[go: up one dir, main page]

CN110912444B - A bionic crawling piezoelectric driver - Google Patents

A bionic crawling piezoelectric driver Download PDF

Info

Publication number
CN110912444B
CN110912444B CN201910291894.7A CN201910291894A CN110912444B CN 110912444 B CN110912444 B CN 110912444B CN 201910291894 A CN201910291894 A CN 201910291894A CN 110912444 B CN110912444 B CN 110912444B
Authority
CN
China
Prior art keywords
hinge mechanism
flexible hinge
thin
walled flexible
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910291894.7A
Other languages
Chinese (zh)
Other versions
CN110912444A (en
Inventor
李建平
万嫩
郁晨
温建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201910291894.7A priority Critical patent/CN110912444B/en
Publication of CN110912444A publication Critical patent/CN110912444A/en
Application granted granted Critical
Publication of CN110912444B publication Critical patent/CN110912444B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/062Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本发明涉及一种仿生爬行式压电驱动器,主要包括压电叠堆、非对称薄壁式柔性铰链机构和动子。两个压电叠堆安装在非对称薄壁式柔性铰链机构内;预紧旋钮调节非对称薄壁式柔性铰链机构与动子间的初始预紧力;底座支撑和安装固定其他零件。优点是:非对称薄壁式柔性铰链机构刚度高,能承受较大的负载,提高了驱动装置的输出负载;两个压电叠堆通过对电信号的时序控制,交替提供驱动力,增加了输出负载,提高了输出性能;两个非对称薄壁式柔性铰链机构在两个压电叠堆交替驱动下,做仿生爬行运动,可消除运动周期内动子的回退现象;该装置结构简单,可应用于精密超精密机械加工、微机电系统、微操作机器人领域。

Figure 201910291894

The invention relates to a bionic crawling piezoelectric driver, which mainly includes a piezoelectric stack, an asymmetric thin-walled flexible hinge mechanism and a mover. Two piezoelectric stacks are installed in the asymmetric thin-walled flexible hinge mechanism; the preload knob adjusts the initial preload force between the asymmetrical thin-walled flexible hinge mechanism and the mover; the base supports and installs and fixes other parts. The advantages are: the asymmetric thin-walled flexible hinge mechanism has high rigidity, can withstand a large load, and improves the output load of the driving device; the two piezoelectric stacks provide driving force alternately through the timing control of the electrical signal, increasing the The output load improves the output performance; two asymmetric thin-walled flexible hinge mechanisms are alternately driven by two piezoelectric stacks to perform a bionic crawling motion, which can eliminate the retraction of the mover during the motion cycle; the device has a simple structure , can be used in the fields of precision ultra-precision machining, micro-electromechanical systems, and micro-manipulation robots.

Figure 201910291894

Description

一种仿生爬行式压电驱动器A bionic crawling piezoelectric driver

技术领域technical field

本发明涉及精密超精密加工、微纳操作机器人、微机电系统程领域,特别涉及一种仿生爬行式压电驱动器。The invention relates to the fields of precision ultra-precision machining, micro-nano operation robots, and micro-electromechanical systems, in particular to a bionic crawling piezoelectric driver.

背景技术Background technique

具有微/纳米级定位精度的精密驱动技术是超精密加工与测量、光学工程、现代医疗、航空航天科技等高尖端科学技术领域中的关键技术。为实现微/纳米级的输出精度,现代精密驱动技术的应用对驱动装置的精度提出了更高要求。传统的驱动装置输出精度低,整体尺寸大,无法满足现代先进科技技术中精密系统对微/纳米级高精度和驱动装置尺寸微小的要求。压电陶瓷驱动器具有体积尺寸小、位移分辨率高、输出负载大、能量转换率高等优点,能实现微/纳米级的输出精度,已经越来越多地被应用到微定位和精密超精密加工中。现有的压电惯性驱动装置通常将压电元件和动子质量块平行放置于其运动方向,预紧力垂直于压电元件的主输出方向,整体装置的输出负载主要依赖于预紧力产生的摩擦力。然而压电元件如压电叠堆,通常采用d33的工作模式,其在垂直于主输出方向的截面上刚度较小,产生的预紧力较小,导致整体装置的输出负载大大降低,压电元件在主输出方向的较大刚度没有得到充分的利用;单个压电叠堆提供的输出负载小;运动中的回退现象进一步降低输出性能。因此,有必要设计一种充分利用压电叠堆主输出方向的刚度,消除回退现象,提高输出负载,通过非对称薄壁式柔性铰链机构的寄生惯性运动,同时产生预紧力和驱动力,进一步提高压电驱动装置的输出负载的压电驱动器。Precision drive technology with micro/nano-level positioning accuracy is a key technology in high-tech fields such as ultra-precision machining and measurement, optical engineering, modern medical care, and aerospace technology. In order to achieve micro/nano-level output precision, the application of modern precision drive technology puts forward higher requirements for the precision of the drive device. The traditional driving device has low output precision and large overall size, which cannot meet the requirements of micro/nano-level high precision and small size of the driving device in the precision system of modern advanced technology. Piezoelectric ceramic drivers have the advantages of small size, high displacement resolution, large output load, and high energy conversion rate. They can achieve micro/nano-level output accuracy, and have been increasingly used in micro-positioning and precision ultra-precision machining. middle. The existing piezoelectric inertial drive device usually places the piezoelectric element and the mover mass in parallel to its motion direction, the preload force is perpendicular to the main output direction of the piezoelectric element, and the output load of the overall device mainly depends on the preload force generated. friction force. However, piezoelectric elements such as piezoelectric stacks usually use the d33 working mode, which has less rigidity on the cross-section perpendicular to the main output direction, and generates less preload, which greatly reduces the output load of the overall device, and the piezoelectric The element's greater stiffness in the main output direction is not fully utilized; a single piezoelectric stack provides a small output load; back-off phenomena in motion further degrade output performance. Therefore, it is necessary to design a kind of rigidity that makes full use of the main output direction of the piezoelectric stack, eliminates the back-off phenomenon, increases the output load, and generates the preload force and driving force at the same time through the parasitic inertial motion of the asymmetric thin-walled flexible hinge mechanism. , a piezoelectric driver that further improves the output load of the piezoelectric drive device.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种仿生爬行式压电驱动器,解决了现有技术存在的上述问题。本发明具有结构简单紧凑,输出精度高,输出刚度和输出负载大,输出频率高的特点,同时能实现直线运动输出功能。The purpose of the present invention is to provide a bionic crawling piezoelectric driver, which solves the above problems existing in the prior art. The invention has the characteristics of simple and compact structure, high output precision, large output rigidity and output load, and high output frequency, and can realize the output function of linear motion at the same time.

本发明采用两组压电驱动单元,压电叠堆的主输出方向与动子运动方向倾斜布置,采用两个由四个薄壁式柔性铰链连接的非对称柔性铰链机构,在两个压电叠堆的交替驱动下,非对称薄壁式柔性铰链机构按照时序依次实现寄生惯性运动,这种仿生爬行,可消除运动周期内动子的回退现象,大大提高装置的输出性能,实现动子沿某一方向的直线运动。The invention adopts two sets of piezoelectric drive units, the main output direction of the piezoelectric stack is arranged obliquely with the moving direction of the mover, and two asymmetric flexible hinge mechanisms connected by four thin-walled flexible hinges are used. Under the alternating drive of the stack, the asymmetric thin-walled flexible hinge mechanism realizes parasitic inertial motion in sequence according to the time sequence. This bionic crawling can eliminate the retraction of the mover in the motion cycle, greatly improve the output performance of the device, and realize the mover Linear motion in a certain direction.

本发明的上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:

一种仿生爬行式压电驱动器,包括压电叠堆(3)、非对称薄壁式柔性铰链机构(4)、压电叠堆(7)、非对称薄壁式柔性铰链机构(6)、动子(5)、预紧楔块(2)、预紧楔块(8)、预紧旋钮(1)、预紧旋钮(10)和底座(9),所述精密驱动装置利用寄生惯性原理实现微纳米级仿生爬行式精密直线驱动。动子(5)采用带有滑块的高精度直线导轨,导轨通过螺钉固定在底座(9)上;非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)通过螺钉安装在底座(9)上;预紧楔块(2)布置在压电叠堆(3)和非对称薄壁式柔性铰链机构(4)之间,预紧楔块(8)布置在压电叠堆(7)和非对称薄壁式柔性铰链机构(6)之间,压电叠堆(3)和压电叠堆(7)可分别通过预紧楔块(2)和预紧楔块(8)进行预紧;预紧旋钮(1)和预紧旋钮(10)紧固在底座上(9),与非对称薄壁式铰链机构(4)、非对称薄壁式铰链机构(6)下端接触;非对称薄壁式铰链机构(4)、非对称薄壁式铰链机构(6)由四个薄壁式柔性铰链连接,组成非对称形式,其上端弧形结构与动子(5)接触;底座(9)起支撑和安装固定其他零件作用。A bionic crawling piezoelectric driver, comprising a piezoelectric stack (3), an asymmetric thin-walled flexible hinge mechanism (4), a piezoelectric stack (7), an asymmetrical thin-walled flexible hinge mechanism (6), A mover (5), a preload wedge (2), a preload wedge (8), a preload knob (1), a preload knob (10) and a base (9), the precision drive device utilizes the principle of parasitic inertia Realize micro-nano-level bionic crawling precision linear drive. The mover (5) adopts a high-precision linear guide with a slider, and the guide is fixed on the base (9) by screws; the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) Installed on the base (9) by screws; the preload wedge (2) is arranged between the piezoelectric stack (3) and the asymmetric thin-walled flexible hinge mechanism (4), and the preload wedge (8) is arranged on the Between the piezoelectric stack (7) and the asymmetric thin-walled flexible hinge mechanism (6), the piezoelectric stack (3) and the piezoelectric stack (7) can pass through the preload wedge (2) and the preload respectively The wedge (8) is pre-tightened; the pre-tightening knob (1) and the pre-tightening knob (10) are fastened on the base (9), and the asymmetric thin-walled hinge mechanism (4) and the asymmetrical thin-walled hinge mechanism are fastened on the base (9). (6) Contact at the lower end; the asymmetric thin-walled hinge mechanism (4) and the asymmetrical thin-walled hinge mechanism (6) are connected by four thin-walled flexible hinges to form an asymmetrical form, and the upper arc structure is connected to the mover (5) Contact; the base (9) plays the role of supporting and installing and fixing other parts.

所述的压电叠堆(3)和压电叠堆(7)分别设置在非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)内,驱动压电叠堆(3)驱动非对称薄壁式柔性铰链机构(4)伸长,驱动压电叠堆(7)驱动非对称薄壁式柔性铰链机构(6)伸长,通过控制驱动压电叠堆(3)和压电叠堆(7)之间的时序实现非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)与动子(5)之间的仿生爬行式运动,进而驱动动子(5)直线精密运动。The piezoelectric stack (3) and the piezoelectric stack (7) are respectively arranged in the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) to drive the piezoelectric stack The stack (3) drives the asymmetric thin-walled flexible hinge mechanism (4) to extend, drives the piezoelectric stack (7) to drive the asymmetrical thin-walled flexible hinge mechanism (6) to extend, and drives the piezoelectric stack ( 3) The time sequence between the piezoelectric stack (7) and the asymmetric thin-walled flexible hinge mechanism (4), the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5) realize the bionic crawling type move, and then drive the mover (5) to move precisely in a straight line.

所述的非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)与动子(5)之间的初始预紧力分别通过预紧旋钮(1)、预紧旋钮(10)调节;The initial pre-tightening force between the asymmetric thin-walled flexible hinge mechanism (4), the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5) is obtained through the pre-tightening knob (1), the pre-tightening force, respectively. Knob (10) adjustment;

所述的压电叠堆(3)和压电叠堆(7),采用形体可控面型的压电陶瓷叠堆PZT,寄生惯性运动是通过对压电叠堆(3)和压电叠堆(7)的电压控制来实现,通过对压电叠堆(3)和压电叠堆(7)的电压有序控制可以实现仿生爬行式直线驱动。The piezoelectric stack (3) and the piezoelectric stack (7) use a piezoelectric ceramic stack PZT with a shape controllable surface type, and the parasitic inertial motion is obtained by aligning the piezoelectric stack (3) and the piezoelectric stack. The voltage control of the stack (7) is implemented, and the bionic crawling linear drive can be realized by orderly controlling the voltage of the piezoelectric stack (3) and the piezoelectric stack (7).

本发明的主要优势在于:利用寄生惯性运动原理,将压电叠堆的主输出方向与动子运动方向倾斜布置;采用两个由四个薄壁式柔性铰链连接的非对称柔性铰链机构;在两个压电叠堆的交替驱动下,非对称薄壁式柔性铰链机构按照时序依次做寄生惯性运动,这种仿生爬行式的运动,可消除运动周期内动子的回退现象;本发明可以大大提高装置的输出性能,实现动子沿某一方向的直线运动,具有驱动可靠性高、平稳性好、工作效率高等优势;可应用于精密超精密加工、微操作机器人、微机电系统、大规模集成电路制造、生物技术等重要科学工程领域;本发明结构简单、布置紧凑、运动稳定,具有效率高、投资少、效益高等优势,应用前景较为广阔。The main advantages of the invention are: using the principle of parasitic inertial motion, the main output direction of the piezoelectric stack and the moving direction of the mover are arranged obliquely; two asymmetric flexible hinge mechanisms connected by four thin-walled flexible hinges are used; Under the alternating drive of two piezoelectric stacks, the asymmetric thin-walled flexible hinge mechanism performs parasitic inertial motion in sequence according to the time sequence, and this bionic crawling motion can eliminate the retraction phenomenon of the mover in the motion cycle; Greatly improve the output performance of the device, realize the linear motion of the mover in a certain direction, and have the advantages of high driving reliability, good stability, and high work efficiency; it can be used in precision ultra-precision machining, micro-manipulation Large-scale integrated circuit manufacturing, biotechnology and other important scientific and engineering fields; the invention has simple structure, compact arrangement, stable movement, high efficiency, low investment, and high benefits, and has broad application prospects.

附图说明Description of drawings

图1是本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;

图2是本发明的主视示意图;2 is a schematic front view of the present invention;

图3是本发明的左视示意图;Fig. 3 is the left side view schematic diagram of the present invention;

图4是本发明的非对称薄壁式柔性铰链机构示意图。4 is a schematic diagram of the asymmetric thin-walled flexible hinge mechanism of the present invention.

具体实施方式Detailed ways

下面结合附图进一步说明本发明的详细内容及其具体实施方式。The details of the present invention and the specific implementations thereof will be further described below with reference to the accompanying drawings.

参见图1至图4所示,一种仿生爬行式压电驱动器,主要包括动子(5)、压电叠堆(3)、压电叠堆(7)、预紧楔块(2)、预紧楔块(8)、预紧旋钮(1)、预紧旋钮(10)、非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)和底座(9),所述精密驱动装置通过寄生惯性原理实现压电直线精密驱动。动子(5)采用带有滑块的高精度直线导轨,导轨通过螺钉固定在底座上;非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)通过螺钉安装在底座上;压电叠堆(3)和压电叠堆(7)分别安装于非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)内,其主输出方向与动子(5)运动方向倾斜布置;预紧楔块(2)布置在压电叠堆(3)和非对称薄壁式柔性铰链机构(4)之间,预紧楔块(8)布置在压电叠堆(7)和非对称薄壁式柔性铰链机构(6)之间,压电叠堆(3)和压电叠堆(7)可分别通过预紧楔块(2)和预紧楔块(8)进行预紧;预紧旋钮(1)和预紧旋钮(10)紧固在底座上(9),与非对称薄壁式铰链机构(4)、非对称薄壁式铰链机构(6)下端接触;非对称薄壁式铰链机构(4)、非对称薄壁式铰链机构(6)由四个薄壁式柔性铰链连接,组成非对称形式,其上端弧形结构与动子(5)接触;底座(9)起支撑和安装固定其他零件作用,非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)和动子(5)通过螺钉安装在底座(9)上。Referring to Figures 1 to 4, a bionic crawling piezoelectric driver mainly includes a mover (5), a piezoelectric stack (3), a piezoelectric stack (7), a preloaded wedge (2), Preload wedge (8), preload knob (1), preload knob (10), asymmetric thin-wall flexible hinge mechanism (4), asymmetric thin-wall flexible hinge mechanism (6) and base (9) , the precision driving device realizes piezoelectric linear precision driving through the principle of parasitic inertia. The mover (5) adopts a high-precision linear guide with a slider, and the guide is fixed on the base by screws; the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) are installed by screws on the base; the piezoelectric stack (3) and the piezoelectric stack (7) are respectively installed in the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6). The direction and the moving direction of the mover (5) are arranged obliquely; the preload wedge (2) is arranged between the piezoelectric stack (3) and the asymmetric thin-walled flexible hinge mechanism (4), and the preload wedge (8) Arranged between the piezoelectric stack (7) and the asymmetric thin-walled flexible hinge mechanism (6), the piezoelectric stack (3) and the piezoelectric stack (7) can pass through the preloading wedges (2) and The pre-tightening wedge (8) is pre-tightened; the pre-tightening knob (1) and the pre-tightening knob (10) are fastened on the base (9). The lower end of the hinge mechanism (6) is in contact; the asymmetric thin-walled hinge mechanism (4) and the asymmetrical thin-walled hinge mechanism (6) are connected by four thin-walled flexible hinges to form an asymmetrical form. The mover (5) is in contact; the base (9) plays the role of supporting, installing and fixing other parts, and the asymmetric thin-walled flexible hinge mechanism (4), the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5) pass through The screws are mounted on the base (9).

所述的仿生爬行式压电驱动器利用寄生惯性原理实现压电直线精密驱动。压电叠堆(3)、压电叠堆(7)的主输出方向与动子(5)运动方向倾斜布置,将压电叠堆(3)、压电叠堆(7)主输出方向的较大刚度充分利用;所述的非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)刚度输出性能好,可承受较大的预紧力,运动稳定高效,压电叠堆(3)、压电叠堆(7)得电分别通过非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)传递动子(5)直线运动的驱动力和非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)与动子(5)之间的预紧力,从而大大提高压电驱动装置的输出负载,实现沿某一方向的直线运动。The bionic crawling piezoelectric driver utilizes the principle of parasitic inertia to realize piezoelectric linear precision drive. The main output direction of the piezoelectric stack (3) and the piezoelectric stack (7) are arranged obliquely with the moving direction of the mover (5). The large rigidity is fully utilized; the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) have good rigidity output performance, can withstand large preloading force, and move stably and efficiently. The piezoelectric stack (3) and the piezoelectric stack (7) are energized to transmit the linear motion of the mover (5) through the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) respectively. the driving force and the pre-tightening force between the asymmetric thin-walled flexible hinge mechanism (4), the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5), thereby greatly improving the output load of the piezoelectric drive device , to achieve linear motion in a certain direction.

所述的非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)与动子(5)之间的初始预紧力通过预紧旋钮(1)、预紧旋钮(10)调节。The initial pre-tightening force between the asymmetric thin-walled flexible hinge mechanism (4), the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5) is obtained through the pre-tightening knob (1), the pre-tightening knob (10) Adjustment.

所述的压电叠堆(3)、压电叠堆(7),采用形体可控面型的压电陶瓷叠堆PZT,寄生惯性运动是通过对压电叠堆(3)和压电叠堆(7)的电压控制来实现。The piezoelectric stack (3) and the piezoelectric stack (7) adopt the piezoelectric ceramic stack PZT with a controllable surface type, and the parasitic inertial motion is obtained by aligning the piezoelectric stack (3) and the piezoelectric stack. The voltage control of the stack (7) is realized.

参见图1至图4所示,本发明的具体工作过程如下:1 to 4, the specific working process of the present invention is as follows:

动子直线运动的实现,初始状态:调节预紧旋钮(1)来调节非对称薄壁式柔性铰链机构(4)与动子(5)间的接触距离,调节预紧旋钮(10)来调节非对称薄壁式柔性铰链机构(6)与动子(5)间的接触距离,即寄生运动过程中的初始预紧力;采用锯齿波或三角波形式的压电信号控制压电叠堆(3)和压电叠堆(7),通过控制电压,压电叠堆(3)和压电叠堆(7)按照时序依次带电;压电叠堆(3)和压电叠堆(7)不带电,系统处于自由状态;当压电叠堆(3)通电后,通过逆压电效应伸长,推动非对称薄壁式柔性铰链机构(4)变形,非对称薄壁式柔性铰链机构(4)压紧动子(5),非对称薄壁式柔性铰链机构(4)在与动子(5)间静摩擦力的作用下,带动动子(5)移动;当压电叠堆(3)失电迅速回退至初始位置时,非对称薄壁式柔性铰链机构(4)也回复初始状态,动子(5)在惯性力的作用下仍然保持在移动后的位置,同时压电叠堆(7)带电,通过逆压电效应伸长,推动非对称薄壁式柔性铰链机构(6)变形,非对称薄壁式柔性铰链机构(6)压紧动子(5),非对称薄壁式柔性铰链机构(6)在与动子(5)间静摩擦力的作用下,带动动子(5)移动;当压电叠堆(7)失电迅速回退至初始位置时,非对称薄壁式柔性铰链机构(6)也回复初始状态,动子(5)在惯性力的作用下仍然保持在第二次移动后的位置,从而完成了该驱动装置的一个运动周期。重复上述步骤,该驱动装置可实现在所需方向的直线运动,获得较大的输出位移。The realization of the linear motion of the mover, the initial state: adjust the pre-tightening knob (1) to adjust the contact distance between the asymmetric thin-walled flexible hinge mechanism (4) and the mover (5), and adjust the pre-tightening knob (10) to adjust The contact distance between the asymmetric thin-walled flexible hinge mechanism (6) and the mover (5), that is, the initial pre-tightening force during the parasitic motion; piezoelectric signals in the form of sawtooth waves or triangular waves are used to control the piezoelectric stack (3 ) and the piezoelectric stack (7), by controlling the voltage, the piezoelectric stack (3) and the piezoelectric stack (7) are charged in sequence according to the time sequence; the piezoelectric stack (3) and the piezoelectric stack (7) are not When electrified, the system is in a free state; when the piezoelectric stack (3) is energized, it stretches through the inverse piezoelectric effect, pushing the asymmetric thin-walled flexible hinge mechanism (4) to deform, and the asymmetrical thin-walled flexible hinge mechanism (4) ) press the mover (5), and the asymmetric thin-walled flexible hinge mechanism (4) drives the mover (5) to move under the action of static friction with the mover (5); when the piezoelectric stack (3) When the power is lost and quickly returns to the initial position, the asymmetric thin-walled flexible hinge mechanism (4) also returns to the initial state, and the mover (5) remains in the moved position under the action of inertial force, while the piezoelectric stack (7) It is charged and elongated through the inverse piezoelectric effect, pushing the asymmetric thin-walled flexible hinge mechanism (6) to deform, and the asymmetrical thin-walled flexible hinge mechanism (6) presses the mover (5), and the asymmetrical thin-walled The flexible hinge mechanism (6) drives the mover (5) to move under the action of the static friction force with the mover (5); when the piezoelectric stack (7) loses power and quickly returns to the initial position, the asymmetrical thin The wall-type flexible hinge mechanism (6) also returns to the initial state, and the mover (5) remains in the position after the second movement under the action of inertial force, thus completing one movement cycle of the driving device. By repeating the above steps, the driving device can achieve linear motion in the desired direction and obtain a larger output displacement.

本发明涉及的一种仿生爬行式压电驱动器,由于采用了两组压电叠堆作为驱动源及非对称薄壁式柔性铰链机构作为动力传递元件,具有发热小、驱动平稳、可靠、高效的特点,并能实现直线精密运动等功能。The bionic crawling piezoelectric driver involved in the present invention adopts two sets of piezoelectric stacks as the driving source and the asymmetric thin-walled flexible hinge mechanism as the power transmission element, and has the advantages of low heat generation, stable driving, reliability and high efficiency. Features, and can achieve linear precision motion and other functions.

Claims (3)

1.一种仿生爬行式压电驱动器,包括压电叠堆(3)、非对称薄壁式柔性铰链机构(4)、压电叠堆(7)、非对称薄壁式柔性铰链机构(6)、动子(5)、预紧楔块(2)、预紧楔块(8)、预紧旋钮(1)、预紧旋钮(10)、底座(9),其特征在于:压电叠堆(3)和压电叠堆(7)分别设置在非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)内,驱动压电叠堆(3),非对称薄壁式柔性铰链机构(4)伸长,驱动压电叠堆(7),非对称薄壁式柔性铰链机构(6)伸长,通过控制驱动压电叠堆(3)和压电叠堆(7)之间的时序实现非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)与动子(5)之间的仿生爬行式运动,进而驱动动子(5)做直线运动;所述动子(5)采用带有滑块的高精度直线导轨,导轨通过螺钉固定在底座上,用以实现高精度的直线运动;非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)通过螺钉安装在底座上;压电叠堆(3)和压电叠堆(7)可分别通过预紧楔块(2)和预紧楔块(8)进行预紧;预紧旋钮(1)和预紧旋钮(10)分别调节非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)与动子(5)之间的初始预紧力;所述的非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)可采用弹簧钢、高强度铝合金材料制造,通过四个薄壁式柔性铰链连接,组成非对称形式的平行四边形结构。1. A bionic crawling piezoelectric driver, comprising a piezoelectric stack (3), an asymmetric thin-walled flexible hinge mechanism (4), a piezoelectric stack (7), and an asymmetrical thin-walled flexible hinge mechanism (6) ), a mover (5), a pre-tightening wedge (2), a pre-tightening wedge (8), a pre-tightening knob (1), a pre-tightening knob (10), and a base (9), characterized in that: a piezoelectric stack The stack (3) and the piezoelectric stack (7) are respectively arranged in the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6), and the piezoelectric stack (3) is driven, and the non-symmetrical thin-walled flexible hinge mechanism (6) is respectively arranged. The symmetrical thin-walled flexible hinge mechanism (4) is extended to drive the piezoelectric stack (7), and the asymmetrical thin-walled flexible hinge mechanism (6) is extended to drive the piezoelectric stack (3) and the piezoelectric stack by controlling The sequence between the stacks (7) realizes the bionic crawling motion between the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5), thereby driving the mover (5) Do linear motion; the mover (5) adopts a high-precision linear guide with a slider, and the guide is fixed on the base by screws to achieve high-precision linear motion; asymmetric thin-walled flexible hinge mechanism (4) and the asymmetric thin-walled flexible hinge mechanism (6) are mounted on the base by screws; the piezoelectric stack (3) and the piezoelectric stack (7) can be respectively preloaded through the wedge block (2) and the preload The wedge (8) is pre-tightened; the pre-tightening knob (1) and the pre-tightening knob (10) respectively adjust the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) and the mover (5) initial preload force; the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) can be made of spring steel and high-strength aluminum alloy materials. Four thin-walled flexible hinges are connected to form an asymmetrical parallelogram structure. 2.根据权利要求1所述的仿生爬行式压电驱动器,其特征在于采用非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)的寄生惯性驱动原理,单个压电叠堆(3)、压电叠堆(7)分别得电时分别推动非对称薄壁式柔性铰链机构(4)、非对称薄壁式柔性铰链机构(6)都产生两个方向的复合运动,即主运动和寄生运动,寄生运动为动子(5)的直线运动,主运动为非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)给动子(5)施加预紧力。2. The bionic crawling piezoelectric driver according to claim 1 is characterized in that the parasitic inertia driving principle of the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) is adopted, and a single When the piezoelectric stack (3) and the piezoelectric stack (7) are respectively energized, the asymmetrical thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6) are respectively pushed to generate two directions of movement. Compound motion, namely main motion and parasitic motion, the parasitic motion is the linear motion of the mover (5), and the main motion is the asymmetric thin-walled flexible hinge mechanism (4) and the asymmetrical thin-walled flexible hinge mechanism (6). Sub (5) applies preload. 3.根据权利要求1所述的仿生爬行式压电驱动器,其特征在于通过对两组压电驱动单元I和II的时序控制,交替提供驱动电压,非对称薄壁式柔性铰链机构(4)和非对称薄壁式柔性铰链机构(6)在压电叠堆(3)和压电叠堆(7)交替驱动下,做仿生爬行运动。3. The bionic crawling piezoelectric driver according to claim 1, characterized in that the drive voltage is alternately provided by the sequential control of two groups of piezoelectric drive units I and II, and the asymmetric thin-walled flexible hinge mechanism (4) The asymmetric thin-walled flexible hinge mechanism (6) is driven alternately by the piezoelectric stack (3) and the piezoelectric stack (7) to perform a bionic crawling motion.
CN201910291894.7A 2019-04-08 2019-04-08 A bionic crawling piezoelectric driver Active CN110912444B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910291894.7A CN110912444B (en) 2019-04-08 2019-04-08 A bionic crawling piezoelectric driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910291894.7A CN110912444B (en) 2019-04-08 2019-04-08 A bionic crawling piezoelectric driver

Publications (2)

Publication Number Publication Date
CN110912444A CN110912444A (en) 2020-03-24
CN110912444B true CN110912444B (en) 2022-09-27

Family

ID=69814399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910291894.7A Active CN110912444B (en) 2019-04-08 2019-04-08 A bionic crawling piezoelectric driver

Country Status (1)

Country Link
CN (1) CN110912444B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112497186B (en) * 2020-12-15 2024-06-25 天津职业技术师范大学(中国职业培训指导教师进修中心) Micro-operation device and method based on bionic surface
CN113219649B (en) * 2021-04-30 2022-11-22 哈尔滨芯明天科技有限公司 High-reliability piezoelectric deflection mirror for aerospace application
CN113938052B (en) * 2021-09-29 2023-09-08 东北电力大学 A piezoelectric stick-slip actuator based on a two-stage lever amplification mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121790A (en) * 1991-10-29 1993-05-18 Hitachi Ltd Piezoelectric drive
WO2012165189A1 (en) * 2011-05-27 2012-12-06 株式会社村田製作所 Piezoelectric motor and piezoelectric motor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017332C2 (en) * 2000-04-07 2002-04-18 Daimler Chrysler Ag Piezoelectric actuator for flap control on the rotor blade of a helicopter
CN203251240U (en) * 2013-05-13 2013-10-23 吉林大学 Positive pressure adjustable micro-nano scale stick-slip inertial drive platform
CN105583692B (en) * 2016-03-02 2017-06-27 吉林大学 A three-way cutting force measurement method and device for fast tool servo turning
CN207039485U (en) * 2017-06-16 2018-02-23 吉林大学 A Single Ω-shaped Piezoelectric Linear Actuator
CN207573263U (en) * 2017-12-25 2018-07-03 吉林大学 A device for adjusting the output performance of a parasitic piezoelectric actuator by pre-friction force
CN208597034U (en) * 2018-09-26 2019-03-12 吉林大学 A device for suppressing the retraction motion of parasitic piezoelectric actuators by hinges with arc structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121790A (en) * 1991-10-29 1993-05-18 Hitachi Ltd Piezoelectric drive
WO2012165189A1 (en) * 2011-05-27 2012-12-06 株式会社村田製作所 Piezoelectric motor and piezoelectric motor device

Also Published As

Publication number Publication date
CN110912444A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
CN206559258U (en) A kind of accurate piezoelectric actuator of adjustable parasitic inertia motion formula of pretightning force
CN110912444B (en) A bionic crawling piezoelectric driver
CN104467525A (en) Pretightening force adjustable inertial stick-slip drive trans-dimension precision locating platform
CN111030505A (en) Secondary displacement amplification type piezoelectric driver
CN102647107A (en) Large-stroke micro-nano-scale linear actuator based on the principle of parasitic motion
CN110798094B (en) Piezoelectric linear precision driving device based on parasitic inertia principle
CN110768571B (en) Bionic creeping type piezoelectric precision driving device based on parasitic inertia principle
CN110855179B (en) Creeping type piezoelectric precision driving device
CN110752771B (en) A piezoelectric rotary precision drive platform based on parasitic inertia principle
CN108111052A (en) Couple the bionical piezoelectricity locating platform and control method with parasitic motion principle of looper
CN104362890A (en) Inertia stick-slip trans-scale precision movement platform capable of achieving bidirectional movement
CN210431263U (en) Novel piezoelectric rotation precision driving platform
CN110912448B (en) A Piezoelectric Drive Platform Based on Asymmetric Triangular Flexible Hinge Mechanism
CN112803829A (en) Friction asymmetric inertia piezoelectric linear driving device and method
CN112865593A (en) Bionic impact piezoelectric driver with high output performance and control method thereof
CN110829882B (en) T-shaped piezoelectric driving device
CN113708660B (en) A high-speed resonance impulse piezoelectric motor
CN211183830U (en) Secondary Displacement Amplified Piezoelectric Driver
CN112865597A (en) Time-lag effect inertial piezoelectric driver based on flexible hinge
CN110855181A (en) A Rotary Piezoelectric Drive Device Based on Asymmetric Triangular Hinged Mechanism
CN110798093B (en) Linear piezoelectric precision driving platform
CN110768570B (en) A micro-nano step piezoelectric drive device
CN214626828U (en) Time-lag effect inertial piezoelectric driver based on flexible hinge
CN110752768B (en) Piezoelectric precision driving device based on asymmetric triangular arc type flexible hinge mechanism
CN106026766B (en) Rhombus hinge piece-picking type quadrature drive type piezoelectricity stick-slip line motor and its complex incentive method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant