时,电极相对源极偏置在正电位;所述第一型掺杂杂质为受主型,第二型掺杂杂质为施主型时,此时,电极相对于源极偏置在负电位。
CN202010358929.7A 2020-04-29 2020-04-29 一种降低高压互连影响的横向高压器件 Active CN111524966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010358929.7A CN111524966B (zh) 2020-04-29 2020-04-29 一种降低高压互连影响的横向高压器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010358929.7A CN111524966B (zh) 2020-04-29 2020-04-29 一种降低高压互连影响的横向高压器件

Publications (2)

Publication Number Publication Date
CN111524966A CN111524966A (zh) 2020-08-11
CN111524966B true CN111524966B (zh) 2021-08-03

Family

ID=71905790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010358929.7A Active CN111524966B (zh) 2020-04-29 2020-04-29 一种降低高压互连影响的横向高压器件

Country Status (1)

Country Link
CN (1) CN111524966B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987166B (zh) * 2020-09-07 2022-09-20 杰华特微电子股份有限公司 横向双扩散晶体管的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301044A (zh) * 1999-12-22 2001-06-27 松下电工株式会社 半导体器件及其制造方法
US20040175892A1 (en) * 2001-12-07 2004-09-09 Xiaoju Wu Method of manufacturing and structure of semiconductor device with field oxide structure
US20130277739A1 (en) * 2010-10-28 2013-10-24 Texas Instruments Incorporated Integrated Lateral High Voltage Mosfet
CN105097922A (zh) * 2014-05-22 2015-11-25 上海北京大学微电子研究院 一种soi功率ldmos场效应晶体管的结构及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301044A (zh) * 1999-12-22 2001-06-27 松下电工株式会社 半导体器件及其制造方法
US20040175892A1 (en) * 2001-12-07 2004-09-09 Xiaoju Wu Method of manufacturing and structure of semiconductor device with field oxide structure
US20130277739A1 (en) * 2010-10-28 2013-10-24 Texas Instruments Incorporated Integrated Lateral High Voltage Mosfet
CN105097922A (zh) * 2014-05-22 2015-11-25 上海北京大学微电子研究院 一种soi功率ldmos场效应晶体管的结构及其制造方法

Also Published As

Publication number Publication date
CN111524966A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN110610994B (zh) 一种横向双扩散金属氧化物半导体场效应晶体管
US9660074B2 (en) Methods and apparatus for LDMOS devices with cascaded RESURF implants and double buffers
US7968941B2 (en) Semiconductor device
TWI524520B (zh) 功率金氧半場效電晶體與其形成方法
US9099552B2 (en) Semiconductor device and method of manufacturing the same
CN102169903B (zh) Ldmos器件
CN103681862B (zh) 半导体器件及其制造方法
US10388741B2 (en) Semiconductor device with arrangement of semiconductor regions for improving breakdown voltages
TWI548091B (zh) 半導體裝置、半導體裝置之製造方法、電子裝置及車輛
CN111987148A (zh) 集成芯片、高电压器件及形成高电压晶体管器件的方法
CN105070759A (zh) Nldmos器件及其制造方法
CN106057905A (zh) 沟槽栅场效应晶体管及制造方法
KR101450437B1 (ko) Ldmos 소자와 그 제조 방법
US20130056824A1 (en) Semiconductor device and manufacturing method for the same
CN104900691B (zh) 半导体元件及其制作方法
CN104603949A (zh) 半导体器件
CN111524966B (zh) 一种降低高压互连影响的横向高压器件
CN105679831B (zh) 横向扩散场效应晶体管及其制造方法
CN111524964B (zh) 降低高压互连影响的横向器件及制备方法
CN113782609B (zh) 一种衬底电荷耦合的1200v体硅ldmos及其制备方法
CN115274859A (zh) Ldmos晶体管及其制造方法
CN111524965B (zh) 降低高压互连影响的横向器件及制备方法
CN108899282B (zh) 带有电荷平衡结构的沟槽栅场效应晶体管及其制造方法
US10008594B2 (en) High voltage semiconductor device
CN111524962B (zh) 降低高压互连影响的器件结构及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant