CN111404184A - Fuel cell test and electric vehicle charging coupling system and control method - Google Patents
Fuel cell test and electric vehicle charging coupling system and control method Download PDFInfo
- Publication number
- CN111404184A CN111404184A CN201811619790.6A CN201811619790A CN111404184A CN 111404184 A CN111404184 A CN 111404184A CN 201811619790 A CN201811619790 A CN 201811619790A CN 111404184 A CN111404184 A CN 111404184A
- Authority
- CN
- China
- Prior art keywords
- charging
- fuel cell
- energy storage
- electric vehicle
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Fuel Cell (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及燃料电池测试技术领域,具体涉及一种燃料电池测试与电动汽车充电耦合系统及控制方法。The invention relates to the technical field of fuel cell testing, in particular to a fuel cell testing and electric vehicle charging coupling system and a control method.
背景技术Background technique
燃料电池电堆、燃料电池系统以及燃料电池发动机的大规模研究、验证及测试是燃料电池应用前必不可少的步骤。由于燃料电池自身是一个持续消耗氢的发电装置,在传统的性能测试过程中第一种方案是使用电阻型负载将燃料电池系统产生的电能通过热能消耗掉,造成了资源的浪费和成本的增加。另外,通常所使用的电子负载在释放热能的过程中还需要诸如冷水塔、大型风机甚至空调等对其进行散热以保障电子负载的正常工作,因而还需要额外的电能。而对于新能源汽车用燃料电池动力系统,其功率超过30kW甚至高达100kW,则采用电子负载的测试方式将会产生极大的电能浪费,测试成本攀升。Large-scale research, validation and testing of fuel cell stacks, fuel cell systems and fuel cell engines are essential steps before fuel cell applications. Since the fuel cell itself is a power generation device that continuously consumes hydrogen, the first solution in the traditional performance test process is to use a resistive load to consume the electrical energy generated by the fuel cell system through thermal energy, resulting in a waste of resources and an increase in cost. . In addition, the commonly used electronic loads also need to dissipate heat such as a cooling tower, a large fan or even an air conditioner during the process of releasing heat energy to ensure the normal operation of the electronic load, so additional power is required. For the fuel cell power system for new energy vehicles, the power of which exceeds 30kW or even as high as 100kW, the test method using electronic load will generate a great waste of electric energy and the test cost will rise.
第二种方案是采用馈网型电子负载将燃料电池测试过程中输出的电能回馈给电网。虽然该种方案可以有效避免燃料电池在测试放电过程中的热消耗,但是由于测试流程的复杂多样性(如频繁启停加载、加速以及测试极化曲线等)加之多堆并行测试等,在此情况下向电网馈电时,将会造成对电网的高频谐波干扰严重,处理起来也比较困难,严重影响着电网的电能质量,甚至会对电网造成冲击。The second solution is to use a grid-feeding electronic load to feed back the electrical energy output during the fuel cell test to the grid. Although this solution can effectively avoid the heat consumption of the fuel cell during the test and discharge process, due to the complexity and diversity of the test process (such as frequent start-stop loading, acceleration, and test polarization curves, etc.) When feeding power to the power grid under certain circumstances, it will cause serious interference of high-frequency harmonics to the power grid, and it is difficult to deal with it, which seriously affects the power quality of the power grid, and even causes an impact on the power grid.
第三种方案是将燃料电池测试过程中输出的电能通过电解水制氢的方式获得氢气通入燃料电池进行循环利用。但是,在燃料电池运行过程中氢气转换为电的效率一般为50%(基于氢气的低热值LHV),而产生的电再次通过电解水制氢的理论电解效率虽然很高(表观转换效率甚至可达100%~122%),但在工业上为提升产氢速率需要加热升温以及产生的极化过电位等因素电能转换效率仅为50~70%。则完成氢气→燃料电池→电解槽→氢气的一个完整循环效率仅为30%,能量损失超过70%,而且电解水制氢系统成本(特别是以贵金属铂或铱作为催化剂的固体电解质膜电解水制氢系统)较高,寿命较短。因此该种方案并不经济,且存在着系统复杂、维护繁复的问题。The third scheme is to obtain hydrogen by electrolyzing water to produce hydrogen from the electrical energy output during the fuel cell testing process and pass it into the fuel cell for recycling. However, the conversion efficiency of hydrogen into electricity during fuel cell operation is generally 50% (based on the low calorific value LHV of hydrogen), while the theoretical electrolysis efficiency of the electricity generated by electrolyzing water to hydrogen again is high (the apparent conversion efficiency is even up to 100% to 122%), but in order to increase the hydrogen production rate in industry, the power conversion efficiency is only 50% to 70% due to factors such as heating and the generated polarization overpotential. Then the complete cycle efficiency of hydrogen→fuel cell→electrolyzer→hydrogen is only 30%, the energy loss exceeds 70%, and the cost of the hydrogen production system by electrolysis (especially the solid electrolyte membrane electrolysis of water with precious metal platinum or iridium as catalyst) Hydrogen production system) is higher and has a shorter lifespan. Therefore, this solution is not economical, and there are problems of complicated system and complicated maintenance.
另一方面,当前基于充电桩的电动汽车的充电技术尚存在以下问题:第一,充电能量来源于电网,而目前我国至少70%的电力来自煤炭,因而电动汽车的应用并没能改变对常规能源的消耗和对环境污染的影响,只是将污染源集中在了火电厂;第二,由于电动汽车充电为非线性负载,在充电过程中将同时向电网注入谐波电流导致电网电能质量下降、电网损耗增加及输变电设备正常容量占用,还需要增加无功补偿设备以稳定节点电压,致使控制复杂、设备造价攀升;第三,当采用大电流的直流快充方式时还会给电网负荷带来大量的波动,电网供电稳定性变差。On the other hand, the current charging technology of electric vehicles based on charging piles still has the following problems: First, the charging energy comes from the grid, and at least 70% of my country's electricity comes from coal, so the application of electric vehicles has not changed the conventional The energy consumption and the impact on environmental pollution only concentrate the pollution sources in thermal power plants; secondly, since the charging of electric vehicles is a non-linear load, harmonic current will be injected into the power grid at the same time during the charging process, which will lead to the degradation of power quality of the power grid and the loss of power to the power grid. The loss increases and the normal capacity of the power transmission and transformation equipment is occupied. It is also necessary to increase the reactive power compensation equipment to stabilize the node voltage, resulting in complicated control and rising equipment cost. A large number of fluctuations come, and the stability of the power supply of the power grid deteriorates.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的不足,本发明的目的在于提供一种燃料电池测试与电动汽车充电耦合系统及控制方法。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a fuel cell testing and electric vehicle charging coupling system and control method.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
本发明实施例提供一种燃料电池测试与电动汽车充电耦合系统,包括燃料电池测试单元、储能单元、充电单元、储能双向变流器和能量管理单元,所述能量管理单元分别与燃料电池测试单元、储能单元、充电单元和储能双向变流器通讯连接,所述储能单元分别与燃料电池测试单元、充电单元和储能双向变流器的直流端电连接,所述储能双向变流器的交流端与外电网电连接。An embodiment of the present invention provides a fuel cell test and electric vehicle charging coupling system, including a fuel cell test unit, an energy storage unit, a charging unit, an energy storage bidirectional converter, and an energy management unit, the energy management unit is respectively connected to the fuel cell The test unit, the energy storage unit, the charging unit and the energy storage bidirectional converter are connected in communication, and the energy storage unit is respectively electrically connected with the fuel cell test unit, the charging unit and the DC terminal of the energy storage bidirectional converter, and the energy storage unit is electrically connected to the DC terminal of the energy storage bidirectional converter. The AC end of the bidirectional converter is electrically connected with the external power grid.
上述方案中,所述燃料电池测试单元包括至少一组燃料电池测试台和单向DC/DC变换器,所述燃料电池测试台中的待测燃料电池的直流输出端与其相对应的单向DC/DC变换器的输入端电连接,所述单向DC/DC变换器的输出端经由断路器与储能单元连接。In the above solution, the fuel cell test unit includes at least one set of fuel cell test benches and unidirectional DC/DC converters, and the DC output end of the fuel cell to be tested in the fuel cell test bench and its corresponding unidirectional DC/DC converter. The input end of the DC converter is electrically connected, and the output end of the unidirectional DC/DC converter is connected to the energy storage unit via a circuit breaker.
上述方案中,所述储能单元包括储能电池组和电池管理单元,所述储能电池组的一个输入端与燃料电池测试单元电连接,所述储能电池组的另一个输出端与充电单元电连接,所述储能电池组还与储能双向变流器的直流端电连接;所述电池管理单元通过低压信号线与所述储能电池组连接。In the above solution, the energy storage unit includes an energy storage battery pack and a battery management unit, one input end of the energy storage battery pack is electrically connected to the fuel cell test unit, and the other output end of the energy storage battery pack is connected to the charging unit. The unit is electrically connected, and the energy storage battery pack is also electrically connected to the DC terminal of the energy storage bidirectional converter; the battery management unit is connected to the energy storage battery pack through a low-voltage signal line.
上述方案中,所述储能电池组采用铅酸电池、铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器、钛酸锂电池、全钒液流电池中的一种或多种。In the above scheme, the energy storage battery pack adopts one or more of lead-acid batteries, lead-carbon batteries, lithium-ion batteries, flow batteries, sodium-sulfur batteries, supercapacitors, lithium titanate batteries, and all-vanadium flow batteries. kind.
上述方案中,所述充电单元包括快充配电柜和/或慢充配电柜;所述快充配电柜和/或慢充配电柜的输入端经由内部断路器与储能单元电连接,所述快充配电柜和/或慢充配电柜的输出端分别与至少一个快充充电桩和/或慢充充电桩的输入端连接,将从所述储能单元传递过来的电能分配至各个所述快充充电桩和/或慢充充电桩;所述快充充电桩和/或慢充充电桩为电动汽车快充和/或慢充提供指定的直流电压输出端口。In the above solution, the charging unit includes a fast charging distribution cabinet and/or a slow charging distribution cabinet; the input end of the fast charging distribution cabinet and/or the slow charging distribution cabinet is electrically connected to the energy storage unit via an internal circuit breaker. connection, the output end of the fast charging distribution cabinet and/or the slow charging distribution cabinet is respectively connected with the input end of at least one fast charging charging pile and/or the slow charging charging pile, and the energy transmitted from the energy storage unit Electric energy is distributed to each of the fast-charging charging piles and/or the slow-charging charging piles; the fast-charging charging piles and/or the slow-charging charging piles provide a designated DC voltage output port for fast charging and/or slow charging of the electric vehicle.
上述方案中,所述能量管理单元分别通过通讯线与燃料电池测试单元中的燃料电池测试台和单向DC/DC变换器、储能单元中的电池管理单元、充电单元中的快充充电桩和/或慢充充电桩以及储能双向变流器连接,分别通过低压信号线与燃料电池测试单元中单向DC/DC变换器的断路器、储能单元中的断路器、充电单元中快充配电柜和/或慢充配电柜的断路器和储能双向变流器中的隔离开关连接。In the above solution, the energy management unit communicates with the fuel cell test bench and the one-way DC/DC converter in the fuel cell test unit, the battery management unit in the energy storage unit, and the fast charging charging pile in the charging unit respectively through the communication line. and/or the slow charging pile and the energy storage bidirectional converter, respectively, through the low voltage signal line with the circuit breaker of the unidirectional DC/DC converter in the fuel cell test unit, the circuit breaker in the energy storage unit, and the fast charging unit in the charging unit. The circuit breaker of the charging distribution cabinet and/or the slow charging distribution cabinet is connected to the isolating switch in the energy storage bidirectional converter.
本发明实施例还提供一种燃料电池测试与电动汽车充电耦合系统的控制方法,该方法通过如下步骤实现:The embodiment of the present invention also provides a control method of a fuel cell test and electric vehicle charging coupling system, and the method is realized by the following steps:
步骤(1),所述能量管理单元启动自检,并确认所述储能双向变流器的并网隔离开关处于断开状态,使燃料电池测试与电动汽车充电耦合系统进入初始离网控制模式;In step (1), the energy management unit starts a self-check and confirms that the grid-connected isolating switch of the energy storage bidirectional converter is in a disconnected state, so that the fuel cell test and electric vehicle charging coupling system enters the initial off-grid control mode ;
步骤(2),所述能量管理单元获取燃料电池测试单元中待测燃料电池的个数及测试参数并且确定燃料电池在整个测试过程中所产生的总电量Q1,通过储能单元获取储能电池组的SOC并且确定储能电池组由当前SOC放电至设定的SOC下限时可放电量Q2和由当前SOC充电至设定的SOC上限时需充电量Q′2,获取待充电电动汽车需要充电的总电量Q3;然后比较Q1、Q2、Q′2和Q3之间的大小:Step (2), the energy management unit acquires the number of fuel cells to be tested and test parameters in the fuel cell test unit and determines the total amount of electricity Q 1 generated by the fuel cell during the entire test process, and obtains energy storage through the energy storage unit The SOC of the battery pack and determine the dischargeable amount Q 2 when the energy storage battery pack is discharged from the current SOC to the set SOC lower limit and the required charge Q′ 2 when the current SOC is charged to the set SOC upper limit, and obtain the electric vehicle to be charged The total amount of electricity Q 3 that needs to be charged; then compare the magnitudes between Q 1 , Q 2 , Q' 2 and Q 3 :
如果Q1≤Q′2+Q3,且Q3≤Q1+Q2,则进入稳态离网工作模式;If Q 1 ≤Q′ 2 +Q 3 , and Q 3 ≤Q 1 +Q 2 , enter the steady-state off-grid working mode;
如果Q1>Q′2+Q3,或Q3>Q1+Q2,则进入暂态并网工作模式。If Q 1 >Q' 2 +Q 3 , or Q 3 >Q 1 +Q 2 , enter the transient grid-connected working mode.
上述方案中,所述稳态离网工作模式为:所述能量管理单元给燃料电池测试单元中的燃料电池测试台发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,同时给燃料电池测试台所对应的单向DC/DC变换器发送接通指令将燃料电池测试台上在线测试的燃料电池所产生的电能经过单向DC/DC变换器转换为与所述储能单元中储能电池组的充电电压相匹配的电压后输出至储能电池组中;需要对电动汽车进行快充和/或慢充时,所述能量管理单元给所述充电单元中快充配电柜和/或慢充配电柜连接储能电池组的断路器发送闭合信号,将所述储能电池组中存储的电能经由快充配电柜和/或慢充配电柜输送至电动汽车对应的快充充电桩和/或慢充充电桩为电动汽车进行快速充电和/或慢速充电。In the above solution, the steady state off-grid working mode is: the energy management unit sends a start signal to the fuel cell test bench in the fuel cell test unit, and performs electrochemical performance test of the fuel cell to be tested according to preset parameters and work steps. At the same time, send a switch-on command to the one-way DC/DC converter corresponding to the fuel cell test bench to convert the electric energy generated by the fuel cell tested online on the fuel cell test bench into the energy generated by the one-way DC/DC converter. The voltage that matches the charging voltage of the energy storage battery pack in the unit is output to the energy storage battery pack; when fast charging and/or slow charging of the electric vehicle is required, the energy management unit assigns the fast charging to the charging unit. The circuit breaker connecting the electric cabinet and/or the slow charging distribution cabinet to the energy storage battery pack sends a closing signal to transmit the electrical energy stored in the energy storage battery pack to the electric power storage unit via the fast charging distribution cabinet and/or the slow charging distribution cabinet. The fast-charging and/or slow-charging charging piles corresponding to the vehicle perform fast charging and/or slow charging for the electric vehicle.
上述方案中,所述能量管理单元实时获取燃料电池在测试过程中产生的电量QF、储能单元中储能电池组的荷电状态SOC和电动汽车充电所需要的总电量QC:如果Q1<Q′2且Q3<Q2,则燃料电池的测试与电动汽车充电处于解耦状态,既可同步进行,也可分时进行,互不干扰;如果Q′2≤Q1≤Q′2+Q3,当所述能量管理单元监测到QF≥QC或没有电动汽车需要充电即QC=0时则根据实时监测到的所述储能电池组的荷电状态SOC采取燃料电池测试工步适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递;如果Q2≤Q3≤Q1+Q2,所述能量管理单元监测到QF<QC时则根据实时监测到的所述储能电池组的荷电状态SOC采取电动汽车充电适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递,而且采用优先延迟慢充极端情况下再延迟快充的充电策略以确保电动汽车快充的正常进行。In the above solution, the energy management unit obtains in real time the electricity Q F generated by the fuel cell during the test, the state of charge SOC of the energy storage battery pack in the energy storage unit, and the total electricity Q C required for charging the electric vehicle: if Q 1 <Q′ 2 and Q 3 <Q 2 , then the fuel cell test and the electric vehicle charging are in a decoupled state, which can be performed synchronously or in a time-sharing manner without interfering with each other; if Q′ 2 ≤Q 1 ≤Q ′ 2 +Q 3 , when the energy management unit detects that Q F ≥ Q C or that no electric vehicle needs to be charged, that is, Q C =0, it will take fuel according to the state of charge SOC of the energy storage battery pack monitored in real time. The scheduling optimization strategy of timely delaying the battery test step to realize the normal energy transfer of the fuel cell test and the electric vehicle charging coupling system; if Q 2 ≤Q 3 ≤Q 1 +Q 2 , the energy management unit monitors that Q F < During QC, according to the real - time monitoring of the state of charge (SOC) of the energy storage battery pack, a scheduling optimization strategy of timely delaying electric vehicle charging is adopted to achieve normal energy transfer between the fuel cell test and the electric vehicle charging coupling system. The charging strategy of delaying slow charging in extreme cases and then delaying fast charging to ensure the normal fast charging of electric vehicles.
上述方案中,所述暂态并网工作模式为:所述能量管理单元给燃料电池测试单元中的燃料电池测试台发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,同时给燃料电池测试台所对应的单向DC/DC发送接通指令将燃料电池测试台上在线测试的燃料电池所产生的电能经过单向DC/DC变换器转换为与所述储能单元中储能电池组的充电电压相匹配的电压后输出至储能电池组中;需要对电动汽车进行快充和/或慢充时,所述能量管理单元给所述充电单元中快充配电柜和/或慢充配电柜连接储能电池组的断路器发送闭合信号,将所述储能电池组中存储的电能经由快充配电柜和/或慢充配电柜输送至电动汽车对应的快充充电桩和/或慢充充电桩为电动汽车进行快速充电和/或慢速充电。In the above solution, the transient grid-connected working mode is as follows: the energy management unit sends a start signal to the fuel cell test bench in the fuel cell test unit, and conducts an electrochemical performance test of the fuel cell to be tested according to preset parameters and work steps. At the same time, a switch-on command is sent to the one-way DC/DC corresponding to the fuel cell test bench to convert the electrical energy generated by the fuel cell tested online on the fuel cell test bench into a The voltage that matches the charging voltage of the energy storage battery pack is output to the energy storage battery pack; when fast charging and/or slow charging of the electric vehicle is required, the energy management unit supplies the fast charging distribution cabinet in the charging unit And/or the circuit breaker connected to the energy storage battery pack by the slow charge distribution cabinet sends a closing signal to transmit the electrical energy stored in the energy storage battery pack to the corresponding electric vehicle via the fast charge distribution cabinet and/or the slow charge distribution cabinet. The fast-charging and/or slow-charging charging piles provided for fast charging and/or slow charging of electric vehicles.
上述方案中,所述能量管理单元实时获取燃料电池在测试过程中产生的电量QF、储能单元中储能电池组的荷电状态SOC和电动汽车充电所需要的总电量QC;如果Q3>Q1+Q2,当检测到QF<QC时所述能量管理单元则根据实时监测到的所述储能电池组的荷电状态SOC采取电动汽车充电适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递,而且采用优先延迟慢充极端情况下再延迟快充的充电策略以确保电动汽车快充的正常进行;如果在电动汽车充电适时延迟策略过程中所述能量管理单元监测到储能电池组的荷电状态SOC已降至设定的下限而电动汽车充电并未完成时,所述能量管理单元给所述储能双向变流器的隔离开关发送闭合信号将外电网的电能经由储能双向变流器逆变成与所述储能电池组的充电电压相匹配的直流电压后输出至储能电池组。In the above solution, the energy management unit obtains the power Q F generated by the fuel cell during the test process, the state of charge SOC of the energy storage battery pack in the energy storage unit, and the total power Q C required for charging the electric vehicle in real time; if Q 3 >Q 1 +Q 2 , when it is detected that Q F < Q C In order to realize the normal energy transfer of the fuel cell test and the electric vehicle charging coupling system, and adopt the charging strategy of delaying the slow charging first and then delaying the fast charging in extreme cases to ensure the normal progress of the electric vehicle fast charging; if the electric vehicle charging is delayed in time, the strategy During the process, when the energy management unit monitors that the state of charge (SOC) of the energy storage battery pack has dropped to a set lower limit and the charging of the electric vehicle is not completed, the energy management unit isolates the energy storage bidirectional converter. The switch sends a closing signal to invert the electric energy of the external grid through the energy storage bidirectional converter into a DC voltage matching the charging voltage of the energy storage battery pack, and then outputs it to the energy storage battery pack.
上述方案中,如果Q1>Q′2+Q3,当检测到QF≥QC或没有电动汽车需要充电即QC=0时,所述能量管理单元根据实时监测到的所述储能电池组的荷电状态SOC采取燃料电池测试工步适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递;如果在燃料电池测试适时延迟策略过程中所述能量管理单元监测到储能电池组的荷电状态SOC已升至设定的上限而燃料电池测试仍在进行时,所述能量管理单元给所述储能双向变流器的隔离开关发送闭合信号将储能电池组存储的电能经由储能双向变流器逆变成与外电网相匹配的电压后输出至外电网。In the above solution, if Q 1 >Q′ 2 +Q 3 , when it is detected that Q F ≥ Q C or no electric vehicle needs to be charged, that is, Q C =0, the energy management unit will The state of charge SOC of the battery pack adopts the scheduling optimization strategy of timely delaying the fuel cell test step to realize the normal energy transfer of the fuel cell test and the electric vehicle charging coupling system; if the energy management is described in the process of the fuel cell test timely delay strategy When the unit monitors that the state of charge SOC of the energy storage battery pack has risen to the set upper limit and the fuel cell test is still in progress, the energy management unit sends a closing signal to the isolation switch of the energy storage bidirectional converter to store the battery. The electric energy stored in the battery pack is converted into a voltage matching the external power grid through the energy storage bidirectional converter and then output to the external power grid.
与现有技术相比,本发明将燃料电池电化学测试过程中产生的电能输出至充电桩用于电动汽车充电,一方面避免了常规电阻型负载将燃料电池系统产生的电能通过热能消耗掉的能量浪费,同时还节省了为给电阻型负载降温设备的额外电能消耗;另一方面,本发明在燃料电池测试与电动汽车耦合系统中配置的储能单元缓解了电动汽车充电对外电网的高度依赖,可确保在市电停电或用电高峰时电动汽车仍可正常充电;而且,将充电桩直接与输出直流电的储能单元连接则可以省去传统充电桩中的AC/DC开关电源部件,提升了充电利用率和效率,从而节省了用电成本。Compared with the prior art, the present invention outputs the electric energy generated during the electrochemical test of the fuel cell to the charging pile for charging the electric vehicle. energy waste, and at the same time, it also saves extra power consumption for cooling the resistive load; on the other hand, the energy storage unit configured in the fuel cell test and electric vehicle coupling system of the present invention alleviates the high dependence of electric vehicle charging on external power grids , which can ensure that the electric vehicle can still be charged normally during the mains power outage or peak power consumption; moreover, connecting the charging pile directly with the energy storage unit that outputs DC power can save the AC/DC switching power supply components in the traditional charging pile, improving the Improve charging utilization and efficiency, thereby saving electricity costs.
附图说明Description of drawings
图1为根据本发明的实施例的一种燃料电池测试与电动汽车充电耦合系统的结构示意图。FIG. 1 is a schematic structural diagram of a fuel cell testing and electric vehicle charging coupling system according to an embodiment of the present invention.
图2为根据本发明的实施例的一种燃料电池测试与电动汽车充电耦合系统的控制方法流程图。FIG. 2 is a flowchart of a control method of a fuel cell testing and electric vehicle charging coupling system according to an embodiment of the present invention.
具体实施方式Detailed ways
下面参考附图进一步描述本发明的实施方式,本发明的优点和特点将会随着描述而更为清楚。但实施方式仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。The embodiments of the present invention will be further described below with reference to the accompanying drawings, and the advantages and features of the present invention will become more apparent with the description. However, the embodiments are only exemplary and do not limit the scope of the present invention in any way. It should be understood by those skilled in the art that the details and forms of the technical solutions of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications and replacements all fall within the protection scope of the present invention.
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员将理解,没有这些具体细节,本发明同样可以实施。在另外一些实施例中,对于大家熟知的方法、流程、元件和电路未作详细描述,以便于凸显本发明的主旨。In addition, in order to better illustrate the present invention, numerous specific details are given in the following detailed description. It will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other embodiments, well-known methods, procedures, components and circuits are not described in detail so as to highlight the gist of the present invention.
本发明实施例提供一种燃料电池测试与电动汽车充电耦合系统,如图1所示,其包括燃料电池测试单元1、储能单元2、充电单元3、储能双向变流器(PCS)4和能量管理单元(EMS)5,所述能量管理单元5分别与燃料电池测试单元1、储能单元2、充电单元3和储能双向变流器4通讯连接,所述储能单元2分别与燃料电池测试单元1、充电单元3和储能双向变流器4的直流端电连接,所述储能双向变流器PCS4的交流端与外电网电连接。其中,An embodiment of the present invention provides a fuel cell test and electric vehicle charging coupling system, as shown in FIG. 1 , which includes a fuel
具体的,所述燃料电池测试单元1包括燃料电池测试台11和单向DC/DC变换器12,所述燃料电池测试台11中的待测燃料电池的直流输出端与其相对应的单向DC/DC变换器12的输入端电连接,所述单向DC/DC变换器12的输出端经由断路器与储能单元2连接。Specifically, the fuel
所述燃料电池测试单元1中燃料电池测试台11用于对燃料电池进行极化曲线、电化学阻抗谱(EIS)以及各种模拟工况条件下的电化学性能测试与评估,而所述单向DC/DC变换器12则将燃料电池在测试过程中所产生的电能经过电压的变换后输出至储能单元2。The fuel
进一步地,所述燃料电池测试单元1中的燃料电池测试台11可以是单台,也可以是多台从而形成燃料电池测试台阵列,而且,燃料电池测试台阵列中的各个所述燃料电池测试台11之间独立工作,互不干扰;并且,所述单向DC/DC变换器12的个数与所述燃料电池测试台11的个数保持一致并形成一一对应关系。Further, the fuel
可选的,所述燃料电池测试台11包括但不限于氢气流量测试单元、空气流量测试单元、水管理单元、热管理单元及控制单元,所测试的燃料电池包括但不限于燃料电池单电池、燃料电池电堆、燃料电池系统、燃料电池发动机等;而且,不同的燃料电池,其所对应的燃料电池测试台的配置也不尽相同,只要所测试的燃料电池类型及测试参数与燃料电池测试台相匹配即可。同样,与所述燃料电池测试台11所对应的单向DC/DC变换器12也会因待测燃料电池的电压、电流的不同其配置参数也不同,只要其能转换的电压、电流区间同燃料电池输出的电压、电流相匹配即可。换言之,在上述燃料电池测试台阵列中所述燃料电池测试台11可以是同类型的,也可以是不同类型;相应的,所述单向DC/DC变换器12也可以是同类型的,也可以是不同类型的,但是每个单向DC/DC变换器12的输入端配置参数必须与其所连接的燃料电池测试台11的电输出参数相匹配,而且其输出端配置参数还要与所述储能单元2的充电电压、充电电流等参数相匹配。Optionally, the fuel
具体的,所述储能单元2包括储能电池组21和电池管理单元(BMS)22,所述储能电池组21的一个输入端与所述燃料电池测试单元1中单向DC/DC变换器12的输出端经由断路器电连接,所述储能电池组21的一个输出端与所述充电单元3电连接,所述储能电池组21还与所述储能双向变流器4的直流端电连接;所述电池管理单元22通过低压信号线与所述储能电池组21连接。Specifically, the energy storage unit 2 includes an energy storage battery pack 21 and a battery management unit (BMS) 22 . An input end of the energy storage battery pack 21 is connected to the one-way DC/DC conversion in the fuel
所述储能电池组21一方面接收所述燃料电池测试单元1中燃料电池在测试过程中产生的直流电能和外电网经由所述储能双向变流器4传递过来的谷电,另一方面为所述充电单元3提供直流电能和经由所述储能双向变流器4向外电网馈电及为外电网提供调峰调频及无功补偿的电力辅助服务;On the one hand, the energy storage battery pack 21 receives the DC power generated by the fuel cell in the fuel
可选的,所述储能电池组21采用铅酸电池、铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器中的一种或多种;Optionally, the energy storage battery pack 21 adopts one or more of lead-acid batteries, lead-carbon batteries, lithium-ion batteries, flow batteries, sodium-sulfur batteries, and supercapacitors;
优选的,所述储能电池组21优先采用钛酸锂电池或全钒液流电池。Preferably, the energy storage battery pack 21 preferably adopts a lithium titanate battery or an all-vanadium flow battery.
所述电池管理单元22,用于监测所述储能电池组21的电压、电流和温度,准确估测所述储能电池组21的荷电状态SOC并将实时采集到的数据信息通过CAN线传输给所述能量管理单元5,同时对所述储能电池组21的单体电池间进行能量均衡。The battery management unit 22 is used to monitor the voltage, current and temperature of the energy storage battery pack 21, accurately estimate the state of charge SOC of the energy storage battery pack 21, and pass the data information collected in real time through the CAN line. The energy is transmitted to the
具体的,所述充电单元3包括快充配电柜31、快充充电桩33和/或慢充配电柜32、慢充充电桩34;所述快充配电柜31和/或慢充配电柜32的输入端经由内部断路器与所述储能单元2的储能电池组21的一个输出端电连接,所述快充配电柜31和/或慢充配电柜32的输出端分别与至少一个所述快充充电桩33和/慢充充电桩34的输入端连接,将从所述储能单元2传递过来的电能分配至各个所述快充充电桩33和/或慢充充电桩34;所述快充充电桩33和/或慢充充电桩34为电动汽车快充和/或慢充提供指定的直流电压输出端口。Specifically, the charging
具体的,所述储能双向变流器PCS4的直流端通过隔离开关与所述储能单元2的储能电池组21电连接,所述储能双向变流器PCS4的交流端通过隔离开关与外电网电连接,用于在特定情况下通过交直流的变换实现所述储能单元2与外电网之间的双向能量传递。Specifically, the DC terminal of the energy storage bidirectional converter PCS4 is electrically connected to the energy storage battery pack 21 of the energy storage unit 2 through an isolation switch, and the AC terminal of the energy storage bidirectional converter PCS4 is electrically connected to the energy storage battery pack 21 through the isolation switch. The external power grid is electrically connected to realize bidirectional energy transfer between the energy storage unit 2 and the external power grid through the conversion of AC and DC under certain circumstances.
具体的,所述能量管理单元5分别通过通讯线与所述燃料电池测试单元1中的燃料电池测试台11和单向DC/DC变换器12、储能单元2中的电池管理单元22、充电单元3中的快充充电桩33和/或慢充充电桩34以及储能双向变流器4连接,分别通过低压信号线与所述燃料电池测试单元1中单向DC/DC变换器12的断路器、储能单元2中的断路器、充电单元3中快充配电柜31和/或慢充配电柜32的断路器和储能双向变流器4中的隔离开关连接,用于接收所述燃料电池测试单元1、储能单元2和充电单元3的实时参数信息并按照预设的命令向所述燃料电池测试单元1的燃料电池测试台11和单向DC/DC变换器12、储能单元2的电池管理单元22、充电单元3的快充配电柜31和/或慢充配电柜32及快充充电桩33和/或慢充充电桩34、储能双向变流器4的控制元件下发操作指令,对整个燃料电池测试与电动汽车充电耦合系统的能量进行管理调度以维系整个系统的正常运转。Specifically, the
所述一种燃料电池测试与电动汽车充电耦合系统工作在稳态离网工作模式和暂态并网工作模式:The fuel cell test and electric vehicle charging coupling system works in a steady-state off-grid working mode and a transient grid-connected working mode:
在稳态离网工作模式下,所述能量管理单元5给所述燃料电池测试单元1中的燃料电池测试台11发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器12转换为与所述储能单元2中储能电池组21的充电电压相匹配的电压后输出至储能电池组21中;需要对电动汽车进行快充和/或慢充时,所述能量管理单元5给所述充电单元3中快充配电柜31和/或慢充配电柜32连接储能电池组21的断路器发送闭合信号,将所述储能电池组21中存储的电能经由快充配电柜31和/或慢充配电柜32输送至电动汽车对应的快充充电桩33和/或慢充充电桩34为电动汽车进行快速充电和/或慢速充电。在燃料电池测试和电动汽车充电的全过程中,燃料电池所产生的电能只在燃料电池测试单元1、储能单元2、充电单元3之间进行传递,所述储能双向变流器4与所述储能电池组21及外电网始终处于断开状态,整个系统孤岛运行。In the steady-state off-grid working mode, the
在暂态并网工作模式下,所述能量管理单元5给所述燃料电池测试单元1中的燃料电池测试台11发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器12转换为与所述储能单元2中储能电池组21的充电电压相匹配的电压后输出至储能电池组21中;需要对电动汽车进行快充和/或慢充时,所述能量管单元5给所述充电单元3中快充配电柜31和/或慢充配电柜32连接储能电池组21的断路器发送闭合信号,将所述储能电池组21中存储的电能经由快充配电柜31和/或慢充配电柜32输送至电动汽车对应的快充充电桩33和/或慢充充电桩34为电动汽车进行快速充电和/或慢速充电。In the transient grid-connected working mode, the
在充电过程中,所述能量管理单元5实时获取燃料电池在测试过程中产生的电量QF、储能单元2中储能电池组21的荷电状态SOC和电动汽车充电所需要的总电量QC:当检测到QF<QC且储能电池组21的荷电状态SOC已降至设定的下限而电动汽车充电并未完成时,所述能量管理单元5给所述储能双向变流器PCS4的隔离开关发送闭合信号将外电网的电能经由储能双向变流器4逆变成与所述储能电池组21的充电电压相匹配的直流电压后输出至储能电池组21以保障电动汽车充电的平稳进行;当检测到QF≥QC或没有电动汽车需要充电即QC=0且储能电池组21的荷电状态SOC已升至设定的上限而燃料电池测试仍在进行时,所述能量管理单元5给所述储能双向变流器4的隔离开关发送闭合信号将储能电池组21存储的电能经由储能双向变流器4逆变成与外电网相匹配的电压后输出至外电网。从而确保燃料电池测试和电动汽车充电的有序平稳运行。During the charging process, the
本发明将燃料电池电化学测试过程中产生的电能输出至充电桩用于电动汽车充电,一方面避免了常规电阻型负载将燃料电池系统产生的电能通过热能消耗掉的能量浪费,同时还节省了为给电阻型负载降温设备的额外电能消耗;另一方面,本发明在燃料电池测试与电动汽车耦合系统中配置的储能单元缓解了电动汽车充电对外电网的高度依赖,可确保在市电停电或用电高峰时电动汽车仍可正常充电;而且,将充电桩直接与输出直流电的储能单元连接则可以省去传统充电桩中的AC/DC开关电源部件,提升了充电利用率和效率,从而节省了用电成本。The invention outputs the electric energy generated during the electrochemical test of the fuel cell to the charging pile for charging the electric vehicle. On the one hand, it avoids the waste of energy consumed by the conventional resistive load by consuming the electric energy generated by the fuel cell system through thermal energy, and at the same time saves the energy consumption. In order to reduce the extra power consumption of the resistance type load cooling device; on the other hand, the energy storage unit configured in the fuel cell test and the electric vehicle coupling system of the present invention relieves the high dependence of the electric vehicle charging on the external power grid, and can ensure the power failure in the mains. Or the electric vehicle can still be charged normally during peak power consumption; moreover, connecting the charging pile directly with the energy storage unit that outputs DC power can save the AC/DC switching power supply components in the traditional charging pile, improving the charging utilization rate and efficiency. This saves electricity costs.
此外,本发明储能单元的采用则可避免通常馈网型电子负载对电网的高频谐波的严重干扰并有效抑制了电动汽车充电过程中产生的谐波对外电网电能质量的影响以及大电流快充时对电网的冲击,有效提高了外电网的功率因数;另一方面又可实现对外电网的削峰填谷、谐波治理及无功补偿,改善电网的电能质量;同时采用储能电池组还可通过谷电峰用、调峰调频等电力辅助服务为企业带来额外收益。In addition, the use of the energy storage unit of the present invention can avoid the serious interference of the high-frequency harmonics of the power grid caused by the usual grid-feeding electronic load, and effectively suppress the influence of the harmonics generated in the charging process of the electric vehicle on the power quality of the external power grid and the large current. The impact on the power grid during fast charging can effectively improve the power factor of the external power grid; on the other hand, it can realize peak shaving, harmonic control and reactive power compensation of the external power grid, and improve the power quality of the power grid; at the same time, the use of energy storage batteries The group can also bring additional benefits to the enterprise through power auxiliary services such as valley power consumption and peak frequency regulation.
本发明实施例还提供一种燃料电池测试与电动汽车充电耦合系统控制方法,如图2所示,该方法通过如下步骤实现:The embodiment of the present invention also provides a method for controlling a fuel cell testing and electric vehicle charging coupling system, as shown in FIG. 2 , the method is implemented by the following steps:
在步骤200中,所述能量管理单元5启动自检,并确认所述储能双向变流器4的并网隔离开关处于断开状态,使燃料电池测试与电动汽车充电耦合系统进入初始离网控制模式。然后进入步骤201。In
在步骤201中,所述能量管理单元5获取燃料电池测试单元1中待测燃料电池的个数及测试参数从而计算出燃料电池在整个测试过程中所产生的总电量Q1,通过储能单元2中电池管理单元22获取储能电池组21的SOC从而计算出储能电池组21由当前SOC放电至设定的SOC下限时可放电量Q2和由当前SOC充电至设定的SOC上限时需充电量Q′2,获取待充电电动汽车需要充电的总电量Q3;然后比较Q1、Q2、Q′2和Q3之间的大小并进入步骤202。In
在步骤202中,当所述能量管理单元5检测到Q1≤Q′2+Q3且Q3≤Q1+Q2时,则进入步骤210,即进入稳态离网工作模式;当检测到Q1>Q′2+Q3或Q3>Q1+Q2时,则进入步骤220,即进入暂态并网工作模式。In
在步骤210中,所述能量管理单元5给燃料电池测试单元1中的燃料电池测试台11发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,同时给燃料电池测试台11所对应的单向DC/DC变换器12发送接通指令将燃料电池测试台11上在线测试的燃料电池所产生的电能经过单向DC/DC变换器12转换为与所述储能单元2中储能电池组21的充电电压相匹配的电压后输出至储能电池组21中;需要对电动汽车进行快充和/或慢充时,所述能量管理单元5给所述充电单元3中快充配电柜31和/或慢充配电柜32连接储能电池组21的断路器发送闭合信号,将所述储能电池组21中存储的电能经由快充配电柜31和/或慢充配电柜32输送至电动汽车对应的快充充电桩33和/或慢充充电桩34为电动汽车进行快速充电和/或慢速充电。在燃料电池测试和电动汽车充电的全过程中,燃料电池所产生的电能只在燃料电池测试单元1、储能单元2、充电单元3之间进行传递,所述储能双向变流器4的并网隔离开关始终处于断开状态,整个系统孤岛运行。In
其间,所述能量管理单元5在Q1≤Q′2+Q3且Q3≤Q1+Q2的前提下实时获取燃料电池在测试过程中产生的电量QF、储能单元2中储能电池组21的荷电状态SOC和电动汽车充电所需要的总电量QC并进一步比较Q1、Q2、Q′2和Q3之间及QF与QC之间存在的大小关系和存在的排列组合情况,然后进入步骤211。Meanwhile, the
在步骤211中,所述能量管理单元5开始检测是否存在Q1<Q′2且Q3<Q2的情况:如果存在则进入步骤212,如果不存在则进入步骤213。In
在步骤212中,燃料电池的测试与电动汽车充电处于解耦状态,既可同步进行,也可分时进行,互不干扰。In
在步骤213中,所述能量管理单元5开始检测是否存在Q′2≤Q1≤Q′2+Q3且QF≥QC或QC=0的情况:如果存在则进入步骤214,如果不存在则进入步骤215。In
在步骤214中,所述能量管理单元5根据实时监测到的所述储能电池组21的荷电状态SOC采取燃料电池测试工步适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递。In
在步骤215中,所述能量管理单元5开始检测是否存在Q2≤Q3≤Q1+Q2且QF<QC的情况:如果存在则进入步骤216,如果不存在则返回步骤211。In
在步骤216中,所述能量管理单元5根据实时监测到的所述储能电池组21的荷电状态SOC采取电动汽车充电适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递,而且采用优先延迟慢充极端情况下再延迟快充的充电策略以确保电动汽车快充的正常进行。In
在步骤220中,所述能量管理单元5给燃料电池测试单元1中的燃料电池测试台11发送启动信号,按照预设参数和工步对待测燃料电池进行电化学性能测试,同时给燃料电池测试台11所对应的单向DC/DC变换器12发送接通指令将燃料电池测试台11上在线测试的燃料电池所产生的电能经过单向DC/DC变换器12转换为与所述储能单元2中储能电池组21的充电电压相匹配的电压后输出至储能电池组21中;需要对电动汽车进行快充和/或慢充时,所述能量管理单元5给所述充电单元3中快充配电柜31和/或慢充配电柜32连接储能电池组21的断路器发送闭合信号,将所述储能电池组21中存储的电能经由快充配电柜31和/或慢充配电柜32输送至电动汽车对应的快充充电桩33和/或慢充充电桩34为电动汽车进行快速充电和/或慢速充电。In
同时,所述能量管理单元5在Q1>Q′2+Q3或Q3>Q1+Q2前提下实时获取燃料电池在测试过程中产生的电量QF、储能单元2中储能电池组21的荷电状态SOC和电动汽车充电所需要的总电量QC并进一步比较QF与QC之间存在的大小关系及与Q1>Q′2+Q3或Q3>Q1+Q2存在的排列组合情况,然后进入步骤221。At the same time, the
在步骤221中,所述能量管理单元5开始检测是否存在Q3>Q1+Q2且QF<QC的情况:如果存在则进入步骤222,如果不存在则进入步骤225。In
在步骤222中,所述能量管理单元5继续检测是否存在储能电池组21的荷电状态SOC降至设定的下限的情况:如果不存在则进入步骤223,如果存在则进入步骤224。In
在步骤223中,所述储能双向变流器4的并网隔离开关继续保持断开状态,所述能量管理单元5根据实时监测到的所述储能电池组21的荷电状态SOC采取电动汽车充电适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递,而且采用优先延迟慢充极端情况下再延迟快充的充电策略以确保电动汽车快充的正常进行。In
在步骤224中,如果电动汽车充电并未完成,所述能量管理单元5给所述储能双向变流器4的隔离开关发送闭合信号将外电网的电能经由储能双向变流器4逆变成与所述储能电池组21的充电电压相匹配的直流电压后输出至储能电池组21以保障电动汽车充电的平稳进行。In
在步骤225中,所述能量管理单元5开始检测是否存在Q1>Q′2+Q3且QF≥QC或QC=0的情况:如果存在则进入步骤226,如果不存在则返回步骤221。In
在步骤226中,所述能量管理单元5继续检测是否存在储能电池组21的荷电状态SOC升至设定的上限的情况:如果不存在则进入步骤227,如果存在则进入步骤228。In
在步骤227中,所述储能双向变流器4的并网隔离开关继续保持断开状态,所述能量管理单元5根据实时监测到的所述储能电池组21的荷电状态SOC采取燃料电池测试工步适时延迟进行的调度优化策略以实现燃料电池测试与电动汽车充电耦合系统的正常能量传递。In step 227, the grid-connected isolating switch of the energy storage
在步骤228中,如果燃料电池测试仍在进行,所述能量管理单元5给所述储能双向变流器4的隔离开关发送闭合信号将储能电池组21存储的电能经由储能双向变流器4逆变成与外电网相匹配的电压后输出至外电网,从而确保燃料电池测试和电动汽车充电的有序平稳运行。In
本发明的实施例内容揭露如上,然而本实施例并非用以限定本发明实施的范围,依据本发明的权利要求书及说明内容所作的简单的等效变化与修饰,仍属于本发明技术方案的范围内。The contents of the embodiments of the present invention are disclosed as above. However, the present embodiments are not intended to limit the scope of the present invention. Simple equivalent changes and modifications made according to the claims and descriptions of the present invention still belong to the technical solutions of the present invention. within the range.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811619790.6A CN111404184A (en) | 2018-12-28 | 2018-12-28 | Fuel cell test and electric vehicle charging coupling system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811619790.6A CN111404184A (en) | 2018-12-28 | 2018-12-28 | Fuel cell test and electric vehicle charging coupling system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111404184A true CN111404184A (en) | 2020-07-10 |
Family
ID=71428247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811619790.6A Pending CN111404184A (en) | 2018-12-28 | 2018-12-28 | Fuel cell test and electric vehicle charging coupling system and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111404184A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113608131A (en) * | 2021-07-20 | 2021-11-05 | 西南交通大学 | PEMFC pile recession performance detection method under dynamic locomotive working condition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1866599A (en) * | 2005-05-20 | 2006-11-22 | 上海神力科技有限公司 | Fuel cell stack testing device with power generation function |
KR101363627B1 (en) * | 2012-09-21 | 2014-02-28 | (주)지필로스 | Hybrid uninterruptible power supply apparatus using fuel cell and super capacitor and method for operating hybrid uninterruptible power supply apparatus |
CN206135505U (en) * | 2016-11-07 | 2017-04-26 | 三峡大学 | A Microgrid Adapted to Different Charging Demands of Electric Vehicles |
CN107154657A (en) * | 2017-05-18 | 2017-09-12 | 江苏理工学院 | A kind of optimum condition type fuel cell charging station |
WO2017185756A1 (en) * | 2016-04-26 | 2017-11-02 | 国电南瑞科技股份有限公司 | Electric automobile and power grid interactive simulation load system and electrical protection method therefor |
CN108957327A (en) * | 2017-05-24 | 2018-12-07 | 江苏氢电新能源有限公司 | A kind of activation of fuel cell test macro of recyclable recycling electric power |
CN209497274U (en) * | 2018-12-28 | 2019-10-15 | 天津银隆新能源有限公司 | A fuel cell testing and electric vehicle charging coupling system |
-
2018
- 2018-12-28 CN CN201811619790.6A patent/CN111404184A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1866599A (en) * | 2005-05-20 | 2006-11-22 | 上海神力科技有限公司 | Fuel cell stack testing device with power generation function |
KR101363627B1 (en) * | 2012-09-21 | 2014-02-28 | (주)지필로스 | Hybrid uninterruptible power supply apparatus using fuel cell and super capacitor and method for operating hybrid uninterruptible power supply apparatus |
WO2017185756A1 (en) * | 2016-04-26 | 2017-11-02 | 国电南瑞科技股份有限公司 | Electric automobile and power grid interactive simulation load system and electrical protection method therefor |
CN206135505U (en) * | 2016-11-07 | 2017-04-26 | 三峡大学 | A Microgrid Adapted to Different Charging Demands of Electric Vehicles |
CN107154657A (en) * | 2017-05-18 | 2017-09-12 | 江苏理工学院 | A kind of optimum condition type fuel cell charging station |
CN108957327A (en) * | 2017-05-24 | 2018-12-07 | 江苏氢电新能源有限公司 | A kind of activation of fuel cell test macro of recyclable recycling electric power |
CN209497274U (en) * | 2018-12-28 | 2019-10-15 | 天津银隆新能源有限公司 | A fuel cell testing and electric vehicle charging coupling system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113608131A (en) * | 2021-07-20 | 2021-11-05 | 西南交通大学 | PEMFC pile recession performance detection method under dynamic locomotive working condition |
CN113608131B (en) * | 2021-07-20 | 2022-11-29 | 西南交通大学 | PEMFC pile recession performance detection method under dynamic locomotive working condition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209497314U (en) | A microgrid system based on fuel cell testing and charging pile coupling | |
CN102738836B (en) | Alternating current and direct current hybrid micro power grid system and control method thereof | |
CN111381171A (en) | Microgrid system and control method based on fuel cell test | |
CN103050987B (en) | A kind of energy-storage system of accumulator based on cell batteries group and control method | |
CN107579698A (en) | A kind of photovoltaic plant energy storage method | |
CN102104257A (en) | Energy storage system of apartment building, integrated power management system, and method of controlling the system | |
CN204497336U (en) | Multikilowatt fuel cell lithium ion battery hybrid power device | |
CN211018374U (en) | An automatic energy storage charging system based on the co-power supply of mains and hydrogen fuel cells | |
CN202424196U (en) | Large-capacity energy storage converter formed by connecting multiple groups of inverter units in parallel | |
CN108649594B (en) | A distributed energy storage system for low voltage distribution network | |
CN102522767A (en) | Schedulable-type photovoltaic energy storage grid-connected power generation system and operating method thereof | |
CN103390920A (en) | A management method and system for an all-vanadium redox flow battery applied to large-scale energy storage | |
CN111381174B (en) | Fuel cell testing and lithium-ion battery capacity coupling system and method | |
CN111404248A (en) | Micro-grid system and method based on coupling of fuel cell test and charging pile | |
CN111381172A (en) | Microgrid-based battery testing and chemical composition capacitive coupling system and control method | |
CN209497274U (en) | A fuel cell testing and electric vehicle charging coupling system | |
CN209911510U (en) | Battery test and formation grading coupling system based on microgrid | |
CN209803301U (en) | A Microgrid System Based on Fuel Cell Testing | |
CN207234517U (en) | A kind of storage battery parallel power supply system based on straight-flow system | |
CN109599935A (en) | Light hydrogen energy-storage power supplying apparatus and its method of supplying power to | |
CN206023241U (en) | A kind of mixed energy storage system of common DC bus | |
CN111816941A (en) | Energy storage integrated system of retired lithium iron phosphate power battery | |
CN209690473U (en) | A fuel cell test and lithium-ion battery composition capacity coupling system | |
CN208046306U (en) | A hydrogen-electric hybrid energy storage UPS | |
CN209803302U (en) | A fuel cell test system for efficient utilization of electric energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant after: Tianjin Gree titanium new energy Co.,Ltd. Applicant after: YINLONG ENERGY Co.,Ltd. Address before: Ziya Circular Economy Industrial Zone in Jinghai District, Tianjin restarts on the 26th Applicant before: TIANJIN YINLONG ENERGY CO.,LTD. Country or region before: China Applicant before: YINLONG ENERGY Co.,Ltd. |
|
CB02 | Change of applicant information |
Country or region after: China Address after: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant after: Tianjin Gree titanium new energy Co.,Ltd. Applicant after: Gree titanium new energy Co.,Ltd. Address before: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant before: Tianjin Gree titanium new energy Co.,Ltd. Country or region before: China Applicant before: YINLONG ENERGY Co.,Ltd. |