CN111381171A - Microgrid system and control method based on fuel cell test - Google Patents
Microgrid system and control method based on fuel cell test Download PDFInfo
- Publication number
- CN111381171A CN111381171A CN201811619753.5A CN201811619753A CN111381171A CN 111381171 A CN111381171 A CN 111381171A CN 201811619753 A CN201811619753 A CN 201811619753A CN 111381171 A CN111381171 A CN 111381171A
- Authority
- CN
- China
- Prior art keywords
- unit
- fuel cell
- bus
- microgrid
- bidirectional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Fuel Cell (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种基于燃料电池测试的微网系统,包括直流微电网单元、交流微电网单元、双向AC/DC逆变器、配电单元以及能量管理单元,所述能量管理单元分别与直流微电网单元、交流微电网单元、双向AC/DC逆变器和配电单元通讯连接,所述直流微电网单元与交流微电网单元通过双向AC/DC逆变器电连接,所述配电单元与交流微电网单元电连接;所述直流微电网单元包括燃料电池测试单元和储能单元,所述燃料电池测试单元和储能单元的直流接口分别连接在直流母线L1上;还公开了一种基于燃料电池测试的微网系统的控制方法。本发明避免了常规电阻型负载将燃料电池系统产生的电能通过热能消耗掉的能量浪费,同时还节省了为给电阻型负载降温设备的额外电能消耗。
The invention discloses a micro-grid system based on fuel cell testing, comprising a DC micro-grid unit, an AC micro-grid unit, a bidirectional AC/DC inverter, a power distribution unit and an energy management unit. The microgrid unit, the alternating current microgrid unit, the bidirectional AC/DC inverter and the power distribution unit are connected in communication, the direct current microgrid unit and the alternating current microgrid unit are electrically connected through the bidirectional AC/DC inverter, and the power distribution unit It is electrically connected with the AC micro-grid unit; the DC micro-grid unit includes a fuel cell test unit and an energy storage unit, and the DC interfaces of the fuel cell test unit and the energy storage unit are respectively connected to the DC bus L1; also disclosed is a A control method for a microgrid system based on fuel cell testing. The invention avoids the energy waste of the conventional resistance type load consuming the electric energy generated by the fuel cell system through thermal energy, and also saves the extra electric energy consumption for cooling the resistance type load equipment.
Description
技术领域technical field
本发明属于燃料电池测试和微电网技术领域,具体涉及一种基于燃料电池测试的微网系统及控制方法。The invention belongs to the technical field of fuel cell testing and micro-grid, in particular to a micro-grid system and control method based on fuel cell testing.
背景技术Background technique
燃料电池电堆、燃料电池系统以及燃料电池发动机的大规模研究、验证及测试是燃料电池应用前必不可少的步骤。由于燃料电池自身是一个持续消耗氢的发电装置,在传统的性能测试过程中第一种方案是使用电阻型负载将燃料电池系统产生的电能通过热能消耗掉,造成了资源的浪费和成本的增加。另外,通常所使用的电子负载在释放热能的过程中还需要诸如冷水塔、大型风机甚至空调等对其进行散热以保障电子负载的正常工作,因而还需要额外的电能。而对于新能源汽车用燃料电池动力系统,其功率超过30kW甚至高达100kW,则采用电子负载的测试方式将会产生极大的电能浪费,测试成本攀升。Large-scale research, validation and testing of fuel cell stacks, fuel cell systems and fuel cell engines are essential steps before fuel cell applications. Since the fuel cell itself is a power generation device that continuously consumes hydrogen, the first solution in the traditional performance test process is to use a resistive load to consume the electrical energy generated by the fuel cell system through thermal energy, resulting in a waste of resources and an increase in cost. . In addition, the commonly used electronic loads also need to dissipate heat such as a cooling tower, a large fan or even an air conditioner during the process of releasing heat energy to ensure the normal operation of the electronic load, so additional power is required. For the fuel cell power system for new energy vehicles, the power of which exceeds 30kW or even as high as 100kW, the test method using electronic load will generate a great waste of electric energy and the test cost will rise.
第二种方案是采用馈网型电子负载将燃料电池测试过程中输出的电能回馈给电网。虽然该种方案可以有效避免燃料电池在测试放电过程中的热消耗,但是由于测试流程的复杂多样性(如频繁启停加载、加速以及测试极化曲线等)加之多堆并行测试等,在此情况下向电网馈电时,将会造成对电网的高频谐波干扰严重,处理起来也比较困难,严重影响着电网的电能质量,甚至会对电网造成冲击。The second solution is to use a grid-feeding electronic load to feed back the electrical energy output during the fuel cell test to the grid. Although this solution can effectively avoid the heat consumption of the fuel cell during the test and discharge process, due to the complexity and diversity of the test process (such as frequent start-stop loading, acceleration, and test polarization curves, etc.) When feeding power to the power grid under certain circumstances, it will cause serious interference of high-frequency harmonics to the power grid, and it is difficult to deal with it, which seriously affects the power quality of the power grid, and even causes an impact on the power grid.
第三种方案是将燃料电池测试过程中输出的电能通过电解水制氢的方式获得氢气通入燃料电池进行循环利用。但是,在燃料电池运行过程中氢气转换为电的效率一般为50%(基于氢气的低热值LHV),而产生的电再次通过电解水制氢的理论电解效率虽然很高(表观转换效率甚至可达100%~122%),但在工业上为提升产氢速率需要加热升温以及产生的极化过电位等因素电能转换效率仅为50~70%。则完成氢气→燃料电池→电解槽→氢气的一个完整循环效率仅为30%,能量损失超过70%,而且电解水制氢系统成本(特别是以贵金属铂或铱作为催化剂的固体电解质膜电解水制氢系统)较高,寿命较短。因此该种方案并不经济,且存在着系统复杂、维护繁复的问题。The third scheme is to obtain hydrogen by electrolyzing water to produce hydrogen from the electrical energy output during the fuel cell testing process and pass it into the fuel cell for recycling. However, the conversion efficiency of hydrogen into electricity during fuel cell operation is generally 50% (based on the low calorific value LHV of hydrogen), while the theoretical electrolysis efficiency of the electricity generated by electrolyzing water to hydrogen again is high (the apparent conversion efficiency is even up to 100% to 122%), but in order to increase the hydrogen production rate in industry, the power conversion efficiency is only 50% to 70% due to factors such as heating and the generated polarization overpotential. Then the complete cycle efficiency of hydrogen→fuel cell→electrolyzer→hydrogen is only 30%, the energy loss exceeds 70%, and the cost of the hydrogen production system by electrolysis (especially the solid electrolyte membrane electrolysis of water with precious metal platinum or iridium as catalyst) Hydrogen production system) is higher and has a shorter lifespan. Therefore, this solution is not economical, and there are problems of complicated system and complicated maintenance.
另一方面,在燃料电池测试前有时需要给待测电堆预热、燃料电池启动时需要为燃料电池供应高压空气以及在燃料电池测试时需要给燃料电池通冷却水控温,而为电堆预热的电加热装置、为燃料电池控温的冷却装置以及为燃料电池提供高压空气的空气压缩机工作时所需要的电能一般均来自于外电网,因而进一步增加了用电成本;特别是为了使电堆快速升温电加热装置的功率配置较大,耗能严重,而且此时电堆还尚未启动其电能则完全来自于外电网,这种对电网的高度依赖性在电网停电和用电高峰限电时存在着燃料电池无法进行测试的风险。On the other hand, it is sometimes necessary to preheat the stack to be tested before the fuel cell test, to supply high-pressure air to the fuel cell when the fuel cell is started, and to supply the fuel cell with cooling water to control the temperature during the fuel cell test. The electrical energy required by the electric heating device for preheating, the cooling device for temperature control for the fuel cell, and the air compressor for supplying high-pressure air for the fuel cell generally comes from the external power grid, which further increases the cost of electricity consumption; especially for the purpose of The power configuration of the electric heating device to make the stack heat up quickly is large, and the energy consumption is serious. At this time, the electric power of the stack has not yet been started, and its power completely comes from the external power grid. This high dependence on the power grid occurs during power outages and peak electricity consumption There is a risk that the fuel cell will not be able to test during a power outage.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的不足,本发明的目的在于提供一种基于燃料电池测试的微网系统及控制方法。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a micro-grid system and control method based on fuel cell testing.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, the technical scheme of the present invention is achieved in this way:
本发明实施例提供一种基于燃料电池测试的微网系统,包括直流微电网单元、交流微电网单元、双向AC/DC逆变器、配电单元以及能量管理单元,所述能量管理单元分别与直流微电网单元、交流微电网单元、双向AC/DC逆变器和配电单元通讯连接,所述直流微电网单元与交流微电网单元通过双向AC/DC逆变器电连接,所述配电单元与交流微电网单元电连接;所述直流微电网单元包括燃料电池测试单元和储能单元,所述燃料电池测试单元和储能单元的直流接口分别连接在直流母线L1上。An embodiment of the present invention provides a microgrid system based on fuel cell testing, including a DC microgrid unit, an AC microgrid unit, a bidirectional AC/DC inverter, a power distribution unit, and an energy management unit, the energy management units are respectively connected with The DC microgrid unit, the AC microgrid unit, the bidirectional AC/DC inverter and the power distribution unit are connected in communication, the DC microgrid unit and the AC microgrid unit are electrically connected through the bidirectional AC/DC inverter, and the power distribution unit is electrically connected. The unit is electrically connected to the AC micro-grid unit; the DC micro-grid unit includes a fuel cell test unit and an energy storage unit, and the DC interfaces of the fuel cell test unit and the energy storage unit are respectively connected to the DC bus L1.
上述方案中,所述交流微电网单元包括第三断路器、配电柜、辅助系统单元和杂类负荷单元,所述配电柜的电能输出端分别与辅助系统单元和杂类负荷单元的用电设备电连接,所述配电柜的交流接口经由第三断路器连接在交流母线L2上。In the above solution, the AC micro-grid unit includes a third circuit breaker, a power distribution cabinet, an auxiliary system unit and a miscellaneous load unit, and the power output ends of the power distribution cabinet are respectively connected to the auxiliary system unit and the miscellaneous load unit. The electrical equipment is electrically connected, and the AC interface of the power distribution cabinet is connected to the AC bus bar L2 via a third circuit breaker.
上述方案中,所述燃料电池测试单元包括燃料电池测试台、单向DC/DC变换器和第一断路器,所述燃料电池测试台中的待测燃料电池的直流输出端与其相对应的所述单向DC/DC变换器的输入端电连接,所述单向DC/DC变换器的输出端通过第一断路器与直流母线L1电连接。In the above solution, the fuel cell test unit includes a fuel cell test bench, a one-way DC/DC converter and a first circuit breaker, and the DC output end of the fuel cell to be tested in the fuel cell test bench corresponds to the The input end of the one-way DC/DC converter is electrically connected, and the output end of the one-way DC/DC converter is electrically connected to the DC bus L1 through the first circuit breaker.
上述方案中,所述储能单元包括储能电池组、电池管理单元、双向DC/DC变换器和第二断路器,所述储能电池组与所述双向DC/DC变换器的一端电连接,所述双向DC/DC变换器的另一端通过所述第二断路器与直流母线L1电连接,所述电池管理单元通过低压信号线与所述储能电池组连接。In the above solution, the energy storage unit includes an energy storage battery pack, a battery management unit, a bidirectional DC/DC converter and a second circuit breaker, and the energy storage battery pack is electrically connected to one end of the bidirectional DC/DC converter. , the other end of the bidirectional DC/DC converter is electrically connected to the DC bus L1 through the second circuit breaker, and the battery management unit is connected to the energy storage battery pack through a low-voltage signal line.
上述方案中,所述辅助系统单元包括空气单元和热管理单元,所述空气单元的高压空气输出端通过管道与所述直流微电网单元中的燃料电池测试单元的燃料电池测试台的空气入口连接,所述热管理单元的水路通过管道分别与所述直流微电网单元中的燃料电池测试单元的燃料电池测试台和单向DC/DC变换器的水路连接。In the above solution, the auxiliary system unit includes an air unit and a thermal management unit, and the high-pressure air output end of the air unit is connected to the air inlet of the fuel cell test bench of the fuel cell test unit in the DC microgrid unit through a pipeline. , the water circuit of the thermal management unit is respectively connected to the fuel cell test bench of the fuel cell test unit and the water circuit of the one-way DC/DC converter in the DC micro-grid unit through pipes.
上述方案中,所述杂类负荷单元包括敏感负荷和一般负荷;所述敏感负荷包括但不限于燃料电池测试实验室内全时不可断电的用电设备以及整个园区建筑如数据处理中心、机房等全时不可断电的用电设备,所述一般负荷包括但不限于整个园区建筑如办公楼、食堂、宿舍内照明等用电设备。In the above solution, the miscellaneous load units include sensitive loads and general loads; the sensitive loads include but are not limited to the full-time non-power-off electrical equipment in the fuel cell test laboratory and the entire park buildings such as data processing centers and computer rooms. Such general loads include but are not limited to the entire park buildings such as office buildings, canteens, lighting in dormitories and other electrical equipment.
上述方案中,所述双向AC/DC逆变器的直流端与直流母线L1电连接,所述双向AC/DC逆变器的交流端与交流母线L2电连接,用于实现直流母线L1与交流母线L2之间电能的双向传递。In the above solution, the DC terminal of the bidirectional AC/DC inverter is electrically connected to the DC bus L1, and the AC terminal of the bidirectional AC/DC inverter is electrically connected to the AC bus L2, so as to realize the connection between the DC bus L1 and the AC bus. Bidirectional transfer of electrical energy between busbars L2.
上述方案中,所述配电单元包括外部配电网和含有控制器的公共连接点;所述外部配电网经过变压器后通过公共连接点接入所述交流微电网单元的交流母线L2实现与交流母线L2间交流电能的双向传递。In the above solution, the power distribution unit includes an external power distribution network and a common connection point including a controller; the external power distribution network is connected to the AC bus L2 of the AC microgrid unit through the common connection point after passing through the transformer to realize the connection with the AC microgrid unit. Bidirectional transfer of AC power between AC busbars L2.
上述方案中,所述能量管理单元分别通过通讯线与所述直流微电网单元的燃料电池测试单元中的燃料电池测试台和单向DC/DC变换器、储能单元中的电池管理单元和双向DC/DC变换器、所述双向AC/DC逆变器以及所述交流微电网单元中配电柜的PLC控制器和辅助系统单元中空气单元及热管理单元的用电设备的控制器连接,分别通过低压信号线与所述直流微电网单元的燃料电池测试单元中的第一断路器、储能单元中的第二断路器和直流母线L1的电压电流霍尔传感器、所述双向AC/DC逆变器中的断路器、所述直流微电网单元的第三断路器、交流母线L2的电压电流霍尔传感器以及所述配电单元中公共连接点的控制器连接。In the above solution, the energy management unit communicates with the fuel cell test bench and the one-way DC/DC converter in the fuel cell test unit of the DC micro-grid unit, the battery management unit in the energy storage unit and the two-way converter respectively through the communication line. The DC/DC converter, the bidirectional AC/DC inverter and the PLC controller of the power distribution cabinet in the AC microgrid unit are connected to the controller of the electrical equipment of the air unit and the thermal management unit in the auxiliary system unit, The first circuit breaker in the fuel cell test unit of the DC micro-grid unit, the second circuit breaker in the energy storage unit and the voltage and current Hall sensor of the DC bus L1, the bidirectional AC/DC respectively through the low-voltage signal line The circuit breaker in the inverter, the third circuit breaker of the DC microgrid unit, the voltage and current Hall sensor of the AC bus L2, and the controller of the common connection point in the power distribution unit are connected.
本发明实施例还提供一种基于燃料电池测试的微网系统的控制方法,该方法通过如下步骤实现:The embodiment of the present invention also provides a control method for a microgrid system based on fuel cell testing, and the method is implemented by the following steps:
步骤(1),所述能量管理单元启动自检,并确认所述配电单元中公共连接点处于断开状态,使整个微网系统进入初始离网控制模式;Step (1), the energy management unit starts a self-check, and confirms that the public connection point in the power distribution unit is in a disconnected state, so that the entire microgrid system enters the initial off-grid control mode;
步骤(2),所述能量管理单元获取直流微电网单元的燃料电池测试单元中待测燃料电池的个数及测试参数并且确定燃料电池在整个测试过程中所产生的总电量Q1,根据交流微电网单元中辅助系统单元的用电设备及杂类负荷单元中敏感负荷和一般负荷的功率获取交流微电网单元各用电设备在燃料电池测试前需要的总电量Q2和燃料电池测试过程中需要的总电量Q′2,通过直流微电网单元获取储能电池组的SOC并且确定储能电池组由当前SOC放电至设定的SOC下限时可放电量Q3和由当前SOC充电至设定的SOC上限时需充电量Q′3;然后比较Q1、Q2、Q′2、Q3和Q′3之间的大小:Step (2), the energy management unit acquires the number of fuel cells to be tested and test parameters in the fuel cell test unit of the DC microgrid unit, and determines the total electricity Q 1 generated by the fuel cell during the entire test process, according to the AC The electrical equipment of the auxiliary system unit in the microgrid unit and the power acquisition of the sensitive load and general load in the miscellaneous load unit The total power Q2 required by each electrical equipment of the AC microgrid unit before the fuel cell test and during the fuel cell test The required total power Q′ 2 , the SOC of the energy storage battery group is obtained through the DC micro grid unit, and the dischargeable amount Q 3 when the energy storage battery group is discharged from the current SOC to the set SOC lower limit and the current SOC is charged to the set value is determined. The required charge amount Q ′ 3 when the SOC upper limit of the
如果Q1≤Q′2+Q′3,且Q2≤Q3,则进入稳态离网工作模式;If Q 1 ≤Q′ 2 +Q′ 3 , and Q 2 ≤ Q 3 , enter the steady-state off-grid working mode;
如果Q1>Q′2+Q′3,或Q2>Q3,则进入暂态并网工作模式。If Q 1 >Q' 2 +Q' 3 , or Q 2 >Q 3 , enter the transient grid-connected working mode.
上述方案中,所述稳态离网工作模式为:所述能量管理单元首先给所述直流微电网单元中的储能单元的双向DC/DC变换器和所述双向AC/DC逆变器发送启动信号,同时向所述直流微电网单元中的储能单元的第二断路器和双向AC/DC逆变器的并网断路器发送闭合信号,将所述储能单元的储能电池组存储的直流电能经由双向DC/DC变换器转化为规定的直流电压送入所述直流微电网单元的直流母线L1,随即所述双向AC/DC逆变器将直流母线L1上的直流电能转化为规定的交流电压送入所述交流微电网单元的交流母线L2;然后所述能量管理单元向所述交流微电网单元中第三断路器发送闭合信号,将交流母线L2上的交流电能送入配电柜,同时给所述交流微电网单元的配电柜中PLC控制器发送命令将配电柜接收到的电能分配给所述辅助系统单元的空气单元和热管理单元中的各个用电设备以及杂类负荷单元的敏感负荷和一般负荷,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;当所述能量管理单元接收到所述燃料电池测试单元中燃料电池测试台发出的燃料电池符合测试条件的信号时,则向燃料电池测试台发送启动测试信号并闭合第一断路器,按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器电压变换为规定的电压后送入直流母线L1;此时,所述能量管理单元实时监测直流母线L1和交流母线L2的电压波动情况:当监测到直流母线L1和/或交流母线L2的电压偏离设定的母线平衡电压的上限阈值时则给所述直流微电网单元中储能单元的双向DC/DC变换器发送充电信号,将直流母线L1上的过剩电能充入储能电池组中,以使直流母线L1和/或交流母线L2的电压回落至设定的母线平衡电压;当监测到交流母线L2和/或直流母线L1的电压偏离设定的母线平衡电压的下限阈值或燃料电池停止测试时,则给所述直流微电网单元中储能单元的双向DC/DC变换器发送放电信号,将储能电池组中存储的电能送入直流母线L1以及经由所述双向AC/DC逆变器送入交流母线L2以使直流母线L1和交流母线L2的电压回升至设定的母线平衡电压。In the above solution, the steady-state off-grid working mode is as follows: the energy management unit first sends the energy to the bidirectional DC/DC converter and the bidirectional AC/DC inverter of the energy storage unit in the DC microgrid unit. Start signal, and send a closing signal to the second circuit breaker of the energy storage unit in the DC microgrid unit and the grid-connected circuit breaker of the bidirectional AC/DC inverter at the same time, and store the energy storage battery pack of the energy storage unit The DC power is converted into a specified DC voltage through the bidirectional DC/DC converter and sent to the DC bus L1 of the DC microgrid unit, and then the bidirectional AC/DC inverter converts the DC power on the DC bus L1 into a specified DC voltage. Then the energy management unit sends a closing signal to the third circuit breaker in the AC microgrid unit to send the AC power on the AC bus L2 into the power distribution At the same time, it sends commands to the PLC controller in the power distribution cabinet of the AC microgrid unit to distribute the electrical energy received by the power distribution cabinet to the various electrical equipment and miscellaneous equipment in the air unit and thermal management unit of the auxiliary system unit. Sensitive load and general load of similar load units, each electrical equipment starts to work to provide air with a specific pressure for the fuel cell to be tested and make the fuel cell rise or stabilize to a set temperature; when the energy management unit receives the When the fuel cell test bench in the fuel cell test unit sends a signal that the fuel cell meets the test conditions, it sends a start-up test signal to the fuel cell test bench and closes the first circuit breaker. Chemical performance test, during which the generated electric energy is converted into a specified voltage by the unidirectional DC/DC converter and sent to the DC bus L1; at this time, the energy management unit monitors the voltage fluctuations of the DC bus L1 and the AC bus L2 in real time Situation: when it is detected that the voltage of the DC bus L1 and/or the AC bus L2 deviates from the set upper threshold of the bus balance voltage, a charging signal is sent to the bidirectional DC/DC converter of the energy storage unit in the DC microgrid unit, Charge the excess electric energy on the DC bus L1 into the energy storage battery pack, so that the voltage of the DC bus L1 and/or the AC bus L2 falls back to the set bus balance voltage; when the AC bus L2 and/or the DC bus L1 is monitored When the voltage deviates from the set lower limit threshold of the bus balance voltage or the fuel cell stops testing, a discharge signal is sent to the bidirectional DC/DC converter of the energy storage unit in the DC microgrid unit, and the stored energy in the energy storage battery pack Power is fed into the DC bus L1 and into the AC bus L2 via the bidirectional AC/DC inverter to bring the voltages of the DC bus L1 and the AC bus L2 back up to the set bus balance voltage.
上述方案中,所述暂态并网工作模式为:所述能量管理单元首先将所述储能单元的储能电池组存储的直流电能经过双向DC/DC变换器和双向AC/DC逆变器二级逆变后转化为规定的交流电压送入所述交流微电网单元的交流母线L2,然后闭合所述交流微电网单元中第三断路器将交流母线L2上的交流电能送入配电柜,同时配电柜将接收到的电能分配给所述辅助系统单元的空气单元和热管理单元中的各个用电设备以及杂类负荷单元的敏感负荷和一般负荷,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;燃料电池测试台开始按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器电压变换为规定的电压后送入直流母线L1;整个过程中所述直流微电网单元中储能单元的储能电池组根据直流母线L1和交流母线L2的电压波动情况通过充放电来抑制直流母线L1和交流母线L2的电压波动并平衡两个母线的电压;并且,当储能电池组的荷电状态SOC已降至设定的下限时,所述配电单元的公共连接点闭合将外电网的电能送入交流母线L2以保障所述交流微电网单元的辅助系统单元中空气单元和热管理单元的用电设备及杂类负荷单元中敏感负荷的正常工作,而且此时如果外电网正处于谷电时段,所述双向AC/DC逆变器会将交流母线L2的交流电能经过AC-DC和DC/DC二级逆变后将外电网的谷电充入储能电池组中;当储能电池组的荷电状态SOC已升至设定的上限而燃料电池测试仍在进行时,所述配电单元的公共连接点闭合,燃料电池在测试过程中所产生的直流电能则经过DC/DC和DC-AC二级逆变后馈入外电网。In the above solution, the transient grid-connected working mode is as follows: the energy management unit firstly passes the direct current energy stored in the energy storage battery pack of the energy storage unit through the bidirectional DC/DC converter and the bidirectional AC/DC inverter. After secondary inversion, it is converted into a specified AC voltage and sent to the AC bus L2 of the AC micro-grid unit, and then the third circuit breaker in the AC micro-grid unit is closed to send the AC power on the AC bus L2 into the power distribution cabinet At the same time, the power distribution cabinet distributes the received electrical energy to each electrical equipment in the air unit and thermal management unit of the auxiliary system unit, as well as the sensitive load and general load of the miscellaneous load unit, and each electrical equipment starts to work. The test fuel cell provides air with a specific pressure and makes the fuel cell rise or stabilize to a set temperature; the fuel cell test bench starts to test the electrochemical performance of the fuel cell to be tested according to the preset parameters and working steps, and the generated electrical energy passes through The voltage of the one-way DC/DC converter is converted into a specified voltage and then sent to the DC bus L1; in the whole process, the energy storage battery pack of the energy storage unit in the DC microgrid unit is based on the voltage fluctuation of the DC bus L1 and the AC bus L2. Through charging and discharging, the voltage fluctuation of the DC bus L1 and the AC bus L2 is suppressed and the voltages of the two buses are balanced; and, when the state of charge SOC of the energy storage battery pack has dropped to the set lower limit, the The common connection point is closed to send the electric energy of the external power grid into the AC bus bar L2 to ensure the normal operation of the electrical equipment of the air unit and the thermal management unit in the auxiliary system unit of the AC microgrid unit and the sensitive loads in the miscellaneous load unit, and At this time, if the external power grid is in the valley power period, the two-way AC/DC inverter will charge the valley power of the external power grid into the storage after the AC power of the AC bus L2 undergoes AC-DC and DC/DC secondary inversion. In the energy battery pack; when the state of charge SOC of the energy storage battery pack has risen to the set upper limit and the fuel cell test is still in progress, the common connection point of the power distribution unit is closed, and the fuel cell generated during the test The DC power is fed into the external grid after DC/DC and DC-AC secondary inverters.
与现有技术相比,本发明将燃料电池电化学测试过程中产生的电能存储于储能电池,不仅避免了常规电阻型负载将燃料电池系统产生的电能通过热能消耗掉的能量浪费,同时还节省了为给电阻型负载降温设备的额外电能消耗;Compared with the prior art, the present invention stores the electric energy generated during the electrochemical test of the fuel cell in the energy storage battery, which not only avoids the waste of energy consumed by the conventional resistive load by consuming the electric energy generated by the fuel cell system through thermal energy, but also saves energy. Saves extra power consumption for cooling the resistive load;
另一方面,相较于传统的燃料电池测试系统只有在燃料电池测试过程中才能将产生电能供给辅助系统,而燃料电池测试前空气单元中空压机的启动及热管理单元中电加热装置的启动及升温等则完全依赖于电网,本发明所构建的微网系统中配置了储能电池则使燃料电池测试过程产生的电能具备了时移的特性从而可高效且灵活的输出给燃料电池测试辅助系统的高耗电设备,不仅有效缓解了燃料电池测试辅助系统对外电网的高度依赖性,确保了在市电停电或用电高峰时燃料电池测试的正常进行以及为敏感负荷提供不间断供电;而且,节省了诸如电加热水箱、冷水机及冷却塔等高耗电设备的用电成本,实现了燃料电池测试时所产生电能的高效利用。On the other hand, compared with the traditional fuel cell test system, the generated electric energy can only be supplied to the auxiliary system during the fuel cell test, and the activation of the air compressor in the air unit and the activation of the electric heating device in the thermal management unit before the fuel cell test The energy storage battery is configured in the micro-grid system constructed by the present invention, so that the electric energy generated in the fuel cell test process has the characteristics of time shift, so that it can be efficiently and flexibly output to the fuel cell test auxiliary The high power consumption equipment of the system not only effectively alleviates the high dependence of the fuel cell test auxiliary system on the external power grid, but also ensures the normal operation of the fuel cell test and provides uninterrupted power supply for sensitive loads during mains power outages or peak power consumption; , which saves the electricity cost of high power consumption equipment such as electric heating water tanks, chillers and cooling towers, and realizes the efficient use of electric energy generated during fuel cell testing.
附图说明Description of drawings
图1为根据本发明的实施例的一种基于燃料电池测试的微网系统的结构示意图。FIG. 1 is a schematic structural diagram of a microgrid system based on fuel cell testing according to an embodiment of the present invention.
图2为根据本发明的实施例的一种基于燃料电池测试的微网系统的控制方法流程图。FIG. 2 is a flowchart of a control method of a microgrid system based on fuel cell testing according to an embodiment of the present invention.
具体实施方式Detailed ways
下面参考附图进一步描述本发明的实施方式,本发明的优点和特点将会随着描述而更为清楚。但实施方式仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。The embodiments of the present invention will be further described below with reference to the accompanying drawings, and the advantages and features of the present invention will become more apparent with the description. However, the embodiments are only exemplary and do not limit the scope of the present invention in any way. It should be understood by those skilled in the art that the details and forms of the technical solutions of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications and replacements all fall within the protection scope of the present invention.
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员将理解,没有这些具体细节,本发明同样可以实施。在另外一些实施例中,对于大家熟知的方法、流程、元件和电路未作详细描述,以便于凸显本发明的主旨。In addition, in order to better illustrate the present invention, numerous specific details are given in the following detailed description. It will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other embodiments, well-known methods, procedures, components and circuits are not described in detail so as to highlight the gist of the present invention.
本发明实施例提供一种基于燃料电池测试的微网系统,如图1所示,其包括直流微电网单元1、交流微电网单元2、双向AC/DC逆变器3、配电单元4以及能量管理单元(EMS)5,所述能量管理单元5分别与直流微电网单元1、交流微电网单元2、双向AC/DC逆变器3和配电单元4通讯连接,所述直流微电网单元1与交流微电网单元2通过双向AC/DC逆变器3电连接,所述配电单元4与交流微电网单元2电连接。其中,An embodiment of the present invention provides a microgrid system based on fuel cell testing, as shown in FIG. 1 , which includes a
所述直流微电网单元1包括燃料电池测试单元11和储能单元12,所述燃料电池测试单元11和储能单元12的直流接口分别连接在直流母线L1上。The
具体的,所述燃料电池测试单元11包括燃料电池测试台111、单向DC/DC变换器112和第一断路器113,所述燃料电池测试台111中的待测燃料电池的直流输出端与其相对应的所述单向DC/DC变换器112的输入端电连接,所述单向DC/DC变换器112的输出端通过第一断路器113与直流母线L1连接。Specifically, the fuel cell test unit 11 includes a fuel cell test stand 111 , a one-way DC/DC converter 112 and a
所述燃料电池测试单元11中所述燃料电池测试台111用于对燃料电池进行极化曲线、电化学阻抗谱(EIS)以及各种模拟工况条件下的电化学性能测试与评估,而所述单向DC/DC变换器112则将燃料电池在测试过程中产生的电能经过电压的变换后送入直流母线L1。The fuel cell test bench 111 in the fuel cell test unit 11 is used to test and evaluate the polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical performance of the fuel cell under various simulated working conditions, and the The one-way DC/DC converter 112 sends the electric energy generated by the fuel cell during the testing process into the DC bus L1 after voltage conversion.
进一步地,所述燃料电池测试单元11中的燃料电池测试台111可以是单台,也可以是多台从而形成燃料电池测试台阵列,而且,燃料电池测试台阵列中的各个所述燃料电池测试台111之间独立工作,互不干扰;并且,所述单向DC/DC变换器112的个数与所述燃料电池测试台111的个数保持一致并形成一一对应关系。Further, the fuel cell test bench 111 in the fuel cell test unit 11 can be a single set or multiple sets to form a fuel cell test bench array, and each of the fuel cell test benches in the fuel cell test bench array can test The stations 111 work independently and do not interfere with each other; and the number of the one-way DC/DC converters 112 is consistent with the number of the fuel cell test stations 111 and forms a one-to-one correspondence.
可选的,所述燃料电池测试台111包括但不限于氢气流量测试单元、空气流量测试单元、水管理单元、热管理单元及控制单元,所测试的燃料电池包括但不限于燃料电池单电池、燃料电池电堆、燃料电池系统、燃料电池发动机等;而且,不同的燃料电池,其所对应的燃料电池测试台的配置也不尽相同,只要所测试的燃料电池类型及测试参数与燃料电池测试台相匹配即可。同样,与所述燃料电池测试台111所对应的单向DC/DC变换器112也会因待测燃料电池的电压、电流的不同其配置参数也不同,只要其能转换的电压、电流区间同燃料电池输出的电压、电流相匹配即可。换言之,在上述燃料电池测试台阵列中所述燃料电池测试台111可以是同类型的,也可以是不同类型;相应的,所述单向DC/DC变换器112也可以是同类型的,也可以是不同类型的,但是每个单向DC/DC变换器112的输入端配置参数必须与其所连接的燃料电池测试台111的电输出参数相匹配,而且其输出端配置参数还要与所述直流母线L1的电压、电流等参数相匹配。Optionally, the fuel cell test bench 111 includes, but is not limited to, a hydrogen flow test unit, an air flow test unit, a water management unit, a thermal management unit, and a control unit, and the tested fuel cells include but are not limited to fuel cell single cells, Fuel cell stacks, fuel cell systems, fuel cell engines, etc.; moreover, different fuel cells have different configurations of the corresponding fuel cell test benches, as long as the tested fuel cell type and test parameters are the same as the fuel cell test The table can be matched. Similarly, the configuration parameters of the unidirectional DC/DC converter 112 corresponding to the fuel cell test bench 111 are also different due to the voltage and current of the fuel cell to be tested, as long as the voltage and current ranges that can be converted are the same The voltage and current output by the fuel cell can be matched. In other words, the fuel cell test benches 111 in the above fuel cell test bench array may be of the same type or of different types; correspondingly, the unidirectional DC/DC converter 112 may also be of the same type, or It can be of different types, but the input configuration parameters of each unidirectional DC/DC converter 112 must match the electrical output parameters of the fuel cell test bench 111 to which it is connected, and the output configuration parameters must also match those described above. The parameters such as voltage and current of the DC bus L1 are matched.
具体的,所述储能单元12包括储能电池组121、电池管理单元(BMS)122、双向DC/DC变换器123和第二断路器124,所述储能电池组121与所述双向DC/DC变换器123的一端电连接,所述双向DC/DC变换器123的另一端通过所述第二断路器124与直流母线L1电连接,所述电池管理单元122通过低压信号线与所述储能电池组121连接。Specifically, the energy storage unit 12 includes an energy
所述储能电池组121,用于通过所述双向DC/DC变换器123实现与直流母线L1间直流电能的双向传递:一方面接收所述燃料电池测试单元11中燃料电池在测试过程中产生的直流电能和所述配电单元4经由所述双向AC/DC逆变器3传递过来的谷电,另一方面经由所述双向AC/DC逆变器3为所述交流微电网单元2提供电能以及向所述配电单元4馈电以为外电网提供调峰调频及无功补偿的电力辅助服务;The energy
可选的,所述储能电池组121采用铅酸电池、铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器中的一种或多种;Optionally, the energy
优选的,所述储能电池组121优先采用钛酸锂电池或全钒液流电池。Preferably, the energy
所述电池管理单元122,用于监测所述储能电池组121的电压、电流和温度,准确估测所述储能电池组121的荷电状态SOC并将实时采集到的数据信息通过通讯线传输给所述能量管理单元5,同时对所述储能电池组121的单体电池间进行能量均衡。The battery management unit 122 is used to monitor the voltage, current and temperature of the energy
所述交流微电网单元2包括第三断路器23、配电柜24、辅助系统单元21和杂类负荷单元22,所述配电柜24的交流接口经由第三断路器23连接在交流母线L2上,所述配电柜24的电能输出端分别与辅助系统单元21和杂类负荷单元22的用电设备电连接。The
具体的,所述辅助系统单元21包括空气单元211和热管理单元212,所述空气单元211的高压空气输出端通过管道与所述直流微电网单元1中的燃料电池测试单元11的燃料电池测试台111的空气入口连接,所述热管理单元212的水路通过管道分别与所述直流微电网单元1中的燃料电池测试单元11的燃料电池测试台111和单向DC/DC变换器112的水路连接。Specifically, the auxiliary system unit 21 includes an
进一步地,所述空气单元211的用电设备至少包括空气压缩机,用于为处于在线测试的燃料电池提供高压空气;所述热管理单元212的用电设备至少包括纯水机、电加热水箱、水泵、冷水机和/或冷却塔等用电设备,所述电加热水箱用于为燃料电池测试前的电池预热提供诸如热水等高温介质,所述冷水机和/或冷却塔用于在燃料电池测试过程中为燃料电池和所述单向DC/DC变换器112提供诸如冷却水等冷媒介质以控制燃料电池和单向DC/DC变换器112的工作温度。Further, the electrical equipment of the
具体的,所述杂类负荷单元22包括敏感负荷221和一般负荷222,所述敏感负荷221包括但不限于燃料电池测试实验室内全时不可断电的用电设备以及整个园区建筑内如数据处理中心、机房等全时不可断电的用电设备,所述一般负荷222包括但不限于整个园区建筑如办公楼、食堂、宿舍内照明等用电设备。Specifically, the miscellaneous load unit 22 includes a
所述双向AC/DC逆变器3的直流端与直流母线L1电连接,所述双向AC/DC逆变器3的交流端与交流母线L2电连接,用于实现直流母线L1与交流母线L2之间电能的双向传递。The DC terminal of the bidirectional AC/
所述配电单元4包括外部配电网401和含有控制器的公共连接点(PCC)402;所述外部配电网401经过变压器后通过公共连接点402接入所述交流微电网单元2的交流母线L2实现与交流母线L2间交流电能的双向传递:一方面在特定情况下为所述交流微电网单元2直接提供交流电能和将用电低谷时的电能经由所述双向AC/DC逆变器3存储于所述直流微电网单元1的储能单元12中,另一方面接收经由所述双向AC/DC逆变器3传递过来的所述直流微电网单元1的燃料电池测试单元11中燃料电池在测试过程中产生的过剩的直流电能和用电高峰时所述储能单元12所释放的电能以及所发出的无功功率。The
所述能量管理单元5,分别通过通讯线与所述直流微电网单元1的燃料电池测试单元11中的燃料电池测试台111和单向DC/DC变换器112、储能单元12中的电池管理单元122和双向DC/DC变换器123、所述双向AC/DC逆变器3以及所述交流微电网单元2中配电柜24的PLC控制器和辅助系统单元21中空气单元211及热管理单元212的用电设备的控制器连接,分别通过低压信号线与所述直流微电网单元1的燃料电池测试单元11中的第一断路器113、储能单元12中的第二断路器124和直流母线L1的电压电流霍尔传感器、所述双向AC/DC逆变器3中的断路器、所述直流微电网单元2的第三断路器23、交流母线L2的电压电流霍尔传感器以及所述配电单元4中公共连接点402的控制器连接,用于接收所述燃料电池测试单元11、储能单元12、辅助系统单元21及直流母线L1和交流母线L2的实时参数信息,通过记录、统计、分析整个微网系统的电力运行数据,并按照预设的命令向所述燃料电池测试单元11、储能单元12、辅助系统单元21、杂类负荷单元22、双向AC/DC逆变器3以及配电单元4的控制元件和断路器下发操作指令,综合管理调度燃料电池测试、储能、辅助系统及杂类负荷用电和电网能量交换,使整个微网系统的运行在最佳状态且实现较好的经济效益。The energy management unit 5 communicates with the fuel cell test bench 111 and the one-way DC/DC converter 112 in the fuel cell test unit 11 of the DC micro-grid unit 1, respectively, and the battery management in the energy storage unit 12 through the communication line Unit 122 and bidirectional DC/DC converter 123, the bidirectional AC/DC inverter 3 and the PLC controller of the power distribution cabinet 24 in the AC microgrid unit 2 and the air unit 211 and thermal management in the auxiliary system unit 21 The controller of the electrical equipment of the unit 212 is connected to the first circuit breaker 113 in the fuel cell test unit 11 of the DC microgrid unit 1, the second circuit breaker 124 in the energy storage unit 12 and the The voltage and current Hall sensor of the DC bus L1, the circuit breaker in the bidirectional AC/DC inverter 3, the third circuit breaker 23 of the DC microgrid unit 2, the voltage and current Hall sensor of the AC bus L2, and all The controller connection of the common connection point 402 in the power distribution unit 4 is used to receive the real-time parameter information of the fuel cell test unit 11, the energy storage unit 12, the auxiliary system unit 21 and the DC bus L1 and the AC bus L2, by recording , Count and analyze the power operation data of the entire micro-grid system, and transmit to the fuel cell test unit 11, the energy storage unit 12, the auxiliary system unit 21, the miscellaneous load unit 22, the bidirectional AC/DC inverter according to the preset command The controller 3 and the control elements and circuit breakers of the power distribution unit 4 issue operation instructions to comprehensively manage and dispatch the fuel cell test, energy storage, auxiliary system and miscellaneous load power consumption and power grid energy exchange, so that the entire microgrid system can operate at the most in good condition and achieve better economic benefits.
所述一种基于燃料电池测试的微网系统工作在稳态离网工作模式和暂态并网工作模式:The microgrid system based on the fuel cell test works in a steady-state off-grid working mode and a transient grid-connected working mode:
在稳态离网工作模式下,所述直流微电网单元1中储能单元12的储能电池组121存储的直流电能经由双向DC/DC变换器123转化为规定的直流电压送入所述直流微电网单元1的直流母线L1,随即所述双向AC/DC逆变器3将直流母线L1上的直流电能转化为规定的交流电压送入所述交流微电网单元2的交流母线L2;然后所述交流微电网单元2中第三断路器23闭合将交流母线L2上的交流电能送入配电柜24,同时所述交流微电网单元2中配电柜24的PLC控制器将配电柜24接收到的电能分配给所述辅助系统单元21的空气单元211和热管理单元212中的各个用电设备以及杂类负荷单元22的敏感负荷221和一般负荷222,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;然后燃料电池测试台111按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器112变换为规定的电压后送入直流母线L1。此时,所述直流微电网单元1中储能单元12的储能电池组121根据直流母线L1和交流母线L2的电压波动情况通过充放电来抑制直流母线L1和交流母线L2的电压波动并平衡两个母线的电压:当直流母线L1和/或交流母线L2的电压偏离设定的母线平衡电压的上限阈值时,所述直流微电网单元1中储能单元12的双向DC/DC变换器123会将直流母线L1上的过剩电能充入储能电池组121中,以使直流母线L1和/或交流母线L2的电压回落至设定的母线平衡电压;当交流母线L2和/或直流母线L1的电压偏离设定的母线平衡电压的下限阈值或燃料电池停止测试时,所述直流微电网单元1中储能单元12的双向DC/DC变换器123则将储能电池组121中存储的电能送入直流母线L1以及经由所述双向AC/DC逆变器3送入交流母线L2以使直流母线L1和交流母线L2的电压回升至设定的母线平衡电压以维持所述交流微电网单元2中辅助系统单元21中必要用电设备及其他负荷单元22中敏感负荷221和一般负荷222的正常供电。In the steady-state off-grid working mode, the DC power stored in the energy
在整个微网系统工作的全过程中,电能只在燃料电池测试单元11、储能单元12、辅助系统单元21、杂类负荷单元22之间进行传递,所述配电单元4的公共连接点PCC402始终处于断开状态,整个微网系统孤岛运行。During the entire working process of the microgrid system, electrical energy is only transferred between the fuel cell test unit 11, the energy storage unit 12, the auxiliary system unit 21, and the miscellaneous load unit 22. The common connection point of the
在暂态并网工作模式下,所述直流微电网单元1中储能单元12的储能电池组121存储的直流电能经由双向DC/DC变换器123转化为规定的直流电压送入所述直流微电网单元1的直流母线L1,随即所述双向AC/DC逆变器3将直流母线L1上的直流电能转化为规定的交流电压送入所述交流微电网单元2的交流母线L2;然后所述交流微电网单元2中第三断路器23闭合将交流母线L2上的交流电能送入配电柜24,同时所述交流微电网单元2中配电柜24的PLC控制器将配电柜24接收到的电能分配给所述辅助系统单元21的空气单元211和热管理单元212中的各个用电设备以及杂类负荷单元22的敏感负荷221和一般负荷222,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;然后燃料电池测试台111按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器112变换为规定的电压后送入直流母线L1。In the transient grid-connected working mode, the DC power stored in the energy
在整个微网工作过程中,所述直流微电网单元1中储能单元12的储能电池组121根据直流母线L1和交流母线L2的电压波动情况通过充放电来抑制直流母线L1和交流母线L2的电压波动并平衡两个母线的电压:During the entire microgrid operation process, the energy
当交流母线L2和/或直流母线L1的电压偏离设定的母线平衡电压的下限阈值或燃料电池停止测试时,所述直流微电网单元1中储能单元11的双向DC/DC变换器123则将储能电池组121中存储的电能送入直流母线L1以及经由所述双向AC/DC逆变器3送入交流母线L2以使直流母线L1和交流母线L2的电压回升至设定的母线平衡电压以维持所述交流微电网单元2中辅助系统单元21中必要用电设备及杂类负荷单元22中敏感负荷221和一般负荷222的正常供电;在此过程中当储能电池组121的荷电状态SOC已降至设定的下限时,所述配电单元4的公共连接点PCC402闭合将外电网401的电能送入交流母线L2以保障所述交流微电网单元2的辅助系统单元21中空气单元211和热管理单元212的用电设备及杂类负荷单元22中敏感负荷221的正常工作,而且此时如果外电网401正处于谷电时段,所述双向AC/DC逆变器3会将交流母线L2的交流电能经过AC-DC逆变成与直流母线L1相匹配的直流电压后送入直流母线L1,并经由双向DC/DC变换器123将外电网401的谷电充入储能电池组121中。When the voltage of the AC bus L2 and/or the DC bus L1 deviates from the set lower limit threshold of the bus balance voltage or the fuel cell stops the test, the bidirectional DC/DC converter 123 of the energy storage unit 11 in the DC microgrid unit 1 will The electric energy stored in the energy storage battery pack 121 is sent into the DC bus L1 and into the AC bus L2 via the bidirectional AC/DC inverter 3 to make the voltages of the DC bus L1 and the AC bus L2 return to the set bus balance voltage to maintain the normal power supply of the necessary electrical equipment in the auxiliary system unit 21 in the AC microgrid unit 2 and the sensitive loads 221 and general loads 222 in the miscellaneous load unit 22; When the electrical state SOC has dropped to the set lower limit, the common connection point PCC402 of the power distribution unit 4 is closed to send the electric energy of the external power grid 401 into the AC bus L2 to ensure the auxiliary system unit 21 of the AC microgrid unit 2 The electrical equipment of the air unit 211 and the thermal management unit 212 and the sensitive loads 221 in the miscellaneous load unit 22 work normally, and if the external power grid 401 is in the valley power period at this time, the bidirectional AC/DC inverter 3 will The AC power of the AC bus L2 is converted into a DC voltage matching the DC bus L1 through AC-DC and then sent to the DC bus L1, and the valley power of the external power grid 401 is charged into the energy storage through the bidirectional DC/DC converter 123 in the battery pack 121 .
当直流母线L1和/或交流母线L2的电压偏离设定的母线平衡电压的上限阈值时,所述直流微电网单元1中储能单元12的双向DC/DC变换器123会将直流母线L1上的过剩电能充入储能电池组121中,以使直流母线L1和/或交流母线L2的电压回落至设定的母线平衡电压;在此过程中当储能电池组121的荷电状态SOC已升至设定的上限而燃料电池测试仍在进行时,所述配电单元4的公共连接点PCC402闭合,燃料电池在测试过程中所产生的直流电能则经过DC/DC和DC-AC二级逆变后馈入外电网401。When the voltage of the DC bus L1 and/or the AC bus L2 deviates from the set upper threshold of the bus balance voltage, the bidirectional DC/
本发明将燃料电池电化学测试过程中产生的电能存储于储能电池,不仅避免了常规电阻型负载将燃料电池系统产生的电能通过热能消耗掉的能量浪费,同时还节省了为给电阻型负载降温设备的额外电能消耗。The invention stores the electric energy generated in the electrochemical test process of the fuel cell in the energy storage battery, which not only avoids the waste of energy consumed by the conventional resistance type load of the electric energy generated by the fuel cell system through thermal energy, but also saves the energy consumption for the resistance type load. Additional power consumption for cooling equipment.
另一方面,相较于传统的燃料电池测试系统只有在燃料电池测试过程中才能将产生电能供给辅助系统,而燃料电池测试前空气单元中空压机的启动及热管理单元中电加热装置的启动及升温等则完全依赖于电网,本发明所构建的微网系统中配置了储能电池则使燃料电池测试过程产生的电能具备了时移的特性从而可高效且灵活的输出给燃料电池测试辅助系统的高耗电设备,不仅有效缓解了燃料电池测试辅助系统对外电网的高度依赖性,确保了在市电停电或用电高峰时燃料电池测试的正常进行以及为敏感负荷提供不间断供电;而且,节省了诸如电加热水箱、冷水机及冷却塔等高耗电设备的用电成本,实现了燃料电池测试时所产生电能的高效利用。On the other hand, compared with the traditional fuel cell test system, the generated electric energy can only be supplied to the auxiliary system during the fuel cell test, and the activation of the air compressor in the air unit and the activation of the electric heating device in the thermal management unit before the fuel cell test The energy storage battery is configured in the micro-grid system constructed by the present invention, so that the electric energy generated in the fuel cell test process has the characteristics of time shift, so that it can be efficiently and flexibly output to the fuel cell test auxiliary The high power consumption equipment of the system not only effectively alleviates the high dependence of the fuel cell test auxiliary system on the external power grid, but also ensures the normal operation of the fuel cell test and provides uninterrupted power supply for sensitive loads during mains power outages or peak power consumption; , which saves the electricity cost of high power consumption equipment such as electric heating water tanks, chillers and cooling towers, and realizes the efficient use of electric energy generated during fuel cell testing.
此外,本发明微网系统中储能单元的存在还避免了通常馈网型电子负载对电网的高频谐波的严重干扰并有效抑制了高功率电加热水箱在启动和快速升温时对电网的冲击,有效提高了外电网的功率因数;另一方面又可实现对外电网的削峰填谷、谐波治理及无功补偿,改善电网的电能质量;同时采用储能电池组还可通过谷电峰用、调峰调频等电力辅助服务为企业带来额外收益。In addition, the existence of the energy storage unit in the micro-grid system of the present invention also avoids the serious interference of the high-frequency harmonics of the power grid caused by the usual feeder-type electronic load, and effectively suppresses the high-power electric heating water tank from starting and rapidly heating up the power grid. impact, effectively improve the power factor of the external power grid; on the other hand, it can realize peak shaving, harmonic control and reactive power compensation of the external power grid, and improve the power quality of the power grid; at the same time, the use of energy storage battery packs can also pass the valley power Power ancillary services such as peak usage, peak regulation and frequency regulation bring additional benefits to enterprises.
本发明实施例还提供一种基于燃料电池测试的微网系统控制方法,如图2所示,该方法通过如下步骤实现:An embodiment of the present invention also provides a method for controlling a microgrid system based on fuel cell testing, as shown in FIG. 2 , the method is implemented through the following steps:
在步骤200中,所述能量管理单元5启动自检,并确认所述配电单元4的公共连接点402处于断开状态,使整个微网系统进入初始离网控制模式。然后进入步骤201。In
在步骤201中,所述能量管理单元5获取直流微电网单元1的燃料电池测试单元11中待测燃料电池的个数及测试参数从而计算出燃料电池在整个测试过程中所产生的总电量Q1,根据交流微电网单元2的辅助系统单元21中用电设备及杂类负荷单元22中敏感负荷221和一般负荷222的功率获取交流微电网单元2各用电设备在燃料电池测试前需要的总电量Q2和燃料电池测试过程中需要的总电量Q′2,通过直流微电网单元1的储能单元12中电池管理单元122获取储能电池组121的SOC从而计算出储能电池组121由当前SOC放电至设定的SOC下限时可放电量Q3和由当前SOC充电至设定的SOC上限时需充电量Q′3;然后比较Q1、Q2、Q′2、Q3和Q′3之间的大小并进入步骤202。In
在步骤202中,当所述能量管理单元5检测到Q1≤Q′2+Q′3且Q2≤Q3时,则进入步骤210,即进入稳态离网工作模式;当检测到Q1>Q′2+Q′3或Q2>Q3时,则进入步骤220,即进入暂态并网工作模式。In
在步骤210中,所述能量管理单元5首先给所述直流微电网单元1中的储能单元12的双向DC/DC变换器123和所述双向AC/DC逆变器3发送启动信号,同时向所述直流微电网单元1中的储能单元12的第二断路器124和双向AC/DC逆变器3的并网断路器发送闭合信号,将所述储能单元12的储能电池组121存储的直流电能经由双向DC/DC变换器123转化为规定的直流电压送入所述直流微电网单元1的直流母线L1,随即所述双向AC/DC逆变器3将直流母线L1上的直流电能转化为规定的交流电压送入所述交流微电网单元2的交流母线L2;然后所述能量管理单元5向所述交流微电网单元2中第三断路器23发送闭合信号,将交流母线L2上的交流电能送入配电柜24,同时给所述交流微电网单元2中配电柜24的PLC控制器发送命令将配电柜24接收到的电能分配给所述辅助系统单元21的空气单元211和热管理单元212中的各个用电设备以及杂类负荷单元22的敏感负荷221和一般负荷222,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;当所述能量管理单元5接收到所述燃料电池测试单元11中燃料电池测试台111发出的燃料电池符合测试条件的信号时,则向燃料电池测试台111发送启动测试信号并闭合第一断路器113,按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器112电压变换为规定的电压后送入直流母线L1。In
在整个微网系统工作的全过程中,电能只在直流微电网单元1和交流微电网单元2之间进行传递,所述配电单元4的公共连接点PCC402始终处于断开状态,整个微网系统孤岛运行;而且,所述能量管理单元实时监测直流母线L1和交流母线L2的电压波动情况,并进入步骤211。During the whole working process of the microgrid system, electric energy is only transferred between the
在步骤211中,所述能量管理单元5首先开始检测直流母线L1和/或交流母线L2的电压是否偏离设定的母线平衡电压的上限阈值:如果偏离上限则进入步骤212,如果未偏离上限则进入步骤213。In
在步骤212中,所述能量管理单元5给所述直流微电网单元1中储能单元12的双向DC/DC变换器123发送充电信号,将直流母线L1上的过剩电能充入储能电池组121中,以使直流母线L1和/或交流母线L2的电压回落至设定的母线平衡电压。In
在步骤213中,所述能量管理单元5开始检测是否存在直流母线L1和/或交流母线L2的电压偏离设定的母线平衡电压的下限阈值或燃料电池停止测试的情况:如果存在则进入步骤214,如果不存在则返回步骤211。In
在步骤214中,所述能量管理单元5给所述直流微电网单元1中储能单元12的双向DC/DC变换器123发送放电信号,将储能电池组121中存储的电能送入直流母线L1以及经由所述双向AC/DC逆变器3送入交流母线L2以使直流母线L1和交流母线L2的电压回升至设定的母线平衡电压以维持所述交流微电网单元2中辅助系统单元21中必要用电设备及杂类负荷单元22中敏感负荷221和一般负荷222的正常供电。In
在步骤220中,所述能量管理单元5首先给所述直流微电网单元1中的储能单元12的双向DC/DC变换器123和所述双向AC/DC逆变器3发送启动信号,同时向所述直流微电网单元1中的储能单元12的第二断路器124和双向AC/DC逆变器3的并网断路器发送闭合信号,将所述储能单元12的储能电池组121存储的直流电能经由双向DC/DC变换器123转化为规定的直流电压送入所述直流微电网单元1的直流母线L1,随即所述双向AC/DC逆变器3将直流母线L1上的直流电能转化为规定的交流电压送入所述交流微电网单元2的交流母线L2;然后所述能量管理单元5向所述交流微电网单元2中第三断路器23发送闭合信号,将交流母线L2上的交流电能送入配电柜24,同时给所述交流微电网单元2中配电柜24的PLC控制器发送命令将配电柜24接收到的电能分配给所述辅助系统单元21的空气单元211和热管理单元212中的各个用电设备以及杂类负荷单元22的敏感负荷221和一般负荷222,各个用电设备开始工作为待测燃料电池提供特定压力的空气并使燃料电池升至或稳定至设定的温度;当所述能量管理单元5接收到所述燃料电池测试单元11中燃料电池测试台111发出的燃料电池符合测试条件的信号时,则向燃料电池测试台111发送启动测试信号并闭合第一断路器113,按照预设参数和工步对待测燃料电池进行电化学性能测试,其间所产生的电能经过单向DC/DC变换器112电压变换为规定的电压后送入直流母线L1。In
在整个微网工作过程中,所述能量管理单元5实时监测直流母线L1和交流母线L2的电压波动情况并实时跟踪所述直流微电网单元1的储能单元12中储能电池组121的荷电状态SOC的变化情况,并进入步骤221。During the entire microgrid operation process, the
在步骤221中,所述能量管理单元5首先开始检测直流母线L1和/或交流母线L2的电压是否偏离设定的母线平衡电压的上限阈值:如果偏离上限则进入步骤222,如果未偏离上限则进入步骤226。In
在步骤222中,所述能量管理单元5给所述直流微电网单元1中储能单元12的双向DC/DC变换器123发送充电信号,将直流母线L1上的过剩电能充入储能电池组121中,以使直流母线L1和/或交流母线L2的电压回落至设定的母线平衡电压,并进入步骤223。In
在步骤223中,所述能量管理单元5实时检测储能电池组121的荷电状态SOC是否已升至设定的上限而燃料电池测试仍在进行中,如果SOC未升至上限或SOC虽然已升至上限而燃料电池已停止测试则进入步骤224,如果已升至设定的上限且燃料电池测试仍在进行中,则进入步骤225。In
在步骤224中,所述配电单元4中的公共连接点PCC402继续保持断开状态。In
在步骤225中,所述能量管理单元5给所述配电单元4的公共连接点PCC402发送闭合信号,将燃料电池在测试过程中所产生的直流电能经过单向DC/DC变换器112的电压变换后送入直流母线L1再经所述双向AC-DC逆变器3逆变成交流电后送入交流母线然后经由公共连接点PCC402馈入外电网401。In
在步骤226中,所述能量管理单元5首先开始检测直流母线L1和/或交流母线L2的电压是否偏离设定的母线平衡电压的下限阈值或燃料电池测试已经停止:如果偏离下限或燃料电池测试已停止则进入步骤227,如果未偏离上限或燃料电池测试未停止则返回步骤221。In
在步骤227中,所述能量管理单元5给所述直流微电网单元1中储能单元12的双向DC/DC变换器123发送放电信号,将储能电池组121存储的电能经由双向DC/DC变换器123的电压变换后送入直流母线L1再经由所述双向DC/AC逆变器3逆变成交流电后送入交流母线L2,以使直流母线L1和/或交流母线L2的电压回升至设定的母线平衡电压以维持所述交流微电网单元2中辅助系统单元21中必要用电设备及杂类负荷单元22中敏感负荷221和一般负荷222的正常供电,并进入步骤228。In
在步骤228中,所述能量管理单元5实时检测储能电池组121的荷电状态SOC是否已降至设定的下限,如果SOC未降至设定的下限则进入步骤229,如果已降至设定的下限则进入步骤230。In
在步骤229中,所述配电单元4中的公共连接点402继续保持断开状态。In
在步骤230中,所述能量管理单元5给所述配电单元4的公共连接点402发送闭合信号,将外电网401的交流电能经由公共连接点402送入交流母线L2使其电压回升至设定的母线平衡电压以保障所述交流微电网单元2的辅助系统单元21中空气单元211和热管理单元212的用电设备及杂类负荷单元22中敏感负荷221的正常工作;而且此时如果外电网401正处于谷电时段,所述能量管理单元5则给所述双向AC/DC逆变器3发送AC-DC逆变信号将交流母线L2的交流电能逆变成与直流母线L1相匹配的直流电压后送入直流母线L1,并经由双向DC/DC变换器123将外电网401的谷电充入储能电池组121中。In
本发明的实施例内容揭露如上,然而本实施例并非用以限定本发明实施的范围,依据本发明的权利要求书及说明内容所作的简单的等效变化与修饰,仍属于本发明技术方案的范围内。The contents of the embodiments of the present invention are disclosed as above. However, the present embodiments are not intended to limit the scope of the present invention. Simple equivalent changes and modifications made according to the claims and descriptions of the present invention still belong to the technical solutions of the present invention. within the range.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811619753.5A CN111381171A (en) | 2018-12-28 | 2018-12-28 | Microgrid system and control method based on fuel cell test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811619753.5A CN111381171A (en) | 2018-12-28 | 2018-12-28 | Microgrid system and control method based on fuel cell test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111381171A true CN111381171A (en) | 2020-07-07 |
Family
ID=71218395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811619753.5A Pending CN111381171A (en) | 2018-12-28 | 2018-12-28 | Microgrid system and control method based on fuel cell test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111381171A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114335605A (en) * | 2022-02-17 | 2022-04-12 | 北京亿华通科技股份有限公司 | Electricity control system and method for fuel cell testing laboratory |
CN114374199A (en) * | 2022-01-24 | 2022-04-19 | 阳光电源股份有限公司 | Energy storage system |
CN115222211A (en) * | 2022-06-21 | 2022-10-21 | 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 | Electric power energy intelligent analysis management and control system based on internet of things technology |
WO2023004711A1 (en) * | 2021-07-29 | 2023-02-02 | 宁德时代新能源科技股份有限公司 | Charging/discharging apparatus, battery charging method, and charging/discharging system |
KR20230019380A (en) * | 2021-07-29 | 2023-02-08 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Charging and discharging device and battery charging method |
CN116819355A (en) * | 2023-04-28 | 2023-09-29 | 广东恒翼能科技股份有限公司 | Energy-saving test system for direct-current bus of micro-grid at rear section of battery cell |
US12051934B2 (en) | 2021-07-29 | 2024-07-30 | Contemporary Amperex Technology Co., Limited | Method for charging battery, charging and discharging device |
CN118432155A (en) * | 2024-06-28 | 2024-08-02 | 长江三峡集团实业发展(北京)有限公司 | Energy storage battery detection device, energy control method, medium and equipment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110140520A1 (en) * | 2009-12-16 | 2011-06-16 | Sung-Im Lee | Energy storage system and method of controlling the same |
CN202651785U (en) * | 2012-04-28 | 2013-01-02 | 中国电力科学研究院 | An AC-DC Hybrid Microgrid System |
CN103427430A (en) * | 2013-04-08 | 2013-12-04 | 深圳市天智系统技术有限公司 | Hybrid energy storage system and energy management method thereof in micro-grid |
CN103956761A (en) * | 2014-04-22 | 2014-07-30 | 电子科技大学 | Mixed micro-grid system of large-scale energy recycling power battery pack test device |
US20140297051A1 (en) * | 2013-03-26 | 2014-10-02 | Northeastern University | Energy resource-grid-load automatic control system of smart microgrid and control methods thereof |
CN206517073U (en) * | 2016-12-11 | 2017-09-22 | 新疆新能源研究院有限责任公司 | A kind of new friendly intelligent micro-grid |
CN109066802A (en) * | 2018-10-19 | 2018-12-21 | 国家电网有限公司 | A kind of microgrid energy management system and method |
CN209803301U (en) * | 2018-12-28 | 2019-12-17 | 天津银隆新能源有限公司 | A Microgrid System Based on Fuel Cell Testing |
-
2018
- 2018-12-28 CN CN201811619753.5A patent/CN111381171A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110140520A1 (en) * | 2009-12-16 | 2011-06-16 | Sung-Im Lee | Energy storage system and method of controlling the same |
CN202651785U (en) * | 2012-04-28 | 2013-01-02 | 中国电力科学研究院 | An AC-DC Hybrid Microgrid System |
US20140297051A1 (en) * | 2013-03-26 | 2014-10-02 | Northeastern University | Energy resource-grid-load automatic control system of smart microgrid and control methods thereof |
CN103427430A (en) * | 2013-04-08 | 2013-12-04 | 深圳市天智系统技术有限公司 | Hybrid energy storage system and energy management method thereof in micro-grid |
CN103956761A (en) * | 2014-04-22 | 2014-07-30 | 电子科技大学 | Mixed micro-grid system of large-scale energy recycling power battery pack test device |
CN206517073U (en) * | 2016-12-11 | 2017-09-22 | 新疆新能源研究院有限责任公司 | A kind of new friendly intelligent micro-grid |
CN109066802A (en) * | 2018-10-19 | 2018-12-21 | 国家电网有限公司 | A kind of microgrid energy management system and method |
CN209803301U (en) * | 2018-12-28 | 2019-12-17 | 天津银隆新能源有限公司 | A Microgrid System Based on Fuel Cell Testing |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023543098A (en) * | 2021-07-29 | 2023-10-13 | 寧徳時代新能源科技股▲分▼有限公司 | Charging/discharging device and battery charging method |
CN115885407B (en) * | 2021-07-29 | 2024-02-02 | 宁德时代新能源科技股份有限公司 | Charging and discharging device, battery charging method and charging and discharging system |
US12051934B2 (en) | 2021-07-29 | 2024-07-30 | Contemporary Amperex Technology Co., Limited | Method for charging battery, charging and discharging device |
WO2023004711A1 (en) * | 2021-07-29 | 2023-02-02 | 宁德时代新能源科技股份有限公司 | Charging/discharging apparatus, battery charging method, and charging/discharging system |
US20230034292A1 (en) * | 2021-07-29 | 2023-02-02 | Contemporary Amperex Technology Co., Limited | Charging and discharging apparatus, method for charging battery and charging and discharging system |
KR20230019380A (en) * | 2021-07-29 | 2023-02-08 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Charging and discharging device and battery charging method |
KR20230019377A (en) * | 2021-07-29 | 2023-02-08 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Charging and discharging device, battery charging method and charging and discharging system |
CN115885407A (en) * | 2021-07-29 | 2023-03-31 | 宁德时代新能源科技股份有限公司 | Charging and discharging device, battery charging method and charging and discharging system |
JP2023539959A (en) * | 2021-07-29 | 2023-09-21 | 寧徳時代新能源科技股▲分▼有限公司 | Charging/discharging device, battery charging method, and charging/discharging system |
KR102684131B1 (en) * | 2021-07-29 | 2024-07-11 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Charge/discharge device and battery charging method |
JP7461385B2 (en) | 2021-07-29 | 2024-04-03 | 寧徳時代新能源科技股▲分▼有限公司 | Charging/discharging device, battery charging method, and charging/discharging system |
KR102645452B1 (en) * | 2021-07-29 | 2024-03-12 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | Charge/discharge device, battery charging method, and charge/discharge system |
JP7453261B2 (en) | 2021-07-29 | 2024-03-19 | 寧徳時代新能源科技股▲分▼有限公司 | Charging/discharging device and battery charging method |
CN114374199A (en) * | 2022-01-24 | 2022-04-19 | 阳光电源股份有限公司 | Energy storage system |
CN114335605A (en) * | 2022-02-17 | 2022-04-12 | 北京亿华通科技股份有限公司 | Electricity control system and method for fuel cell testing laboratory |
CN114335605B (en) * | 2022-02-17 | 2024-12-06 | 北京亿华通科技股份有限公司 | Power control system and method for fuel cell test laboratory |
CN115222211A (en) * | 2022-06-21 | 2022-10-21 | 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 | Electric power energy intelligent analysis management and control system based on internet of things technology |
CN116819355B (en) * | 2023-04-28 | 2024-05-17 | 广东恒翼能科技股份有限公司 | Energy-saving test system for direct-current bus of micro-grid at rear section of battery cell |
CN116819355A (en) * | 2023-04-28 | 2023-09-29 | 广东恒翼能科技股份有限公司 | Energy-saving test system for direct-current bus of micro-grid at rear section of battery cell |
CN118432155A (en) * | 2024-06-28 | 2024-08-02 | 长江三峡集团实业发展(北京)有限公司 | Energy storage battery detection device, energy control method, medium and equipment |
CN118432155B (en) * | 2024-06-28 | 2025-02-11 | 长江三峡集团实业发展(北京)有限公司 | Energy storage battery detection device, energy control method, medium and equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111381171A (en) | Microgrid system and control method based on fuel cell test | |
CN102130464B (en) | The method of electric power storing device, electrical power for operation storage device and power storage system | |
CN209497314U (en) | A microgrid system based on fuel cell testing and charging pile coupling | |
KR101212200B1 (en) | Battery management system, method of removing polarization voltage of battery and estimating state of charge of battery | |
CN103887834B (en) | A rectification module, device and system for flexible and balanced charging and discharging management of battery packs | |
CN205509569U (en) | Photovoltaic basic station is with lithium cell reserve electrical power generating system | |
CN103390920B (en) | A management method and system for an all-vanadium redox flow battery applied to large-scale energy storage | |
CN105186660B (en) | Off-network type wind power hydrogen production converting system | |
CN102104257A (en) | Energy storage system of apartment building, integrated power management system, and method of controlling the system | |
CN107579698A (en) | A kind of photovoltaic plant energy storage method | |
CN101931238A (en) | Coordinated control method of microgrid system based on master-slave strategy | |
KR20120038267A (en) | Battery management system and method thereof, and power storage apparatus using the same | |
CN204497336U (en) | Multikilowatt fuel cell lithium ion battery hybrid power device | |
CN108649594B (en) | A distributed energy storage system for low voltage distribution network | |
CN111381172A (en) | Microgrid-based battery testing and chemical composition capacitive coupling system and control method | |
CN111381174B (en) | Fuel cell testing and lithium-ion battery capacity coupling system and method | |
CN111404248A (en) | Micro-grid system and method based on coupling of fuel cell test and charging pile | |
CN209803301U (en) | A Microgrid System Based on Fuel Cell Testing | |
Bocklisch et al. | Multi-storage hybrid system approach and experimental investigations | |
CN209911510U (en) | Battery test and formation grading coupling system based on microgrid | |
CN209497274U (en) | A fuel cell testing and electric vehicle charging coupling system | |
CN111082413A (en) | An urban community full DC microgrid and its control system | |
CN109599935A (en) | Light hydrogen energy-storage power supplying apparatus and its method of supplying power to | |
CN109004706A (en) | A kind of long standby power of MW class flow battery and SOC measure integrated control method | |
Jie et al. | Design of energy storage system using retired valve regulated lead acid (VRLA) batteries in substations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant after: Tianjin Gree titanium new energy Co.,Ltd. Applicant after: YINLONG ENERGY Co.,Ltd. Address before: Ziya Circular Economy Industrial Zone in Jinghai District, Tianjin restarts on the 26th Applicant before: TIANJIN YINLONG ENERGY CO.,LTD. Country or region before: China Applicant before: YINLONG ENERGY Co.,Ltd. |
|
CB02 | Change of applicant information |
Country or region after: China Address after: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant after: Tianjin Gree titanium new energy Co.,Ltd. Applicant after: Gree titanium new energy Co.,Ltd. Address before: No. 26 Chongqing Road, Ziya Circular Economy Industrial Zone, Jinghai District, Tianjin 301600 Applicant before: Tianjin Gree titanium new energy Co.,Ltd. Country or region before: China Applicant before: YINLONG ENERGY Co.,Ltd. |