CN111426919A - Basin-type insulator detection device based on laser-induced ultrasound - Google Patents
Basin-type insulator detection device based on laser-induced ultrasound Download PDFInfo
- Publication number
- CN111426919A CN111426919A CN202010267611.8A CN202010267611A CN111426919A CN 111426919 A CN111426919 A CN 111426919A CN 202010267611 A CN202010267611 A CN 202010267611A CN 111426919 A CN111426919 A CN 111426919A
- Authority
- CN
- China
- Prior art keywords
- laser
- signal
- basin
- ultrasonic
- carbon nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 67
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 48
- 230000005284 excitation Effects 0.000 claims abstract description 34
- 238000012545 processing Methods 0.000 claims abstract description 28
- 230000007547 defect Effects 0.000 claims abstract description 27
- 230000001360 synchronised effect Effects 0.000 claims abstract description 10
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000001066 destructive effect Effects 0.000 claims 1
- 238000007689 inspection Methods 0.000 claims 1
- 238000009659 non-destructive testing Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000002679 ablation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1209—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1218—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种基于激光诱导超声的盆式绝缘子检测装置,其激光器控制系统控制激光器激励系统输出脉冲激光。脉冲激光直射在贴附于待检测盆式绝缘子表面的碳纳米增强介质上。放置在激光入射路径边缘的光电探测器接收激光器激励系统发射的脉冲激光的余光,作为信号检测处理系统的同步触发信号,启动信号检测处理系统工作。在脉冲激光激励下碳纳米增强介质在盆式绝缘子内部产生高强高频的超声波信号,待检测盆式绝缘子表面放置的空耦超声换能器接收超声信号,经信号检测处理系统放大、滤波后由计算机采集系统采集。利用小波包分解将超声波信号分解为不同的频率范围,再用小波包系数组成的矩阵表征缺陷某一深度下的信号状态,根据不同的信号状态表征缺陷状态。
A pot-type insulator detection device based on laser-induced ultrasound, the laser control system of which controls the laser excitation system to output pulsed laser light. The pulsed laser is directly irradiated on the carbon nano-reinforced medium attached to the surface of the basin insulator to be tested. The photodetector placed at the edge of the laser incident path receives the residual light of the pulsed laser emitted by the laser excitation system as a synchronous trigger signal of the signal detection and processing system to start the signal detection and processing system. Under the excitation of the pulsed laser, the carbon nano-enhanced medium generates high-intensity and high-frequency ultrasonic signals inside the basin insulator. The air-coupled ultrasonic transducer placed on the surface of the basin insulator to be detected receives the ultrasonic signal, which is amplified and filtered by the signal detection and processing system. Computer acquisition system acquisition. The ultrasonic signal is decomposed into different frequency ranges by wavelet packet decomposition, and then the matrix composed of wavelet packet coefficients is used to represent the signal state at a certain depth of the defect, and the defect state is characterized according to different signal states.
Description
技术领域technical field
本发明涉及一种盆式绝缘子检测装置。The invention relates to a pot-type insulator detection device.
背景技术Background technique
无损检测(Nondestructive Testing,简称NDT)技术的主要内涵是保证在不损害被检测对象的使用性能的前提下,利用材料内部结构异常或缺陷存在所引起的对热、声、光、电、磁等反应的变化,对被检测对象的材料、零部件、结构进行检测,以此来判断该检测对象的可靠性、完整性、连续性以及一些物理性能。无损检测涉及了物理学、材料学、电子信息技术等多个学科及技术领域。The main connotation of Nondestructive Testing (NDT) technology is to ensure that, on the premise of not compromising the performance of the tested object, the detection of heat, sound, light, electricity, magnetism, etc. caused by abnormal internal structure or defects of the material is used. The change of the reaction is to detect the material, parts and structure of the detected object, so as to judge the reliability, integrity, continuity and some physical properties of the detected object. Non-destructive testing involves many disciplines and technical fields such as physics, materials science, and electronic information technology.
目前对于盆式绝缘子常规的检测方法包括超声波检测、脉冲电流检测、X光检测、红外热像检测以及声发射检测技术等,传统检测技术在盆式绝缘子的检测中取得了很好的效果,但任何一种单一的方法都不可能实现所有盆式绝缘子的高灵敏检测,尤其对微细缺陷和疲劳损伤的盆式绝缘子的检测,因此急需一种快速、缺陷定位精确、简捷、高灵敏的盆式绝缘子缺陷检测装置。At present, the conventional detection methods for basin insulators include ultrasonic detection, pulse current detection, X-ray detection, infrared thermal imaging detection and acoustic emission detection technology, etc. The traditional detection technology has achieved good results in the detection of basin insulators, but It is impossible for any single method to achieve highly sensitive detection of all pot insulators, especially for the detection of micro defects and fatigue damage. Insulator defect detection device.
专利CN201910405768.X“基于外壳振动信号的GIS盆式绝缘子检测装置及方法”直接利用电子电路检测到盆式绝缘子的振动信号,含有缺陷的盆式绝缘子与完好的盆式绝缘子相比,波形的整体变化趋势基本相同,但含有缺陷的盆式绝缘子振动信号的波形幅值明显减小,由此来实现对盆式绝缘子的无损检测。该方法检测操作复杂,需要搭建复杂的电子电路,同时很容易出现误判,检测不准确,易受到噪声信号的干扰。还有基于超声信号的无损检测方法,例如专利CN201910509272.7“一种GIS环氧绝缘内部缺陷超声检测方法及系统”,该方法直接利用超声仪产生超声信号,超声检测系统检测标准件,获取标准件无缺陷的反射波波形;采用缺陷评判方法对环氧绝缘内部气泡和裂纹进行评判,然后,沿探头移动路径继续对盆式绝缘子进行检测。其产生的超声信号模式单一,不能同时实现对于盆式绝缘子表面缺陷和内部缺陷检测。Patent CN201910405768.X "GIS basin insulator detection device and method based on shell vibration signal" directly uses electronic circuit to detect the vibration signal of basin insulator. Compared with the intact basin insulator, the overall waveform of the faulty basin insulator The change trend is basically the same, but the waveform amplitude of the vibration signal of the basin-type insulator with defects is obviously reduced, thereby realizing the non-destructive testing of the basin-type insulator. The detection operation of this method is complicated, complex electronic circuits need to be built, and at the same time, misjudgment is easy to occur, the detection is inaccurate, and it is easily interfered by noise signals. There are also non-destructive testing methods based on ultrasonic signals, such as the patent CN201910509272.7 "A method and system for ultrasonic testing of internal defects of GIS epoxy insulation". This method directly uses an ultrasonic instrument to generate ultrasonic signals, and the ultrasonic testing system detects standard parts and obtains standard parts. The defect-free reflected wave waveform is obtained; the defect evaluation method is used to evaluate the bubbles and cracks in the epoxy insulation, and then, the basin-type insulator is continuously inspected along the moving path of the probe. The ultrasonic signal mode generated by it is single, and it cannot detect the surface defects and internal defects of the basin insulator at the same time.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有接触式无损检测的操作复杂、成本高、检测灵敏度不高,且危险性大的缺点,提出一种基于激光诱导超声的盆式绝缘子检测装置。The purpose of the present invention is to overcome the disadvantages of complex operation, high cost, low detection sensitivity and high risk of existing contact non-destructive testing, and to propose a basin-type insulator testing device based on laser-induced ultrasound.
本发明检检测装置包括激光器控制系统、激光器激励系统、光电探测器、待检测盆式绝缘子、超声波接收系统和信号检测处理系统。激光器控制系统连接激光器激励系统,激光器激励系统包括脉冲激光器、激光准直系统和光学透镜,用于实现聚焦激光对碳纳米增强介质的激励。碳纳米增强介质均匀涂覆于待检测盆式绝缘子的表面,涂覆厚度小于100微米。超声波接收系统连接信号检测处理系统的输出端,光电探测器通过接收脉冲激光器出射的脉冲激光的余光作为信号检测处理系统的同步触发信号,启动信号检测处理系统与激光器激励系统和超声波接收系统同步工作。超声波接收系统采用空耦超声换能器实现超声波信号的非接触接收,空耦超声换能器和被测盆式绝缘子之间通过空气耦合,空耦超声换能器的检测面与待检测盆式绝缘子表面垂直。The detection and detection device of the present invention includes a laser control system, a laser excitation system, a photoelectric detector, a basin-type insulator to be detected, an ultrasonic receiving system and a signal detection and processing system. The laser control system is connected with the laser excitation system, and the laser excitation system includes a pulsed laser, a laser collimation system and an optical lens, and is used to realize the excitation of the carbon nano-enhanced medium by the focused laser. The carbon nano-reinforced medium is uniformly coated on the surface of the basin-type insulator to be tested, and the coating thickness is less than 100 microns. The ultrasonic receiving system is connected to the output end of the signal detection and processing system. The photodetector receives the residual light of the pulsed laser emitted by the pulsed laser as the synchronization trigger signal of the signal detection and processing system, and starts the signal detection and processing system to synchronize with the laser excitation system and the ultrasonic receiving system. Work. The ultrasonic receiving system uses an air-coupled ultrasonic transducer to achieve non-contact reception of ultrasonic signals. The air-coupled ultrasonic transducer and the measured basin insulator are coupled through air, and the detection surface of the air-coupled ultrasonic transducer The insulator surface is vertical.
本发明在待检测的盆式绝缘子表面涂覆碳纳米增强介质薄膜。所述的激光器激励系统包括脉冲激光器、激光准直系统和光学透镜。激光器激励系统用于实现聚焦激光对碳纳米增强介质的激励,激脉冲激光器发射的激光束与激光准直器的主轴和光学透镜主轴重合,激光准直器对脉冲激光发射的激光束进行扩束和准直,光学透镜对准直后的激光束聚焦,使其焦点聚焦到紧密贴附在盆式绝缘子表面的碳纳米增强介质薄膜上。由于碳纳米增强介质具有高的光声转换效率,在热弹性机制下,碳纳米增强介质薄膜和盆式绝缘子表面同时产生宽频超声波,超声波在盆式绝缘子内部传播,在待检测盆式绝缘子表面放置的空耦超声换能器接收超声波信号;所述的空耦超声换能器的检测面与待测盆式绝缘子的表面垂直,空耦超声换能器接收到超声波信号后由计算机对超声波信号进行处理表征缺陷状态并重建热声源分布。In the invention, the surface of the basin-type insulator to be detected is coated with a carbon nano-reinforced dielectric film. The laser excitation system includes a pulsed laser, a laser collimation system and an optical lens. The laser excitation system is used to realize the excitation of the carbon nano-reinforced medium by the focused laser. The laser beam emitted by the laser pulse laser coincides with the main axis of the laser collimator and the main axis of the optical lens, and the laser collimator expands the laser beam emitted by the pulse laser. And collimation, the optical lens is focused on the collimated laser beam, and its focus is focused on the carbon nano-enhanced dielectric film closely attached to the surface of the basin insulator. Due to the high photoacoustic conversion efficiency of the carbon nano-enhanced medium, under the thermoelastic mechanism, the carbon nano-enhanced medium film and the surface of the basin insulator generate broadband ultrasonic waves simultaneously. The ultrasonic wave propagates inside the basin insulator and is placed on the surface of the basin insulator to be tested. The air-coupled ultrasonic transducer receives ultrasonic signals; the detection surface of the air-coupled ultrasonic transducer is perpendicular to the surface of the basin-type insulator to be tested, and the ultrasonic signal is processed by the computer after the air-coupled ultrasonic transducer receives the ultrasonic signal. The process characterizes the defect state and reconstructs the thermoacoustic source distribution.
所述的表征缺陷状态的方法描述如下:对接收到的超声波信号首先利用小波包分解将接收信号分解为不同的频率范围,然后用小波包系数组成的矩阵表征缺陷某一深度下的信号状态,并根据不同的信号状态表征不同的缺陷状态,从而实现盆式绝缘子缺陷的高灵敏、快速无损检测。The described method for characterizing the defect state is described as follows: the received ultrasonic signal is firstly decomposed into different frequency ranges by using wavelet packet decomposition, and then a matrix composed of wavelet packet coefficients is used to characterize the signal state at a certain depth of the defect, Different defect states are characterized according to different signal states, so as to realize highly sensitive and fast nondestructive detection of basin insulator defects.
所述的重建热声源分布的方法如下:The described method for reconstructing the distribution of thermoacoustic sources is as follows:
激光照射在碳纳米增强介质上,碳纳米增强介质的热传导方程为:When the laser is irradiated on the carbon nano-reinforced medium, the heat conduction equation of the carbon nano-reinforced medium is:
其中,ρ为碳纳米增强介质的密度,C为碳纳米增强介质比热容,T为温度,κ为碳纳米增强介质固体的热传导率,Q为碳纳米增强介质吸收的激光能量,t为温度变量;Among them, ρ is the density of the carbon nano-enhanced medium, C is the specific heat capacity of the carbon nano-enhanced medium, T is the temperature, κ is the thermal conductivity of the carbon nano-enhanced medium solid, Q is the laser energy absorbed by the carbon nano-enhanced medium, and t is the temperature variable;
超声波信号产生的位移方程为:The displacement equation generated by the ultrasonic signal is:
其中,λ为碳纳米增强介质的拉梅系数,μ为碳纳米增强介质的剪切模量,u为在盆式绝缘子内产生的位移矢量,β为热弹性耦合系数,β=α(3λ+2μ),α为热膨胀系数,为梯度算子。Among them, λ is the Lame coefficient of the carbon nano-reinforced medium, μ is the shear modulus of the carbon nano-reinforced medium, u is the displacement vector generated in the basin insulator, β is the thermoelastic coupling coefficient, β=α(3λ+ 2μ), α is the thermal expansion coefficient, is the gradient operator.
由方程(1)和方程(2)联合重建出热声源β△T的分布。The distribution of thermal sound source βΔT is reconstructed jointly by equation (1) and equation (2).
本发明的检测装置的具体工作过程如下:The specific working process of the detection device of the present invention is as follows:
所述的激光器控制系统连接激光器激励系统,激光器控制系统首先输出同步触发信号,激光器激励系统接收到同步触发信号后启动激光器输出脉冲激光,输出的脉冲激光能量100-600mJ,脉冲宽度小于20微秒,脉冲激光通过激光准直系统准直,直射在紧密贴于待检测盆式绝缘子表面的碳纳米增强介质上。放置在激光入射路径边缘的光电探测器通过接收激光器激励系统出射的脉冲激光的余光作为信号检测处理系统的同步触发信号,启动信号检测处理系统工作。待检测盆式绝缘子表面的碳纳米增强介质在脉冲激光激励下,由于热弹或烧蚀机制在盆式绝缘子内部产生高强和高频超声波,超声波在盆式绝缘子内部传播,利用盆式绝缘子表面放置的空耦超声换能器接收超声波信号,信号检测处理系统对空耦超声换能器接收到的超声波信号进行前置放大、滤波和二次放大后由计算机采集系统采集超声波信号,然后计算机利用采集的超声波信号表征缺陷状态并重建热声源分布。The laser control system is connected to the laser excitation system. The laser control system first outputs a synchronous trigger signal. After receiving the synchronous trigger signal, the laser excitation system starts the laser to output pulsed laser light. The output pulsed laser energy is 100-600mJ, and the pulse width is less than 20 microseconds. , the pulsed laser is collimated by a laser collimation system, and is directed directly on the carbon nano-enhanced medium closely attached to the surface of the basin insulator to be detected. The photodetector placed at the edge of the laser incident path receives the residual light of the pulsed laser emitted by the laser excitation system as the synchronous trigger signal of the signal detection and processing system, and starts the signal detection and processing system to work. Under the excitation of pulsed laser, the carbon nano-reinforced medium on the surface of the basin insulator to be tested generates high-intensity and high-frequency ultrasonic waves inside the basin type insulator due to the thermal bomb or ablation mechanism, and the ultrasonic wave propagates inside the basin type insulator. The air-coupled ultrasonic transducer receives the ultrasonic signal, and the signal detection and processing system pre-amplifies, filters and amplifies the ultrasonic signal received by the air-coupled ultrasonic transducer, and then collects the ultrasonic signal by the computer acquisition system. The ultrasonic signal of the characterizes the defect state and reconstructs the thermoacoustic source distribution.
碳纳米增强介质具有的高激光吸收率,高热传导率、低比热容和高热膨胀系数特性,且碳纳米增强介质的纳米结构,使得碳纳米增强介质向周围介质传热速率特别快,并具有高的杨氏模量,因此使用碳纳米增强介质作为激光超声换能器能够产生高幅度和高频的超声波信号。超声波信号在盆式绝缘子中传播。当盆式绝缘子中含有裂缝、气泡、杂质等缺陷时,其声阻抗发生变化,通过接收的回波信号判断盆式绝缘子中的缺陷状态,实现盆式绝缘子的无损检测。The carbon nano-reinforced medium has the characteristics of high laser absorption rate, high thermal conductivity, low specific heat capacity and high thermal expansion coefficient, and the nanostructure of the carbon nano-reinforced medium makes the heat transfer rate of the carbon nano-reinforced medium to the surrounding medium extremely fast, and has a high heat transfer rate. Young's modulus, so the use of carbon nano-reinforced medium as a laser ultrasonic transducer can generate high-amplitude and high-frequency ultrasonic signals. The ultrasonic signal propagates in the basin insulator. When the basin insulator contains defects such as cracks, bubbles, impurities, etc., its acoustic impedance changes, and the defect state in the basin insulator is judged by the received echo signal, so as to realize the non-destructive testing of the basin insulator.
本发明产生的超声波信号具有高幅度、宽频率、声模式丰富等特点,检测精度高、检测效率高,具有广泛的应用前景。The ultrasonic signal generated by the invention has the characteristics of high amplitude, wide frequency, rich acoustic modes, etc., high detection accuracy and high detection efficiency, and has wide application prospects.
附图说明Description of drawings
图1为本发明系统结构示意图;1 is a schematic diagram of the system structure of the present invention;
图中,1激光器控制系统,2激光器激励系统,3光电探测器,4待检测盆式绝缘子,5超声波接收系统,6信号检测处理系统。In the figure, 1 laser control system, 2 laser excitation system, 3 photodetector, 4 basin insulator to be detected, 5 ultrasonic receiving system, 6 signal detection and processing system.
具体实施方式Detailed ways
以下结合附图和具体实施方式进一步说明本发明。The present invention is further described below with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明检测装置包括激光器控制系统1、激光器激励系统2、光电探测器3、待检测盆式绝缘子4、超声波接收系统5和信号检测处理系统6。激光器控制系统1连接激光激励系统2,激光器激励系统2发出的脉冲激光聚焦在待检测盆式绝缘子4上。待检测盆式绝缘子4与和超声波接收系统5的空耦超声换能器通过空气耦合;超声波接收系统5连接信号检测处理系统6。光电探测器3放置在激光入射路径边缘,和信号检测处理系统6连接。As shown in FIG. 1 , the detection device of the present invention includes a
空耦超声换能器的检测面与待测盆式绝缘子4的表面垂直。The detection surface of the air-coupled ultrasonic transducer is perpendicular to the surface of the
激光器激励系统2包括激光器激励系统包括脉冲激光器、激光准直系统和光学透镜,用于实现聚焦激光对碳纳米增强介质的激励。脉冲激光器发射的激光束与激光准直系统的主轴和光学透镜主轴重合,激光准直系统对脉冲激光发射的激光束进行扩束和准直,随后光学透镜对准直后的激光束进行聚焦,使其焦点聚焦到均匀涂覆于待检测盆式绝缘子4表面的碳纳米增强介质上。The
光电探测器3通过接收脉冲激光器发射的脉冲激光的余光作为信号检测处理系统6的同步触发信号,启动信号检测处理系统6与激光器激励系统2和超声波接收系统5同步工作。碳纳米增强介质的涂覆厚度小于100微米。由于碳纳米增强介质高的激光超声转换效率,在待检测盆式绝缘子4内部产生高强和高频的超声波信号,超声波信号在待检测盆式绝缘子4内部传播,在待检测盆式绝缘子4表面放置的空耦超声换能器接收超声波信号,所述的空耦超声换能器的检测面与待测盆式绝缘子4的表面垂直,空耦超声换能器接收到超声波信号后由计算机对超声波信号进行处理表征缺陷状态并重建热声源分布。The
本发明检测装置的具体工作过程如下:The concrete working process of the detection device of the present invention is as follows:
激光器控制系统1首先输出同步触发信号,激光器激励系统2接收到同步触发信号后启动激光器输出脉冲激光,输出的脉冲激光能量100-600mJ,脉冲宽度小于20微秒,脉冲激光通过光学透镜、激光准直系统进行准直,聚焦在紧密贴附于待检测盆式绝缘子4表面的碳纳米增强介质上。放置在激光入射路径边缘的光电探测器3接收激光器激励系统2发射的脉冲激光的余光,作为信号检测处理系统6的同步触发信号,启动信号检测处理系统6与激光器激励系统2和超声波接收系统5同步工作;待检测盆式绝缘子4表面的碳纳米增强介质的涂覆厚度小于100微米,在脉冲激光激励下,由于碳纳米增强介质热弹或烧蚀机制,在盆式绝缘子内部产生高强和高频超声波,超声波在待检测盆式绝缘子4内部传播。所述的空耦超声换能器的检测面与待测盆式绝缘子4的表面垂直,待检测盆式绝缘子4表面放置的空耦超声换能器接收超声波信号,信号检测处理系统6对空耦超声换能器接收到的超声波信号进行前置放大、滤波和二次放大后,由计算机采集系统采集超声波信号,然后计算机利用采集的超声波信号表征缺陷状态并重建热声源分布。The
所述的表征缺陷状态的方法描述如下:首先利用小波包分解将采集的超声波信号分解为不同的频率范围,再用小波包系数组成的矩阵表征缺陷某一深度下的信号状态,并根据不同的信号状态表征不同的缺陷状态,实现对待检测盆式绝缘子4的无损检测。The described method for characterizing the defect state is described as follows: first, the collected ultrasonic signal is decomposed into different frequency ranges by using wavelet packet decomposition, and then a matrix composed of wavelet packet coefficients is used to characterize the signal state at a certain depth of the defect. The signal states represent different defect states and realize non-destructive testing of the
所述的重建热声源分布重建方法如下:The method for reconstructing the distribution of the reconstructed thermoacoustic source is as follows:
激光照射在碳纳米增强介质上,碳纳米增强介质的热传导过程可表示为:When the laser is irradiated on the carbon nano-reinforced medium, the thermal conduction process of the carbon nano-reinforced medium can be expressed as:
其中,ρ为碳纳米增强介质的密度,C为碳纳米增强介质比热容,T为温度,κ为碳纳米增强介质固体的热传导率,Q为碳纳米增强介质吸收的激光能量,t为温度变量。由于激光脉宽非常短,热弹性机制或者烧蚀机制产生热应力导致温度的分布不均匀,从而在待检测盆式绝缘子4中产生位移场:Among them, ρ is the density of the carbon nano-enhanced medium, C is the specific heat capacity of the carbon nano-enhanced medium, T is the temperature, κ is the thermal conductivity of the carbon nano-enhanced medium solid, Q is the laser energy absorbed by the carbon nano-enhanced medium, and t is the temperature variable. Due to the very short laser pulse width, the thermal stress generated by the thermoelastic mechanism or the ablation mechanism results in an uneven temperature distribution, thereby generating a displacement field in the
其中,λ为碳纳米增强介质的拉梅系数,μ为碳纳米增强介质的剪切模量,u为在盆式绝缘子内产生的位移矢量,β为热弹性耦合系数,β=α(3λ+2μ),α为热膨胀系数,为梯度算子。Among them, λ is the Lame coefficient of the carbon nano-reinforced medium, μ is the shear modulus of the carbon nano-reinforced medium, u is the displacement vector generated in the basin insulator, β is the thermoelastic coupling coefficient, β=α(3λ+ 2μ), α is the thermal expansion coefficient, is the gradient operator.
待检测盆式绝缘子4为固体介质,超声传播为体波,因此位移场可分解为纵波波动方程(3)和横波波动方程(4):The
其中,纵波波速横波波速 为拉普拉斯算符,Φ为纵波的势函数Ψ为横波的势函数,t为时间,下标L表示纵波,S表示横波。Among them, the longitudinal wave velocity Shear wave velocity is the Laplace operator, Φ is the potential function of the longitudinal wave, Ψ is the potential function of the shear wave, t is the time, the subscript L represents the longitudinal wave, and S represents the shear wave.
结合方程(5)和方程(6),由方程(3)和方程(4)求解出待检测盆式绝缘子4中产生的热声源分布。Combined with equation (5) and equation (6), the thermal sound source generated in the
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Modifications or equivalent replacements are made to the specific embodiments of the present invention, and any modifications or equivalent replacements that do not depart from the spirit and scope of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010267611.8A CN111426919A (en) | 2020-04-08 | 2020-04-08 | Basin-type insulator detection device based on laser-induced ultrasound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010267611.8A CN111426919A (en) | 2020-04-08 | 2020-04-08 | Basin-type insulator detection device based on laser-induced ultrasound |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111426919A true CN111426919A (en) | 2020-07-17 |
Family
ID=71557638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010267611.8A Pending CN111426919A (en) | 2020-04-08 | 2020-04-08 | Basin-type insulator detection device based on laser-induced ultrasound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111426919A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067697A (en) * | 2020-07-23 | 2020-12-11 | 西安交通大学 | A method for locating defects based on laser ultrasound B-scan |
CN112098520A (en) * | 2020-10-20 | 2020-12-18 | 北京石油化工学院 | Detection system and method for detecting internal defect shape of material based on laser ultrasonic |
CN112285505A (en) * | 2020-10-27 | 2021-01-29 | 国网重庆市电力公司电力科学研究院 | GIS detection imaging device based on laser focusing enhancement technology |
CN112417717A (en) * | 2020-10-27 | 2021-02-26 | 国网重庆市电力公司电力科学研究院 | GIS internal detection laser focus detection imaging analysis method and readable storage medium |
CN113189208A (en) * | 2021-03-17 | 2021-07-30 | 东莞理工学院 | Ultrasonic characteristic detection method and detection system for lithium battery |
CN114460012A (en) * | 2022-01-21 | 2022-05-10 | 山东大学 | Ultrasonic intensity enhancing method suitable for underwater environment laser ultrasonic material detection and application |
CN115389619A (en) * | 2022-08-17 | 2022-11-25 | 北京大学长三角光电科学研究院 | Material defect detection method and device, electronic equipment and computer storage medium |
CN115453278A (en) * | 2022-08-10 | 2022-12-09 | 中国科学院电工研究所 | Detection method, device and system for gas insulated switchgear |
CN115950765A (en) * | 2023-03-10 | 2023-04-11 | 国网山西省电力公司电力科学研究院 | System and method for detecting shear stress intensity of epoxy component of GIS basin-type insulator |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101125088A (en) * | 2007-09-11 | 2008-02-20 | 西安交通大学 | An ultrasonic real-time non-destructive human body temperature measurement device and temperature measurement method |
CN101889194A (en) * | 2007-12-06 | 2010-11-17 | 洛克希德马丁公司 | Non-destructive inspection using laser- ultrasound and infrared thermography |
CN102175775A (en) * | 2011-01-14 | 2011-09-07 | 河南工业大学 | Food quality testing system and method based on laser ultrasound erosion mechanism |
CN102798667A (en) * | 2012-08-16 | 2012-11-28 | 山东省科学院激光研究所 | Metal defect detection method of laser-electromagnetic ultrasonic nondestructive testing system |
CN203350228U (en) * | 2013-06-26 | 2013-12-18 | 桂林电子科技大学 | Ultrasonic detection device of high-voltage pillar porcelain insulator |
CN103513102A (en) * | 2013-09-25 | 2014-01-15 | 暨南大学 | Detecting method based on multi-frequency stimulation Duffing chaotic oscillator weak signal detection system |
CN103616437A (en) * | 2013-11-25 | 2014-03-05 | 广东汕头超声电子股份有限公司 | Ultrasonic testing device for composite insulator |
CN103760243A (en) * | 2014-02-26 | 2014-04-30 | 长沙理工大学 | Microcrack nondestructive testing device and method |
CN103901109A (en) * | 2014-03-31 | 2014-07-02 | 华南理工大学 | Phased array ultrasonic detection device and method for inner defects of composite insulator |
CN105424802A (en) * | 2015-11-10 | 2016-03-23 | 华南理工大学 | Ultrasonic guided-wave detecting system for defect of composite insulator and detecting method of ultrasonic guided-wave detecting system |
CN105572224A (en) * | 2015-12-21 | 2016-05-11 | 广东省自动化研究所 | Air-coupled ultrasonic imaging method based on wavelet analysis and related algorithms |
CN105807431A (en) * | 2016-05-06 | 2016-07-27 | 华侨大学 | Optical system for precisely regulating and controlling size of hollow light beam |
CN205910157U (en) * | 2016-07-29 | 2017-01-25 | 吉林省长春电力勘测设计院有限公司 | Be arranged in distribution overhead line porcelain insulator detection device |
CN106872584A (en) * | 2017-01-12 | 2017-06-20 | 国家电网公司 | Ultrasound couple device and ultrasonic coupling method for composite insulator ultrasound detection |
CN106932698A (en) * | 2017-04-26 | 2017-07-07 | 三峡大学 | A kind of livewire work device of transmission line composite insulator defects detection |
CN106950278A (en) * | 2017-03-07 | 2017-07-14 | 重庆大学 | Nondestructive detection system and method based on impulse eddy current thermo-acoustic technology |
CN107037083A (en) * | 2017-04-12 | 2017-08-11 | 湖南科技大学 | A kind of ultrasonic infrared thermal imagery crack nondestructive detection excitation parameters method for optimizing |
CN107085040A (en) * | 2017-04-21 | 2017-08-22 | 华南理工大学 | A detection method for composite insulator debonding based on torsional mode ultrasonic guided wave |
CN107478728A (en) * | 2017-08-15 | 2017-12-15 | 重庆大学 | A kind of lossless detection method of composite insulator |
CN109030411A (en) * | 2018-06-19 | 2018-12-18 | 电子科技大学 | A kind of composite insulator degree of aging detection method based on continuous modulation laser irradiation |
CN109490414A (en) * | 2018-11-22 | 2019-03-19 | 江苏方天电力技术有限公司 | A kind of disc insulator defect fault detection method |
CN109856238A (en) * | 2019-03-20 | 2019-06-07 | 北京航空航天大学 | A kind of lithium ion battery air blister defect detection method based on ultrasonic detecting technology |
CN110068753A (en) * | 2019-05-16 | 2019-07-30 | 国网山西省电力公司检修分公司 | GIS detecting device for basin type insulator and method based on case vibration signal |
CN110243935A (en) * | 2019-06-13 | 2019-09-17 | 华南理工大学 | A GIS epoxy insulation internal defect ultrasonic testing method and system |
CN110501424A (en) * | 2019-08-19 | 2019-11-26 | 国家电网有限公司 | A laser ultrasonic all-optical non-destructive testing device for tension clamps |
CN110702608A (en) * | 2019-10-18 | 2020-01-17 | 国网浙江宁波市奉化区供电有限公司 | An insulator detection device and method based on laser remote excitation |
CN110806427A (en) * | 2019-11-27 | 2020-02-18 | 云南电网有限责任公司电力科学研究院 | On-line detection method and system for internal defect of line composite insulator |
CN110967408A (en) * | 2019-12-09 | 2020-04-07 | 中南大学 | Device and method for measuring sensitivity of air coupling ultrasonic probe |
-
2020
- 2020-04-08 CN CN202010267611.8A patent/CN111426919A/en active Pending
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101125088A (en) * | 2007-09-11 | 2008-02-20 | 西安交通大学 | An ultrasonic real-time non-destructive human body temperature measurement device and temperature measurement method |
CN101889194A (en) * | 2007-12-06 | 2010-11-17 | 洛克希德马丁公司 | Non-destructive inspection using laser- ultrasound and infrared thermography |
CN102175775A (en) * | 2011-01-14 | 2011-09-07 | 河南工业大学 | Food quality testing system and method based on laser ultrasound erosion mechanism |
CN102798667A (en) * | 2012-08-16 | 2012-11-28 | 山东省科学院激光研究所 | Metal defect detection method of laser-electromagnetic ultrasonic nondestructive testing system |
CN203350228U (en) * | 2013-06-26 | 2013-12-18 | 桂林电子科技大学 | Ultrasonic detection device of high-voltage pillar porcelain insulator |
CN103513102A (en) * | 2013-09-25 | 2014-01-15 | 暨南大学 | Detecting method based on multi-frequency stimulation Duffing chaotic oscillator weak signal detection system |
CN103616437A (en) * | 2013-11-25 | 2014-03-05 | 广东汕头超声电子股份有限公司 | Ultrasonic testing device for composite insulator |
CN103760243A (en) * | 2014-02-26 | 2014-04-30 | 长沙理工大学 | Microcrack nondestructive testing device and method |
CN103901109A (en) * | 2014-03-31 | 2014-07-02 | 华南理工大学 | Phased array ultrasonic detection device and method for inner defects of composite insulator |
CN105424802A (en) * | 2015-11-10 | 2016-03-23 | 华南理工大学 | Ultrasonic guided-wave detecting system for defect of composite insulator and detecting method of ultrasonic guided-wave detecting system |
CN105572224A (en) * | 2015-12-21 | 2016-05-11 | 广东省自动化研究所 | Air-coupled ultrasonic imaging method based on wavelet analysis and related algorithms |
CN105807431A (en) * | 2016-05-06 | 2016-07-27 | 华侨大学 | Optical system for precisely regulating and controlling size of hollow light beam |
CN205910157U (en) * | 2016-07-29 | 2017-01-25 | 吉林省长春电力勘测设计院有限公司 | Be arranged in distribution overhead line porcelain insulator detection device |
CN106872584A (en) * | 2017-01-12 | 2017-06-20 | 国家电网公司 | Ultrasound couple device and ultrasonic coupling method for composite insulator ultrasound detection |
CN106950278A (en) * | 2017-03-07 | 2017-07-14 | 重庆大学 | Nondestructive detection system and method based on impulse eddy current thermo-acoustic technology |
CN107037083A (en) * | 2017-04-12 | 2017-08-11 | 湖南科技大学 | A kind of ultrasonic infrared thermal imagery crack nondestructive detection excitation parameters method for optimizing |
CN107085040A (en) * | 2017-04-21 | 2017-08-22 | 华南理工大学 | A detection method for composite insulator debonding based on torsional mode ultrasonic guided wave |
CN106932698A (en) * | 2017-04-26 | 2017-07-07 | 三峡大学 | A kind of livewire work device of transmission line composite insulator defects detection |
CN107478728A (en) * | 2017-08-15 | 2017-12-15 | 重庆大学 | A kind of lossless detection method of composite insulator |
CN109030411A (en) * | 2018-06-19 | 2018-12-18 | 电子科技大学 | A kind of composite insulator degree of aging detection method based on continuous modulation laser irradiation |
CN109490414A (en) * | 2018-11-22 | 2019-03-19 | 江苏方天电力技术有限公司 | A kind of disc insulator defect fault detection method |
CN109856238A (en) * | 2019-03-20 | 2019-06-07 | 北京航空航天大学 | A kind of lithium ion battery air blister defect detection method based on ultrasonic detecting technology |
CN110068753A (en) * | 2019-05-16 | 2019-07-30 | 国网山西省电力公司检修分公司 | GIS detecting device for basin type insulator and method based on case vibration signal |
CN110243935A (en) * | 2019-06-13 | 2019-09-17 | 华南理工大学 | A GIS epoxy insulation internal defect ultrasonic testing method and system |
CN110501424A (en) * | 2019-08-19 | 2019-11-26 | 国家电网有限公司 | A laser ultrasonic all-optical non-destructive testing device for tension clamps |
CN110702608A (en) * | 2019-10-18 | 2020-01-17 | 国网浙江宁波市奉化区供电有限公司 | An insulator detection device and method based on laser remote excitation |
CN110806427A (en) * | 2019-11-27 | 2020-02-18 | 云南电网有限责任公司电力科学研究院 | On-line detection method and system for internal defect of line composite insulator |
CN110967408A (en) * | 2019-12-09 | 2020-04-07 | 中南大学 | Device and method for measuring sensitivity of air coupling ultrasonic probe |
Non-Patent Citations (3)
Title |
---|
徐天勇等: "基于超声相控阵复合绝缘子检测方法研究", 《传感检测系统》 * |
秦楷等: "支柱瓷绝缘子损伤检测技术的研究现状", 《绝缘材料》 * |
范兴明等: "超声无损检测及其在电力绝缘子探伤中的应用", 《高压电器》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067697A (en) * | 2020-07-23 | 2020-12-11 | 西安交通大学 | A method for locating defects based on laser ultrasound B-scan |
CN112098520A (en) * | 2020-10-20 | 2020-12-18 | 北京石油化工学院 | Detection system and method for detecting internal defect shape of material based on laser ultrasonic |
CN112285505A (en) * | 2020-10-27 | 2021-01-29 | 国网重庆市电力公司电力科学研究院 | GIS detection imaging device based on laser focusing enhancement technology |
CN112417717A (en) * | 2020-10-27 | 2021-02-26 | 国网重庆市电力公司电力科学研究院 | GIS internal detection laser focus detection imaging analysis method and readable storage medium |
CN113189208A (en) * | 2021-03-17 | 2021-07-30 | 东莞理工学院 | Ultrasonic characteristic detection method and detection system for lithium battery |
CN114460012A (en) * | 2022-01-21 | 2022-05-10 | 山东大学 | Ultrasonic intensity enhancing method suitable for underwater environment laser ultrasonic material detection and application |
CN114460012B (en) * | 2022-01-21 | 2023-11-14 | 山东大学 | An ultrasonic intensity enhancement method and application suitable for laser ultrasonic material detection in underwater environments |
CN115453278A (en) * | 2022-08-10 | 2022-12-09 | 中国科学院电工研究所 | Detection method, device and system for gas insulated switchgear |
CN115389619A (en) * | 2022-08-17 | 2022-11-25 | 北京大学长三角光电科学研究院 | Material defect detection method and device, electronic equipment and computer storage medium |
CN115950765A (en) * | 2023-03-10 | 2023-04-11 | 国网山西省电力公司电力科学研究院 | System and method for detecting shear stress intensity of epoxy component of GIS basin-type insulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111426919A (en) | Basin-type insulator detection device based on laser-induced ultrasound | |
Chimenti | Review of air-coupled ultrasonic materials characterization | |
Dhital et al. | A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation | |
EP2316018B1 (en) | Nondestructive testing apparatus and method | |
Zeng et al. | High-resolution air-coupled laser ultrasound imaging of microstructure and defects in braided CFRP | |
Pelivanov et al. | A 1 kHz a-scan rate pump-probe laser-ultrasound system for robust inspection of composites | |
CN111323480B (en) | A handheld auto-focus laser ultrasonic nondestructive testing system | |
CN112067696A (en) | System for detecting surface defects of pipeline based on laser ultrasonic | |
Faëse et al. | Beam shaping to enhance zero group velocity Lamb mode generation in a composite plate and nondestructive testing application | |
CN106324034A (en) | Infrared detection method for cracks of thermal barrier coating | |
CN1168980C (en) | Method and device for measuring photoacoustic signals in biological tissue using probe ultrasound beam | |
Song et al. | All-optical laser ultrasonic technique for imaging of subsurface defects in carbon fiber reinforced polymer (CFRP) using an optical microphone | |
Chen et al. | A modified synthetic aperture focusing algorithm used for transmission detection based on laser ultrasonics method | |
Grager et al. | Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts | |
Xue et al. | Nondestructive testing of internal defects by ring-laser-excited ultrasonic | |
Dhital et al. | Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation | |
Hosoya et al. | Lamb waves evaluation in CFRP plates with laser shock wave technique | |
Pelivanov et al. | Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner | |
Zalameda et al. | Air coupled acoustic thermography (ACAT) inspection technique | |
CN211697658U (en) | Handheld automatic focusing laser ultrasonic nondestructive testing system | |
Green Jr | Emerging technologies for NDE of aging aircraft structures | |
Imano | Detection of drilled hole on subsurface of aluminum plate with rayleigh ultrasonic wave field by laser probing | |
Abbasi et al. | Wave-mode configurable ultrasonic non-destructive evaluation system using optoacoustic prism | |
CN113324916B (en) | Laser ultrasonic tomography device and method for strain clamp | |
US11726069B2 (en) | Methods and systems for evaluating a target using pulsed, energetic particle beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200717 |
|
RJ01 | Rejection of invention patent application after publication |