CN110855181A - A Rotary Piezoelectric Drive Device Based on Asymmetric Triangular Hinged Mechanism - Google Patents
A Rotary Piezoelectric Drive Device Based on Asymmetric Triangular Hinged Mechanism Download PDFInfo
- Publication number
- CN110855181A CN110855181A CN201910291893.2A CN201910291893A CN110855181A CN 110855181 A CN110855181 A CN 110855181A CN 201910291893 A CN201910291893 A CN 201910291893A CN 110855181 A CN110855181 A CN 110855181A
- Authority
- CN
- China
- Prior art keywords
- hinge mechanism
- rotor
- asymmetric triangular
- triangular hinge
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 60
- 230000033001 locomotion Effects 0.000 claims abstract description 30
- 230000036316 preload Effects 0.000 claims abstract description 18
- 230000003071 parasitic effect Effects 0.000 claims abstract description 14
- 230000008901 benefit Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- 229910000639 Spring steel Inorganic materials 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000003754 machining Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/101—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及一种基于非对称三角形铰链机构的旋转式压电驱动装置,由压电叠堆、非对称三角形铰链机构、转子、预紧螺钉、预紧楔块和底座组成。压电叠堆在电压信号驱动下可伸长和恢复;非对称三角形铰链机构可实现寄生惯性运动;预紧螺钉和预紧楔块调节非对称三角形铰链机构与转子间的初始预紧力;底座起支撑作用。本发明压电叠堆主输出方向与转子的旋转中心在一条直线上,可充分利用压电叠堆主输出方向的刚度;非对称三角形铰链机构结构简单,刚度输出性能好,能承受较大的负载,大大提高了驱动装置的输出负载,可实现转子的旋转步进式运动。该装置可应用于精密超精密机械加工、微机电系统、微操作机器人、大规模集成电路制造、生物技术领域。
The invention relates to a rotary piezoelectric driving device based on an asymmetric triangular hinge mechanism, which is composed of a piezoelectric stack, an asymmetric triangular hinge mechanism, a rotor, a pre-tightening screw, a pre-tightening wedge and a base. The piezoelectric stack can be stretched and restored under the drive of voltage signal; the asymmetric triangular hinge mechanism can realize parasitic inertial motion; the preload screw and the preload wedge adjust the initial preload force between the asymmetric triangular hinge mechanism and the rotor; the base play a supporting role. The main output direction of the piezoelectric stack and the rotation center of the rotor are in a straight line, and the rigidity of the main output direction of the piezoelectric stack can be fully utilized; the asymmetric triangular hinge mechanism has a simple structure, good stiffness output performance, and can withstand large The output load of the drive device is greatly improved, and the rotary step-type movement of the rotor can be realized. The device can be applied to the fields of precision ultra-precision machining, micro-electromechanical systems, micro-manipulation robots, large-scale integrated circuit manufacturing, and biotechnology.
Description
技术领域technical field
本发明涉及精密超精密加工、微纳操作机器人、微机电系统程领域,特别涉及一种基于非对称三角形铰链机构的旋转式压电驱动装置。The invention relates to the fields of precision ultra-precision machining, micro-nano operation robots, and micro-electromechanical systems, in particular to a rotary piezoelectric drive device based on an asymmetric triangular hinge mechanism.
背景技术Background technique
具有微/纳米级定位精度的精密驱动技术是超精密加工与测量、光学工程、现代医疗、航空航天科技等高尖端科学技术领域中的关键技术。为实现微/纳米级的输出精度,现代精密驱动技术的应用对驱动装置的精度提出了更高要求。传统的驱动装置输出精度低,整体尺寸大,无法满足现代先进科技技术中精密系统对微/纳米级高精度和驱动装置尺寸微小的要求。压电陶瓷驱动器具有体积尺寸小、位移分辨率高、输出负载大、能量转换率高等优点,能实现微/纳米级的输出精度,已经越来越多地被应用到微定位和精密超精密加工中。现有的压电惯性驱动装置通常将压电元件和转子质量块平行放置于其运动方向,预紧力垂直于压电元件的主输出方向,整体装置的输出负载主要依赖于预紧力产生的摩擦力。然而压电元件如压电叠堆,通常采用d33的工作模式,其在垂直于主输出方向的截面上刚度较小,产生的预紧力较小,导致整体装置的输出负载大大降低,压电元件在主输出方向的较大刚度没有得到充分的利用。因此,有必要设计一种充分利用压电叠堆主输出方向的刚度,并通过非对称三角形铰链机构的寄生惯性运动,同时产生预紧力和驱动力,进一步提高压电驱动装置输出负载的新型压电旋转精密驱动装置。Precision drive technology with micro/nano-level positioning accuracy is a key technology in high-tech fields such as ultra-precision machining and measurement, optical engineering, modern medical care, and aerospace technology. In order to achieve micro/nano-level output precision, the application of modern precision drive technology puts forward higher requirements for the precision of the drive device. The traditional driving device has low output precision and large overall size, which cannot meet the requirements of micro/nano-level high precision and small size of the driving device in the precision system of modern advanced technology. Piezoelectric ceramic drivers have the advantages of small size, high displacement resolution, large output load, and high energy conversion rate. They can achieve micro/nano-level output accuracy, and have been increasingly used in micro-positioning and precision ultra-precision machining. middle. The existing piezoelectric inertial drive device usually places the piezoelectric element and the rotor mass in parallel to its motion direction, the preload force is perpendicular to the main output direction of the piezoelectric element, and the output load of the overall device mainly depends on the preload force. friction. However, piezoelectric elements such as piezoelectric stacks usually use the d33 working mode, which has less rigidity on the cross-section perpendicular to the main output direction, and generates less preload, which greatly reduces the output load of the overall device, and the piezoelectric The greater stiffness of the element in the main output direction is not fully utilized. Therefore, it is necessary to design a new type that makes full use of the stiffness in the main output direction of the piezoelectric stack and generates preload and driving force through the parasitic inertial motion of the asymmetric triangular hinge mechanism to further improve the output load of the piezoelectric drive. Piezoelectric rotary precision drive.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于非对称三角形铰链机构的旋转式压电驱动装置,解决了现有技术存在的上述问题。本发明具有结构简单紧凑,输出精度高,输出刚度和输出负载大,输出频率高的特点,同时能实现旋转运动输出功能。The purpose of the present invention is to provide a rotary piezoelectric drive device based on an asymmetric triangular hinge mechanism, which solves the above problems existing in the prior art. The invention has the characteristics of simple and compact structure, high output precision, large output rigidity and output load, and high output frequency, and at the same time, it can realize the output function of rotary motion.
本发明通过将压电叠堆的主输出方向与转子旋转中心在一条直线上布置,采用刚度输出特性好的非对称三角形铰链机构,通过非对称三角形铰链机构传递复合载荷,最终实现转子的旋转运动。The invention arranges the main output direction of the piezoelectric stack and the rotation center of the rotor on a straight line, adopts an asymmetric triangular hinge mechanism with good rigidity output characteristics, and transmits the compound load through the asymmetric triangular hinge mechanism, and finally realizes the rotation of the rotor. .
本发明的上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种基于非对称三角形铰链机构的旋转式压电驱动装置,主要包括转子(1)、压电叠堆(2)、预紧楔块(3)、预紧螺钉(4)、非对称三角形铰链机构(5)和底座(6),所述精密驱动装置通过寄生惯性原理实现压电旋转精密驱动。转子(1)的结构使用了高精度轴承来减小其摩擦损耗,轴承通过旋转轴与底座连接;转子(1)包括旋转台、轴承和旋转轴,旋转台与轴承外圈、旋转轴与轴承内圈、旋转轴与底座为过盈配合;非对称三角形铰链机构(5)通过螺钉安装在底座上;压电叠堆(2)安装于非对称三角形铰链机构(5)内,其主输出方向与转子(1)旋转中心在一条直线上;预紧楔块(3)布置在压电叠堆(2) 和非对称三角形铰链机构(5)之间,可通过预紧楔块(3)进行预紧;预紧螺钉(4)紧固在底座上,与非对称薄壁式铰链下端接触,非对称三角形铰链机构(5)为非对称薄壁式结构,其上端弧形结构与转子 (1)接触;底座(6)起支撑和安装固定其他零件作用。A rotary piezoelectric drive device based on an asymmetric triangular hinge mechanism, mainly comprising a rotor (1), a piezoelectric stack (2), a pre-tightening wedge (3), a pre-tightening screw (4), and an asymmetric triangular hinge A mechanism (5) and a base (6) are provided, and the precision driving device realizes the precise driving of piezoelectric rotation through the principle of parasitic inertia. The structure of the rotor (1) uses a high-precision bearing to reduce its friction loss. The bearing is connected to the base through a rotating shaft; the rotor (1) includes a rotating table, a bearing and a rotating shaft, the rotating table and the outer ring of the bearing, and the rotating shaft and the bearing. The inner ring, the rotating shaft and the base are in interference fit; the asymmetric triangular hinge mechanism (5) is installed on the base by screws; the piezoelectric stack (2) is installed in the asymmetric triangular hinge mechanism (5), and its main output direction is On a straight line with the rotation center of the rotor (1); the preload wedge (3) is arranged between the piezoelectric stack (2) and the asymmetric triangular hinge mechanism (5), which can be adjusted by the preload wedge (3). Pre-tightening; the pre-tightening screw (4) is fastened on the base and is in contact with the lower end of the asymmetrical thin-walled hinge. The asymmetrical triangular hinge mechanism (5) is an asymmetrical thin-walled structure, and the arc-shaped structure at its upper end is in contact with the rotor (1). ) contact; the base (6) plays the role of supporting and installing and fixing other parts.
所述的压电叠堆(2)的主输出方向与转子(1)旋转中心在一条直线上,将压电叠堆(2)主输出方向的较大刚度充分利用;所述的非对称三角形铰链机构(5)刚度输出性能好,非对称三角形铰链机构上端可承受较大的预紧力,运动稳定高效,压电叠堆(2)得电通过非对称三角形铰链机构(5)传递转子(1) 旋转运动的驱动力和非对称三角形铰链机构(5)和转子(1)之间接触面的预紧力,从而大大提高压电驱动装置的输出负载。可实现沿所需方向的旋转步进式运动。The main output direction of the piezoelectric stack (2) is on a straight line with the rotation center of the rotor (1), so that the greater rigidity of the piezoelectric stack (2) in the main output direction is fully utilized; the asymmetric triangle The hinge mechanism (5) has good rigidity output performance, the upper end of the asymmetric triangular hinge mechanism can bear a large pre-tightening force, and the movement is stable and efficient, and the piezoelectric stack (2) is powered through the asymmetric triangular hinge mechanism (5) to transmit the rotor ( 1) The driving force of the rotary motion and the preload of the contact surface between the asymmetric triangular hinge mechanism (5) and the rotor (1), thereby greatly increasing the output load of the piezoelectric drive. Rotational step-by-step motion in the desired direction is possible.
所述的非对称三角形铰链机构(5)与转子(1)之间的初始预紧力通过预紧螺钉(4)调节;The initial pre-tightening force between the asymmetric triangular hinge mechanism (5) and the rotor (1) is adjusted by the pre-tightening screw (4);
所述的压电叠堆(2),采用形体可控面型的压电陶瓷叠堆PZT,寄生惯性运动驱动是通过对压电叠堆 (2)的电压控制来实现。The piezoelectric stack (2) adopts the piezoelectric ceramic stack PZT of the shape controllable surface type, and the parasitic inertial motion drive is realized by voltage control of the piezoelectric stack (2).
本发明的主要优势在于:利用寄生惯性运动原理,将压电叠堆的主输出方向与转子旋转中心在一条直线上,利用非对称三角形铰链机构的寄生惯性运动传递载荷,大大提高了驱动装置的输出负载,同时实现转子的旋转运动。具有驱动可靠性高、平稳性好、工作效率高等优势。可应用于精密超精密加工、微操作机器人、微机电系统、大规模集成电路制造、生物技术等重要科学工程领域。本发明结构简单、布置紧凑、运动稳定,具有效率高、投资少、效益高等优势,应用前景较为广阔。The main advantage of the present invention lies in: using the principle of parasitic inertial motion, the main output direction of the piezoelectric stack and the rotor rotation center are aligned on a straight line, and the parasitic inertial motion of the asymmetric triangular hinge mechanism is used to transmit the load, which greatly improves the driving device. The load is output, and the rotary motion of the rotor is realized at the same time. It has the advantages of high driving reliability, good stability and high working efficiency. It can be applied to important scientific and engineering fields such as precision ultra-precision machining, micro-manipulation robots, micro-electromechanical systems, large-scale integrated circuit manufacturing, and biotechnology. The invention has the advantages of simple structure, compact arrangement, stable movement, high efficiency, low investment, high benefit, and broad application prospect.
附图说明Description of drawings
此处附图说明用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings here are used to provide a further understanding of the present invention and constitute a part of the present application. The schematic examples of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention.
图1是本发明的等轴测视示意图;1 is a schematic isometric view of the present invention;
图2是本发明的主视示意图;2 is a schematic front view of the present invention;
图3是本发明的左视示意图;Fig. 3 is the left side view schematic diagram of the present invention;
图4是本发明的非对称三角形铰链机构示意图。4 is a schematic diagram of the asymmetric triangular hinge mechanism of the present invention.
图中:In the picture:
1.转子; 2.压电叠堆; 3.预紧楔块;1. Rotor; 2. Piezoelectric stack; 3. Preload wedge;
4.预紧螺钉; 5.非对称三角形铰链机构; 6.底座。4. Pre-tightening screws; 5. Asymmetric triangular hinge mechanism; 6. Base.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的详细内容及其具体实施方式。The details of the present invention and the specific implementations thereof will be further described below with reference to the accompanying drawings.
参见图1至图4所示,一种基于非对称三角形铰链机构的旋转式压电驱动装置,主要包括转子(1)、压电叠堆(2)、预紧楔块(3)、预紧螺钉(4)、非对称三角形铰链机构(5)和底座(6),所述驱动装置通过寄生惯性原理实现压电旋转精密驱动。转子(1)包括旋转台、轴承和旋转轴,旋转台与轴承外圈、旋转轴与轴承内圈、旋转轴与底座为过盈配合;转子(1)的结构使用了高精度轴承来减小其摩擦损耗,轴承通过旋转轴与底座连接;非对称三角形铰链机构(5)通过螺钉安装在底座上;压电叠堆(2)安装于非对称三角形铰链机构(5)内,其主输出方向与转子(1)旋转中心在一条直线上;预紧楔块(3) 布置在压电叠堆(2)和非对称三角形铰链机构(5)之间,可通过预紧楔块(3)进行预紧;预紧螺钉(4) 紧固在底座上,与非对称薄壁式铰链下端接触,非对称三角形铰链机构(5)为非对称薄壁式结构,其上端弧形结构与转子(1)接触;底座(6)起支撑和安装固定其他零件作用。1 to 4, a rotary piezoelectric drive device based on an asymmetric triangular hinge mechanism mainly includes a rotor (1), a piezoelectric stack (2), a preload wedge (3), a preload The screw (4), the asymmetric triangular hinge mechanism (5) and the base (6), the driving device realizes the precise driving of piezoelectric rotation through the principle of parasitic inertia. The rotor (1) includes a rotary table, a bearing and a rotary shaft. The rotary table and the outer ring of the bearing, the rotary shaft and the inner ring of the bearing, and the rotary shaft and the base are in interference fit; the structure of the rotor (1) uses high-precision bearings to reduce Its friction loss, the bearing is connected with the base through the rotating shaft; the asymmetric triangular hinge mechanism (5) is installed on the base through screws; the piezoelectric stack (2) is installed in the asymmetric triangular hinge mechanism (5), and its main output direction On a straight line with the rotation center of the rotor (1); the preload wedge (3) is arranged between the piezoelectric stack (2) and the asymmetric triangular hinge mechanism (5), which can be adjusted by the preload wedge (3). Pre-tightening; the pre-tightening screw (4) is fastened on the base and is in contact with the lower end of the asymmetrical thin-walled hinge. ) contact; the base (6) plays the role of supporting and installing and fixing other parts.
所述的压电叠堆(2)的主输出方向与转子(1)旋转中心在一条直线上,将压电叠堆(2)主输出方向的较大刚度充分利用;所述的非对称三角形铰链机构(5)刚度输出性能好,非对称三角形铰链机构(5) 上端可承受较大的预紧力,运动稳定高效,压电叠堆(2)得电通过非对称三角形铰链机构(5)传递转子 (1)旋转运动的驱动力和非对称三角形铰链机构(5)和转子(1)之间的预紧力,从而大大提高压电驱动装置的输出负载,可实现沿某一方向的旋转步进式运动。The main output direction of the piezoelectric stack (2) is on a straight line with the rotation center of the rotor (1), so that the greater rigidity of the piezoelectric stack (2) in the main output direction is fully utilized; the asymmetric triangle The hinge mechanism (5) has good rigidity output performance, the upper end of the asymmetric triangular hinge mechanism (5) can bear a large pre-tightening force, the movement is stable and efficient, and the piezoelectric stack (2) is energized through the asymmetric triangular hinge mechanism (5) It transmits the driving force of the rotary motion of the rotor (1) and the pre-tightening force between the asymmetric triangular hinge mechanism (5) and the rotor (1), thereby greatly increasing the output load of the piezoelectric drive device and realizing rotation in a certain direction Step movement.
所述的非对称三角形铰链机构(5)与转子(1)之间的初始预紧力通过预紧螺钉(4)调节;The initial pre-tightening force between the asymmetric triangular hinge mechanism (5) and the rotor (1) is adjusted by the pre-tightening screw (4);
所述的压电叠堆(2),采用形体可控面型的压电陶瓷叠堆PZT,寄生惯性运动是通过对压电叠堆(2) 的电压控制来实现。The piezoelectric stack (2) adopts the piezoelectric ceramic stack PZT of the shape controllable surface type, and the parasitic inertial motion is realized by voltage control of the piezoelectric stack (2).
参见图1至图4所示,本发明的具体工作过程如下:1 to 4, the specific working process of the present invention is as follows:
转子步进式旋转运动的实现,初始状态:调节预紧螺钉(4)来调节非对称三角形铰链机构(5)与转子(1)间的接触距离,即寄生运动过程中的初始预紧力。采用锯齿波或三角波形式的压电信号控制压电叠堆(2)。压电叠堆(2)不带电,系统处于自由状态;当压电叠堆(2)通电后,通过逆压电效应伸长,推动非对称三角形铰链机构(5)变形,非对称三角形铰链机构(5)压紧转子(1),非对称三角形铰链机构(5)在与转子(1)间静摩擦力的作用下,带动转子(1)旋转;当压电叠堆(2)失电迅速回退至初始位置时,非对称三角形铰链机构(5)也回复初始状态,转子(1)在惯性力的作用下仍然保持在转动后的位置,从而完成了该驱动装置的一个运动周期。重复上述步骤,该驱动装置可实现旋转运动,获得较大的输出旋转角度。The realization of the step-by-step rotary motion of the rotor, the initial state: adjust the pre-tightening screw (4) to adjust the contact distance between the asymmetric triangular hinge mechanism (5) and the rotor (1), that is, the initial pre-tightening force during the parasitic motion. The piezoelectric stack (2) is controlled using a piezoelectric signal in the form of a sawtooth or triangular wave. The piezoelectric stack (2) is not charged, and the system is in a free state; when the piezoelectric stack (2) is energized, it stretches through the inverse piezoelectric effect, pushing the asymmetric triangular hinge mechanism (5) to deform, and the asymmetric triangular hinge mechanism (5) Press the rotor (1), and the asymmetric triangular hinge mechanism (5) drives the rotor (1) to rotate under the action of the static friction force with the rotor (1); when the piezoelectric stack (2) loses power, it returns quickly. When returning to the initial position, the asymmetric triangular hinge mechanism (5) also returns to the initial state, and the rotor (1) remains in the rotated position under the action of inertial force, thus completing one movement cycle of the driving device. By repeating the above steps, the driving device can realize rotational motion and obtain a larger output rotational angle.
本发明涉及的一种基于非对称三角形铰链机构的旋转式压电驱动装置,采用了压电叠堆作为驱动源及非对称三角形铰链机构作为动力传递元件,具有发热小、驱动平稳、可靠、高效的特点,并能实现步进式旋转精密运动等功能。The invention relates to a rotary piezoelectric drive device based on an asymmetric triangular hinge mechanism, which adopts a piezoelectric stack as a driving source and an asymmetric triangular hinge mechanism as a power transmission element, and has the advantages of low heat generation, stable driving, reliability and high efficiency. It can realize functions such as step-by-step rotary precision motion.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910291893.2A CN110855181B (en) | 2019-04-08 | 2019-04-08 | Rotary piezoelectric driving device based on asymmetric triangular hinge mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910291893.2A CN110855181B (en) | 2019-04-08 | 2019-04-08 | Rotary piezoelectric driving device based on asymmetric triangular hinge mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110855181A true CN110855181A (en) | 2020-02-28 |
CN110855181B CN110855181B (en) | 2023-09-12 |
Family
ID=69594625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910291893.2A Active CN110855181B (en) | 2019-04-08 | 2019-04-08 | Rotary piezoelectric driving device based on asymmetric triangular hinge mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110855181B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078845A (en) * | 2021-04-27 | 2021-07-06 | 吉林大学 | Piezoelectric rotary positioning platform of asymmetric flexible hinge and driving method thereof |
CN113258824A (en) * | 2021-05-31 | 2021-08-13 | 吉林大学 | Microminiature stick-slip piezoelectric motor and driving method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108092545A (en) * | 2018-01-12 | 2018-05-29 | 长春工业大学 | Multiple degrees of freedom piezoelectricity stick-slip micro-nano locating platform and its driving method |
CN108322090A (en) * | 2018-03-04 | 2018-07-24 | 长春工业大学 | External stirs type rotary piezoelectric stick-slip driver and its driving method |
-
2019
- 2019-04-08 CN CN201910291893.2A patent/CN110855181B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108092545A (en) * | 2018-01-12 | 2018-05-29 | 长春工业大学 | Multiple degrees of freedom piezoelectricity stick-slip micro-nano locating platform and its driving method |
CN108322090A (en) * | 2018-03-04 | 2018-07-24 | 长春工业大学 | External stirs type rotary piezoelectric stick-slip driver and its driving method |
Non-Patent Citations (1)
Title |
---|
Z GUO等: ""A novel stick-slip based linear actuator using bi-directional motion of micropositioner"", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078845A (en) * | 2021-04-27 | 2021-07-06 | 吉林大学 | Piezoelectric rotary positioning platform of asymmetric flexible hinge and driving method thereof |
CN113078845B (en) * | 2021-04-27 | 2022-04-12 | 吉林大学 | Asymmetric flexible hinge piezoelectric rotary positioning platform and driving method thereof |
CN113258824A (en) * | 2021-05-31 | 2021-08-13 | 吉林大学 | Microminiature stick-slip piezoelectric motor and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110855181B (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110752771B (en) | A piezoelectric rotary precision drive platform based on parasitic inertia principle | |
CN210431263U (en) | Novel piezoelectric rotation precision driving platform | |
CN108233764B (en) | Piezoelectric driving type precise rotation driving device adopting special-shaped hinge transmission mechanism | |
CN110138264B (en) | A piezoelectric inchworm rotating motor | |
CN102723893A (en) | Micro-nano simulation rotating drive device | |
CN109980990A (en) | Piezoelectricity-electromagnetism hybrid-driven multiple degrees of freedom precision positioning device and control method | |
CN115955141B (en) | Integrated two-degree-of-freedom stepping actuator based on piezoelectric driving | |
CN109586612A (en) | A kind of alternating step piezoelectric stick-slip driver with bionical awn of wheat friction surface | |
CN110912448B (en) | A Piezoelectric Drive Platform Based on Asymmetric Triangular Flexible Hinge Mechanism | |
CN110995058B (en) | A piezoelectric rotary precision drive platform based on parasitic inertia principle | |
CN110798094B (en) | Piezoelectric linear precision driving device based on parasitic inertia principle | |
CN110855181A (en) | A Rotary Piezoelectric Drive Device Based on Asymmetric Triangular Hinged Mechanism | |
CN110855179B (en) | Creeping type piezoelectric precision driving device | |
CN110768571B (en) | Bionic creeping type piezoelectric precision driving device based on parasitic inertia principle | |
CN110912444B (en) | A bionic crawling piezoelectric driver | |
CN202696501U (en) | Micro/nano-scale bionic rotation driving device | |
CN111193435A (en) | a rotary actuator | |
CN110829882A (en) | T-shaped piezoelectric driving device | |
CN113078845B (en) | Asymmetric flexible hinge piezoelectric rotary positioning platform and driving method thereof | |
CN210469144U (en) | A Novel High Efficiency Piezoelectric Rotary Precision Drive Platform | |
CN110768570B (en) | A micro-nano step piezoelectric drive device | |
CN111130382A (en) | Driving device with spring mechanism | |
CN110912447B (en) | Piezoelectric rotary driving platform based on crawling principle | |
CN111245289A (en) | Piezoelectric-driven rotary motion device and control method thereof | |
CN110798093B (en) | Linear piezoelectric precision driving platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |