CN111129166B - Gallium oxide-based semiconductor structure and preparation method thereof - Google Patents
Gallium oxide-based semiconductor structure and preparation method thereof Download PDFInfo
- Publication number
- CN111129166B CN111129166B CN201911283509.0A CN201911283509A CN111129166B CN 111129166 B CN111129166 B CN 111129166B CN 201911283509 A CN201911283509 A CN 201911283509A CN 111129166 B CN111129166 B CN 111129166B
- Authority
- CN
- China
- Prior art keywords
- gallium oxide
- barrier schottky
- low
- epitaxial layer
- barrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims abstract description 132
- 229910001195 gallium oxide Inorganic materials 0.000 title claims abstract description 131
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 230000004888 barrier function Effects 0.000 claims abstract description 91
- 238000005036 potential barrier Methods 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 103
- 238000000034 method Methods 0.000 claims description 19
- 239000011241 protective layer Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 6
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000004549 pulsed laser deposition Methods 0.000 claims description 3
- 229910002842 PtOx Inorganic materials 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000010931 gold Substances 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 3
- 229910003446 platinum oxide Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种氧化镓基半导体结构及其制备方法,该氧化镓基半导体结构包括:氧化镓基外延层,具有多个沟道,该多个沟道形成于该氧化镓基外延层上表面且相互间隔第一距离;多个低势垒肖特基电极,形成于所述多个沟道之间的氧化镓基外延层上表面;以及高势垒肖特基电极,形成于所述氧化镓基外延层上表面,且覆盖所述多个沟道及所述多个低势垒肖特基电极。该氧化镓基半导体结构同时结合了高、低势垒的优势,具有较低的开启电压的同时可以维持较小的反向漏电流的优势,能够保证开态电阻不会有明显增大,甚至会有降低的效果,能够使得双势垒肖特基能够有效应的用于高温领域。
The invention discloses a gallium oxide-based semiconductor structure and a preparation method thereof. The gallium oxide-based semiconductor structure includes: a gallium oxide-based epitaxial layer having a plurality of channels, and the multiple channels are formed on the gallium oxide-based epitaxial layer The surfaces are separated from each other by a first distance; a plurality of low barrier Schottky electrodes are formed on the upper surface of the gallium oxide-based epitaxial layer between the plurality of channels; and high barrier Schottky electrodes are formed on the The upper surface of the gallium oxide-based epitaxial layer covers the plurality of channels and the plurality of low-barrier Schottky electrodes. The gallium oxide-based semiconductor structure combines the advantages of high and low potential barriers at the same time, has the advantages of low turn-on voltage and can maintain a small reverse leakage current, and can ensure that the on-state resistance will not increase significantly, even There will be a reduction effect, enabling the double barrier Schottky to be effectively used in high temperature fields.
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种氧化镓基半导体结构及其制备方法。The invention relates to the technical field of semiconductors, in particular to a gallium oxide-based semiconductor structure and a preparation method thereof.
背景技术Background technique
氧化镓(Ga2O3)作为目前研究领域中非常热门的一种新兴的超宽禁带半导体材料,拥有超宽禁带宽度(4.8eV)、较大的击穿场强(8MV/cm)、热稳定性和化学稳定性非常好、禁带宽度及击穿场强仅次于金刚石(在大功率和光学半导体器件中是金刚石的优良替代材料)、制备方法较为简易等优势;另外,氧化镓功率器件在与GaN和SiC相同耐压情况下,导通电阻更低、功耗更小、更耐高温、能够极大地节约上述高压器件工作时的电能损失。因此,随着研究的深入,氧化镓基半导体技术得到了快速的发展,也越来越多的应用于实际的半导体器件中,例如各类基于氧化镓材料制备的二极管、晶体管和光探测器等等。但是现有的氧化镓基半导体器件仍然存在很多不足,具体地,可以肖特基二极管半导体器件为例进行描述:Gallium oxide (Ga 2 O 3 ), as a very popular emerging ultra-wide bandgap semiconductor material in the current research field, has an ultra-wide bandgap (4.8eV) and a large breakdown field strength (8MV/cm) , thermal stability and chemical stability are very good, the bandgap width and breakdown field strength are second only to diamond (in high-power and optical semiconductor devices, it is an excellent substitute material for diamond), and the preparation method is relatively simple; in addition, oxidation Under the same withstand voltage as GaN and SiC, gallium power devices have lower on-resistance, lower power consumption, and higher temperature resistance, which can greatly save the power loss during the operation of the above-mentioned high-voltage devices. Therefore, with the deepening of research, gallium oxide-based semiconductor technology has been rapidly developed, and it is more and more used in practical semiconductor devices, such as various diodes, transistors and photodetectors based on gallium oxide materials, etc. . However, there are still many deficiencies in existing gallium oxide-based semiconductor devices. Specifically, a Schottky diode semiconductor device can be described as an example:
肖特基二极管(Schottky Barrier Diode,简称SBD)作为一种整流器件,被广泛应用于电路中。一个理想化的SBD应具有零导通压降与零反向漏电流。然而在实际应用中,SBD的导通压降与反向漏电流往往与SBH有直接的关系。选择较高的SBH(Schottky barrierheight,简称SBH,指金属-半导体接触界面的势垒高度)能够有效降低肖特基二极管的反向漏电流,但是会导致较高的正向开启电压;而选择较低的SBH能够获得较低的开启电压,但是会导致较高的反向漏电流。较高的开启电压与反向漏电流意味着更多的能量被损耗,因此在降低开启电压和降低反向漏电流两个方面之间需要有一个平衡点。A Schottky Barrier Diode (SBD for short), as a rectification device, is widely used in circuits. An idealized SBD should have zero turn-on voltage drop and zero reverse leakage current. However, in practical applications, the conduction voltage drop and reverse leakage current of SBD are often directly related to SBH. Choosing a higher SBH (Schottky barrier height, referred to as SBH, referring to the barrier height of the metal-semiconductor contact interface) can effectively reduce the reverse leakage current of the Schottky diode, but it will lead to a higher forward turn-on voltage; while choosing a higher Low SBH can obtain lower turn-on voltage, but will result in higher reverse leakage current. Higher turn-on voltage and reverse leakage current mean more energy is lost, so there needs to be a balance between reducing the turn-on voltage and reducing reverse leakage current.
为解决SBD高开启电压与高漏电流带来的能量损耗问题,现有技术中提出了沟槽MOS结构(metal-oxide-semiconductor,简称MOS,指金属-氧化物-半导体结构)的SBD:利用沟槽MOS结构使得二极管反向偏置时的峰值电场从金属-Ga2O3界面处引至沟槽底部,以期望能够有效降低反向漏电流并提升击穿电压。但是其在引入沟槽MOS结构的同时,减少了肖特基接触的面积,从而牺牲了开态电阻;另外,由于沟槽MOS结构耗尽效果并不明显,因此对于减少漏电流的效果非常有限;最后,根据热场发射模型,普通肖特基二极管在高温下反向漏电流会有明显的退化。In order to solve the energy loss problem caused by the high turn-on voltage and high leakage current of SBD, the SBD with trench MOS structure (metal-oxide-semiconductor, MOS for short, referring to metal-oxide-semiconductor structure) is proposed in the prior art: using The trench MOS structure leads the peak electric field from the metal-Ga 2 O 3 interface to the bottom of the trench when the diode is reverse biased, in order to effectively reduce the reverse leakage current and increase the breakdown voltage. However, while introducing the trench MOS structure, it reduces the area of the Schottky contact, thereby sacrificing the on-state resistance; in addition, since the depletion effect of the trench MOS structure is not obvious, the effect on reducing the leakage current is very limited ; Finally, according to the thermal field emission model, the reverse leakage current of ordinary Schottky diodes will be significantly degraded at high temperatures.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
为解决现有技术中半导体器件高开启电压与高漏电流带来的能量损耗问题,同时不会牺牲原有器件中与开态电阻、反向漏电流等相关的良好性能,本发明公开了一种氧化镓基半导体结构及其制备方法。In order to solve the problem of energy loss caused by high turn-on voltage and high leakage current of semiconductor devices in the prior art, while not sacrificing the good performance related to on-state resistance and reverse leakage current in the original device, the present invention discloses a A gallium oxide-based semiconductor structure and a preparation method thereof.
(二)技术方案(2) Technical solution
本发明的一个方面公开了一种氧化镓基半导体结构,半导体结构包括:氧化镓基外延层,具有多个沟道,该多个沟道形成于该氧化镓基外延层上表面且相互间隔第一距离;多个低势垒肖特基电极,形成于多个沟道之间的氧化镓基外延层上表面;以及高势垒肖特基电极,形成于氧化镓基外延层上表面,且覆盖多个沟道及多个低势垒肖特基电极;沟道凹陷于氧化镓基外延层的内表面作为与高势垒肖特基电极相接触的高势垒接触面,相邻两个沟道之间的氧化镓基外延层上表面作为与低势垒肖特基电极相接触的低势垒接触面。One aspect of the present invention discloses a gallium oxide-based semiconductor structure. The semiconductor structure includes: a gallium oxide-based epitaxial layer with a plurality of channels formed on the upper surface of the gallium oxide-based epitaxial layer and separated from each other by a a distance; a plurality of low-barrier Schottky electrodes formed on the upper surface of the gallium oxide-based epitaxial layer between the plurality of channels; and a high-barrier Schottky electrode formed on the upper surface of the gallium oxide-based epitaxial layer, and Covering multiple channels and multiple low-barrier Schottky electrodes; the channel is recessed in the inner surface of the gallium oxide-based epitaxial layer as a high-barrier contact surface in contact with the high-barrier Schottky electrodes, two adjacent The upper surface of the gallium oxide-based epitaxial layer between the channels serves as a low barrier contact surface in contact with the low potential barrier Schottky electrode.
作为本发明一实施例,高势垒肖特基电极为金属氧化物电极;以及低势垒肖特基电极为金属电极,金属为Ni、Au、Pt、Cu、Mo、Ag或W等。As an embodiment of the present invention, the high-barrier Schottky electrode is a metal oxide electrode; and the low-barrier Schottky electrode is a metal electrode, and the metal is Ni, Au, Pt, Cu, Mo, Ag, or W.
作为本发明一实施例,沟道的深度为h,1μm≤h≤3μm;沟道的宽度为k,1μm≤k≤5μm;第一距离为d,1μm≤d≤5μm。As an embodiment of the present invention, the depth of the channel is h, 1 μm≤h≤3 μm; the width of the channel is k, 1 μm≤k≤5 μm; the first distance is d, 1 μm≤d≤5 μm.
作为本发明一实施例,低势垒肖特基电极与高势垒肖特基电极之间还包括一层第一保护层。As an embodiment of the present invention, a first protective layer is further included between the low barrier Schottky electrode and the high barrier Schottky electrode.
作为本发明一实施例,半导体结构还包括:位于氧化镓基外延层下的氧化镓基衬底层,以及位于氧化镓基衬底层下的欧姆电极。As an embodiment of the present invention, the semiconductor structure further includes: a gallium oxide-based substrate layer located under the gallium oxide-based epitaxial layer, and an ohmic electrode located under the gallium oxide-based substrate layer.
作为本发明一实施例,欧姆电极的外表面覆盖有一层第二保护层。As an embodiment of the present invention, the outer surface of the ohmic electrode is covered with a second protective layer.
本发明的另一个方面公开了一种氧化镓基半导体结构的制备方法,用于制备上述的氧化镓基半导体结构,包括:在氧化镓基外延层上表面上间隔第一距离形成多个低势垒肖特基电极;以多个低势垒肖特基电极为掩模,对氧化镓基外延层上表面进行刻蚀形成多个沟道,相邻两个沟道之间的氧化镓基外延层上表面作为与低势垒肖特基电极相接触的低势垒接触面;以及在形成有多个沟道的氧化镓基外延层上表面形成高势垒肖特基电极,该高势垒肖特基电极同时覆盖多个沟道及多个低势垒肖特基电极,沟道的内表面作为与高势垒肖特基电极相接触的高势垒接触面。Another aspect of the present invention discloses a method for preparing a gallium oxide-based semiconductor structure, which is used to prepare the above-mentioned gallium oxide-based semiconductor structure, including: forming a plurality of low-potential Barrier Schottky electrodes; use multiple low barrier Schottky electrodes as masks to etch the upper surface of the gallium oxide-based epitaxial layer to form multiple channels, and the gallium oxide-based epitaxial layer between two adjacent channels The upper surface of the layer serves as a low-barrier contact surface in contact with the low-barrier Schottky electrode; The Schottky electrodes simultaneously cover multiple trenches and multiple low barrier Schottky electrodes, and the inner surface of the trench serves as a high barrier contact surface in contact with the high potential barrier Schottky electrodes.
作为本发明一实施例,采用lift-off方法在氧化镓基外延层上表面上间隔第一距离形成多个低势垒肖特基电极。As an embodiment of the present invention, a plurality of low-barrier Schottky electrodes are formed on the upper surface of the gallium oxide-based epitaxial layer at a first distance by a lift-off method.
作为本发明一实施例,以多个低势垒肖特基电极为掩模,对氧化镓基外延层上表面进行刻蚀形成多个沟道,包括:以低势垒肖特基电极为掩模,利用ICP对氧化镓基外延层进行干法刻蚀,以在氧化镓基外延层上表面凹陷形成多个沟道。As an embodiment of the present invention, using a plurality of low-barrier Schottky electrodes as masks to etch the upper surface of the gallium oxide-based epitaxial layer to form a plurality of channels, including: using the low-barrier Schottky electrodes as masks A mold is used to perform dry etching on the gallium oxide-based epitaxial layer by using ICP, so as to form a plurality of trenches on the surface of the gallium oxide-based epitaxial layer by recessing.
作为本发明一实施例,在形成有多个沟道的氧化镓基外延层上表面形成高势垒肖特基电极,包括:采用磁控溅射法或脉冲激光沉积法在多个沟道的内表面形成同时覆盖多个低势垒肖特基电极的高势垒肖特基电极。As an embodiment of the present invention, forming a high barrier Schottky electrode on the upper surface of the gallium oxide-based epitaxial layer formed with multiple channels includes: using magnetron sputtering or pulsed laser deposition on multiple channels The inner surface forms a high barrier Schottky electrode simultaneously covering a plurality of low barrier Schottky electrodes.
(三)有益效果(3) Beneficial effects
本发明一个方面公开了一种氧化镓基半导体结构,该结构在氧化镓基外延层上设置多个沟道,相邻沟道之间形成低势垒肖特基,并在上述结构基础上直接覆形成一层高势垒肖特基电极,覆盖低势垒肖特基,并在沟道的内表面形成高势垒肖特基,可以形成高、低双势垒肖特基氧化镓基半导体结构,该结构同时结合了高、低势垒的优势,具有较低的开启电压的同时可以维持较小的反向漏电流的优势。另外,高低双势垒接触能够增大肖特基接触面积,因此能够保证开态电阻不会有明显增大,甚至会有降低的效果。氧化金属肖特基存在一个较大的内建电势,能够有效耗尽并夹断低SBH肖特基的反向漏电。而氧化金属肖特基二极管在高温下具有相当良好的工作特性,因此双势垒肖特基能够有效应的用于高温领域。One aspect of the present invention discloses a gallium oxide-based semiconductor structure. The structure is provided with multiple channels on the gallium oxide-based epitaxial layer, and a low-barrier Schottky is formed between adjacent channels, and directly based on the above structure. Form a layer of high barrier Schottky electrode, cover the low barrier Schottky, and form a high barrier Schottky on the inner surface of the channel, which can form a high and low double barrier Schottky gallium oxide-based semiconductor structure, which combines the advantages of high and low potential barriers at the same time, has the advantage of lower turn-on voltage and can maintain a smaller reverse leakage current. In addition, the high and low double barrier contact can increase the Schottky contact area, so it can ensure that the on-state resistance will not increase significantly, or even reduce it. Metal oxide Schottkys have a large built-in potential that effectively depletes and pinches the reverse leakage of low SBH Schottkys. Metal oxide Schottky diodes have quite good working characteristics at high temperatures, so the double barrier Schottky can be effectively used in high temperature fields.
本发明另一个方面公开了一种氧化镓基半导体结构的制备方法,用于制备带有上述高低双势垒肖特基结构的氧化镓基半导体结构,其中,采用lift-off所淀积的低势垒肖特基金属保证了该结构具备较低的开启电压与良好的开态电阻。该制备工艺简单,制备成本较低,有利于实现工业化大生产。Another aspect of the present invention discloses a method for preparing a gallium oxide-based semiconductor structure, which is used to prepare a gallium oxide-based semiconductor structure with the above-mentioned high and low double barrier Schottky structure, wherein the low The barrier Schottky metal ensures that the structure has a low turn-on voltage and good on-state resistance. The preparation process is simple, the preparation cost is low, and it is beneficial to realize industrialized mass production.
附图说明Description of drawings
图1是本发明实施例中氧化镓基半导体结构的组成示意图;1 is a schematic diagram of the composition of a gallium oxide-based semiconductor structure in an embodiment of the present invention;
图2是本发明实施例中高低双势垒肖特基结构与常规结构SBD的I-V仿真曲线对比图;Fig. 2 is the comparison diagram of the I-V simulation curve of high and low double potential barrier Schottky structure and conventional structure SBD in the embodiment of the present invention;
图3是本发明实施例中氧化镓基半导体结构的制备方法流程示意图;3 is a schematic flow chart of a method for preparing a gallium oxide-based semiconductor structure in an embodiment of the present invention;
图4是本发明实施例中氧化镓基半导体结构的各制备阶段结构示意图。FIG. 4 is a schematic structural diagram of each preparation stage of the gallium oxide-based semiconductor structure in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
本发明的一个方面公开了一种氧化镓基半导体结构,如图1所示,该半导体结构包括:氧化镓基外延层130,具有多个沟道131,该多个沟道131形成于该氧化镓基外延层130上表面且相互间隔第一距离d;多个低势垒肖特基电极120,形成于所述多个沟道131之间的氧化镓基外延层130上表面;以及高势垒肖特基电极110,形成于所述氧化镓基外延层130上表面,且覆盖所述多个沟道131及所述多个低势垒肖特基电极120;其中,所述沟道131凹陷于所述氧化镓基外延层130的内表面作为与所述高势垒肖特基电极110相接触的高势垒接触面,相邻两个沟道131之间的氧化镓基外延层130上表面作为与所述低势垒肖特基电极120相接触的低势垒接触面。One aspect of the present invention discloses a gallium oxide-based semiconductor structure. As shown in FIG. 1 , the semiconductor structure includes: a gallium oxide-based
具体地,作为本发明的一实施例,氧化镓基外延层130上表面设置有多个间隔第一距离凹陷(可以是通过薄膜刻蚀工艺实现)形成的多个沟道131,具体可以参考图1所示虚线框。在此需要说明的是,该第一距离为d,d可以是距离值的一个变量,即d并非是一个固定的距离值。换言之,第一相邻两个沟道131之间的第一距离d和第二相邻两个沟道131之间的第一距离d'可以不一致。如图1所示,在形成沟道131的同时,相邻沟道131之间同时形成宽度尺寸为第一距离d的凸台132。需要说明的是,由于图1为该氧化镓基半导体结构的一横向的局部剖面图,仅显示了该半导体结构3个凸台132和彼此以凸台间隔的4个沟道131,在此处所提到的第一距离d和宽度尺寸,可以理解为该局部剖面图所能显示出的尺寸。Specifically, as an embodiment of the present invention, the upper surface of the gallium oxide-based
作为本发明的一实施例,氧化镓基外延层130的凸台132上覆盖有一低势垒肖特基电极120,该低势垒肖特基电极120仅形成于该凸台132的上表面上,该低势垒肖特基电极120仅与该凸台132的上表面相接触,以在与其之间的界面上形成该低势垒肖特基接触。另外,在形成有该低势垒肖特基电极120的氧化镓基外延层130上,还覆盖有一层高势垒肖特基电极110,该高势垒肖特基电极110主要形成于沟道131的内表面(如图1中虚框所示),且高势垒肖特基电极110与沟道131的内表面相接触,以在与其之间的界面上形成该高势垒肖特基接触。另外,高势垒肖特基电极110厚度远大于沟道131的深度与低势垒肖特基电极120的厚度之和,并将低势垒肖特基电极120掩蔽。As an embodiment of the present invention, the
综上所示,本发明的氧化镓基半导体结构实现了高低双势垒肖特基接触,增大肖特基接触面积,因此能够保证开态电阻不会有明显增大。对该技术特征所对应的技术效果,以本发明可以应用的高低双势垒肖特基二极管为例进行说明:当高低双势垒肖特基二极管正向偏置时,低势垒肖特基在较低电压下导通,因此该结构的开启电压将与低势垒肖特基二极管基本保持一致。当达到高势垒的开启电压时,高低双势垒肖特基同时导通,因此开态电阻不会有明显的下降。当高低双势垒肖特基二极管反向偏置时,由于沟道处于高势垒肖特基的耗尽效果,使得低势垒肖特基的反向漏电被夹断。因此高低双势垒肖特基二极管的反向漏电将和高势垒肖特基二极管一个量级。To sum up, the gallium oxide-based semiconductor structure of the present invention realizes high and low double barrier Schottky contact, increases the Schottky contact area, and thus can ensure that the on-state resistance will not increase significantly. The technical effect corresponding to this technical feature is illustrated by taking the applicable high and low double barrier Schottky diode of the present invention as an example: when the high and low double potential barrier Schottky diode is forward biased, the low potential barrier Schottky diode conducts at lower voltages, so the turn-on voltage of this structure will be roughly the same as that of a low-barrier Schottky diode. When the turn-on voltage of the high potential barrier is reached, the high and low double barrier Schottky conducts simultaneously, so the on-state resistance will not drop significantly. When the high-low double-barrier Schottky diode is reverse-biased, due to the depletion effect of the high-barrier Schottky channel, the reverse leakage of the low-barrier Schottky is pinched off. Therefore, the reverse leakage of the high and low double barrier Schottky diode will be of the same order as that of the high barrier Schottky diode.
作为本发明一实施例,如图1所示,沟道的深度为h,1μm≤h≤3μm;沟道的宽度为k,1μm≤k≤5μm;第一距离为d,1μm≤d≤5μm。上述h、k与d之间可以依据上述尺寸范围形成一结构尺寸比例关系。具体地,可以随氧化镓基外延层的掺杂浓度变化对该结构的尺寸做对应调整。由于本发明同时在单一结构中通过设置沟道引入了双势垒肖特基结构,增大了高、低肖特基电极与氧化镓基外延层的接触面积,降低了界面结电阻,使得当其应用于肖特基二极管时,高低双势垒肖特基二极管器件可以具有较小的开态电阻。如图2所示,当沟槽深度h与宽度k均设置为2μm,氧化镓基外延层的掺杂浓度为3×1016cm-3时,该高低双势垒肖特基二极管器件电压全面开启时,Vanode>2V,其斜率显著增大。因此,通过控制对应氧化镓基外延层掺杂浓度的沟槽深度h与宽度k不仅可以达到增大肖特基电极的接触面积保证开态电阻不会增大的效果,甚至还可以达到使得开态电阻降低的效果。As an embodiment of the present invention, as shown in Figure 1, the depth of the channel is h, 1 μm≤h≤3 μm; the width of the channel is k, 1 μm≤k≤5 μm; the first distance is d, 1 μm≤d≤5 μm . The aforementioned h, k, and d may form a structural size proportional relationship according to the aforementioned size range. Specifically, the size of the structure can be adjusted accordingly as the doping concentration of the gallium oxide-based epitaxial layer changes. Since the present invention introduces a double barrier Schottky structure by setting channels in a single structure, the contact area between the high and low Schottky electrodes and the gallium oxide-based epitaxial layer is increased, and the interface junction resistance is reduced, so that when When it is applied to a Schottky diode, the high and low double potential barrier Schottky diode device can have a smaller on-state resistance. As shown in Figure 2, when the trench depth h and width k are both set to 2 μm, and the doping concentration of the gallium oxide-based epitaxial layer is 3×10 16 cm -3 , the voltage of the high-low double barrier Schottky diode device is comprehensive. When turned on, V anode >2V, and its slope increases significantly. Therefore, by controlling the groove depth h and width k corresponding to the doping concentration of the gallium oxide-based epitaxial layer, not only can the contact area of the Schottky electrode be increased to ensure that the on-state resistance will not increase, but even the on-state resistance can be achieved. The effect of reducing the state resistance.
作为本发明一实施例,高势垒肖特基电极为金属氧化物电极,例如铂氧化物PtOx;氧化金属肖特基存在一个较大的内建电势,能够有效耗尽并夹断低SBH(SBH:Schottkybarrier height的缩写,指金属-半导体接触界面的势垒高度)肖特基的反向漏电。同时,由于高势垒肖特基结构采用金属氧化物制备,步进可以形成相对较高的肖特基势垒高度(SBH)(可达到为2.0eV以上),还可以具有非常良好的高温工作特性,使得双势垒肖特基氧化镓半导体结构在高温下也具有很好的应用前景。As an embodiment of the present invention, the high-barrier Schottky electrode is a metal oxide electrode, such as platinum oxide PtOx; metal oxide Schottky has a large built-in potential, which can effectively deplete and pinch off the low SBH ( SBH: Abbreviation of Schottkybarrier height, which refers to the barrier height of the metal-semiconductor contact interface) Schottky's reverse leakage. At the same time, since the high-barrier Schottky structure is made of metal oxide, the stepping can form a relatively high Schottky barrier height (SBH) (up to 2.0eV or more), and can also have very good high-temperature operation characteristics, so that the double-barrier Schottky gallium oxide semiconductor structure also has good application prospects at high temperatures.
作为本发明一实施例,低势垒肖特基电极为金属电极,可以更好的实现与氧化镓基外延层的低势垒肖特基接触,其具有交底的肖特基势垒高度(SBH),具体地,该金属电极可以采用Ni、Au、Pt、Cu、Mo、Ag或W等。As an embodiment of the present invention, the low-barrier Schottky electrode is a metal electrode, which can better realize the low-barrier Schottky contact with the gallium oxide-based epitaxial layer, and has a bottomed Schottky barrier height (SBH ), specifically, the metal electrode can use Ni, Au, Pt, Cu, Mo, Ag or W, etc.
作为本发明一实施例,如图1所示,低势垒肖特基电极120与高势垒肖特基电极110之间还包括一层第一保护层160,第一保护层用于隔离低势垒肖特基电极120与高势垒肖特基电极110,使得两者无法实现直接接触,同时在该氧化镓基半导体结构的制备过程中保护主要为金属材料的低势垒肖特基电极120不会在表面产生氧化反应变为金属氧化物。因此,第一保护层160完全包覆了低势垒肖特基电极120的上表面和侧表面,使得低势垒肖特基电极120仅通过下表面与氧化镓基外延层130的凸台132上表面相接触形成低势垒肖特基。因此,第一保护层的宽度尺寸等于第一距离d,其为覆盖于低势垒肖特基电极120外表面的一层保护膜。一般而言,该第一保护层可以选择性能较为稳定的金属金Au进行制备。As an embodiment of the present invention, as shown in FIG. 1, a layer of
作为本发明一实施例,如图1所示,该半导体结构还包括:位于氧化镓基外延层130下的氧化镓基衬底层140,氧化镓基衬底层140用于为该氧化镓基半导体结构提供衬底作用,以及位于氧化镓基衬底层140下的欧姆电极150,用于作为该氧化镓基半导体结构的背电极,与氧化镓基衬底层下表面形成欧姆接触,具体地,该欧姆电极150可以采用金属制备,例如钛Ti。作为本发明一实施例,欧姆电极150的外表面覆盖有一层第二保护层170,如图1所示,在该氧化镓基半导体结构的制备过程中保护主要为金属材料的欧姆电极150不会在表面产生氧化反应变为金属氧化物。因此,第二保护层170完全包覆了欧姆电极150的下表面和侧表面,使得欧姆电极150仅通过上表面与氧化镓基衬底层140下表面相接触形成欧姆接触。As an embodiment of the present invention, as shown in FIG. 1 , the semiconductor structure further includes: a gallium oxide-based
本发明的另一个方面公开了一种氧化镓基半导体结构的制备方法,用于制备上述的氧化镓基半导体结构,如图3所示,该方法包括如下步骤:Another aspect of the present invention discloses a method for preparing a gallium oxide-based semiconductor structure, which is used to prepare the above-mentioned gallium oxide-based semiconductor structure. As shown in FIG. 3, the method includes the following steps:
S210、在氧化镓基外延层上表面上间隔第一距离形成多个低势垒肖特基电极;S210, forming a plurality of low-barrier Schottky electrodes on the upper surface of the gallium oxide-based epitaxial layer at intervals of a first distance;
S220、以多个低势垒肖特基电极为掩模,在氧化镓基外延层上表面进行刻蚀形成多个沟道,相邻两个沟道之间的氧化镓基外延层上表面作为与低势垒肖特基电极相接触的低势垒接触面;以及S220. Using multiple low-barrier Schottky electrodes as masks, etch the upper surface of the gallium oxide-based epitaxial layer to form multiple channels, and the upper surface of the gallium oxide-based epitaxial layer between two adjacent channels serves as a low barrier contact surface in contact with a low barrier Schottky electrode; and
S230、在形成有多个沟道的氧化镓基外延层上表面形成高势垒肖特基电极,该高势垒肖特基电极同时覆盖多个沟道及多个低势垒肖特基电极,沟道的内表面作为与高势垒肖特基电极相接触的高势垒接触面。S230, forming a high barrier Schottky electrode on the upper surface of the gallium oxide-based epitaxial layer formed with multiple channels, and the high barrier Schottky electrode simultaneously covers multiple channels and multiple low barrier Schottky electrodes , the inner surface of the channel serves as a high barrier contact surface to the high barrier Schottky electrode.
具体地,作为本发明的一实施例,可以在氧化镓基外延层130上表面进行刻蚀,形成有相互间隔第一距离的多个沟道131,具体可以参考图1所示虚线框。在形成沟道131的同时,相邻沟道131之间同时形成宽度尺寸为第一距离d的凸台132。另外,氧化镓基外延层130的凸台132上对应形成低势垒肖特基电极120,该低势垒肖特基电极120仅形成于该凸台132的上表面上,该低势垒肖特基电极120仅与该凸台132的上表面相接触,以在与其之间的界面上形成该低势垒肖特基接触。另外,在形成有该低势垒肖特基电极120的氧化镓基外延层130上,直接制备有一层高势垒肖特基电极110,该高势垒肖特基电极110主要形成于沟道131的内表面(如图1中虚框所示),且高势垒肖特基电极110与沟道131的内表面相接触,以在与其之间的界面上形成该高势垒肖特基接触。另外,高势垒肖特基电极110厚度远大于沟道131的深度与低势垒肖特基电极120的厚度之和,并将低势垒肖特基电极120掩蔽(即俯视角度无法直接显示低势垒肖特基电极120)。Specifically, as an embodiment of the present invention, etching may be performed on the upper surface of the gallium oxide-based
综上所示,本发明的氧化镓基半导体结构实现了高低双势垒肖特基接触,增大肖特基接触面积,因此能够保证开态电阻不会有明显增大。对该技术特征所对应的技术效果,以本发明可以应用的高低双势垒肖特基二极管为例进行说明:当高低双势垒肖特基二极管正向偏置时,低势垒肖特基在较低电压下导通,因此该结构的开启电压将与低势垒肖特基二极管基本保持一致。当达到高势垒的开启电压时,高低双势垒肖特基同时导通,因此开态电阻不会有明显的下降。当高低双势垒肖特基二极管反向偏置时,由于沟道处于高势垒肖特基的耗尽效果,使得低势垒肖特基的反向漏电被夹断。因此高低双势垒肖特基二极管的反向漏电将和高势垒肖特基二极管一个量级。To sum up, the gallium oxide-based semiconductor structure of the present invention realizes high and low double barrier Schottky contact, increases the Schottky contact area, and thus can ensure that the on-state resistance will not increase significantly. The technical effect corresponding to this technical feature is illustrated by taking the applicable high and low double barrier Schottky diode of the present invention as an example: when the high and low double potential barrier Schottky diode is forward biased, the low potential barrier Schottky diode conducts at lower voltages, so the turn-on voltage of this structure will be roughly the same as that of a low-barrier Schottky diode. When the turn-on voltage of the high potential barrier is reached, the high and low double barrier Schottky conducts simultaneously, so the on-state resistance will not drop significantly. When the high-low double-barrier Schottky diode is reverse-biased, due to the depletion effect of the high-barrier Schottky channel, the reverse leakage of the low-barrier Schottky is pinched off. Therefore, the reverse leakage of the high and low double barrier Schottky diode will be of the same order as that of the high barrier Schottky diode.
作为本发明一实施例,采用lift-off方法在氧化镓基外延层上表面上间隔第一距离形成多个低势垒肖特基电极。Lift-off工艺方法为微电子技术领域中常用的一种剥离工艺。一般采用光刻胶进行匀胶、光刻、显影进行图形化,再根据图形化的结果对半导体的进行后续的电极沉积或刻蚀等相关工艺。在本发明实施例中,采用Lift-off工艺实现在氧化镓基外延层上表面的图形化处理,然后给予图形化处理结果在氧化镓基外延层上表面形成彼此相互间隔第一距离形成多个低势垒肖特基电极,该第一距离为d。同时,在形成多个低势垒肖特基电极时,形成一覆盖低势垒肖特基电极外表面的第一保护层,防止低势垒肖特基电极表面的氧化。低势垒肖特基电极在该氧化镓基外延层的接触面上形成低势垒肖特基接触。As an embodiment of the present invention, a plurality of low-barrier Schottky electrodes are formed on the upper surface of the gallium oxide-based epitaxial layer at a first distance by a lift-off method. The lift-off process method is a commonly used lift-off process in the field of microelectronic technology. Generally, photoresist is used for leveling, photolithography, and development for patterning, and then subsequent electrode deposition or etching and other related processes are performed on the semiconductor according to the patterning results. In the embodiment of the present invention, the lift-off process is used to realize the patterning treatment on the upper surface of the gallium oxide-based epitaxial layer, and then the result of the patterning treatment is formed on the upper surface of the gallium oxide-based epitaxial layer to form a plurality of For low barrier Schottky electrodes, the first distance is d. At the same time, when forming a plurality of low potential barrier Schottky electrodes, a first protection layer covering the outer surface of the low potential barrier Schottky electrodes is formed to prevent oxidation of the low potential barrier Schottky electrode surfaces. A low-barrier Schottky electrode forms a low-barrier Schottky contact on the contact surface of the gallium oxide-based epitaxial layer.
作为本发明一实施例,基于多个低势垒肖特基电极,在氧化镓基外延层上表面凹陷形成多个沟道,包括:以低势垒肖特基电极为掩模,利用ICP对氧化镓基外延层进行干法刻蚀,以在氧化镓基外延层上表面凹陷形成多个沟道。在形成多个低势垒肖特基电极的氧化镓基外延层上表面,以多个低势垒肖特基电极作为掩模,对氧化镓基外延层的裸露上表面进行干法刻蚀,可以形成基于该上表面凹陷的多个沟道。As an embodiment of the present invention, based on a plurality of low-barrier Schottky electrodes, a plurality of channels are formed by recessing the upper surface of the gallium oxide-based epitaxial layer, including: using the low-barrier Schottky electrodes as a mask, using ICP to The gallium oxide-based epitaxial layer is subjected to dry etching, so as to form a plurality of trenches on the surface of the gallium oxide-based epitaxial layer by recessing. On the upper surface of the gallium oxide-based epitaxial layer formed with multiple low-barrier Schottky electrodes, dry-etching the exposed upper surface of the gallium oxide-based epitaxial layer by using the multiple low-barrier Schottky electrodes as a mask, A plurality of channels recessed based on the upper surface may be formed.
作为本发明一实施例,在多个沟道的内表面形成同时覆盖多个低势垒肖特基电极的高势垒肖特基电极,包括:采用磁控溅射法或脉冲激光沉积法在多个沟道的内表面形成同时覆盖多个低势垒肖特基电极的高势垒肖特基电极。在形成多个沟道和间隔沟道形成的多个低势垒肖特基电极的氧化镓基外延层结构基础上,直接进行高势垒肖特基电极的制备,覆盖低势垒肖特基电极和沟道。高势垒肖特基电极在该氧化镓基外延层的沟道内的接触面上形成高势垒肖特基接触。As an embodiment of the present invention, forming high-barrier Schottky electrodes simultaneously covering multiple low-barrier Schottky electrodes on the inner surfaces of multiple trenches includes: using magnetron sputtering or pulsed laser deposition on The inner surfaces of the plurality of trenches form high barrier Schottky electrodes simultaneously covering the plurality of low barrier Schottky electrodes. On the basis of the gallium oxide-based epitaxial layer structure of multiple low-barrier Schottky electrodes formed by multiple channels and spaced channels, the preparation of high-barrier Schottky electrodes is directly carried out, covering the low-barrier Schottky electrodes and channels. A high barrier Schottky electrode forms a high barrier Schottky contact on the interface in the channel of the gallium oxide-based epitaxial layer.
为进一步实现对上述制备方法的清楚描述,本发明特举如下实施例,结合图4a-图4e,对其进行更为细致的说明和解释:In order to further achieve a clear description of the above-mentioned preparation method, the present invention specifically cites the following examples, which are described and explained in more detail in conjunction with Figures 4a-4e:
在本发明的实施例中,氧化镓基衬底层140为氧化镓Ga2O3晶片,氧化镓基外延层130为氧化镓晶片的外延层结构,低势垒肖特基电极的金属为Ni镍,第一保护层为金Au,高势垒肖特基电极的氧化物金属为铂氧化物,欧姆电极为Ti钛,第二保护层为金Au。In an embodiment of the present invention, the gallium oxide-based
本发明实施例中的制备方法如图4a-图4e所示;The preparation method in the embodiment of the present invention is shown in Figure 4a-Figure 4e;
带氧化镓外延层130的Ga2O3晶片,Ga2O3晶片可以同时作为衬底层140。氧化镓外延层130的厚度可达5μm以上,如图4a所示;The Ga 2 O 3 wafer with the gallium
在氧化镓外延层130的上表面采用lift-off工艺方法,直接生长等间隔的多个低势垒金属作为低势垒肖特基电极120,低势垒肖特基电极120具有多个,以第一距离d为间距,等间距设置在氧化镓外延层130的上表面上,并与氧化镓外延层130的上表面相接触形成低势垒肖特基接触。然后在已形成的低势垒肖特基电极120外表面形成包覆低势垒肖特基电极120的第一保护层160,其中低势垒金属可以是镍Ni,第一保护层160可以是金Au,如图4b所示;On the upper surface of the gallium
以上述图4b所示氧化镓外延层130的上表面上的低势垒肖特基电极120及其第一保护层160作为作为掩膜,利用ICP对裸露的氧化镓外延层130的上表面进行干法刻蚀,形成与低势垒肖特基电极120及其第一保护层160对应错位的多个沟道131(如图4c中虚框所示)和与沟道131相应的凸台132结构。其中,刻蚀气体可以选择为BCl3+Ar以保证较好的刻蚀垂直度,如图4c所示;Using the low-
以上述图4c所示形成沟道131和低势垒肖特基电极120及其第一保护层160的上述氧化镓外延层130的上表面上,利用磁控溅射法生长高势垒肖特基电极110,该高势垒肖特基电极以铂氧化物PtOx为电极形成材料,填满沟道同时覆盖低势垒肖特基电极120及其第一保护层160,如图4d所示;On the upper surface of the above-mentioned gallium
在上述图4d所示结构基础上,利用电子束蒸发法在该结构的背面生长金属背电极钛Ti作为欧姆电极150,最后在欧姆电极150的外表面覆盖一层第二保护层金Au作为防止钛电极氧化。其中,欧姆电极150与氧化镓衬底层的背面接触形成欧姆接触。On the basis of the above-mentioned structure shown in FIG. 4d, a metal back electrode titanium Ti is grown on the back of the structure by electron beam evaporation as the
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911283509.0A CN111129166B (en) | 2019-12-13 | 2019-12-13 | Gallium oxide-based semiconductor structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911283509.0A CN111129166B (en) | 2019-12-13 | 2019-12-13 | Gallium oxide-based semiconductor structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111129166A CN111129166A (en) | 2020-05-08 |
CN111129166B true CN111129166B (en) | 2023-02-07 |
Family
ID=70498716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911283509.0A Active CN111129166B (en) | 2019-12-13 | 2019-12-13 | Gallium oxide-based semiconductor structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111129166B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113436970B (en) * | 2021-06-24 | 2024-03-29 | 中国科学技术大学 | Preparation method of double barrier Schottky diode |
CN113964210A (en) * | 2021-09-13 | 2022-01-21 | 西安电子科技大学 | Low-turn-on voltage gallium oxide power diode and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08116072A (en) * | 1994-10-17 | 1996-05-07 | Murata Mfg Co Ltd | Schottky barrier semiconductor device |
JPH11251605A (en) * | 1998-02-27 | 1999-09-17 | Hitachi Ltd | Schottky barrier semiconductor device |
US6362495B1 (en) * | 1998-03-05 | 2002-03-26 | Purdue Research Foundation | Dual-metal-trench silicon carbide Schottky pinch rectifier |
CN106935661A (en) * | 2017-01-23 | 2017-07-07 | 西安电子科技大学 | Vertical-type Schottky diode and preparation method thereof |
CN107369720A (en) * | 2017-07-05 | 2017-11-21 | 西安交通大学 | A kind of p-type diamond height barrier Schottky diode and preparation method thereof |
CN109449214A (en) * | 2018-12-05 | 2019-03-08 | 山东大学 | A kind of gallium oxide semiconductor Schottky diode and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5877445B2 (en) * | 2012-02-21 | 2016-03-08 | 株式会社村田製作所 | Resistive switching device and manufacturing method thereof |
WO2017111173A1 (en) * | 2015-12-25 | 2017-06-29 | 出光興産株式会社 | Laminated article |
US11189737B2 (en) * | 2015-12-25 | 2021-11-30 | Idemitsu Kosan Co., Ltd. | Laminated body |
-
2019
- 2019-12-13 CN CN201911283509.0A patent/CN111129166B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08116072A (en) * | 1994-10-17 | 1996-05-07 | Murata Mfg Co Ltd | Schottky barrier semiconductor device |
JPH11251605A (en) * | 1998-02-27 | 1999-09-17 | Hitachi Ltd | Schottky barrier semiconductor device |
US6362495B1 (en) * | 1998-03-05 | 2002-03-26 | Purdue Research Foundation | Dual-metal-trench silicon carbide Schottky pinch rectifier |
CN106935661A (en) * | 2017-01-23 | 2017-07-07 | 西安电子科技大学 | Vertical-type Schottky diode and preparation method thereof |
CN107369720A (en) * | 2017-07-05 | 2017-11-21 | 西安交通大学 | A kind of p-type diamond height barrier Schottky diode and preparation method thereof |
CN109449214A (en) * | 2018-12-05 | 2019-03-08 | 山东大学 | A kind of gallium oxide semiconductor Schottky diode and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111129166A (en) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11342420B2 (en) | Heterojunction devices and methods for fabricating the same | |
US20180358463A1 (en) | Semiconductor device and method of manufacturing a semiconductor device | |
CN101752430B (en) | Gallium nitride based schottky diode with field plate structure | |
WO2018161412A1 (en) | Sic dual-trench mosfet device having integrated schottky diode and preparation method therefor | |
CN111312802A (en) | Silicon carbide diode with low turn-on voltage and low on-resistance and preparation method thereof | |
US8841741B2 (en) | High breakdown voltage semiconductor rectifier | |
CN103606551B (en) | Silicon carbide channel-type semiconductor device and preparation method thereof | |
CN108962977A (en) | A kind of silicon carbide trench MOSFET s of integrated SBD and preparation method thereof | |
CN112201697B (en) | Schottky diode and method for preparing the same | |
CN107978642B (en) | GaN-based heterojunction diode and preparation method thereof | |
US20080217721A1 (en) | High efficiency rectifier | |
CN111129166B (en) | Gallium oxide-based semiconductor structure and preparation method thereof | |
CN109166929A (en) | A kind of GaN base Schottky barrier diode with p-type GaN cap | |
CN105226104B (en) | A kind of SiC schottky diode and preparation method thereof | |
CN111180528B (en) | A Termination Structure of a SiC Schottky Diode with a Three-Order Slanted Mesa Junction | |
CN117542896A (en) | Vertical gallium nitride power transistor and manufacturing method thereof | |
CN116417520A (en) | Gallium oxide field effect transistor and preparation method thereof | |
CN116344595A (en) | Gallium nitride semiconductor device and method for manufacturing gallium nitride semiconductor device | |
CN111477691B (en) | High-withstand-voltage gallium nitride diode and manufacturing method thereof | |
CN110676308B (en) | Schottky Diode Fabrication Method | |
CN106783954B (en) | A low-power trench Schottky rectifier device and its manufacturing method | |
CN118099227B (en) | Gallium oxide power diode with sloped trench integration | |
JP4925596B2 (en) | Nitride semiconductor device | |
CN112838006B (en) | A gallium nitride PIN diode and its preparation method | |
CN111599680B (en) | Diamond Schottky junction field effect transistor with vertical structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20211224 Address after: 230000 China (Anhui) pilot Free Trade Zone, Hefei, Anhui Province a1205-a1208, future center, Institute of advanced technology, University of science and technology of China, No. 5089, Wangjiang West Road, high tech Zone, Hefei Applicant after: Hefei Zhongke microelectronics Innovation Center Co.,Ltd. Address before: 230026 Jinzhai Road, Baohe District, Hefei, Anhui Province, No. 96 Applicant before: University of Science and Technology of China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |