CN118099227B - Gallium oxide power diode with sloped trench integration - Google Patents
Gallium oxide power diode with sloped trench integration Download PDFInfo
- Publication number
- CN118099227B CN118099227B CN202410487236.6A CN202410487236A CN118099227B CN 118099227 B CN118099227 B CN 118099227B CN 202410487236 A CN202410487236 A CN 202410487236A CN 118099227 B CN118099227 B CN 118099227B
- Authority
- CN
- China
- Prior art keywords
- gallium oxide
- groove
- layer
- dielectric
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
- H10D8/605—Schottky-barrier diodes of the trench conductor-insulator-semiconductor barrier type, e.g. trench MOS barrier Schottky rectifiers [TMBS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/112—Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种具有斜面沟槽集成的氧化镓功率二极管。氧化镓功率二极管包括外延结构以及与外延结构匹配的第一电极、第二电极,外延结构包括依次层叠设置的氧化镓衬底、氧化镓外延层和介质结构层,氧化镓外延层内设置有至少一沟槽结构,沟槽结构的槽口与氧化镓外延层的选定表面齐平,沟槽结构的侧壁与氧化镓外延层的选定表面所呈角度大于90°,介质结构层连续设置在氧化镓外延层的选定表面、沟槽结构的侧壁以及槽底;第一电极设置在介质结构层上,第二电极设置在衬底上。本发明利用斜面沟槽结构有效增加了漂移区承压区域,改善了漂移区和界面处的电场分布,减小了漏电,有利于器件阻断电压和可靠性的提高。
The present invention discloses a gallium oxide power diode with an integrated bevel groove. The gallium oxide power diode includes an epitaxial structure and a first electrode and a second electrode matched with the epitaxial structure. The epitaxial structure includes a gallium oxide substrate, a gallium oxide epitaxial layer and a dielectric structure layer stacked in sequence. At least one groove structure is arranged in the gallium oxide epitaxial layer. The groove opening of the groove structure is flush with the selected surface of the gallium oxide epitaxial layer. The angle between the sidewall of the groove structure and the selected surface of the gallium oxide epitaxial layer is greater than 90°. The dielectric structure layer is continuously arranged on the selected surface of the gallium oxide epitaxial layer, the sidewall of the groove structure and the bottom of the groove; the first electrode is arranged on the dielectric structure layer, and the second electrode is arranged on the substrate. The present invention uses the bevel groove structure to effectively increase the pressure-bearing area of the drift region, improve the electric field distribution in the drift region and the interface, reduce leakage, and is conducive to improving the blocking voltage and reliability of the device.
Description
技术领域Technical Field
本发明特别涉及一种具有斜面沟槽集成的氧化镓功率二极管,属于半导体器件技术领域。The present invention particularly relates to a gallium oxide power diode with bevel groove integration, belonging to the technical field of semiconductor devices.
背景技术Background technique
氧化镓(Ga2O3)是一种新兴的超宽带隙半导体材料(~4.9 eV),近年来成为宽禁带半导体领域研究的热点。其中氧化镓的巴利加优值为3444,远远超过GaN的870和SiC的340。相较于常见的第三代半导体,高的巴利加优值使得氧化镓在功率器件领域备受关注。在众多功率器件中,二极管因具有结构相对简单、开关速度快和通态损耗低的特点,而被人们广泛研究,特别是拥有较大巴利加优值的氧化镓功率二极管目前已成为氧化镓功率器件的研究热点。Gallium oxide (Ga 2 O 3 ) is an emerging ultra-wide bandgap semiconductor material (~4.9 eV) and has become a hot topic in the field of wide bandgap semiconductors in recent years. The Baliga figure of merit of gallium oxide is 3444, far exceeding 870 of GaN and 340 of SiC. Compared with common third-generation semiconductors, the high Baliga figure of merit makes gallium oxide a hot topic in the field of power devices. Among many power devices, diodes have been widely studied because of their relatively simple structure, fast switching speed and low on-state loss. In particular, gallium oxide power diodes with a large Baliga figure of merit have become a research hotspot for gallium oxide power devices.
一般来说,功率二极管包括两种类型一种是肖特基型功率二极管,另一种是双极型功率二极管。其中,肖特基型功率二极管具有开启电压小,导通速度快的特点,而双极型功率二极管具有阻断电压高,导通电流大的特点。目前,氧化镓存在重空穴和局域自限现象,导致P氧化镓几乎难以实现,严重制约了氧化镓双极性器件的发展和应用。因此,异质P型氧化物是实现氧化镓双极性器件设计和制备的主要研究思路和方向。Generally speaking, power diodes include two types: one is the Schottky power diode and the other is the bipolar power diode. Among them, the Schottky power diode has the characteristics of low turn-on voltage and fast conduction speed, while the bipolar power diode has the characteristics of high blocking voltage and large conduction current. At present, gallium oxide has heavy holes and local self-limitation phenomena, which makes P gallium oxide almost difficult to achieve, seriously restricting the development and application of gallium oxide bipolar devices. Therefore, heterogeneous P-type oxide is the main research idea and direction for the design and preparation of gallium oxide bipolar devices.
发明内容Summary of the invention
本发明的主要目的在于提供一种具有斜面沟槽集成的氧化镓功率二极管,从而克服现有技术中的不足。The main purpose of the present invention is to provide a gallium oxide power diode with sloped trench integration, thereby overcoming the deficiencies in the prior art.
为实现前述发明目的,本发明采用的技术方案包括:In order to achieve the above-mentioned invention object, the technical solution adopted by the present invention includes:
本发明的一方面提供了一种具有斜面沟槽集成的氧化镓功率二极管,包括外延结构以及与外延结构匹配的第一电极、第二电极,所述外延结构包括依次层叠设置的氧化镓衬底、氧化镓外延层和介质结构层,One aspect of the present invention provides a gallium oxide power diode with bevel groove integration, comprising an epitaxial structure and a first electrode and a second electrode matching the epitaxial structure, wherein the epitaxial structure comprises a gallium oxide substrate, a gallium oxide epitaxial layer and a dielectric structure layer stacked in sequence,
所述氧化镓外延层内设置有至少一沟槽结构,所述沟槽结构的槽口与所述氧化镓外延层的选定表面齐平,所述沟槽结构的侧壁与所述氧化镓外延层的选定表面所呈角度大于90°,所述介质结构层连续设置在所述氧化镓外延层的选定表面、所述沟槽结构的侧壁以及槽底;所述第一电极设置在所述介质结构层上,所述第二电极设置在所述衬底上,其中,所述选定表面为所述氧化镓外延层背对所述氧化镓衬底一侧的表面。At least one trench structure is arranged in the gallium oxide epitaxial layer, the notch of the trench structure is flush with the selected surface of the gallium oxide epitaxial layer, the angle between the sidewall of the trench structure and the selected surface of the gallium oxide epitaxial layer is greater than 90°, the dielectric structure layer is continuously arranged on the selected surface of the gallium oxide epitaxial layer, the sidewall of the trench structure and the bottom of the trench; the first electrode is arranged on the dielectric structure layer, and the second electrode is arranged on the substrate, wherein the selected surface is the surface of the gallium oxide epitaxial layer on the side facing away from the gallium oxide substrate.
进一步的,所述沟槽结构的侧壁与所述选定表面所呈夹角θ为100 °~160°,优选为120°~140°。沟槽结构倾斜的侧壁表面的最大电场可依据如下公式进行简单估算:,E0表示沟槽区域氧化镓外延层内最大电场强度。显然,倾斜的侧壁表面的电场强度E始终小于体电场强度E0。Furthermore, the angle θ between the sidewall of the groove structure and the selected surface is 100° to 160°, preferably 120° to 140°. The maximum electric field on the inclined sidewall surface of the groove structure can be simply estimated according to the following formula: , E 0 represents the maximum electric field strength in the gallium oxide epitaxial layer in the trench region. Obviously, the electric field strength E on the inclined sidewall surface is always smaller than the body electric field strength E 0 .
进一步的,所述沟槽结构的槽底与槽口的宽度之比为(1.0~1.5):(1.8~10)。Furthermore, the ratio of the width of the groove bottom to the groove opening of the groove structure is (1.0-1.5): (1.8-10).
进一步的,所述沟槽结构的深度与所述槽底的宽度之比为(1~1.5):(10~50)。Furthermore, the ratio of the depth of the groove structure to the width of the groove bottom is (1-1.5): (10-50).
进一步的,所述沟槽结构的深度与所述氧化镓外延层的厚度之比为1/1~1/3。Furthermore, the ratio of the depth of the trench structure to the thickness of the gallium oxide epitaxial layer is 1/1 to 1/3.
进一步的,所述沟槽结构的槽底为平面。Furthermore, the bottom of the groove structure is a plane.
进一步的,所述沟槽结构的纵向截面为倒梯形。Furthermore, the longitudinal cross-section of the groove structure is an inverted trapezoid.
进一步的,所述沟槽结构的深度为300nm ~800nm,槽口的宽度为2μm~12μm,槽底的宽度为1μm~10μm。Furthermore, the depth of the groove structure is 300nm-800nm, the width of the groove opening is 2μm-12μm, and the width of the groove bottom is 1μm-10μm.
进一步的,所述氧化镓外延层的选定表面形成有多个所述沟槽结构,多个所述沟槽结构沿所述第一表面的平面延伸方向间隔设置。Furthermore, a plurality of the groove structures are formed on a selected surface of the gallium oxide epitaxial layer, and the plurality of the groove structures are arranged at intervals along a plane extension direction of the first surface.
进一步的,多个所述沟槽结构于所述氧化镓外延层中的体积占比小于50%。Furthermore, the volume proportion of the plurality of trench structures in the gallium oxide epitaxial layer is less than 50%.
进一步的,所述介质结构层为p型掺杂的氧化物。Furthermore, the dielectric structure layer is a p-type doped oxide.
进一步的,所述介质结构层的材质包括NiO、CuAlO2或LiGa5O8。Furthermore, the material of the dielectric structure layer includes NiO, CuAlO 2 or LiGa 5 O 8 .
进一步的,所述介质结构层背对所述氧化镓外延层的表面为连续且平整的平面。Furthermore, the surface of the dielectric structure layer facing away from the gallium oxide epitaxial layer is a continuous and flat plane.
进一步的,所述介质结构层包括第一介质层和第二介质层,所述第一介质层连续设置在所述氧化镓外延层的选定表面、所述沟槽结构的侧壁以及槽底,所述第二介质层层叠设置在所述第一介质层上,其中,所述第一介质层和所述第二介质层的材质相同,所述第一介质层和所述第二介质层的p型氧化物载流子浓度不同。Furthermore, the dielectric structure layer includes a first dielectric layer and a second dielectric layer, the first dielectric layer is continuously arranged on a selected surface of the gallium oxide epitaxial layer, the sidewalls and the bottom of the trench structure, and the second dielectric layer is stacked on the first dielectric layer, wherein the first dielectric layer and the second dielectric layer are made of the same material, and the p-type oxide carrier concentrations of the first dielectric layer and the second dielectric layer are different.
进一步的,所述第二介质层的p型氧化物载流子浓度大于所述第一介质层的p型氧化物载流子浓度。Furthermore, the p-type oxide carrier concentration of the second dielectric layer is greater than the p-type oxide carrier concentration of the first dielectric layer.
进一步的,所述第一介质层的p型氧化物载流子浓度为1016 cm3~1017 cm3;所述第二介质层的p型氧化物载流子浓度为1018 cm3~1019 cm3。Furthermore, the p-type oxide carrier concentration of the first dielectric layer is 10 16 cm 3 to 10 17 cm 3 ; the p-type oxide carrier concentration of the second dielectric layer is 10 18 cm 3 to 10 19 cm 3 .
需要说明的是,p型的介质结构层同n型的氧化镓外延层构成PN结,理论的最优方案为耗尽区需尽可能的向n型的氧化镓外延层扩展,依据泊松方程,需要优先选择高载流子浓度的介质结构层,其次,高载流子浓度的介质结构层同时会使器件获得良好的欧姆接触,降低器件的导通电阻,因此通常选择单层高载流子浓度的p型介质结构层。但是由于p型介质结构层具有高载流子浓度,导致单层p型的介质结构层的耗尽区宽度非常小,容易导致电场集中,使得器件在高阻断电压的情况下容易击穿。因此为了避免电场集中现象,本发明设置了两层介质层:一层具有低载流子浓度、另一层具有高载流子浓度,其中低载流子浓度的第一介质层可以起到较好的构筑PN结的作用,而高载流子浓度的第二介质层的作用则是形成欧姆接触,降低接触电阻。It should be noted that the p-type dielectric structure layer and the n-type gallium oxide epitaxial layer form a PN junction. The theoretical optimal solution is that the depletion region needs to be extended to the n-type gallium oxide epitaxial layer as much as possible. According to the Poisson equation, it is necessary to give priority to the dielectric structure layer with a high carrier concentration. Secondly, the dielectric structure layer with a high carrier concentration will also enable the device to obtain a good ohmic contact and reduce the on-resistance of the device. Therefore, a single-layer p-type dielectric structure layer with a high carrier concentration is usually selected. However, since the p-type dielectric structure layer has a high carrier concentration, the depletion region width of the single-layer p-type dielectric structure layer is very small, which easily leads to electric field concentration, making the device easy to break down under high blocking voltage. Therefore, in order to avoid the electric field concentration phenomenon, the present invention sets two dielectric layers: one layer has a low carrier concentration and the other layer has a high carrier concentration, wherein the first dielectric layer with a low carrier concentration can play a better role in constructing a PN junction, and the second dielectric layer with a high carrier concentration has the function of forming an ohmic contact and reducing the contact resistance.
进一步的,所述第一电极(也可以成为顶电极或上电极)的材质包括金属材料或P型导电多晶硅,更进一步的,所述第一电极包括Ni/Au电极、Pt/Au电极或者P型导电多晶硅电极。Furthermore, the material of the first electrode (also called the top electrode or upper electrode) includes metal material or P-type conductive polysilicon. Furthermore, the first electrode includes a Ni/Au electrode, a Pt/Au electrode or a P-type conductive polysilicon electrode.
进一步的,所述第二电极(也可以成为底电极或下电极)的材质包括金属材料或N型导电多晶硅,更进一步的,所述第二电极包括Ti电极、Al电极、Mo电极或者N型导电多晶硅电极。Furthermore, the material of the second electrode (also called the bottom electrode or the lower electrode) includes a metal material or N-type conductive polysilicon. Furthermore, the second electrode includes a Ti electrode, an Al electrode, a Mo electrode or an N-type conductive polysilicon electrode.
本发明另一方面还提供了一种具有斜面沟槽集成的氧化镓功率二极管,包括外延结构以及与外延结构匹配的第一电极、第二电极,所述外延结构包括依次层叠设置的氧化镓衬底、氧化镓外延层和p型介质结构层,Another aspect of the present invention provides a gallium oxide power diode with bevel groove integration, comprising an epitaxial structure and a first electrode and a second electrode matching the epitaxial structure, wherein the epitaxial structure comprises a gallium oxide substrate, a gallium oxide epitaxial layer and a p-type dielectric structure layer stacked in sequence,
所述氧化镓外延层内设置有至少一沟槽结构,所述沟槽结构的槽口与所述氧化镓外延层的选定表面齐平,所述沟槽结构的侧壁与所述氧化镓外延层的选定表面所呈角度大于90°,所述介质结构层连续设置在所述氧化镓外延层的选定表面以及所述沟槽结构的槽底;所述第一电极连续设置在所述介质结构层以及所述沟槽结构的侧壁上,所述第二电极设置在所述衬底上,其中,所述选定表面为所述氧化镓外延层背对所述氧化镓衬底一侧的表面。At least one trench structure is arranged in the gallium oxide epitaxial layer, the notch of the trench structure is flush with the selected surface of the gallium oxide epitaxial layer, the angle between the sidewall of the trench structure and the selected surface of the gallium oxide epitaxial layer is greater than 90°, the dielectric structure layer is continuously arranged on the selected surface of the gallium oxide epitaxial layer and the bottom of the trench structure; the first electrode is continuously arranged on the dielectric structure layer and the sidewall of the trench structure, and the second electrode is arranged on the substrate, wherein the selected surface is the surface of the gallium oxide epitaxial layer on the side facing away from the gallium oxide substrate.
进一步的,该氧化镓功率二极管包括PN型功率二极管单元和肖特基型功率二极管单元,其中,存在介质结构层的部分为PN型功率二极管,无介质结构层的部分,金属电极同氧化镓外延层直接接触并形成肖特基型功率二极管。Furthermore, the gallium oxide power diode includes a PN type power diode unit and a Schottky type power diode unit, wherein the portion with the dielectric structure layer is a PN type power diode, and the portion without the dielectric structure layer has a metal electrode in direct contact with the gallium oxide epitaxial layer to form a Schottky type power diode.
进一步的,所述沟槽结构的侧壁与所述选定表面所呈夹角为100 °~160°。Furthermore, the angle between the sidewall of the groove structure and the selected surface is 100°~160°.
进一步的,所述沟槽结构的槽底与槽口的宽度之比为(1.0~1.5):(1.8~10)。Furthermore, the ratio of the width of the groove bottom to the groove opening of the groove structure is (1.0-1.5): (1.8-10).
进一步的,所述沟槽结构的深度与所述槽底的宽度之比为(1~1.5):(10~50)。Furthermore, the ratio of the depth of the groove structure to the width of the groove bottom is (1-1.5): (10-50).
进一步的,所述沟槽结构的深度与所述氧化镓外延层的厚度之比为1/1~1/3。Furthermore, the ratio of the depth of the trench structure to the thickness of the gallium oxide epitaxial layer is 1/1 to 1/3.
进一步的,所述沟槽结构的槽底为平面。Furthermore, the bottom of the groove structure is a plane.
进一步的,所述沟槽结构的纵向截面为倒梯形。Furthermore, the longitudinal cross-section of the groove structure is an inverted trapezoid.
进一步的,所述沟槽结构的深度为300nm ~800nm,槽口的宽度为2μm~12μm,槽底的宽度为1μm~10μm。Furthermore, the depth of the groove structure is 300nm-800nm, the width of the groove opening is 2μm-12μm, and the width of the groove bottom is 1μm-10μm.
进一步的,所述氧化镓外延层的选定表面形成有多个所述沟槽结构,多个所述沟槽结构沿所述第一表面的平面延伸方向间隔设置。Furthermore, a plurality of the groove structures are formed on a selected surface of the gallium oxide epitaxial layer, and the plurality of the groove structures are arranged at intervals along a plane extension direction of the first surface.
进一步的,所述介质结构层为p型掺杂的氧化物。Furthermore, the dielectric structure layer is a p-type doped oxide.
进一步的,所述介质结构层的材质包括NiO、CuAlO2或LiGa5O8,但不限于此。Furthermore, the material of the dielectric structure layer includes NiO, CuAlO 2 or LiGa 5 O 8 , but is not limited thereto.
进一步的,所述第一电极(也可以成为顶电极或上电极)的材质包括金属材料或P型导电多晶硅,更进一步的,所述第一电极包括Ni/Au电极、Pt/Au电极或者P型导电多晶硅电极。Furthermore, the material of the first electrode (also called the top electrode or upper electrode) includes metal material or P-type conductive polysilicon. Furthermore, the first electrode includes a Ni/Au electrode, a Pt/Au electrode or a P-type conductive polysilicon electrode.
进一步的,所述第二电极(也可以成为底电极或下电极)的材质包括金属材料或N型导电多晶硅,更进一步的,所述第二电极包括Ti电极、Al电极、Mo电极或者N型导电多晶硅电极。Furthermore, the material of the second electrode (also called the bottom electrode or the lower electrode) includes a metal material or N-type conductive polysilicon. Furthermore, the second electrode includes a Ti electrode, an Al electrode, a Mo electrode or an N-type conductive polysilicon electrode.
需要说明的是,如上主要介绍了每一沟槽结构在纵深方向上包括单个沟槽的方案,当然,每一沟槽结构在纵深方向上还可以包括多个沟槽,每一沟槽结构所包含的多个沟槽在纵深方向上逐级设置,即呈阶梯状分布,其中每一沟槽的侧壁与所述选定表面所呈夹角均为100 °~160°,槽底与槽口的宽度之比为(1.0~1.5):(1.8~10),沟槽的深度与自身的槽底的宽度之比为(1~1.5):(10~50)。It should be noted that the above mainly introduces a solution in which each groove structure includes a single groove in the depth direction. Of course, each groove structure can also include multiple grooves in the depth direction. The multiple grooves contained in each groove structure are arranged step by step in the depth direction, that is, they are distributed in a stepped manner, wherein the angle between the side wall of each groove and the selected surface is 100°~160°, the ratio of the width of the groove bottom to the groove mouth is (1.0~1.5):(1.8~10), and the ratio of the depth of the groove to the width of its own groove bottom is (1~1.5):(10~50).
与现有技术相比,本发明的优点包括:Compared with the prior art, the advantages of the present invention include:
1)本发明提供一种具有斜面沟槽集成的氧化镓功率二极管,利用斜面沟槽结构有效增加了漂移区承压区域,改善了漂移区和界面处的电场分布,减小了漏电,有利于器件阻断电压和可靠性的提高;1) The present invention provides a gallium oxide power diode with bevel groove integration, which effectively increases the pressure-bearing area of the drift region by using the bevel groove structure, improves the electric field distribution in the drift region and the interface, reduces leakage, and is conducive to improving the blocking voltage and reliability of the device;
2)本发明提供一种具有斜面沟槽集成的氧化镓功率二极管,斜面沟槽结构的引入可以拓宽电流路径,降低器件正向导通电阻,在提高器件击穿电压的同时,可以维持器件低的导通压降。2) The present invention provides a gallium oxide power diode with an integrated bevel groove. The introduction of the bevel groove structure can widen the current path, reduce the forward resistance of the device, and maintain a low on-state voltage drop of the device while increasing the breakdown voltage of the device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例1中提供的一种具有斜面沟槽集成的氧化镓功率二极管的结构示意图;FIG1 is a schematic structural diagram of a gallium oxide power diode with sloped trench integration provided in Example 1 of the present invention;
图2是本发明实施例1中提供的一种具有斜面沟槽集成的氧化镓功率二极管的制备流程示意图;FIG2 is a schematic diagram of a preparation process of a gallium oxide power diode with bevel groove integration provided in Example 1 of the present invention;
图3是本发明实施例2中提供的一种具有斜面沟槽集成的氧化镓功率二极管的结构示意图;FIG3 is a schematic structural diagram of a gallium oxide power diode with sloped trench integration provided in Example 2 of the present invention;
图4是本发明实施例3中提供的一种具有斜面沟槽集成的氧化镓功率二极管的结构示意图。FIG. 4 is a schematic structural diagram of a gallium oxide power diode with sloped trench integration provided in Example 3 of the present invention.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将结合附图以及具体实施案例对该技术方案、其实施过程及原理等作进一步的解释说明,除非特别说明的之外,本发明实施例所采用的半导体外延生长工艺、金属沉积工艺、刻蚀工艺等均可以是本领域技术人员已知的,在此不对其具体的工艺参数进行限定。In view of the deficiencies in the prior art, the inventor of this case has proposed the technical solution of the present invention after long-term research and extensive practice. The technical solution, its implementation process and principle, etc. will be further explained in conjunction with the accompanying drawings and specific implementation cases. Unless otherwise specified, the semiconductor epitaxial growth process, metal deposition process, etching process, etc. used in the embodiments of the present invention can be known to those skilled in the art, and their specific process parameters are not limited here.
本发明提供一种具有斜面沟槽集成的氧化镓功率二极管,利用斜面沟槽结构(即具有斜面的沟槽结构,该斜面是指沟槽结构的侧壁)有效增加漂移区承压区域,改善漂移区和界面处的电场分布(漂移区和界面处的电场变化,是斜面沟槽结构引入后带来的物理效应),斜面沟槽结构的引入还可以拓宽电流路径,降低器件的正向导通电阻,在提高器件击穿电压的同时,维持器件低的导通压降。The present invention provides a gallium oxide power diode with an integrated bevel groove, which utilizes a bevel groove structure (i.e., a groove structure with a bevel, wherein the bevel refers to the side wall of the groove structure) to effectively increase the pressure-bearing area of the drift region and improve the electric field distribution at the drift region and the interface (the electric field change at the drift region and the interface is a physical effect brought about by the introduction of the bevel groove structure). The introduction of the bevel groove structure can also widen the current path, reduce the forward on-resistance of the device, and maintain a low on-state voltage drop of the device while increasing the breakdown voltage of the device.
实施例1:Embodiment 1:
请参阅图1,一种氧化镓功率二极管,包括沿氧化镓功率二极管的纵向依次设置的Ti/Au电极、氧化镓单晶衬底、氧化镓轻掺外延层、p型NiO介质层和Ni/Au电极,Ti/Au电极与氧化镓单晶衬底、Ni/Au电极与p型NiO介质层形成欧姆接触。Please refer to FIG. 1 , a gallium oxide power diode includes a Ti/Au electrode, a gallium oxide single crystal substrate, a gallium oxide lightly doped epitaxial layer, a p-type NiO dielectric layer and a Ni/Au electrode sequentially arranged along the longitudinal direction of the gallium oxide power diode, wherein the Ti/Au electrode forms ohmic contact with the gallium oxide single crystal substrate, and the Ni/Au electrode forms ohmic contact with the p-type NiO dielectric layer.
在本实施例中,氧化镓单晶衬底的载流子浓度约1019cm-3,氧化镓轻掺外延层的厚度为2μm,氧化镓轻掺外延层的载流子浓度为1016cm-3,且所述氧化镓轻掺外延层的上布还设置有多个间隔分布的沟槽结构,沟槽结构的槽口位于氧化镓轻掺外延层的背对氧化镓单晶衬底一侧的选定表面,沟槽结构的槽壁与氧化镓轻掺外延层的选定表面所呈角度为135°,沟槽结构的槽底为平面,槽口的宽度为9μm,槽底的宽度为8μm,深度为500nm,相邻两个沟槽结构之间的间距为10μm。In this embodiment, the carrier concentration of the gallium oxide single crystal substrate is about 10 19 cm -3 , the thickness of the gallium oxide lightly doped epitaxial layer is 2 μm, the carrier concentration of the gallium oxide lightly doped epitaxial layer is 10 16 cm -3 , and a plurality of spaced groove structures are further provided on the gallium oxide lightly doped epitaxial layer, the groove opening of the groove structure is located on a selected surface of the gallium oxide lightly doped epitaxial layer facing away from the gallium oxide single crystal substrate, the angle between the groove wall of the groove structure and the selected surface of the gallium oxide lightly doped epitaxial layer is 135°, the groove bottom of the groove structure is a plane, the width of the groove opening is 9 μm, the width of the groove bottom is 8 μm, the depth is 500 nm, and the spacing between two adjacent groove structures is 10 μm.
在本实施例中,p型NiO介质层连续设置在氧化镓轻掺外延层的选定表面以及沟槽结构内,p型NiO介质层背对氧化镓轻掺外延层的顶面为连续且平整的平面,p型NiO介质层的顶面高度高于氧化镓轻掺外延层的选定表面的高度,p型NiO介质层的载流子浓度约为1019cm-3。In this embodiment, the p-type NiO dielectric layer is continuously disposed on the selected surface of the gallium oxide lightly doped epitaxial layer and in the trench structure, the top surface of the p-type NiO dielectric layer facing away from the gallium oxide lightly doped epitaxial layer is a continuous and flat plane, the top surface height of the p-type NiO dielectric layer is higher than the height of the selected surface of the gallium oxide lightly doped epitaxial layer, and the carrier concentration of the p-type NiO dielectric layer is approximately 10 19 cm -3 .
请参阅图2,一种氧化镓功率二极管的制备方法,包括如下步骤:Please refer to FIG. 2 , a method for preparing a gallium oxide power diode includes the following steps:
1) 提供氧化镓外延片,氧化镓外延片包括层叠设置的氧化镓单晶衬底和氧化镓轻掺外延层,采用臭氧等离子体清洗氧化镓单晶衬底;1) Providing a gallium oxide epitaxial wafer, the gallium oxide epitaxial wafer comprising a stacked gallium oxide single crystal substrate and a gallium oxide lightly doped epitaxial layer, and cleaning the gallium oxide single crystal substrate with ozone plasma;
2) 在氧化镓单晶衬底背对氧化镓轻掺外延层的一侧表面沉积形成Ti/Au电极;2) depositing a Ti/Au electrode on the surface of the gallium oxide single crystal substrate facing away from the gallium oxide lightly doped epitaxial layer;
3)采用干法刻蚀或湿法刻蚀的方式,在氧化镓轻掺外延层背对氧化镓单晶衬底的一侧选定表面加工形成多个间隔分布的沟槽结构;3) using dry etching or wet etching to form a plurality of spaced trench structures on a selected surface of the gallium oxide lightly doped epitaxial layer facing away from the gallium oxide single crystal substrate;
4) 在沟槽结构内以及氧化镓轻掺外延层的选定表面溅射形成p型NiO介质层,且使p型NiO介质层形成连续且平整的表面;4) sputtering to form a p-type NiO dielectric layer in the trench structure and on a selected surface of the gallium oxide lightly doped epitaxial layer, and forming a continuous and flat surface of the p-type NiO dielectric layer;
5) 在p型NiO介质层上沉积形成Ni/Au电极。5) Ni/Au electrodes are deposited on the p-type NiO dielectric layer.
对比例1Comparative Example 1
对比例1中的一种氧化镓功率二极管的结构与实施例1基本一致,不同之处在于:沟槽结构的槽壁与氧化镓轻掺外延层的选定表面垂直。The structure of a gallium oxide power diode in Comparative Example 1 is substantially the same as that in Example 1, except that the groove wall of the groove structure is perpendicular to the selected surface of the gallium oxide lightly doped epitaxial layer.
实施例2:Embodiment 2:
请参阅图3,一种氧化镓功率二极管,包括沿氧化镓功率二极管的纵向依次设置的Ti/Au电极、氧化镓单晶衬底、氧化镓轻掺外延层、轻掺p型NiO介质层、重掺p型NiO介质层和Ni/Au电极,Ti/Au电极与氧化镓单晶衬底、Ni/Au电极与重掺p型NiO介质层形成欧姆接触。Please refer to Figure 3, a gallium oxide power diode includes a Ti/Au electrode, a gallium oxide single crystal substrate, a gallium oxide lightly doped epitaxial layer, a lightly doped p-type NiO dielectric layer, a heavily doped p-type NiO dielectric layer and a Ni/Au electrode arranged in sequence along the longitudinal direction of the gallium oxide power diode, and the Ti/Au electrode forms ohmic contact with the gallium oxide single crystal substrate, and the Ni/Au electrode forms ohmic contact with the heavily doped p-type NiO dielectric layer.
在本实施例中,氧化镓单晶衬底的载流子浓度约1019cm-3,氧化镓轻掺外延层的厚度为2μm,氧化镓轻掺外延层的载流子浓度为1016cm-3,且所述氧化镓轻掺外延层的上布还设置有多个间隔分布的沟槽结构(即前述侧壁为倾斜的沟槽结构,下同),沟槽结构的槽口位于氧化镓轻掺外延层的背对氧化镓单晶衬底一侧的选定表面,沟槽结构的槽壁与氧化镓轻掺外延层的选定表面所呈角度为110°,沟槽结构的槽底为平面,槽口的宽度为2μm,槽底的宽度为1.7 μm,深度为300nm,相邻两个沟槽结构之间的间距为10μm。In this embodiment, the carrier concentration of the gallium oxide single crystal substrate is about 10 19 cm -3 , the thickness of the gallium oxide lightly doped epitaxial layer is 2 μm, the carrier concentration of the gallium oxide lightly doped epitaxial layer is 10 16 cm -3 , and the upper surface of the gallium oxide lightly doped epitaxial layer is further provided with a plurality of spaced groove structures (that is, the aforementioned sidewalls are inclined groove structures, the same below), the groove opening of the groove structure is located on the selected surface of the gallium oxide lightly doped epitaxial layer facing away from the gallium oxide single crystal substrate, the groove wall of the groove structure and the selected surface of the gallium oxide lightly doped epitaxial layer form an angle of 110°, the groove bottom of the groove structure is a plane, the width of the groove opening is 2 μm, the width of the groove bottom is 1.7 μm, the depth is 300 nm, and the spacing between two adjacent groove structures is 10 μm.
在本实施例中,轻掺p型NiO介质层连续设置在氧化镓轻掺外延层的选定表面以及沟槽结构内,轻掺p型NiO介质层背对氧化镓轻掺外延层的顶面为连续且平整的平面,轻掺p型NiO介质层的载流子浓度约为1016cm-3,重掺p型NiO介质层层叠设置在轻掺p型NiO介质层上,重掺p型NiO介质层的载流子浓度约为1018cm-3。In this embodiment, the lightly doped p-type NiO dielectric layer is continuously disposed on the selected surface of the gallium oxide lightly doped epitaxial layer and in the trench structure, the top surface of the lightly doped p-type NiO dielectric layer facing away from the gallium oxide lightly doped epitaxial layer is a continuous and flat plane, the carrier concentration of the lightly doped p-type NiO dielectric layer is about 10 16 cm -3 , and the heavily doped p-type NiO dielectric layer is stacked on the lightly doped p-type NiO dielectric layer, and the carrier concentration of the heavily doped p-type NiO dielectric layer is about 10 18 cm -3 .
实施例3:Embodiment 3:
请参阅图4,一种氧化镓功率二极管,包括沿氧化镓功率二极管的纵向依次设置的Ti/Au电极、氧化镓单晶衬底、氧化镓轻掺外延层、p型NiO介质层和Ni/Au电极.Ti/Au电极与氧化镓单晶衬底、Ni/Au电极与p型NiO介质层形成欧姆接触。Please refer to Figure 4, a gallium oxide power diode includes a Ti/Au electrode, a gallium oxide single crystal substrate, a gallium oxide lightly doped epitaxial layer, a p-type NiO dielectric layer and a Ni/Au electrode arranged in sequence along the longitudinal direction of the gallium oxide power diode. The Ti/Au electrode forms ohmic contact with the gallium oxide single crystal substrate, and the Ni/Au electrode forms ohmic contact with the p-type NiO dielectric layer.
在本实施例中,氧化镓单晶衬底的载流子浓度约1019cm-3,氧化镓轻掺外延层的厚度为2μm,氧化镓轻掺外延层的载流子浓度为1016cm-3,且所述氧化镓轻掺外延层的上布还设置有多个间隔分布的沟槽结构(即前述侧壁为倾斜的沟槽结构,下同),沟槽结构的槽口位于氧化镓轻掺外延层的背对氧化镓单晶衬底一侧的选定表面,沟槽结构的槽壁与氧化镓轻掺外延层的选定表面所呈角度为150°,沟槽结构的槽底为平面,槽口的宽度为12μm,槽底的宽度为约9.5μm,深度为800nm,相邻两个沟槽结构之间的间距为10μm。In this embodiment, the carrier concentration of the gallium oxide single crystal substrate is about 10 19 cm -3 , the thickness of the gallium oxide lightly doped epitaxial layer is 2 μm, the carrier concentration of the gallium oxide lightly doped epitaxial layer is 10 16 cm -3 , and the upper surface of the gallium oxide lightly doped epitaxial layer is further provided with a plurality of spaced groove structures (that is, the aforementioned sidewalls are inclined groove structures, the same below), the groove opening of the groove structure is located on the selected surface of the gallium oxide lightly doped epitaxial layer facing away from the gallium oxide single crystal substrate, the groove wall of the groove structure and the selected surface of the gallium oxide lightly doped epitaxial layer form an angle of 150°, the groove bottom of the groove structure is a plane, the width of the groove opening is 12 μm, the width of the groove bottom is about 9.5 μm, the depth is 800 nm, and the spacing between two adjacent groove structures is 10 μm.
在本实施例中,p型NiO介质层仅设置在氧化镓轻掺外延层的选定表面以及沟槽结构的槽底,Ni/Au电极设置在p型NiO介质层上以及沟槽结构内,Ni/Au电极还覆设在结构的侧壁上,Ni/Au电极与p型NiO介质层形成欧姆接触,Ni/Au电极于沟槽结构的侧壁处与氧化镓轻掺外延层形成肖特基接触。In this embodiment, the p-type NiO dielectric layer is only arranged on the selected surface of the gallium oxide lightly doped epitaxial layer and the bottom of the trench structure, the Ni/Au electrode is arranged on the p-type NiO dielectric layer and in the trench structure, the Ni/Au electrode is also covered on the side wall of the structure, the Ni/Au electrode forms an ohmic contact with the p-type NiO dielectric layer, and the Ni/Au electrode forms a Schottky contact with the gallium oxide lightly doped epitaxial layer at the side wall of the trench structure.
通过对实施例和对比例中的器件进行比较,沟槽结构的引入将在氧化镓外延层中实现三维尺度的耗尽区,当反向偏压施加时,将会有更多的区域可以承压,进而实现改善原有漂移区和界面处的电场分布;同时,由于耗尽区依托于界面且主要向氧化镓外延层扩展,因此,相比于具有垂直侧壁的沟槽结构,斜面侧壁的沟槽结构的引入将会导致更多的耗尽区的产生。另外,当器件正向导通时,PN结正偏,扩散电流也将流过耗尽区进入P型介质结构层或氧化镓外延层。因此,斜面侧壁的沟槽结构的引入也扩展了正向导通时的电流路径(电流路径面积增大)。因此,斜面侧壁的沟槽结构的引入既可以提高器件的击穿电压,同时又可以维持相对较低的导通电阻。By comparing the devices in the embodiments and the comparative examples, the introduction of the groove structure will realize a three-dimensional depletion region in the gallium oxide epitaxial layer. When the reverse bias is applied, there will be more areas that can bear the pressure, thereby improving the electric field distribution at the original drift region and the interface; at the same time, since the depletion region relies on the interface and mainly extends to the gallium oxide epitaxial layer, the introduction of the groove structure with the inclined sidewall will lead to the generation of more depletion regions compared to the groove structure with vertical sidewalls. In addition, when the device is forward-conducted, the PN junction is forward-biased, and the diffusion current will also flow through the depletion region into the P-type dielectric structure layer or the gallium oxide epitaxial layer. Therefore, the introduction of the groove structure with the inclined sidewall also expands the current path during forward conduction (the current path area increases). Therefore, the introduction of the groove structure with the inclined sidewall can both increase the breakdown voltage of the device and maintain a relatively low on-resistance.
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。It should be understood that the above embodiments are only for illustrating the technical concept and features of the present invention, and their purpose is to enable people familiar with the technology to understand the content of the present invention and implement it accordingly, and they cannot be used to limit the protection scope of the present invention. Any equivalent changes or modifications made according to the spirit of the present invention should be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410487236.6A CN118099227B (en) | 2024-04-23 | 2024-04-23 | Gallium oxide power diode with sloped trench integration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410487236.6A CN118099227B (en) | 2024-04-23 | 2024-04-23 | Gallium oxide power diode with sloped trench integration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118099227A CN118099227A (en) | 2024-05-28 |
CN118099227B true CN118099227B (en) | 2024-07-30 |
Family
ID=91164052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410487236.6A Active CN118099227B (en) | 2024-04-23 | 2024-04-23 | Gallium oxide power diode with sloped trench integration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118099227B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368231A (en) * | 2001-06-08 | 2002-12-20 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method therefor |
CN113921590A (en) * | 2021-09-13 | 2022-01-11 | 西安电子科技大学 | Heterogeneous P-type modulated gallium oxide power diode and preparation method thereof |
CN115472672A (en) * | 2022-09-23 | 2022-12-13 | 电子科技大学 | Gallium nitride MPS diode with P-type NiO injection ring and manufacturing method thereof |
KR20230092792A (en) * | 2021-12-16 | 2023-06-26 | 파워큐브세미 (주) | Method of forming NiO-Ga2O3 pn heterojunction and schottky diode |
CN116779648A (en) * | 2023-08-18 | 2023-09-19 | 深圳平创半导体有限公司 | A Schottky diode layout structure and its manufacturing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003249663A (en) * | 2002-02-25 | 2003-09-05 | Nec Kansai Ltd | Semiconductor device and its manufacturing method |
JP7037142B2 (en) * | 2017-08-10 | 2022-03-16 | 株式会社タムラ製作所 | diode |
CN207572371U (en) * | 2017-12-21 | 2018-07-03 | 杭州赛晶电子有限公司 | A kind of taper groove face silicon diode and its chip |
CN114823925A (en) * | 2022-02-28 | 2022-07-29 | 西安电子科技大学 | P-type island and super junction structure-based hybrid PIN Schottky diode and preparation method thereof |
CN116207164A (en) * | 2023-03-26 | 2023-06-02 | 湖北九峰山实验室 | A multi-level trench self-protection Schottky diode device and manufacturing method |
-
2024
- 2024-04-23 CN CN202410487236.6A patent/CN118099227B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368231A (en) * | 2001-06-08 | 2002-12-20 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method therefor |
CN113921590A (en) * | 2021-09-13 | 2022-01-11 | 西安电子科技大学 | Heterogeneous P-type modulated gallium oxide power diode and preparation method thereof |
KR20230092792A (en) * | 2021-12-16 | 2023-06-26 | 파워큐브세미 (주) | Method of forming NiO-Ga2O3 pn heterojunction and schottky diode |
CN115472672A (en) * | 2022-09-23 | 2022-12-13 | 电子科技大学 | Gallium nitride MPS diode with P-type NiO injection ring and manufacturing method thereof |
CN116779648A (en) * | 2023-08-18 | 2023-09-19 | 深圳平创半导体有限公司 | A Schottky diode layout structure and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN118099227A (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116666425B (en) | A SiC trench MOSFET device | |
CN111403486A (en) | A trench MOSFET structure and method of making the same | |
CN111312802A (en) | Silicon carbide diode with low turn-on voltage and low on-resistance and preparation method thereof | |
CN109119463B (en) | A kind of lateral trench type MOSFET device and preparation method thereof | |
JPWO2011136272A1 (en) | Semiconductor device | |
CN112201690B (en) | MOSFET transistor | |
CN109065621B (en) | Insulated gate bipolar transistor and preparation method thereof | |
CN102916055B (en) | Trenched Schottky-barrier diode and manufacturing method thereof | |
CN114038908B (en) | Diode-integrated trench gate silicon carbide MOSFET device and method of manufacture | |
CN107393970B (en) | Silicon carbide junction barrier diode | |
JP3998454B2 (en) | Power semiconductor device | |
CN112331720A (en) | High-threshold-value stable gallium nitride power semiconductor device | |
CN117497600B (en) | Structure, manufacturing method and electronic equipment of super-junction silicon carbide transistor | |
CN111129166B (en) | Gallium oxide-based semiconductor structure and preparation method thereof | |
CN118099227B (en) | Gallium oxide power diode with sloped trench integration | |
CN108695396B (en) | A diode and method of making the same | |
CN116417520B (en) | A gallium oxide field effect transistor and its preparation method | |
CN108735823B (en) | A diode and method of making the same | |
CN109192780B (en) | A kind of lateral MOSFET device and preparation method thereof | |
CN115084231B (en) | A kind of diode and its manufacturing method | |
CN117878142A (en) | Planar gate type MOSFET integrated with Schottky diode and preparation method thereof | |
CN117497601A (en) | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor | |
CN114628525B (en) | Groove type SiC MOSFET device and manufacturing method thereof | |
CN103022155A (en) | Groove MOS (metal oxide semiconductor) structure Schottky diode and preparation method thereof | |
CN114678415B (en) | Gallium nitride schottky diode device with array floating island structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |