CN112098520A - Detection system and method for detecting internal defect shape of material based on laser ultrasonic - Google Patents
Detection system and method for detecting internal defect shape of material based on laser ultrasonic Download PDFInfo
- Publication number
- CN112098520A CN112098520A CN202011122574.8A CN202011122574A CN112098520A CN 112098520 A CN112098520 A CN 112098520A CN 202011122574 A CN202011122574 A CN 202011122574A CN 112098520 A CN112098520 A CN 112098520A
- Authority
- CN
- China
- Prior art keywords
- excitation
- laser
- detection
- path
- data acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 76
- 239000000463 material Substances 0.000 title claims abstract description 66
- 230000007547 defect Effects 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000005284 excitation Effects 0.000 claims abstract description 102
- 239000000523 sample Substances 0.000 claims abstract description 33
- 239000000835 fiber Substances 0.000 claims abstract description 17
- 239000013307 optical fiber Substances 0.000 claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009659 non-destructive testing Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/27—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种基于激光超声检测材料内部缺陷形状的检测系统及方法,包括激励模块、检测模块、数据采集处理模块、精密二维移动平台,所述精密二维移动平台上放置被测材料;激励模块包括脉冲激光发生器、散热器、控制手柄、激发光路和激光发射探头;检测模块包括光纤分离器、双波混合干涉仪、连续激光发生器和光纤;数据采集处理模块包括NI PXI‑5114数据采集卡、超声波检测探头和PC机。通过对被测材料的两面进行激光超声热弹模式C扫检测,提取超声波信号中纵波时间,计算内部缺陷外表面到被测平面的距离,对内部缺陷进行三维重构,得到内部缺陷的形状和方位。可以有效检测板材内部缺陷,并对内部缺陷进行三维重构,掌握内部缺陷的形状和方位。
The invention discloses a detection system and method based on laser ultrasonic detection of the shape of internal defects of materials, comprising an excitation module, a detection module, a data acquisition and processing module, and a precise two-dimensional mobile platform, on which a material to be tested is placed ; Excitation module includes pulsed laser generator, heat sink, control handle, excitation light path and laser emission probe; Detection module includes fiber splitter, dual-wave hybrid interferometer, CW laser generator and optical fiber; Data acquisition and processing module includes NI PXI‑ 5114 data acquisition card, ultrasonic testing probe and PC. By performing laser ultrasonic thermoelastic mode C-scan detection on both sides of the tested material, extracting the longitudinal wave time in the ultrasonic signal, calculating the distance from the outer surface of the internal defect to the tested plane, and reconstructing the internal defect in three dimensions, the shape and shape of the internal defect are obtained. position. It can effectively detect the internal defects of the plate, carry out three-dimensional reconstruction of the internal defects, and master the shape and orientation of the internal defects.
Description
技术领域technical field
本发明涉及一种激光超声无损检测技术,尤其涉及一种基于激光超声检测材料内部缺陷形状的检测系统及方法。The invention relates to a laser ultrasonic nondestructive testing technology, in particular to a detection system and method based on the laser ultrasonic detection of the shape of internal defects of materials.
背景技术Background technique
缺陷是材料生产过程中重要的质量指标之一,目前缺乏对金属板材内部缺陷检测的良好手段。激光超声技术是新型的无损检测技术,它为非接触式检测手段,采用热弹效应可以不损伤材料而检测缺陷。Defect is one of the important quality indicators in the material production process, and there is currently a lack of good methods for detecting internal defects in metal sheets. Laser ultrasonic technology is a new type of non-destructive testing technology. It is a non-contact detection method. It can detect defects without damaging the material by using the thermoelastic effect.
但是现在大部分激光超声检测无法对材料内部缺陷形状进行表征。However, most of the current laser ultrasonic testing cannot characterize the shape of the internal defects of the material.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于激光超声检测材料内部缺陷形状的检测系统及方法。The purpose of the present invention is to provide a detection system and method for detecting the shape of internal defects in materials based on laser ultrasound.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
本发明的基于激光超声检测材料内部缺陷形状的检测系统,包括激励模块、检测模块、数据采集处理模块、精密二维移动平台1,所述精密二维移动平台1上放置被测材料2;The detection system based on laser ultrasonic detection of the shape of internal defects in materials of the present invention includes an excitation module, a detection module, a data acquisition and processing module, and a precise two-dimensional
所述的激励模块包括脉冲激光发生器9、散热器10,控制手柄11、激发光路和激光发射探头4;The excitation module includes a
所述的检测模块包括光纤分离器5、双波混合干涉仪6、连续激光发生器12和光纤;The detection module includes a
所述的数据采集处理模块包括NI PXI-5114数据采集卡7、超声波检测探头3和PC机8。The data acquisition and processing module includes an NI PXI-5114
上述的基于激光超声检测材料内部缺陷形状的检测系统进行三维重构的检测方法,包括如下具体步骤:The above-mentioned detection method for three-dimensional reconstruction based on a detection system for laser ultrasonic detection of internal defect shapes of materials includes the following specific steps:
步骤1:接通实验电源,打开连续激光发生器12和光纤分离5器开关,打开设置激发激光参数,在待检测区域发现红色光斑,调整精密二维移动平台1,调整激发光束和检测光束,使激发光束垂直于被测区域表面并且激发光束和检测光束光斑重合;Step 1: Turn on the experimental power supply, turn on the switches of the
步骤2:微调激光发射探头4与被测材料2的距离,使激发光斑大小改变,观察直流输出变化量,使其调整到最大值;Step 2: Fine-tune the distance between the
步骤3:打开双波混合干涉仪6,调节光纤分离器5的分光率调节旋钮,调节输出信号为正弦信号,并且调节到正弦信号为最大时结束;Step 3: Turn on the dual-
步骤4:打开散热器10,通过控制手柄11设置激光参数,激发连续脉冲激光,打开PC机8上的信号采集软件,设置采集参数;Step 4: open the
步骤5:信号采集软件控制精密二维移动平台1带动被测材料2按照规定的路径做c扫,步长为1mm;Step 5: The signal acquisition software controls the precise two-dimensional
步骤6:当被测材料2的完成c扫时,被测材料旋转1800,精密二维移动平台1按照原来的路径做c扫,原来路径起始点为本次路径终止点,原来路径终止点为本次路径起始点;Step 6: When the c-scan of the tested
步骤7:对检测的超声波信号进行处理。Step 7: Process the detected ultrasonic signal.
由上述本发明提供的技术方案可以看出,本发明实施例提供的基于激光超声检测材料内部缺陷形状的检测系统及方法,通过对被测材料的两面进行激光超声热弹模式C扫检测,提取超声波信号中纵波时间,计算内部缺陷外表面到被测平面的距离,对内部缺陷进行三维重构,得到内部缺陷的形状和方位。可以有效检测板材内部缺陷,并对内部缺陷进行三维重构,掌握内部缺陷的形状和方位。It can be seen from the technical solutions provided by the present invention that the detection system and method based on laser ultrasonic detection of the shape of internal defects in materials provided by the embodiments of the present invention perform laser ultrasonic thermoelastic mode C-scan detection on both sides of the tested material to extract The longitudinal wave time in the ultrasonic signal is used to calculate the distance from the outer surface of the internal defect to the measured plane, and three-dimensional reconstruction of the internal defect is performed to obtain the shape and orientation of the internal defect. It can effectively detect the internal defects of the plate, and carry out three-dimensional reconstruction of the internal defects to grasp the shape and orientation of the internal defects.
附图说明Description of drawings
图1为本发明实施例提供的基于激光超声检测材料内部缺陷形状的检测系统示意图。FIG. 1 is a schematic diagram of a detection system for detecting shapes of internal defects in materials based on laser ultrasound provided by an embodiment of the present invention.
图2为本发明实施例中光纤连接示意图。FIG. 2 is a schematic diagram of optical fiber connection in an embodiment of the present invention.
图3为本发明实施例激光超声检测试验材料内部缺陷激发路线示意图。FIG. 3 is a schematic diagram of the excitation route of the internal defects of the laser ultrasonic testing test material according to the embodiment of the present invention.
图4为本发明实施例超声波纵波内部缺陷三维重构示意图。FIG. 4 is a schematic diagram of three-dimensional reconstruction of an ultrasonic longitudinal wave internal defect according to an embodiment of the present invention.
图中:In the picture:
1、精密二维移动平台,2、被测材料,3、超声波检测探头,4、激光发射探头,5、光纤分离器,6、双波混合干涉仪,7、NI PXI-5114数据采集卡,8、PC机,9、脉冲激光发生器,10、散热器,11、控制手柄,12、连续激光发生器,13、信号光纤,14、探测光纤,15、探测光,16、参考光,17、分光比例调节旋钮,18、连续激光进入。1. Precision two-dimensional mobile platform, 2. Materials to be tested, 3. Ultrasonic detection probe, 4. Laser emission probe, 5. Optical fiber splitter, 6. Dual-wave hybrid interferometer, 7. NI PXI-5114 data acquisition card, 8. PC, 9. Pulse laser generator, 10, Radiator, 11, Control handle, 12, Continuous laser generator, 13, Signal fiber, 14, Probe fiber, 15, Probe light, 16, Reference light, 17 , Splitting ratio adjustment knob, 18. Continuous laser entry.
具体实施方式Detailed ways
下面将对本发明实施例作进一步地详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The embodiments of the present invention will be described in further detail below. Contents that are not described in detail in the embodiments of the present invention belong to the prior art known to those skilled in the art.
本发明的基于激光超声检测材料内部缺陷形状的检测系统,其较佳的具体实施方式是:The preferred specific embodiment of the detection system based on the laser ultrasonic detection material internal defect shape of the present invention is:
包括激励模块、检测模块、数据采集处理模块、精密二维移动平台1,所述精密二维移动平台1上放置被测材料2;It includes an excitation module, a detection module, a data acquisition and processing module, and a precise two-dimensional
所述的激励模块包括脉冲激光发生器9、散热器10,控制手柄11、激发光路和激光发射探头4;The excitation module includes a
所述的检测模块包括光纤分离器5、双波混合干涉仪6、连续激光发生器12和光纤;The detection module includes a
所述的数据采集处理模块包括NI PXI-5114数据采集卡7、超声波检测探头3和PC机8。The data acquisition and processing module includes an NI PXI-5114
所述的激光发射探头4通过激发光路与脉冲激光发生器9连接;The
所述的脉冲激光发生器9与散热器10连接;The
所述的控制手柄11与散热器10连接;The
所述的散热器10与NI PXI-5114数据采集卡7连接;The
所述的超声波检测探头3通过光纤分别与光纤分离器5和双波混合干涉仪6连接;The
所述的连续激光发生器12与光纤分离器5连接;The
所述的光纤分离器5与双波混合干涉仪6连接;The
所述的波混合干涉仪6与NI PXI-5114数据采集卡7连接;The
所述的NI PXI-5114数据采集卡7与PC机8连接;The NI PXI-5114
所述的精密二维移动平台1与PC机8连接。The precise two-dimensional
所述的激光发射探头4与超声波检测探头3位于被测材料的同侧,并且光斑基本重合。The
所述的连续激光发生器12为固体Nd:YAG型脉冲激光器,其波长为1064nm,脉宽为6ns,单次激发脉冲最大能量可以到达50mJ,所述的激发探头的孔径为25mm,焦距为50-100mm,光斑直径为100-200μm,所述的控制手柄11可调节脉冲激光的能力、功率、脉冲重复频率和激发模式;The
所述的双波混合干涉仪6的检测带宽为120M;The detection bandwidth of the dual-
所述的NI PXI-5114数据采集卡7实时采样速率为250MS/s;The real-time sampling rate of the NI PXI-5114
所述的被测材料2的被测表面具有涂层,该涂层主要作用是抑制表面波和横波的产生,并放大纵波。The measured surface of the measured
所述的精密二维移动平台1在X轴和Y轴的有效移动范围为0-400mm,最小步长为6.3微米。The effective movement range of the precise two-
上述的基于激光超声检测材料内部缺陷形状的检测系统进行三维重构的检测方法,其特征在于,包括如下具体步骤:The above-mentioned detection method for three-dimensional reconstruction based on a detection system for laser ultrasonic detection of internal defect shapes of materials is characterized in that it includes the following specific steps:
步骤1:接通实验电源,打开连续激光发生器12和光纤分离5器开关,打开设置激发激光参数,在待检测区域发现红色光斑,调整精密二维移动平台1,调整激发光束和检测光束,使激发光束垂直于被测区域表面并且激发光束和检测光束光斑重合;Step 1: Turn on the experimental power supply, turn on the switches of the
步骤2:微调激光发射探头4与被测材料2的距离,使激发光斑大小改变,观察直流输出变化量,使其调整到最大值;Step 2: Fine-tune the distance between the
步骤3:打开双波混合干涉仪6,调节光纤分离器5的分光率调节旋钮,调节输出信号为正弦信号,并且调节到正弦信号为最大时结束;Step 3: Turn on the dual-
步骤4:打开散热器10,通过控制手柄11设置激光参数,激发连续脉冲激光,打开PC机8上的信号采集软件,设置采集参数;Step 4: open the
步骤5:信号采集软件控制精密二维移动平台1带动被测材料2按照规定的路径做c扫,步长为1mm;Step 5: The signal acquisition software controls the precise two-dimensional
步骤6:当被测材料2的完成c扫时,被测材料旋转1800,精密二维移动平台1按照原来的路径做c扫,原来路径起始点为本次路径终止点,原来路径终止点为本次路径起始点;Step 6: When the c-scan of the tested
步骤7:对检测的超声波信号进行处理。Step 7: Process the detected ultrasonic signal.
对被测材料2内部缺陷进行三维重构,建立三维直角坐标系,坐标系的原点为激光激发的起始点,激发路径上的每一个激发点设置为(X,Y,L),其中X,Y为激发点的平面坐标,L为激发点位置内部缺陷边缘到激发平面的距离,L=CL*t/2,式中CL为纵波波速,t为激光激发到接收到纵波的时间;Three-dimensional reconstruction is performed on the internal defects of the tested
将被测材料2进行1800翻转,按照第一次激发路径做c扫,第一次激发路径起始点为第二次激发路径终止点,第一次激发路径终止点为第二次激发路径起始点。此时的激发路径上的每一个激发点仍然设置为(X,Y,L),其中X,Y为激发点的平面坐标,L为激发点位置内部缺陷边缘到激发平面的距离,L=d-CL*t/2,式中d为被测材料的厚度,CL为纵波波速,t为激光激发到接收到纵波的时间;Turn the tested
将位于内部的点连接成面就是材料内部缺陷的形状。Connecting the points located on the inside into a face is the shape of the defect inside the material.
本发明的基于激光超声检测材料内部缺陷形状的检测系统及方法,利用该方法可以有效检测板材内部缺陷,并对内部缺陷进行三维重构,掌握内部缺陷的形状和方位。The detection system and method based on the laser ultrasonic detection of the shape of the internal defect of the material of the present invention can effectively detect the internal defect of the plate, carry out three-dimensional reconstruction of the internal defect, and grasp the shape and orientation of the internal defect.
具体实施例:Specific examples:
如图1至图4所示,一种基于激光超声检测材料内部缺陷形状的检测系统,主要包括激励模块、检测模块、数据采集处理模块、精密二维移动平台1和被测材料2。所述的激励模块包括脉冲激光发生器9、散热器10,控制手柄11、激发光路和激光发射探头4,所述的连续激光发生器12为固体Nd:YAG型脉冲激光器,其波长为1064nm,脉宽为6ns,单次激发脉冲最大能量可以到达50mJ,所述的激发探头的孔径为25mm,焦距为50-100mm,光斑直径为100-200μm,所述的控制手柄11可调节脉冲激光的能力、功率、脉冲重复频率和激发模式。所述的检测模块包括光纤分离器5、双波混合干涉仪6、连续激光发生器12和光纤。所述的双波混合干涉仪6的检测带宽为120MHz。所述的数据采集处理模块包括NI PXI-5114数据采集卡7、超声波检测探头3和PC机8,所述的NI PXI-5114数据采集卡7实时采样速率为250MS/s。所述的被测材料2的被测表面具有特殊涂层,主要作用是抑制表面波和横波的产生,放大纵波。所述的精密二维移动平台1X轴和Y轴的有效移动范围为0-400mm,最小步长为6.3微米。As shown in Figures 1 to 4, a detection system based on laser ultrasonic detection of internal defect shapes of materials mainly includes an excitation module, a detection module, a data acquisition and processing module, a precision two-dimensional
本发明的具体连接方式如下:The specific connection mode of the present invention is as follows:
所述的激光发射探头4通过激发光路与脉冲激光发生器9连接。The
所述的脉冲激光发生器9与散热器10连接。The
所述的控制手柄11与散热器10连接。The control handle 11 is connected to the
所述的散热器10与NI PXI-5114数据采集卡7连接。The
所述的超声波检测探头3通过光纤分别与光纤分离器5和双波混合干涉仪6连接。The
所述的连续激光发生器12与光纤分离器5连接。The
所述的光纤分离器5与双波混合干涉仪6连接。The
所述的波混合干涉仪6与NI PXI-5114数据采集卡7连接。The
所述的NI PXI-5114数据采集卡7与PC机8连接。The NI PXI-5114
所述的精密二维移动平台1与PC机8连接。The precise two-dimensional
所述的激光发射探头4与超声波检测探头3位于被测材料的同侧,并且光斑基本重合。The
一种基于激光超声检测材料内部缺陷形状的检测系统及方法,所述的检测方法主要包括如下具体步骤:A detection system and method based on laser ultrasonic detection of the shape of internal defects in materials, the detection method mainly includes the following specific steps:
步骤1:接通实验电源,打开连续激光发生器12和光纤分离5器开关,打开设置激发激光参数,在待检测区域发现红色光斑,调整精密二维移动平台1,调整激发光束和检测光束,使激发光束垂直于被测区域表面并且激发光束和检测光束光斑重合。Step 1: Turn on the experimental power supply, turn on the switches of the
步骤2:微调激光发射探头4与被测材料2的距离,使激发光斑大小改变,观察直流输出变化量,使其调整到最大值。Step 2: Fine-tune the distance between the
步骤3:打开双波混合干涉仪6,调节光纤分离器5的分光率调节旋钮,调节输出信号为正弦信号,并且调节到正弦信号为最大时结束。Step 3: Turn on the dual-
步骤4:打开散热器10,通过控制手柄11设置激光参数,激发连续脉冲激光,打开PC机8上的信号采集软件,设置采集参数。Step 4: Open the
步骤5:信号采集软件控制精密二维移动平台1带动被测材料2按照规定的路径做c扫,步长为1mm。Step 5: The signal acquisition software controls the precise two-dimensional
步骤6:当被测材料2的完成c扫时,被测材料旋转1800,精密二维移动平台1按照原来的路径做c扫,原来路径起始点为本次路径终止点,原来路径终止点为本次路径起始点。Step 6: When the c-scan of the tested
步骤7:对检测的超声波信号进行处理。Step 7: Process the detected ultrasonic signal.
对被测材料2内部缺陷进行三维重构,建立三维直角坐标系,坐标系的原点为激光激发的起始点,激发路径上的每一个激发点设置为(X,Y,L),其中X,Y为激发点的平面坐标,L为激发点位置内部缺陷边缘到激发平面的距离,L=CL*t/2,式中CL为纵波波速,t为激光激发到接收到纵波的时间。将被测材料2进行1800翻转,按照第一次激发路径做c扫,第一次激发路径起始点为第二次激发路径终止点,第一次激发路径终止点为第二次激发路径起始点。此时的激发路径上的每一个激发点仍然设置为(X,Y,L),其中X,Y为激发点的平面坐标,L为激发点位置内部缺陷边缘到激发平面的距离,L=d-CL*t/2,式中d为被测材料的厚度,CL为纵波波速,t为激光激发到接收到纵波的时间。将位于内部的点连接成面就是材料内部缺陷的形状。Three-dimensional reconstruction is performed on the internal defects of the tested
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011122574.8A CN112098520A (en) | 2020-10-20 | 2020-10-20 | Detection system and method for detecting internal defect shape of material based on laser ultrasonic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011122574.8A CN112098520A (en) | 2020-10-20 | 2020-10-20 | Detection system and method for detecting internal defect shape of material based on laser ultrasonic |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112098520A true CN112098520A (en) | 2020-12-18 |
Family
ID=73785489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011122574.8A Pending CN112098520A (en) | 2020-10-20 | 2020-10-20 | Detection system and method for detecting internal defect shape of material based on laser ultrasonic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112098520A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113008803A (en) * | 2021-02-01 | 2021-06-22 | 太原理工大学 | Laser ultrasonic nondestructive online detection method and device for surface cracks of bar |
CN116202968A (en) * | 2023-03-13 | 2023-06-02 | 哈尔滨工业大学(威海) | Laser ultrasonic defect detection system and laser ultrasonic phase coherent imaging detection method for additive titanium alloy |
CN118330036A (en) * | 2024-06-12 | 2024-07-12 | 浙江大学 | Composite material curved surface structure layered damage imaging method based on ultrasonic guided waves |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103808802A (en) * | 2014-02-26 | 2014-05-21 | 南京理工大学 | Full-optical laser ultrasonic measuring method for internal defect of material |
CN107271370A (en) * | 2017-07-04 | 2017-10-20 | 九江学院 | A kind of laser ultrasonic detection system and its method detected based on material internal defect |
CN109387568A (en) * | 2018-12-21 | 2019-02-26 | 西安增材制造国家研究院有限公司 | A kind of laser ultrasonic detection device and increasing material manufacturing, detection integrated equipment |
CN110487897A (en) * | 2019-08-28 | 2019-11-22 | 华中科技大学 | A kind of compound non-contact detection system of Laser Photoacoustic of element and defect |
CN111175233A (en) * | 2020-03-05 | 2020-05-19 | 南京光声超构材料研究院有限公司 | Laser ultrasonic detection method and system for laser precision spot welding quality |
CN111426919A (en) * | 2020-04-08 | 2020-07-17 | 国网山西省电力公司电力科学研究院 | Basin-type insulator detection device based on laser-induced ultrasound |
CN111521566A (en) * | 2020-06-09 | 2020-08-11 | 中国计量科学研究院 | Laser ultrasonic nondestructive testing system based on dual-wave mixing |
-
2020
- 2020-10-20 CN CN202011122574.8A patent/CN112098520A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103808802A (en) * | 2014-02-26 | 2014-05-21 | 南京理工大学 | Full-optical laser ultrasonic measuring method for internal defect of material |
CN107271370A (en) * | 2017-07-04 | 2017-10-20 | 九江学院 | A kind of laser ultrasonic detection system and its method detected based on material internal defect |
CN109387568A (en) * | 2018-12-21 | 2019-02-26 | 西安增材制造国家研究院有限公司 | A kind of laser ultrasonic detection device and increasing material manufacturing, detection integrated equipment |
CN110487897A (en) * | 2019-08-28 | 2019-11-22 | 华中科技大学 | A kind of compound non-contact detection system of Laser Photoacoustic of element and defect |
CN111175233A (en) * | 2020-03-05 | 2020-05-19 | 南京光声超构材料研究院有限公司 | Laser ultrasonic detection method and system for laser precision spot welding quality |
CN111426919A (en) * | 2020-04-08 | 2020-07-17 | 国网山西省电力公司电力科学研究院 | Basin-type insulator detection device based on laser-induced ultrasound |
CN111521566A (en) * | 2020-06-09 | 2020-08-11 | 中国计量科学研究院 | Laser ultrasonic nondestructive testing system based on dual-wave mixing |
Non-Patent Citations (1)
Title |
---|
张海超: "基于激光超声的管道裂纹定量表征及三维成像方法研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 09, pages 1353 - 57 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113008803A (en) * | 2021-02-01 | 2021-06-22 | 太原理工大学 | Laser ultrasonic nondestructive online detection method and device for surface cracks of bar |
CN113008803B (en) * | 2021-02-01 | 2022-09-16 | 太原理工大学 | Laser ultrasonic nondestructive online detection method and device for surface cracks of bar |
CN116202968A (en) * | 2023-03-13 | 2023-06-02 | 哈尔滨工业大学(威海) | Laser ultrasonic defect detection system and laser ultrasonic phase coherent imaging detection method for additive titanium alloy |
CN116202968B (en) * | 2023-03-13 | 2024-05-03 | 哈尔滨工业大学(威海) | A laser ultrasonic defect detection system for additive titanium alloy and a laser ultrasonic phase coherent imaging detection method |
CN118330036A (en) * | 2024-06-12 | 2024-07-12 | 浙江大学 | Composite material curved surface structure layered damage imaging method based on ultrasonic guided waves |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103808802B (en) | A kind of ultrasonic assay method of full optical lasers of material internal defect | |
CN105092705B (en) | The multi-modal signal detecting method and device of a kind of steel rail defect | |
CN112098520A (en) | Detection system and method for detecting internal defect shape of material based on laser ultrasonic | |
US6271921B1 (en) | Optical stress generator and detector | |
CN111323480B (en) | A handheld auto-focus laser ultrasonic nondestructive testing system | |
Ying et al. | Multi-mode laser-ultrasound imaging using Time-domain Synthetic Aperture Focusing Technique (T-SAFT) | |
CN102866144B (en) | Nondestructive testing method for fatigue crack on solid material surface | |
CN106017371B (en) | The measuring device and its method of surface defect opening width based on laser-ultrasound | |
CN204758470U (en) | Laser ultrasonic testing device | |
CN110779990B (en) | Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material | |
CN110763764A (en) | A New Ultrasonic Detection System for Metal Internal Defects | |
CN112067696A (en) | System for detecting surface defects of pipeline based on laser ultrasonic | |
CN110672047A (en) | Laser ultrasonic measurement method for thickness of high-temperature metal material | |
CN113588566B (en) | Device and method for quality inspection of laser spot welding micro-solder spot based on laser ultrasonic | |
WO2016183250A1 (en) | Weld analysis using lamb waves and a neural network | |
CN110687204A (en) | Method and device for laser ultrasonic testing | |
CN113118461A (en) | Method and device for checking printing quality of 3D printing object in 3D printing process and 3D printing system | |
WO2022254805A1 (en) | Defect detection device and defect detection method | |
CN211627451U (en) | Laser ultrasonic detection device | |
JP3704843B2 (en) | Non-contact non-destructive material evaluation method and apparatus, elastic wave excitation method and elastic wave excitation apparatus | |
CN110763766B (en) | Laser ultrasonic phase-locking detection system and method for turbine blade surface microdefects | |
CN113340814A (en) | Material increase manufacturing laser ultrasonic online detection device and method based on receiving coaxiality | |
CN112098336A (en) | Laser ultrasound scanning imaging device and laser ultrasound scanning imaging system | |
CN115343360B (en) | Laser ultrasonic layered adaptive mode scanning method and system | |
CN211697658U (en) | Handheld automatic focusing laser ultrasonic nondestructive testing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201218 |
|
RJ01 | Rejection of invention patent application after publication |