CN103760243A - Microcrack nondestructive testing device and method - Google Patents
Microcrack nondestructive testing device and method Download PDFInfo
- Publication number
- CN103760243A CN103760243A CN201410065059.9A CN201410065059A CN103760243A CN 103760243 A CN103760243 A CN 103760243A CN 201410065059 A CN201410065059 A CN 201410065059A CN 103760243 A CN103760243 A CN 103760243A
- Authority
- CN
- China
- Prior art keywords
- acoustic emission
- micro
- signal
- crack
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000009659 non-destructive testing Methods 0.000 title description 12
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 39
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 230000003068 static effect Effects 0.000 claims abstract description 16
- 239000000523 sample Substances 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 17
- 238000012880 independent component analysis Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 229940099259 vaseline Drugs 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 4
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 claims 2
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 2
- 210000000299 nuclear matrix Anatomy 0.000 claims 2
- 208000037656 Respiratory Sounds Diseases 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 19
- 230000005284 excitation Effects 0.000 abstract description 10
- 230000001066 destructive effect Effects 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000007822 coupling agent Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013028 emission testing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明公开一种微裂纹超声-声发射无损检测装置及方法,涉及用超声波发射装置产生激励源,再由声发射技术检测构件中的微裂纹损伤,即:用超声波发射装置在构件表面发出激励源,用声发射采集处理系统对信号进行采集、放大并进行信号处理分析,得出信号的非线性特征参数,从而判断被测构件是否存在微裂纹损伤及损伤的程度。所用装置包括超声波发射装置、声发射传感器、前置放大器和声发射采集分析系统。本发明将超声波技术与声发射技术结合,构建了一种具有静态缺陷检测和动态缺陷检测功能的无损检测系统,实现构件微裂纹检测,并快速对构件进行整体评价,克服了现有声发射方法无法检测静态缺陷及超声波检方法测效率低、难以捕捉微小裂纹的不足。
The present invention discloses a micro-crack ultrasonic-acoustic emission non-destructive detection device and method, which involves using an ultrasonic emission device to generate an excitation source, and then using acoustic emission technology to detect micro-crack damage in a component, that is: using an ultrasonic emission device to emit an excitation source on the surface of the component, using an acoustic emission acquisition and processing system to collect, amplify and perform signal processing and analysis on the signal, and obtain the nonlinear characteristic parameters of the signal, so as to judge whether the component under test has micro-crack damage and the degree of damage. The device used includes an ultrasonic emission device, an acoustic emission sensor, a preamplifier and an acoustic emission acquisition and analysis system. The present invention combines ultrasonic technology with acoustic emission technology to construct a non-destructive detection system with static defect detection and dynamic defect detection functions, realizes component micro-crack detection, and quickly evaluates the component as a whole, overcoming the shortcomings of the existing acoustic emission method that cannot detect static defects and the ultrasonic detection method that has low detection efficiency and is difficult to capture tiny cracks.
Description
技术领域 technical field
本发明涉及无损检测技术领域,特别涉及一种微裂纹无损检测装置及方法。 The invention relates to the technical field of non-destructive testing, in particular to a micro-crack non-destructive testing device and method.
背景技术 Background technique
国民经济重要行业(如工程机械、船舶、核电、航空航天等)中的高端机械装备零部件,其一次退役后还具有很大的利用价值,因此其再制造引起了人们的极大关注。再制造是以产品全寿命周期理论为指导,以废旧产品性能实现跨越式提升为目标,以优质、高效、节能、节材、环保为准则,以先进技术和产业化生产为手段,来修复、改造废旧产品的一系列技术措施或工程活动的总称。再制造毛坯(废旧零件)经历过一次或多次的服役周期后,其结构中会出现一定的损伤或缺陷,成为影响其使用寿命的关键要素。 High-end mechanical equipment components in important industries of the national economy (such as construction machinery, ships, nuclear power, aerospace, etc.) have great utilization value after they are decommissioned once, so their remanufacturing has attracted great attention. Remanufacturing is guided by the theory of the whole life cycle of products, with the goal of leapfrog improvement in the performance of waste products, with high quality, high efficiency, energy saving, material saving, and environmental protection as the criteria, and with advanced technology and industrialized production as means to repair, The general term for a series of technical measures or engineering activities to transform waste products. After the remanufactured blank (waste part) has experienced one or more service cycles, certain damage or defects will appear in its structure, which will become a key element affecting its service life.
因此对再制造毛坯的应力状态、损伤程度进行评估,是其再制造加工前要解决的关键问题。目前对再制造毛坯的检测流程是人工初步筛选-清洗-常规无损检测,但人工筛选过程存在大量漏检现象,对漏检构件先清洗后检测的流程非常耗费人力物力;常规无损检测主要采用超声波法,该方法对被检测构件中存在的微裂纹不敏感。由于大多数再制造构件服役条件极其复杂,且当再制造构件运行时无法进行检测且欠缺损伤定量检测。因此总体而言,目前的检测方法存在成本高、可靠性差、应用范围窄、不能同时兼顾再制造毛坯动态裂纹和静态裂纹两种情况等缺点。 Therefore, evaluating the stress state and damage degree of the remanufactured blank is a key problem to be solved before remanufacturing. At present, the inspection process for remanufactured blanks is manual preliminary screening-cleaning-conventional non-destructive testing, but there are a large number of missed inspections in the manual screening process, and the process of cleaning the missed inspection components first and then testing is very labor-intensive; conventional non-destructive testing mainly uses ultrasonic waves method, which is insensitive to the presence of microcracks in the tested component. Due to the extremely complex service conditions of most remanufactured components, detection cannot be performed when the remanufactured components are running, and there is a lack of quantitative damage detection. Therefore, in general, the current detection methods have disadvantages such as high cost, poor reliability, narrow application range, and inability to take into account the dynamic cracks and static cracks of the remanufactured blank at the same time.
发明内容 Contents of the invention
本发明的目的在于提供一种检测效率高、应用范围广、可实现动态和静态再制造件检测的微裂纹无损检测装置及方法。 The object of the present invention is to provide a micro-crack non-destructive testing device and method with high detection efficiency, wide application range, and the detection of dynamic and static remanufactured parts.
本发明采用采用如下技术方案:一种微裂纹无损检测装置,包括超声波发生器,超声波探头,被测构件,超声波发生器通过超声波探头与被测构件相连,还包括一声发射装置,所述声发射装置包括声发射采集处理系统、与所述被测构件相连的声发射传感器、连接所述声发射采集处理系统和所述声发射传感器的前置放大器,所述超声波探头与所述被测构件之间填有耦合剂,所述声发射传感器与所述被测构件之间填有耦合剂。 The present invention adopts the following technical solutions: a non-destructive testing device for microcracks, including an ultrasonic generator, an ultrasonic probe, and a component to be tested. The ultrasonic generator is connected to the component to be tested through an ultrasonic probe, and also includes an acoustic emission device. The device includes an acoustic emission acquisition and processing system, an acoustic emission sensor connected to the measured component, a preamplifier connected to the acoustic emission acquisition and processing system and the acoustic emission sensor, and the ultrasonic probe is connected to the measured component. A couplant is filled between the acoustic emission sensor and the measured component.
作为本发明的进一步改进: As a further improvement of the present invention:
所述超声波发生器的超声波探头为单向探头,超声波探头数及超声波发生器的参数依据被检测对象确定; The ultrasonic probe of the ultrasonic generator is a one-way probe, and the parameters of the ultrasonic probe number and the ultrasonic generator are determined according to the detected object;
所述声发射采集分析系统的通道数目为一个及以上; The number of channels of the acoustic emission acquisition and analysis system is one or more;
所述声发射采集分析系统包括信号采集单元、信号放大单元和信号处理单元; The acoustic emission acquisition and analysis system includes a signal acquisition unit, a signal amplification unit and a signal processing unit;
所述耦合剂和耦合剂为凡士林。 The coupling agent and the coupling agent are vaseline.
一种微裂纹无损检测方法,包括以下步骤: A method for non-destructive detection of microcracks, comprising the following steps:
(1)构件重点待检测部位的确定:根据被测构件的结构及生产实践中的经验累积、生产技术人员的观察以及理论分析等确定构件的重点待检测部位; (1) Determination of key parts to be inspected of components: Determine the key parts to be inspected of components according to the structure of the components to be tested and the accumulation of experience in production practice, the observation of production technicians and theoretical analysis;
(2)声发射采集分析系统的确定:根据被测构件的形状、材料、检测精度等因素确定声发射采集分析系统的通道数目及声发射传感器的类型;由于不同构件的结构、尺寸大小、材料等都是不尽相同的,因此每个被检测构件所需要的通道数也是不同的。为了满足不同被检测构件或是大型构件的检测的要求,声发射检测仪器的总通道数一般不少于16个。根据待检部位的材料、形状等的特性确定传感器需要监测的频率范围,根据这个范围选择合适的声发射传感器。由于采集到的信号一般较弱,因此要将采集到的信号经过前置放大器放大后送入信号处理设备,同时应将前置放大器等设备合理放置,防止在检测时由于检测设备存在物理扰动等因素,影响信号的采集结果,从而影响了检测的效果; (2) Determination of the acoustic emission acquisition and analysis system: determine the number of channels of the acoustic emission acquisition and analysis system and the type of acoustic emission sensor according to the shape, material, detection accuracy and other factors of the measured component; etc. are not the same, so the number of channels required for each component to be tested is also different. In order to meet the detection requirements of different components to be tested or large components, the total number of channels of the acoustic emission testing instrument is generally not less than 16. Determine the frequency range that the sensor needs to monitor according to the characteristics of the material and shape of the part to be inspected, and select the appropriate acoustic emission sensor according to this range. Since the collected signal is generally weak, the collected signal should be amplified by the preamplifier and then sent to the signal processing equipment. At the same time, the preamplifier and other equipment should be placed reasonably to prevent the physical disturbance of the detection equipment during detection. Factors that affect the signal acquisition results, thereby affecting the detection effect;
(3)声发射传感器布置方式的确定:根据被测构件的待检测部位的几何形状、体积大小等确定声发射传感器的布置方式;为实现传感器与被检测构件表面的良好耦合,在布置传感器前应该用砂纸等打磨工具去除被测构件表面的防锈漆或者是其他可能影响信号采集结果的污渍;同时在传感器与构件接触部位应添加凡士林作为耦合剂;有时为保证采集效果或在构件表面很不规则时,用塑料槽型结构的专用磁座将声发射传感器压紧固定在构件表面,以防止传感器在构件表面发生滑动而影响到数据的采集; (3) Determination of the layout of the acoustic emission sensor: determine the layout of the acoustic emission sensor according to the geometric shape and volume of the part to be tested of the component to be tested; in order to achieve a good coupling between the sensor and the surface of the component to be tested, before arranging the sensor Sandpaper and other grinding tools should be used to remove the anti-rust paint on the surface of the component under test or other stains that may affect the signal acquisition results; at the same time, Vaseline should be added as a coupling agent at the contact part between the sensor and the component; When it is irregular, use a special magnetic seat with a plastic groove structure to press and fix the acoustic emission sensor on the surface of the component to prevent the sensor from sliding on the surface of the component and affect the data collection;
(4)被测构件状态的确定:判断被测构件处于静态或动态;静态即构件中的裂纹处于静止状态,而动态即构件中的裂纹处于活动状态; (4) Determination of the state of the component under test: determine whether the component under test is static or dynamic; static means that the cracks in the component are in a static state, and dynamic means that the cracks in the component are in an active state;
(5)被测构件为静态时的检测方法: (5) Detection method when the component under test is static:
a. 超声波发生器向被测构件待检测部位中除声发射传感器布置面外的某一适当表面发射超声波激励,作为声发射采集分析系统的模拟信号源;其中超声波探头为单向探头,超声波探头数及超声波发生器的参数依据被检测构件形状大小、复杂程度、材料特性以及声发射传感器可采集的频率范围等合理选择设定; a. The ultrasonic generator emits ultrasonic excitation to an appropriate surface of the component to be tested except for the arrangement surface of the acoustic emission sensor, as the analog signal source of the acoustic emission acquisition and analysis system; the ultrasonic probe is a one-way probe, and the ultrasonic probe The number and parameters of the ultrasonic generator are reasonably selected and set according to the shape, complexity, material properties of the detected component, and the frequency range that the acoustic emission sensor can collect;
超声波信号激励部位应该相对平整,且应该将构件上该处的防锈漆或是其他污渍去除掉的以保证激励效果; The excitation part of the ultrasonic signal should be relatively flat, and the anti-rust paint or other stains on the component should be removed to ensure the excitation effect;
b.声发射传感器采集该信号,经前置放大器放大后传送至声发射采集处理系统; b. The acoustic emission sensor collects the signal, which is amplified by the preamplifier and sent to the acoustic emission acquisition and processing system;
c.声发射采集分析系统接收信号,并对信号进行分析处理;因为采集到的信号形式包括声发射参数和波形信号,因而信号处理单元也包括两个部分。声发射参数采用核独立分量分析方法,处理流程为: 数据归一化处理,计算核矩阵,计算核矩阵的特征值和特征向量,由特征值和特征向量计算特征空间主成分并根据需要保留一定贡献率的主成分,对主成分采用独立分量分析方法进行分离,得到非线性特征参数;波形信号由FFT变换或小波变换等对其进行频域或时频分析得到高次谐波成分的信息作为特征参数,最后综合声发射参数的非线性特征参数和波形信号特征参数组成非线性特征参数向量; c. The Acoustic Emission Acquisition and Analysis System receives signals and analyzes and processes them; because the collected signals include acoustic emission parameters and waveform signals, the signal processing unit also includes two parts. The acoustic emission parameters adopt the nuclear independent component analysis method, and the processing flow is as follows: Data normalization processing, Compute the kernel matrix, Compute the eigenvalues and eigenvectors of the kernel matrix, Calculate the principal components of the feature space from the eigenvalues and eigenvectors and retain the principal components with a certain contribution rate as needed, The principal components are separated by the independent component analysis method to obtain the nonlinear characteristic parameters; the waveform signal is analyzed by FFT transform or wavelet transform in the frequency domain or time-frequency to obtain the information of the high-order harmonic components as the characteristic parameters, and finally the integrated sound The nonlinear characteristic parameter of the transmission parameter and the characteristic parameter of the waveform signal form a nonlinear characteristic parameter vector;
d. 将得到的非线性特征参数向量与构件完好时得到的非线性特征参数向量对比,判断被测构件是否存在微裂纹及微裂纹损伤的程度; d. Compare the obtained nonlinear characteristic parameter vector with the nonlinear characteristic parameter vector obtained when the component is intact, and judge whether there are microcracks and the degree of microcrack damage in the tested component;
(6)被测构件为动态时的检测方法: (6) Detection method when the component under test is dynamic:
a.直接用声发射传感器实时采集因被测构件内部因存在微裂纹而激发出的声发射信号; a. Directly use the acoustic emission sensor to collect in real time the acoustic emission signal excited by the presence of micro-cracks inside the component under test;
b.经前置放大器放大后传送至声发射采集分析系统; b. After being amplified by the preamplifier, it is sent to the acoustic emission acquisition and analysis system;
c.声发射采集处理系统接收信号,并对信号进行分析处理;因为采集到的信号形式包括声发射参数和波形信号,因而信号处理单元也包括两个部分。声发射参数采用核独立分量分析方法,处理流程为:数据归一化处理,计算核矩阵,计算核矩阵的特征值和特征向量,由特征值和特征向量计算特征空间主成分并根据需要保留一定贡献率的主成分,对主成分采用独立分量分析方法进行分离,得到非线性特征参数;波形信号由FFT变换或小波变换等对其进行频域或时频分析得到高次谐波成分的信息作为特征参数,最后综合声发射参数的非线性特征参数和波形信号特征参数组成非线性特征参数向量; c. The acoustic emission acquisition and processing system receives the signal and analyzes and processes the signal; because the collected signal includes acoustic emission parameters and waveform signals, the signal processing unit also includes two parts. The acoustic emission parameters adopt the nuclear independent component analysis method, and the processing flow is as follows: Data normalization processing, Compute the kernel matrix, Compute the eigenvalues and eigenvectors of the kernel matrix, Calculate the principal components of the feature space from the eigenvalues and eigenvectors and retain the principal components with a certain contribution rate as needed, The principal components are separated by the independent component analysis method to obtain the nonlinear characteristic parameters; the waveform signal is analyzed by FFT transform or wavelet transform in the frequency domain or time-frequency to obtain the information of the high-order harmonic components as the characteristic parameters, and finally the integrated sound The nonlinear characteristic parameter of the transmission parameter and the characteristic parameter of the waveform signal form a nonlinear characteristic parameter vector;
d. 将得到的非线性特征参数向量与构件完好时得到的非线性特征参数对比,判断被测构件是否存在微裂纹及微裂纹损伤的程度。 d. Compare the obtained nonlinear characteristic parameter vector with the nonlinear characteristic parameter obtained when the component is intact, and judge whether there are microcracks and the degree of microcrack damage in the tested component.
与现有技术相比,本发明的优点在于: Compared with the prior art, the present invention has the advantages of:
1.该无损检测装置包括超声波发射装置和声发射信号采集处理系统,对处于动态或静态的被测构件都能进行无损检测,使用方便,应用范围广; 1. The non-destructive testing device includes an ultrasonic emission device and an acoustic emission signal acquisition and processing system, which can perform non-destructive testing on dynamic or static components under test, which is easy to use and has a wide range of applications;
2.通过声发射信号处理单元获得被测构件微裂纹的非线性特征参数向量;由非线性特征参数向量推导出被测构件是否存在微裂纹以及微裂纹损伤程度,检测效率高; 2. Obtain the nonlinear characteristic parameter vector of the microcrack of the component under test through the acoustic emission signal processing unit; deduce whether there is a microcrack in the component under test and the damage degree of the microcrack from the nonlinear characteristic parameter vector, and the detection efficiency is high;
3.被测构件处于静态时,通过超声波发射装置发射激励,作为信号源,避免了施加外界机械载荷可能对构件造成的二次伤害以及环境噪声的影响。 3. When the component under test is in a static state, the excitation is emitted by the ultrasonic emitting device as a signal source, which avoids the secondary damage to the component caused by the external mechanical load and the influence of environmental noise.
附图说明 Description of drawings
图1为本发明的微裂纹无损检测装置系统整体示意图。 FIG. 1 is an overall schematic diagram of the microcrack nondestructive testing device system of the present invention.
图2为本发明的超声波探头及声发射传感器在被测构件表面布置图。 Fig. 2 is a layout diagram of the ultrasonic probe and the acoustic emission sensor of the present invention on the surface of the component under test.
图3为本发明微裂纹无损检测方法流程图。 Fig. 3 is a flow chart of the non-destructive detection method for microcracks of the present invention.
图4为本发明声发射分析处理系统构成单元示意图。 Fig. 4 is a schematic diagram of constituent units of the acoustic emission analysis and processing system of the present invention.
图5为本发明一种微裂纹无损检测装置及方法信号处理流程图。 Fig. 5 is a flow chart of signal processing of a microcrack nondestructive testing device and method according to the present invention.
图6为本发明的超声波探头及声发射传感器在水轮机表面布置图。 Fig. 6 is a layout diagram of the ultrasonic probe and the acoustic emission sensor of the present invention on the surface of the water turbine.
图7为本发明实施例水轮机转轮微裂纹检测具体步骤流程图。 Fig. 7 is a flow chart of specific steps for microcrack detection of a water turbine runner according to an embodiment of the present invention.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1-3所示的微裂纹无损检测装置,包括超声波发生器1,超声波探头2,被测构件3,超声波发生器1通过超声波探头2与被测构件3相连,还包括一声发射装置,所述声发射装置包括声发射采集处理系统6、与所述被测构件3相连的声发射传感器4、连接所述声发射采集处理系统6和所述声发射传感器4的前置放大器5,所述超声波探头2与所述被测构件3之间填有耦合剂8,所述声发射传感器4与所述被测构件3之间填有耦合剂7。
The microcrack nondestructive testing device shown in Figure 1-3 includes an ultrasonic generator 1, an
所述超声波探头2采用单向探头,超声波探头2的数目及超声波发生器1的参数依据被检测对象确定,如图6所示的实施实例中超声波探头2为4个,超声波发生器1的中心频率为500kHz,发射的激励范围为100kHz-1MHz、输出电压为300V。
Described
所述声发射采集处理系统6的通道数目为一个及以上,如图6所示实施实例中通道数为13。 The number of channels of the acoustic emission acquisition and processing system 6 is one or more, and the number of channels in the implementation example shown in FIG. 6 is 13.
所述声发射采集处理系统6包括信号采集单元、信号放大单元和信号处理单元。因为所采集到的信号形式包括声发射参数和波形信号,因而信号处理单元也包括两个部分,声发射参数采用核独立分量分析方法,处理流程为:数据归一化处理,计算核矩阵,计算核矩阵的特征值和特征向量,由特征值和特征向量计算特征空间主成分并根据需要保留一定贡献率的主成分,对主成分采用独立分量分析方法进行分离,得到非线性特征参数;波形信号由FFT变换或小波变换等对其进行频域或时频分析得到高次谐波成分的信息作为特征参数,最后综合声发射参数的非线性特征参数和波形信号特征参数组成非线性特征参数向量。 The acoustic emission acquisition and processing system 6 includes a signal acquisition unit, a signal amplification unit and a signal processing unit. Because the collected signal forms include acoustic emission parameters and waveform signals, the signal processing unit also includes two parts. The acoustic emission parameters adopt the nuclear independent component analysis method, and the processing flow is as follows: Data normalization processing, Compute the kernel matrix, Compute the eigenvalues and eigenvectors of the kernel matrix, Calculate the principal components of the feature space from the eigenvalues and eigenvectors and retain the principal components with a certain contribution rate as needed, The principal components are separated by the independent component analysis method to obtain the nonlinear characteristic parameters; the waveform signal is analyzed by FFT transform or wavelet transform in the frequency domain or time-frequency to obtain the information of the high-order harmonic components as the characteristic parameters, and finally the integrated sound The nonlinear characteristic parameters of the transmission parameters and the waveform signal characteristic parameters form a nonlinear characteristic parameter vector.
所述耦合剂7和耦合剂8为凡士林。
The
下面结合图6所示实施实例,混流式水轮机转轮对一种微裂纹无损检测方法做详细说明,包括以下步骤: Below in conjunction with the implementation example shown in Figure 6, a Francis turbine runner will describe a non-destructive detection method for micro-cracks in detail, including the following steps:
(1)构件重点待检测部位的确定:如图6所示为混流式水轮机转轮直径为8m,最大直径为8.6m,高度为5.19m,转轮叶片数为13(图6中只画出两个叶片),转轮材料为不锈钢,根据实际的经验积累,水轮机转轮的叶片是极易产生微裂纹的区域,因此被实施例中将水轮机叶片确定为重点检测部位; (1) Determination of key components to be detected: as shown in Figure 6, the diameter of the Francis turbine runner is 8m, the maximum diameter is 8.6m, the height is 5.19m, and the number of runner blades is 13 (in Figure 6, only Two blades), the material of the runner is stainless steel, according to the accumulation of practical experience, the blade of the turbine runner is an area that is prone to microcracks, so the blade of the turbine is determined as the key detection part in the embodiment;
(2)声发射采集处理系统的确定:对混流式水轮机转轮微裂纹检测中声发射系统采用美国物理声学公司(PAC)PCI-2系统,包括8块PCI-2通道板、18位A/D转换器、AE应用软件AEwin以及在其二次开发软件上开发的信号处理单元。因为水轮机转轮有13个叶片,一个叶片布置一个传感器,所以选用声发射通道数为13通道。所述实施例中声发射传感器选用WDI型,中心频率500kHz,其可采集的信号频率范围为:100kHz-1MHz;信号放大单元选择2/4/6型前置放大器,放大倍数选择40dB; (2) Determination of the Acoustic Emission Acquisition and Processing System: The acoustic emission system used in the detection of micro-cracks in the Francis turbine runner adopts the American Physical Acoustics Corporation (PAC) PCI-2 system, including 8 PCI-2 channel boards, 18-bit A/ D converter, AE application software AEwin and the signal processing unit developed on its secondary development software. Because the turbine runner has 13 blades, and one sensor is arranged on each blade, the number of acoustic emission channels is selected as 13. In the described embodiment, the acoustic emission sensor is selected WDI type, with a center frequency of 500kHz, and the signal frequency range that can be collected is: 100kHz-1MHz; the signal amplification unit is selected as a 2/4/6 type preamplifier, and the amplification factor is selected as 40dB;
(3)声发射传感器布置方式的确定:如图6实施例所示,对混流式水轮机转轮微裂纹检测,叶片出现微裂纹的概率较大且表面平整,因此将WDI型声发射传感器布置在水轮机转轮的叶片上,并且为了减少误差,每一片叶片上WDI型声发射传感器布置的位置都应大体保持一致。为了让WDI型声发射传感器与水轮机转轮叶片表面的良好耦合,在布置传感器前应该用砂纸等打磨工具去除水轮机叶片表面的防锈漆或者是其他可能影响信号采集结果的污渍;同时在传感器与叶片接触部位应添加凡士林作为耦合剂;同时用塑料槽型结构的专用磁座将WDI声发射传感器压紧固定在水轮机转轮叶片表面,以防止传感器在叶片表面发生滑动而影响到数据的采集; (3) Determination of the layout of the acoustic emission sensor: as shown in the embodiment of Figure 6, for the detection of micro-cracks in the runner of the Francis turbine, the probability of micro-cracks in the blade is relatively high and the surface is flat, so the WDI type acoustic emission sensor is arranged in the On the blades of the turbine runner, and in order to reduce errors, the location of the WDI type acoustic emission sensors on each blade should be roughly consistent. In order to have a good coupling between the WDI acoustic emission sensor and the surface of the turbine runner blade, sandpaper and other grinding tools should be used to remove the anti-rust paint on the surface of the turbine blade or other stains that may affect the signal acquisition results; Vaseline should be added to the contact part of the blade as a coupling agent; at the same time, a special magnetic seat with a plastic groove structure is used to press and fix the WDI acoustic emission sensor on the surface of the turbine runner blade to prevent the sensor from sliding on the blade surface and affect the data collection;
(4)被测构件状态的确定:图6所述实施例中的对水轮机叶片的检测是在静态下进行的,即水轮机停止运行同时也不需外加机械载荷。在水轮机转轮的下环9处,超声波发生器发射一个电压设定为300V的超声波激励,作为声发射模拟信号源;布置在水轮机叶片上的WDI型声发射传感器采集该信号,经过前置放大器放大后送入声发射采集处理系统,并按图5中所述流程对信号进行分析处理,得出所获得声发射信号的非线性特征参数向量,将得到的非线性特征参数向量与构件完好时得到的标准非线性特征参数向量进行对比,从而判断出被测构件是否存在微裂纹及微裂纹损伤的程度。所述图6由于下环9相对平整,选为超声波激励发射部位,由于转轮为对称结构,四个超声波探头2分别布置在下环9中间位置的两垂直直径的末端,且将水轮机下环9表面与超声波探头接触部位的防锈漆及其他污渍去除掉的以保证发射效果,同时水轮机转轮下环9与探头之间应填充凡士林作为耦合剂;
(4) Determination of the state of the component under test: the test of the blades of the water turbine in the embodiment shown in Fig. 6 is carried out under static conditions, that is, the water turbine stops running and no external mechanical load is required. At the
(5)被测部件3为动态时,即被检测构件处于运行状态或是外加载荷状态下,则不用超声波发射装置发射的超声波激励作为信号源,而是直接将声发射传感器4布置在构件3上的合适位置,同样可以判断出被测构件3中是否存在微裂纹及微裂纹损伤的程度。通过本发明便可实现对构件静态或动态情况下存在微裂纹的无损检测,一次检测就能对被检测构件微裂纹损伤给出一个整体性评价,减少了工作量,提高了检测效率。
(5) When the tested
以上实施方式仅为了说明本发明所做的举例,并非对本发明的限制,对于在不脱离本发明指导思想和范围的情况下,还可做出其它不同形式的变化或变动。本发明的专利保护由权利要求限定的范围确定。 The above embodiments are only examples for illustrating the present invention, and are not intended to limit the present invention. Other changes or changes in different forms can also be made without departing from the guiding spirit and scope of the present invention. The patent protection of the present invention is determined by the scope defined by the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410065059.9A CN103760243A (en) | 2014-02-26 | 2014-02-26 | Microcrack nondestructive testing device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410065059.9A CN103760243A (en) | 2014-02-26 | 2014-02-26 | Microcrack nondestructive testing device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103760243A true CN103760243A (en) | 2014-04-30 |
Family
ID=50527516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410065059.9A Pending CN103760243A (en) | 2014-02-26 | 2014-02-26 | Microcrack nondestructive testing device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103760243A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049038A (en) * | 2014-06-19 | 2014-09-17 | 中航复合材料有限责任公司 | Ultrasonic-acoustic emission detection method for composite material |
CN104485113A (en) * | 2014-12-23 | 2015-04-01 | 长沙理工大学 | Multi-fault-source acoustic emission signal separation method |
CN104914163A (en) * | 2015-06-20 | 2015-09-16 | 上海电机学院 | Blade crack detecting method of wind driven generator |
CN105181804A (en) * | 2015-10-10 | 2015-12-23 | 北京工业大学 | Dynamic wavelet fingerprint analysis method used for non-linear effect representation of ultrasonic waves |
CN105424502A (en) * | 2016-01-05 | 2016-03-23 | 天津大学 | Large-deformation pipeline circumferential weld bending tester and method thereof |
CN105651863A (en) * | 2015-12-29 | 2016-06-08 | 中国农业大学 | Detection method of bore hole in corn seed |
CN106198383A (en) * | 2016-09-13 | 2016-12-07 | 上海海事大学 | The nondestructive detection system of a kind of small size component top layer microfissure and method |
CN106770675A (en) * | 2016-12-06 | 2017-05-31 | 郑州轻工业学院 | Diamond press top hammer crackle online test method based on acoustic emission signal |
CN107462599A (en) * | 2017-08-21 | 2017-12-12 | 长沙学院 | A kind of microwave thermal sound detection monitoring system and method |
CN107520257A (en) * | 2016-06-22 | 2017-12-29 | 上海宝钢工业技术服务有限公司 | Strip mechanical performance on-line detecting system |
CN107664662A (en) * | 2017-10-30 | 2018-02-06 | 西安交通工程学院 | Long range rail failure detector |
CN108226297A (en) * | 2018-01-15 | 2018-06-29 | 国网江苏省电力公司检修分公司特高压交直流运检中心 | A kind of vacuum tube bellows surface crack detecting method based on fiber grating |
CN108344860A (en) * | 2017-12-19 | 2018-07-31 | 同济大学 | The method for characterizing cement-based material surface crack self-healing effect based on healing bulk product |
CN108562528A (en) * | 2018-06-19 | 2018-09-21 | 长沙理工大学 | A kind of composite material porosity evaluation method based on acoustic emission |
CN109073605A (en) * | 2016-02-03 | 2018-12-21 | 奎斯特综合股份有限公司 | Method and apparatus for checking pipeline |
CN109187066A (en) * | 2018-09-14 | 2019-01-11 | 成都格瑞特高压容器有限责任公司 | The monitoring method in fatigue test combination Acoustic Emission Evaluation gas cylinder service life |
CN110554096A (en) * | 2019-10-09 | 2019-12-10 | 中国工程物理研究院激光聚变研究中心 | Acoustic emission signal processing device and optical element damage detection system |
CN110646515A (en) * | 2019-10-09 | 2020-01-03 | 中国工程物理研究院激光聚变研究中心 | Optical device damage detection method and device, electronic equipment and readable storage medium |
CN110702517A (en) * | 2019-10-21 | 2020-01-17 | 西安建筑科技大学 | A Concrete Damage Analysis Method Based on Acoustic Emission Parameter Stage Accumulation Proportion |
CN111175659A (en) * | 2020-01-21 | 2020-05-19 | 湖南大学 | Lithium ion battery state detection system and method based on continuous acoustic emission signals |
CN111426919A (en) * | 2020-04-08 | 2020-07-17 | 国网山西省电力公司电力科学研究院 | Basin-type insulator detection device based on laser-induced ultrasound |
CN113984907A (en) * | 2021-11-04 | 2022-01-28 | 济南大学 | A method for calibrating dynamic and static characteristics of acoustic emission sensor |
CN114166943A (en) * | 2021-12-03 | 2022-03-11 | 四川西南交大铁路发展股份有限公司 | Active rail damage monitoring method and terminal based on nonlinear ultrasonic waves |
CN114761770A (en) * | 2019-11-29 | 2022-07-15 | ams传感器新加坡私人有限公司 | Device for monitoring the mechanical integrity of eye-safe components of luminaires |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101842700A (en) * | 2007-09-21 | 2010-09-22 | 株式会社东芝 | Ultrasonographic device, ultrasonic probe used in the ultrasonographic device, and ultrasonographic method |
CN203745428U (en) * | 2014-02-26 | 2014-07-30 | 长沙理工大学 | Microcrack nondestructive test device |
-
2014
- 2014-02-26 CN CN201410065059.9A patent/CN103760243A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101842700A (en) * | 2007-09-21 | 2010-09-22 | 株式会社东芝 | Ultrasonographic device, ultrasonic probe used in the ultrasonographic device, and ultrasonographic method |
CN203745428U (en) * | 2014-02-26 | 2014-07-30 | 长沙理工大学 | Microcrack nondestructive test device |
Non-Patent Citations (1)
Title |
---|
王向红: "《混流式水轮机叶片裂纹声发射监测的若干关键技术研究》", 《中国博士学位论文全文数据库》, no. 2, 15 February 2011 (2011-02-15) * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049038A (en) * | 2014-06-19 | 2014-09-17 | 中航复合材料有限责任公司 | Ultrasonic-acoustic emission detection method for composite material |
CN104485113A (en) * | 2014-12-23 | 2015-04-01 | 长沙理工大学 | Multi-fault-source acoustic emission signal separation method |
CN104914163A (en) * | 2015-06-20 | 2015-09-16 | 上海电机学院 | Blade crack detecting method of wind driven generator |
CN105181804B (en) * | 2015-10-10 | 2018-01-12 | 北京工业大学 | A kind of dynamic small echo fingerprint analysis method characterized for ultrasonic wave nonlinear effect |
CN105181804A (en) * | 2015-10-10 | 2015-12-23 | 北京工业大学 | Dynamic wavelet fingerprint analysis method used for non-linear effect representation of ultrasonic waves |
CN105651863A (en) * | 2015-12-29 | 2016-06-08 | 中国农业大学 | Detection method of bore hole in corn seed |
CN105424502A (en) * | 2016-01-05 | 2016-03-23 | 天津大学 | Large-deformation pipeline circumferential weld bending tester and method thereof |
CN105424502B (en) * | 2016-01-05 | 2019-08-20 | 天津大学 | Large deformation pipeline girth weld bending test machine and method thereof |
CN109073605B (en) * | 2016-02-03 | 2021-03-05 | 奎斯特综合股份有限公司 | Method and apparatus for inspecting a pipe |
CN109073605A (en) * | 2016-02-03 | 2018-12-21 | 奎斯特综合股份有限公司 | Method and apparatus for checking pipeline |
CN107520257A (en) * | 2016-06-22 | 2017-12-29 | 上海宝钢工业技术服务有限公司 | Strip mechanical performance on-line detecting system |
CN107520257B (en) * | 2016-06-22 | 2020-07-24 | 上海宝钢工业技术服务有限公司 | On-line detection system for mechanical property of strip steel |
CN106198383A (en) * | 2016-09-13 | 2016-12-07 | 上海海事大学 | The nondestructive detection system of a kind of small size component top layer microfissure and method |
CN106770675B (en) * | 2016-12-06 | 2019-05-21 | 郑州轻工业学院 | Diamond press top hammer crackle online test method based on acoustic emission signal |
CN106770675A (en) * | 2016-12-06 | 2017-05-31 | 郑州轻工业学院 | Diamond press top hammer crackle online test method based on acoustic emission signal |
CN107462599A (en) * | 2017-08-21 | 2017-12-12 | 长沙学院 | A kind of microwave thermal sound detection monitoring system and method |
CN107664662A (en) * | 2017-10-30 | 2018-02-06 | 西安交通工程学院 | Long range rail failure detector |
CN107664662B (en) * | 2017-10-30 | 2023-12-22 | 西安交通工程学院 | Long-distance steel rail damage detector |
CN108344860A (en) * | 2017-12-19 | 2018-07-31 | 同济大学 | The method for characterizing cement-based material surface crack self-healing effect based on healing bulk product |
CN108226297A (en) * | 2018-01-15 | 2018-06-29 | 国网江苏省电力公司检修分公司特高压交直流运检中心 | A kind of vacuum tube bellows surface crack detecting method based on fiber grating |
CN108562528A (en) * | 2018-06-19 | 2018-09-21 | 长沙理工大学 | A kind of composite material porosity evaluation method based on acoustic emission |
CN109187066A (en) * | 2018-09-14 | 2019-01-11 | 成都格瑞特高压容器有限责任公司 | The monitoring method in fatigue test combination Acoustic Emission Evaluation gas cylinder service life |
CN110646515A (en) * | 2019-10-09 | 2020-01-03 | 中国工程物理研究院激光聚变研究中心 | Optical device damage detection method and device, electronic equipment and readable storage medium |
CN110554096A (en) * | 2019-10-09 | 2019-12-10 | 中国工程物理研究院激光聚变研究中心 | Acoustic emission signal processing device and optical element damage detection system |
CN110702517A (en) * | 2019-10-21 | 2020-01-17 | 西安建筑科技大学 | A Concrete Damage Analysis Method Based on Acoustic Emission Parameter Stage Accumulation Proportion |
CN114761770A (en) * | 2019-11-29 | 2022-07-15 | ams传感器新加坡私人有限公司 | Device for monitoring the mechanical integrity of eye-safe components of luminaires |
CN111175659A (en) * | 2020-01-21 | 2020-05-19 | 湖南大学 | Lithium ion battery state detection system and method based on continuous acoustic emission signals |
CN111426919A (en) * | 2020-04-08 | 2020-07-17 | 国网山西省电力公司电力科学研究院 | Basin-type insulator detection device based on laser-induced ultrasound |
CN113984907A (en) * | 2021-11-04 | 2022-01-28 | 济南大学 | A method for calibrating dynamic and static characteristics of acoustic emission sensor |
CN114166943A (en) * | 2021-12-03 | 2022-03-11 | 四川西南交大铁路发展股份有限公司 | Active rail damage monitoring method and terminal based on nonlinear ultrasonic waves |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103760243A (en) | Microcrack nondestructive testing device and method | |
Zhang et al. | Deep convolutional neural network probability imaging for plate structural health monitoring using guided waves | |
CN104407049B (en) | A kind of micro-crack nondestructive detection system and its detection method | |
CN105067239B (en) | The beam crack fault detection means and method vibrated based on swept frequency excitation | |
CN203745428U (en) | Microcrack nondestructive test device | |
CN103486960A (en) | Ultrasonic, vortex and EMAT integrated lossless thickness tester and method thereof | |
CN101539541A (en) | Detection method of thick beam structure damage based on guide wave | |
CN103163215B (en) | The Pulsed eddy current testing apparatus and method of large-scale mine vibratory screening apparatus fatigue crack | |
CN107121501A (en) | A kind of turbine rotor defect classification method | |
CN202256264U (en) | Acoustic emission device for detecting failure of carbon fiber composite materials | |
CN101620204A (en) | Method for detecting and evaluating sound emission of crane | |
CN115754011A (en) | A method for acoustic emission detection and damage identification of composite wind turbine blades | |
CN101609068B (en) | Novel acoustic nondestructive test method | |
CN103926324A (en) | Method for detecting creep damage of main steam pipeline through ultrasonic surface waves | |
CN204758542U (en) | Detection apparatus for metallic structure's crackle | |
CN108828069A (en) | A kind of key component fatigue life based on ultrasonic quantitative data determines longevity method | |
CN107462635A (en) | A system and method for online evaluation of vibration aging effects based on information fusion of multiple acoustic emission sensors | |
CN103954628B (en) | Steel Pipe Damage Monitoring Method Combining EEMD and Approximate Entropy | |
CN103743820B (en) | Concrete column quality ultrasonic detection device and method based on global transit time parameter | |
CN201993345U (en) | Nondestructive test instrument for concrete structure | |
Wang et al. | Lamb wave tomography technique for crack damage detection | |
CN104569150B (en) | Coal petrography mechanics parameter detector and its method for determining coal petrography mechanics parameter | |
CN105738481A (en) | Method for predicting cutting defects of carbon fiber reinforced composites | |
Al-Jumaili | Damage assessment in complex structures using acoustic emission | |
CN110082432B (en) | Ultrasonic resonance quantitative nondestructive detection method for plate structure defects based on uniform design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140430 |