CN110760802B - Energy storage ceramic film - Google Patents
Energy storage ceramic film Download PDFInfo
- Publication number
- CN110760802B CN110760802B CN201811196381.XA CN201811196381A CN110760802B CN 110760802 B CN110760802 B CN 110760802B CN 201811196381 A CN201811196381 A CN 201811196381A CN 110760802 B CN110760802 B CN 110760802B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- energy storage
- thin film
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 109
- 239000000919 ceramic Substances 0.000 title claims abstract description 96
- 229910052751 metal Inorganic materials 0.000 claims abstract description 231
- 239000002184 metal Substances 0.000 claims abstract description 231
- 239000010409 thin film Substances 0.000 claims abstract description 87
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 64
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 64
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 29
- 239000000956 alloy Substances 0.000 claims abstract description 29
- 230000003746 surface roughness Effects 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 124
- 239000010408 film Substances 0.000 claims description 94
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 78
- 239000004408 titanium dioxide Substances 0.000 claims description 62
- 239000011889 copper foil Substances 0.000 claims description 46
- 238000007733 ion plating Methods 0.000 claims description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 37
- 239000010936 titanium Substances 0.000 claims description 37
- 229910052719 titanium Inorganic materials 0.000 claims description 36
- 229910052802 copper Inorganic materials 0.000 claims description 32
- 239000010949 copper Substances 0.000 claims description 32
- 238000000151 deposition Methods 0.000 claims description 20
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 19
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 claims description 18
- 230000008021 deposition Effects 0.000 claims description 15
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 254
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 102
- 229910052786 argon Inorganic materials 0.000 description 51
- 239000007789 gas Substances 0.000 description 35
- 150000002500 ions Chemical class 0.000 description 33
- 238000001755 magnetron sputter deposition Methods 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000013077 target material Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及储能陶瓷薄膜,所述储能陶瓷薄膜包括金属衬底以及依次形成于所述金属衬底上的第一金属层、第二金属层、第二金属氧化物层和第二金属氧化物薄膜;其中,所述第一金属层的材料与所述金属衬底的材料相同;所述第一金属层的表面还设有所述第二金属层中的第二金属与第一金属层中的第一金属结合而形成的合金层。本发明的储能陶瓷薄膜可在降低金属衬底的表面粗糙度的同时保证结合力,从而可以同时提高储能陶瓷薄膜的储能性能和可靠性。
The invention relates to an energy storage ceramic thin film, the energy storage ceramic thin film comprises a metal substrate and a first metal layer, a second metal layer, a second metal oxide layer and a second metal oxide layer sequentially formed on the metal substrate Thin film; wherein, the material of the first metal layer is the same as that of the metal substrate; the surface of the first metal layer is also provided with the second metal in the second metal layer and the first metal layer An alloy layer formed by combining the first metals in the The energy storage ceramic thin film of the invention can reduce the surface roughness of the metal substrate and at the same time ensure the binding force, thereby simultaneously improving the energy storage performance and reliability of the energy storage ceramic thin film.
Description
本申请是“申请号为:201810848153.X,申请日为2018年7月27日,名称为:储能薄膜及其制备方法”的发明申请的分案申请。This application is a divisional application of the invention application with "Application No.: 201810848153.X, filing date: July 27, 2018, named: energy storage thin film and its preparation method".
技术领域technical field
本发明涉及能源领域,特别是涉及储能陶瓷薄膜。The invention relates to the field of energy, in particular to an energy storage ceramic thin film.
背景技术Background technique
传统的储能陶瓷薄膜包括衬底和陶瓷薄膜,通常,增加衬底的表面粗糙度可以增加陶瓷薄膜与衬底的接触面积,提高结合力。并且,衬底作为电极时,其表面粗糙度的增加也可以提高陶瓷薄膜的电容。但是,电极表面粗糙度的增加,反而增加了电极与陶瓷薄膜的接触面处的缺陷浓度,从而降低储能陶瓷薄膜的击穿场强和储能密度,不利于储能性能的提高。因此,降低电极的表面粗糙度,有利于提高储能陶瓷薄膜的储能性能。但是,电极的表面粗糙度下降会导致电极与陶瓷薄膜的结合力明显下降,而结合力的下降对于储能陶瓷薄膜也是致命的。Traditional energy storage ceramic thin films include a substrate and a ceramic thin film. Generally, increasing the surface roughness of the substrate can increase the contact area between the ceramic thin film and the substrate and improve the bonding force. Moreover, when the substrate is used as an electrode, the increase of its surface roughness can also increase the capacitance of the ceramic thin film. However, the increase in the surface roughness of the electrode increases the defect concentration at the contact surface between the electrode and the ceramic film, thereby reducing the breakdown field strength and energy storage density of the energy storage ceramic film, which is not conducive to the improvement of energy storage performance. Therefore, reducing the surface roughness of the electrode is beneficial to improving the energy storage performance of the energy storage ceramic thin film. However, the decrease in the surface roughness of the electrode will lead to a significant decrease in the binding force between the electrode and the ceramic film, and the decrease in the binding force is also fatal to the energy storage ceramic film.
发明内容Contents of the invention
基于此,有必要针对上述问题,提供一种储能陶瓷薄膜,所述储能陶瓷薄膜的结合力强,可以同时提高储能陶瓷薄膜的储能性能和可靠性。Based on this, it is necessary to address the above problems and provide an energy storage ceramic thin film, which has a strong binding force and can simultaneously improve the energy storage performance and reliability of the energy storage ceramic thin film.
一种储能陶瓷薄膜,所述储能陶瓷薄膜包括金属衬底以及依次形成于所述金属衬底上的第一金属层、第二金属层、第二金属氧化物层和第二金属氧化物薄膜;An energy storage ceramic thin film, the energy storage ceramic thin film comprises a metal substrate and a first metal layer, a second metal layer, a second metal oxide layer and a second metal oxide sequentially formed on the metal substrate film;
其中,所述第一金属层的材料与所述金属衬底的材料相同;Wherein, the material of the first metal layer is the same as that of the metal substrate;
所述第一金属层的表面还设有所述第二金属层中的第二金属与第一金属层中的第一金属结合而形成的合金层。The surface of the first metal layer is further provided with an alloy layer formed by combining the second metal in the second metal layer with the first metal in the first metal layer.
在其中一个实施例中,采用磁过滤多弧离子镀方法沉积形成所述第一金属层和所述第二金属层,在采用磁过滤多弧离子镀方法沉积形成所述第二金属层时,所述第一金属层中第一金属与所述第二金属层中的第二金属形成所述合金层。In one of the embodiments, the first metal layer and the second metal layer are deposited and formed by using a magnetic filter multi-arc ion plating method, and when the magnetic filter multi-arc ion plating method is used to deposit and form the second metal layer, The first metal in the first metal layer and the second metal in the second metal layer form the alloy layer.
在其中一个实施例中,所述金属衬底的表面粗糙度为10nm~400nm。In one embodiment, the surface roughness of the metal substrate is 10nm-400nm.
在其中一个实施例中,所述金属衬底的厚度为6μm~18μm;及/或In one of the embodiments, the metal substrate has a thickness of 6 μm to 18 μm; and/or
所述金属衬底的表面张力≥60达因。The surface tension of the metal substrate is greater than or equal to 60 dynes.
在其中一个实施例中,所述第一金属层的厚度为20nm~40nm。In one embodiment, the thickness of the first metal layer is 20nm-40nm.
在其中一个实施例中,所述第二金属层的厚度为30nm~60nm。In one embodiment, the thickness of the second metal layer is 30nm-60nm.
在其中一个实施例中,所述合金层的厚度为5nm~10nm。In one of the embodiments, the thickness of the alloy layer is 5nm˜10nm.
在其中一个实施例中,所述第二金属氧化物层的厚度为5nm~10nm。In one embodiment, the thickness of the second metal oxide layer is 5nm˜10nm.
在其中一个实施例中,所述第二金属氧化物薄膜的厚度为25nm~1.99μm,所述第二金属氧化物薄膜的晶粒大小为30nm~300nm。In one embodiment, the thickness of the second metal oxide thin film is 25 nm˜1.99 μm, and the grain size of the second metal oxide thin film is 30 nm˜300 nm.
在其中一个实施例中,所述金属衬底包括铜箔,所述第一金属层包括铜层,所述合金层包括铜钛合金层,所述第二金属层包括钛层,所述第二金属氧化物层包括二氧化钛层,所述第二金属氧化物薄膜包括二氧化钛薄膜。In one embodiment, the metal substrate includes copper foil, the first metal layer includes a copper layer, the alloy layer includes a copper-titanium alloy layer, the second metal layer includes a titanium layer, and the second The metal oxide layer includes a titanium dioxide layer, and the second metal oxide film includes a titanium dioxide film.
本发明的储能陶瓷薄膜中,第一金属层与金属衬底根据相似相容的原理结合牢固,第一金属层和第二金属层通过第一金属与第二金属所形成的合金层提高结合力,第二金属氧化物层是第二金属层的氧化物,二层之间结合力强,第二金属氧化物薄膜和第二金属氧化物层是相同的材料层,结合力强。因此,本发明的储能陶瓷薄膜可在降低金属衬底的表面粗糙度的同时保证结合力,从而可以同时提高储能陶瓷薄膜的储能性能和可靠性。In the energy storage ceramic thin film of the present invention, the first metal layer and the metal substrate are firmly combined according to the principle of similarity and compatibility, and the first metal layer and the second metal layer improve the combination through the alloy layer formed by the first metal and the second metal Strength, the second metal oxide layer is the oxide of the second metal layer, the bonding force between the two layers is strong, the second metal oxide thin film and the second metal oxide layer are the same material layer, and the bonding force is strong. Therefore, the energy storage ceramic thin film of the present invention can reduce the surface roughness of the metal substrate while ensuring the bonding force, thereby simultaneously improving the energy storage performance and reliability of the energy storage ceramic thin film.
附图说明Description of drawings
图1为本发明储能陶瓷薄膜的结构示意图;Fig. 1 is the structural representation of energy storage ceramic film of the present invention;
图2为本发明磁过滤多弧离子镀方法的原理示意图。Fig. 2 is a schematic diagram of the principle of the magnetic filter multi-arc ion plating method of the present invention.
图中:1、真空弧源;2、打火装置;3、可视窗口;4、过滤磁场;5、聚焦磁场;6、真空腔体;10、金属衬底;11、靶材;12、电子;13、金属液滴;14、离子;15、金属原子;20、第一金属层;30、合金层;40、第二金属层;41、第二金属氧化物层;42、第二金属氧化物薄膜;50、陶瓷薄膜。In the figure: 1. Vacuum arc source; 2. Ignition device; 3. Visual window; 4. Filtering magnetic field; 5. Focusing magnetic field; 6. Vacuum chamber; 10. Metal substrate; 11. Target material; 12. Electron; 13. Metal droplet; 14. Ion; 15. Metal atom; 20. First metal layer; 30. Alloy layer; 40. Second metal layer; 41. Second metal oxide layer; 42. Second metal Oxide film; 50, ceramic film.
具体实施方式Detailed ways
以下将对本发明提供的储能陶瓷薄膜作进一步说明。The energy storage ceramic thin film provided by the present invention will be further described below.
本发明提供的储能陶瓷薄膜的制备方法,包括:The preparation method of the energy storage ceramic thin film provided by the present invention comprises:
S1,提供金属衬底;S1, providing a metal substrate;
S2,以第一金属单质作为第一靶材,采用磁过滤多弧离子镀方法在所述金属衬底上沉积形成第一金属预制层,所述第一金属预制层的材料与所述金属衬底的材料相同;S2, using the first simple metal as the first target material, depositing a first metal prefabricated layer on the metal substrate by using a magnetic filter multi-arc ion plating method, the material of the first metal prefabricated layer is compatible with the metal substrate The material of the bottom is the same;
S3,以第二金属单质作为第二靶材,采用磁过滤多弧离子镀方法在所述第一金属预制层上沉积形成第二金属预制层,并且在沉积形成第二金属预制层的同时,在所述第一金属预制层和所述第二金属预制层之间形成合金预制层,所述合金预制层为第一金属与第二金属所形成的合金;S3, using the second metal simple substance as the second target material, depositing a second metal prefabricated layer on the first metal prefabricated layer by using a magnetic filter multi-arc ion plating method, and while depositing and forming the second metal prefabricated layer, An alloy prefabricated layer is formed between the first metal prefabricated layer and the second metal prefabricated layer, and the alloy prefabricated layer is an alloy formed by the first metal and the second metal;
S4,对所述第二金属预制层进行氧化处理,以在第二金属预制层的表层形成第二金属氧化物预制层;S4, performing oxidation treatment on the second metal prefabricated layer to form a second metal oxide prefabricated layer on the surface layer of the second metal prefabricated layer;
S5,在所述第二金属氧化预制层上形成第二金属氧化物预制薄膜,得到预制储能陶瓷薄膜;S5, forming a second metal oxide prefabricated film on the second metal oxide prefabricated layer to obtain a prefabricated energy storage ceramic film;
S6,对所述预制储能陶瓷薄膜进行热处理,得到储能陶瓷薄膜。S6, performing heat treatment on the prefabricated energy storage ceramic thin film to obtain an energy storage ceramic thin film.
步骤S1中,金属衬底作为电极,第一金属预制层与电极接触的实际面积与金属衬底的表面粗糙度有关,表面粗糙度越大,实际接触面积越大,单位几何面积电容值就越大。但是,金属衬底表面粗糙度的增加反而会增加金属衬底与第一金属预制层的接触面处的缺陷浓度,如容易造成第一金属预制层表面产生孔洞,从而降低储能陶瓷薄膜的击穿场强和储能密度,不利于储能性能的提高。因此,所述金属衬底的表面粗糙度为10nm~400nm,有利于提高陶瓷储能薄膜的储能性能。In step S1, the metal substrate is used as an electrode, and the actual contact area between the first metal prefabricated layer and the electrode is related to the surface roughness of the metal substrate. The larger the surface roughness, the larger the actual contact area, and the larger the capacitance per unit geometric area. big. However, the increase in the surface roughness of the metal substrate will instead increase the defect concentration at the contact surface between the metal substrate and the first metal prefabricated layer, such as easily causing holes on the surface of the first metal prefabricated layer, thereby reducing the impact of the energy storage ceramic film. The penetration field strength and energy storage density are not conducive to the improvement of energy storage performance. Therefore, the surface roughness of the metal substrate is 10nm-400nm, which is conducive to improving the energy storage performance of the ceramic energy storage thin film.
所述金属衬底可以是刚性的,也可以是柔性的。考虑到陶瓷薄膜的介电常数远远高于高分子薄膜,因此,当金属衬底具有柔性时,可以实现储能陶瓷薄膜的柔性化,从而可以代替高分子薄膜应用于薄膜电容器中,实现薄膜电容器向小型化、多功能和轻薄化等趋势发展。优选的,所述金属衬底的厚度为6μm~18μm,柔韧性好,可以较好的实现储能陶瓷薄膜的柔性化。The metal substrate can be rigid or flexible. Considering that the dielectric constant of the ceramic film is much higher than that of the polymer film, when the metal substrate is flexible, the flexibility of the energy storage ceramic film can be realized, so that it can replace the polymer film and be used in the film capacitor to realize the film Capacitors are developing towards the trend of miniaturization, multi-function and thinning. Preferably, the metal substrate has a thickness of 6 μm to 18 μm, has good flexibility, and can better realize the flexibility of the energy storage ceramic thin film.
所述金属衬底的材料不限,只要高温抗氧化能力强、具有导电性即可,包括铜箔、钛箔、银箔、金箔、铂箔、铝箔、镍箔、铬箔、锡箔中的一种,也可以为铜合金、钛合金、银合金、金合金、铂合金、铝合金、镍合金、铬合金、锡合金中的一种。The material of the metal substrate is not limited, as long as it has strong high-temperature oxidation resistance and conductivity, including copper foil, titanium foil, silver foil, gold foil, platinum foil, aluminum foil, nickel foil, chromium foil, and tin foil. It can also be one of copper alloy, titanium alloy, silver alloy, gold alloy, platinum alloy, aluminum alloy, nickel alloy, chromium alloy and tin alloy.
考虑到铜箔是电子工业领域性价比最好的金属材料,其电阻率为1.75×10-8Ω·m,仅次于银(1.65×10-8Ω·m),导热系数401W/(m·K),仅次于银(420W/(m·K)),而铜的价格远低于银的价格。其次,工业用铜箔比较成熟,铜箔分为压延铜箔和电解铜箔,且都经过电镀处理以防氧化和高温防氧化,在空气中煅烧都不会产生氧化。因此,所述金属衬底优选为铜箔。Considering that copper foil is the most cost-effective metal material in the electronics industry, its resistivity is 1.75×10 -8 Ω·m, second only to silver (1.65×10 -8 Ω·m), and its thermal conductivity is 401W/(m· K), second only to silver (420W/(m K)), and the price of copper is much lower than that of silver. Secondly, industrial copper foil is relatively mature. Copper foil is divided into rolled copper foil and electrolytic copper foil, and all of them have been electroplated to prevent oxidation and high temperature anti-oxidation, and will not oxidize when calcined in air. Therefore, the metal substrate is preferably copper foil.
所述金属衬底的表面张力≥60达因,优选为金属衬底的表面张力>60达因,金属衬底的表面张力越高,第一金属层与金属衬底之间的结合力就越强。The surface tension of the metal substrate ≥ 60 dynes, preferably the surface tension of the metal substrate > 60 dynes, the higher the surface tension of the metal substrate, the stronger the bonding force between the first metal layer and the metal substrate powerful.
可通过对金属衬底的表面进行处理,增加表面活性,从而提高表面张力。优选的,所述处理的方法为:先对金属衬底进行加热,设定温度为100℃~300℃,保温10分钟~30分钟,然后采用霍尔离子源对柔性金属衬底进行处理,氩气流量为20sccm~50sccm,真空度为2.0×10-2Pa~6.0×10-2Pa,霍尔离子源电压为800V~2000V,电流为0.5A~2A,处理的时间为1分钟~10分钟。The surface activity of the metal substrate can be increased by treating the surface of the metal substrate, thereby increasing the surface tension. Preferably, the treatment method is: firstly heat the metal substrate, set the temperature at 100°C to 300°C, keep it warm for 10 minutes to 30 minutes, and then use the Hall ion source to treat the flexible metal substrate, argon The gas flow is 20sccm~50sccm, the vacuum degree is 2.0×10 -2 Pa~6.0×10 -2 Pa, the Hall ion source voltage is 800V~2000V, the current is 0.5A~2A, and the processing time is 1 minute to 10 minutes .
由于金属衬底的表面粗糙度为10nm~400nm,粗糙度较低,因此,步骤S2在金属衬底上沉积形成的第一金属预制层的材料与金属衬底的材料相同。根据相似相容的原理,第一金属预制层和金属衬底的结合更牢固,弥补了因金属衬底粗糙度降低而可能造成的结合不良的问题。Since the surface roughness of the metal substrate is 10nm-400nm, which is relatively low, the material of the first metal prefabricated layer deposited on the metal substrate in step S2 is the same as that of the metal substrate. According to the principle of similarity and compatibility, the combination of the first metal prefabricated layer and the metal substrate is stronger, which makes up for the problem of poor connection that may be caused by the reduced roughness of the metal substrate.
考虑到金属衬底优选为铜箔,因此,所述第一金属预制层优选为铜预制层。Considering that the metal substrate is preferably copper foil, the first metal prefabricated layer is preferably a copper prefabricated layer.
由于传统的磁控溅射、溶胶凝胶工艺等沉积时的粒子能量较低,第一金属预制层与金属衬底的结合力差。因此,本发明采用磁过滤多弧离子镀方法在所述金属衬底上沉积形成第一金属预制层。Due to the low particle energy during deposition by conventional magnetron sputtering, sol-gel process, etc., the bonding force between the first metal prefabricated layer and the metal substrate is poor. Therefore, the present invention uses a magnetic filter multi-arc ion plating method to deposit and form the first metal prefabricated layer on the metal substrate.
如图2所示,本发明磁过滤多弧离子镀的装置包括真空弧源1、打火装置2、可视窗口3、过滤磁场4和聚焦磁场5,金属衬底10位于真空腔体6中。本发明磁过滤多弧离子镀的方法为,经过起弧产生的电弧在第一金属单质的靶材11表面燃烧,使靶材11液化产生离子14、电子12和金属液滴13,带有电荷的粒子(离子14和电子12)经过电场加速经过过滤磁场4,带电的粒子沿着磁力线运动,不带电的金属液滴13被过滤磁场4过滤。过滤后,纯净的粒子经聚焦磁场5进入真空腔室6,利用施加于金属衬底10的偏压电场沉积在金属衬底10上。在这整个过程中,电子12被聚集和加速,形成运动的电子云,电子云与离子14分离后两者之间形成强电势,离子14被引出并与电子12一起沉积到金属衬底10上,完成磁过滤多弧离子镀过程,形成第一金属预制层。As shown in Figure 2, the device for magnetic filtering multi-arc ion plating of the present invention includes a
由于在磁过滤多弧离子镀过程中,加速的电子12不断的撞击金属衬底10表面,产生金属原子15,对金属衬底10表面起到清洗和活化作用,使金属衬底10的表面活性增强,因此与沉积得到的第一金属预制层结合力强。并且,可以通过引出电场和偏压的调节,控制粒子的能量。因此,磁过滤多弧离子镀方法形成的第一金属预制层的粒子能量比磁控溅射等方法形成的粒子能量要高出一个数量级,进而,磁过滤多弧离子镀方法形成的第一金属预制层与金属衬底具有更高的结合力,可靠性更高。Because in the magnetic filtration multi-arc ion plating process, the accelerated
优选的,所述磁过滤多弧离子镀方法的工作气氛为氩气,氩气电离后产生Ar+在电场作用下撞击靶材。所述氩气的通入流量为20sccm~50sccm,真空度为2.0×10-2Pa~6.0×10-2Pa。腔室中Ar+越多,产生的动能越大,更有利于靶材离子逸出。Preferably, the working atmosphere of the magnetic filter multi-arc ion plating method is argon gas, and Ar + generated after argon gas ionization hits the target under the action of an electric field. The flow rate of the argon gas is 20 sccm-50 sccm, and the vacuum degree is 2.0×10 -2 Pa-6.0×10 -2 Pa. The more Ar + in the chamber, the greater the kinetic energy generated, which is more conducive to the escape of target ions.
优选的,所述磁过滤多弧离子镀方法的电弧电流为45A~60A,引出电流为7A~11A,施加于所述金属衬底上的偏压为5V~10V,沉积时间为35秒~65秒。进一步的,沉积得到的第一金属预制层的厚度为35nm~65nm。Preferably, the arc current of the magnetic filter multi-arc ion plating method is 45A to 60A, the drawn current is 7A to 11A, the bias voltage applied to the metal substrate is 5V to 10V, and the deposition time is 35 seconds to 65 seconds. Second. Further, the thickness of the deposited first metal prefabricated layer is 35nm-65nm.
同理,步骤S3中采用磁过滤多弧离子镀方法在第一金属预制层上沉积形成第二金属预制层。而且,磁过滤多弧离子镀方法属于离子镀膜,在沉积形成第二金属预制层时,第一金属预制层和第二金属预制层之间容易形成第一金属与第二金属的合金预制层,以提高第一金属预制层和第二金属预制层的结合力。Similarly, in step S3, a magnetic filter multi-arc ion plating method is used to deposit and form a second metal preformed layer on the first metal preformed layer. Moreover, the magnetic filter multi-arc ion plating method belongs to the ion plating film. When depositing and forming the second metal prefabricated layer, an alloy prefabricated layer of the first metal and the second metal is easily formed between the first metal prefabricated layer and the second metal prefabricated layer. In order to improve the bonding force between the first metal prefabricated layer and the second metal prefabricated layer.
优选的,所述磁过滤多弧离子镀方法的工作气氛为氩气,氩气电离后产生Ar+在电场作用下撞击靶材。所述氩气的通入流量为20sccm~50sccm,真空度为2.0×10-2Pa~6.0×10-2Pa。腔室中Ar+越多,产生的动能越大,更有利于靶材离子逸出。Preferably, the working atmosphere of the magnetic filter multi-arc ion plating method is argon gas, and Ar + generated after argon gas ionization hits the target under the action of an electric field. The flow rate of the argon gas is 20 sccm-50 sccm, and the vacuum degree is 2.0×10 -2 Pa-6.0×10 -2 Pa. The more Ar + in the chamber, the greater the kinetic energy generated, which is more conducive to the escape of target ions.
优选的,所述磁过滤多弧离子镀方法的电弧电流为45A~60A,引出电流为7A~11A,施加于所述金属衬底上的偏压为5V~10V,沉积时间为60秒~100秒。因此,施加于金属衬底上的偏压产生电场,在该电场的作用下,带电荷的第二金属离子具有一定的能量,如Ti4+,在5V的电场作用下,具有20eV的能量,通过控制离子的能量大小,从而控制第一金属与第二金属的合金预制层的形成和以及控制合金预制层的厚度。Preferably, the arc current of the magnetic filter multi-arc ion plating method is 45A to 60A, the drawn current is 7A to 11A, the bias voltage applied to the metal substrate is 5V to 10V, and the deposition time is 60 seconds to 100 seconds. Second. Therefore, the bias voltage applied to the metal substrate generates an electric field, and under the action of the electric field, the charged second metal ion has a certain energy, such as Ti 4+ , which has an energy of 20eV under the action of an electric field of 5V, By controlling the energy of the ions, the formation of the alloy prefabricated layer of the first metal and the second metal and the thickness of the alloy prefabricated layer are controlled.
进一步的,沉积得到的第二金属预制层的厚度为50nm~85nm,形成的合金预制层的厚度为10nm~15nm,此时,第一金属预制层的厚度减小为25nm~50nm。Further, the thickness of the deposited second metal prefabricated layer is 50nm-85nm, and the thickness of the formed alloy prefabricated layer is 10nm-15nm. At this time, the thickness of the first metal prefabricated layer is reduced to 25nm-50nm.
第二金属预制层可以包括钛预制层、铝预制层、锆预制层等,考虑到二氧化钛陶瓷薄膜具有较高的击穿场强(>1000kV/cm),尽管其介电常数只有120左右,但储能密度可以达到15J/cm3,采用二氧化钛陶瓷薄膜可进一步提高储能陶瓷薄膜的储能密度。因此,所述第二金属预制层优选为钛预制层。The second metal prefabricated layer may include titanium prefabricated layer, aluminum prefabricated layer, zirconium prefabricated layer, etc. Considering that the titanium dioxide ceramic film has a high breakdown field strength (> 1000kV/cm), although its dielectric constant is only about 120, but The energy storage density can reach 15J/cm 3 , and the use of titanium dioxide ceramic film can further increase the energy storage density of the energy storage ceramic film. Therefore, the second metal prefabricated layer is preferably a titanium prefabricated layer.
步骤S4中,优选采用霍尔离子源对所述第二金属层进行氧化处理,氧气的通入流量为50sccm~80sccm,真空度为5.0×10-2Pa~8.0×10-2Pa,霍尔离子源电压为1000V~2000V,电流为0.6A~2A,氧化处理的时间为10分钟~20分钟。通过高能量的氧霍尔离子对第二金属预制层进行表面氧化处理,可以使第二金属预制层的表层被氧化,形成第二金属氧化预制层。由于该第二金属氧化预制层属于原位生长的预制层,因此与第二金属预制层具有很强的结合力,可靠性高。In step S4, the Hall ion source is preferably used to oxidize the second metal layer, the flow rate of oxygen is 50 sccm-80 sccm, the degree of vacuum is 5.0×10 -2 Pa-8.0×10 -2 Pa, Hall The ion source voltage is 1000V-2000V, the current is 0.6A-2A, and the oxidation treatment time is 10 minutes-20 minutes. Oxidizing the surface of the second metal prefabricated layer by high-energy oxygen Hall ions can oxidize the surface layer of the second metal prefabricated layer to form a second metal oxidized prefabricated layer. Since the second metal oxide prefabricated layer is an in-situ grown prefabricated layer, it has a strong bonding force with the second metal prefabricated layer and has high reliability.
进一步的,氧化处理后得到的第二金属氧化预制层的厚度为10nm~15nm,此时,第二金属预制层的厚度减小为40nm~70nm。Further, the thickness of the second metal oxide prefabricated layer obtained after the oxidation treatment is 10 nm to 15 nm, and at this time, the thickness of the second metal prefabricated layer is reduced to 40 nm to 70 nm.
由于氧化处理得到的第二金属氧化预制层厚度有限,因此,通过步骤S5在第二金属氧化预制层上再次沉积第二金属氧化物预制薄膜,所述第二金属氧化物预制薄膜的厚度为40nm~3.2μm,所述第二金属氧化物预制薄膜的晶粒大小为20nm~200nm,薄膜结构致密。由于第二金属氧化预制层和第二金属氧化物预制薄膜的成分相同,因此,第二金属氧化预制层和第二金属氧化物预制薄膜的结合力强,二者构成了预制陶瓷薄膜,进而得到包括金属衬底和依次形成于金属衬底上的第一金属预制层、合金预制层、第二金属预制层、第二金属氧化预制层和第二金属氧化物预制薄膜的预制储能陶瓷薄膜。Due to the limited thickness of the second metal oxide prefabricated layer obtained by the oxidation treatment, a second metal oxide prefabricated film is deposited again on the second metal oxide prefabricated layer through step S5, and the thickness of the second metal oxide prefabricated film is 40nm ~3.2 μm, the grain size of the second metal oxide prefabricated film is 20nm~200nm, and the film structure is dense. Because the composition of the second metal oxide prefabricated layer and the second metal oxide prefabricated film is the same, the bonding force between the second metal oxide prefabricated layer and the second metal oxide prefabricated film is strong, and the two constitute the prefabricated ceramic film, and then obtain A prefabricated energy storage ceramic thin film comprising a metal substrate, a first metal prefabricated layer, an alloy prefabricated layer, a second metal prefabricated layer, a second metal oxide prefabricated layer and a second metal oxide prefabricated thin film sequentially formed on the metal substrate.
步骤S5中,所述第二金属氧化物预制薄膜的形成方法可以为磁控溅射法、磁过滤多弧离子镀方法等。当采用磁控溅射法时,所述磁控溅射方法的工作气氛为氩气,所述氩气的通入流量为30sccm~120sccm,真空度为0.1Pa~0.5Pa。所述磁控溅射方法中磁控溅射的功率为100W~200W,沉积的时间为0.5分钟~40分钟。In step S5, the method for forming the second metal oxide prefabricated film may be magnetron sputtering, magnetic filter multi-arc ion plating, or the like. When the magnetron sputtering method is adopted, the working atmosphere of the magnetron sputtering method is argon gas, the flow rate of the argon gas is 30sccm-120sccm, and the vacuum degree is 0.1Pa-0.5Pa. In the magnetron sputtering method, the power of the magnetron sputtering is 100W-200W, and the deposition time is 0.5 minutes-40 minutes.
考虑到第二金属预制层优选为钛预制层,则第二金属氧化预制层为二氧化钛预制层,第二金属氧化物预制薄膜为二氧化钛预制薄膜。Considering that the second metal prefabricated layer is preferably a titanium prefabricated layer, the second metal oxide prefabricated layer is a titanium dioxide prefabricated layer, and the second metal oxide prefabricated film is a titanium dioxide prefabricated film.
步骤S6中,对所述预制储能陶瓷薄膜进行热处理,所述热处理的温度为300℃~500℃,时间为30分钟~300分钟。在300℃~500℃下热处理30分钟~300分钟可以使第一金属预制层、合金预制层、第二金属预制层、第二金属氧化预制层和第二金属氧化物预制薄膜中的晶格失配、晶格重构、杂质、相变等非平衡缺陷大量消失,内应力显著降低,得到储能陶瓷薄膜。In step S6, heat treatment is performed on the prefabricated energy storage ceramic thin film, the temperature of the heat treatment is 300°C-500°C, and the time is 30 minutes-300 minutes. Heat treatment at 300° C. to 500° C. for 30 minutes to 300 minutes can cause the crystal lattice in the first metal prefabricated layer, the alloy prefabricated layer, the second metal prefabricated layer, the second metal oxide prefabricated layer and the second metal oxide prefabricated film to be distorted. A large number of non-equilibrium defects such as coordination, lattice reconstruction, impurities, and phase transitions disappear, and the internal stress is significantly reduced, and an energy storage ceramic film is obtained.
优选的,在热处理时充入氩气,防止氧化。所述氩气的流量为100sccm~200sccm,真空度为0.1Pa~1Pa。Preferably, argon is filled during heat treatment to prevent oxidation. The flow rate of the argon gas is 100sccm-200sccm, and the vacuum degree is 0.1Pa-1Pa.
本发明制备方法得到的储能陶瓷薄膜结合力强,原因为:第一、第一金属层和金属衬底材料相同,根据相似相容的原理二层之间结合力强;第二、通过磁过滤多弧离子镀方法在金属衬底上沉积形成第一金属层和第二金属层,沉积得到粒子能量高,结合力强;第三、通过磁过滤多弧离子镀方法,可以在第一金属层和第二金属层之间形成第一金属和第二金属的合金层,从而提高第一金属层和第二金属层的结合力;第四、第二金属氧化物层是第二金属层原位生长得到的,与第二金属层的结合力强;第五、根据相似相容的原理,第二金属氧化物薄膜与第二金属氧化物层的结合力强。The energy storage ceramic thin film obtained by the preparation method of the present invention has strong bonding force, the reasons are: first, the first metal layer and the metal substrate are made of the same material, and the bonding force between the two layers is strong according to the principle of similarity and compatibility; The filter multi-arc ion plating method deposits the first metal layer and the second metal layer on the metal substrate, and the deposited particles have high energy and strong binding force; third, through the magnetic filter multi-arc ion plating method, the first metal An alloy layer of the first metal and the second metal is formed between the first metal layer and the second metal layer, thereby improving the bonding force between the first metal layer and the second metal layer; fourth, the second metal oxide layer is the original metal oxide layer of the second metal layer The second metal oxide film has a strong binding force with the second metal layer; fifthly, according to the principle of similarity and compatibility, the second metal oxide film has a strong binding force with the second metal oxide layer.
本发明的制备方法可在同一腔室中进行,制备效率高,陶瓷薄膜的结晶度、晶粒尺寸等微观结构好、内应力低,提高了储能陶瓷薄膜的储能性能。The preparation method of the invention can be carried out in the same chamber, has high preparation efficiency, good microstructures such as crystallinity and grain size of the ceramic thin film, low internal stress, and improves the energy storage performance of the energy storage ceramic thin film.
如图1所示,本发明还提供一种储能陶瓷薄膜,所述储能陶瓷薄膜包括金属衬底10以及依次形成于所述金属衬底10上的第一金属层20、合金层30、第二金属层40、第二金属氧化物层41和第二金属氧化物薄膜42;其中,所述第一金属层20的材料与所述金属衬底10的材料相同,所述合金层30为第一金属与第二金属所形成的合金层。第二金属氧化物层41和第二金属氧化物薄膜42构成陶瓷薄膜50。As shown in FIG. 1 , the present invention also provides an energy storage ceramic thin film, which includes a
优选的,所述储能陶瓷薄膜由上述制备方法制备得到。其中,第一金属层20、合金层30、第二金属层40、第二金属氧化物层41和第二金属氧化物薄膜42由第一金属预制层、合金预制层、第二金属预制层、第二金属氧化物预制层和第二金属氧化物预制薄膜经热处理后得到,具有更好的晶格,非平衡缺陷和内应力更低。Preferably, the energy storage ceramic thin film is prepared by the above preparation method. Wherein, the
优选的,所述金属衬底10的表面粗糙度为10nm~0.4μm。Preferably, the surface roughness of the
优选的,所述金属衬底10的厚度为6μm~18μm;及/或Preferably, the
所述金属衬底10的表面张力≥60达因;及/或The surface tension of the
所述第一金属层20的厚度为20nm~40nm;及/或The thickness of the
所述第二金属层40的厚度为30nm~60nm;及/或The thickness of the
所述合金层30的厚度为5nm~10nm;及/或The thickness of the
所述第二金属氧化物层41的厚度为5nm~10nm;及/或The thickness of the second
所述第二金属氧化物薄膜42的厚度为25nm~1.99μm,所述第二金属氧化物薄膜42的晶粒大小为30nm~300nm。The thickness of the second metal oxide
优选的,所述金属衬底10包括铜箔,所述第一金属层20包括铜层,所述合金层30包括铜钛合金层,所述第二金属层40包括钛层,所述第二金属氧化物层41包括二氧化钛层,所述第二金属氧化物薄膜42包括二氧化钛薄膜。Preferably, the
本发明的储能陶瓷薄膜中,第一金属层与金属衬底根据相似相容的原理结合牢固,第一金属层和第二金属层通过第一金属与第二金属所形成的合金层提高结合力,第二金属氧化物层是第二金属层的氧化物,二层之间结合力强,第二金属氧化物薄膜和第二金属氧化物层是相同的材料层,结合力强。因此,本发明的储能陶瓷薄膜可在降低金属衬底的表面粗糙度的同时保证结合力,从而可以同时提高储能陶瓷薄膜的储能性能和可靠性。In the energy storage ceramic thin film of the present invention, the first metal layer and the metal substrate are firmly combined according to the principle of similarity and compatibility, and the first metal layer and the second metal layer improve the combination through the alloy layer formed by the first metal and the second metal Strength, the second metal oxide layer is the oxide of the second metal layer, the bonding force between the two layers is strong, the second metal oxide thin film and the second metal oxide layer are the same material layer, and the bonding force is strong. Therefore, the energy storage ceramic thin film of the present invention can reduce the surface roughness of the metal substrate while ensuring the bonding force, thereby simultaneously improving the energy storage performance and reliability of the energy storage ceramic thin film.
以下,将通过以下具体实施例对所述储能薄膜做进一步的说明。Hereinafter, the energy storage thin film will be further described through the following specific examples.
实施例1:Example 1:
以柔性低粗糙度的铜箔为衬底,厚度为6μm,表面粗糙度为10nm,置于真空腔室,抽真空至3×10-3Pa。真空腔室加热至150℃,保温时间10min,充入氩气,氩气流量为20sccm,真空腔室真空度为2×10-2Pa,打开霍尔离子源,设置霍尔离子源的电压为1000V,电流为0.5A,处理1min,使铜箔的表面张力达到60达因。A flexible and low-roughness copper foil is used as a substrate with a thickness of 6 μm and a surface roughness of 10 nm, placed in a vacuum chamber, and evacuated to 3×10 -3 Pa. The vacuum chamber is heated to 150°C, the holding time is 10min, filled with argon gas, the flow rate of argon gas is 20 sccm, the vacuum degree of the vacuum chamber is 2×10 -2 Pa, the Hall ion source is turned on, and the voltage of the Hall ion source is set to 1000V, current 0.5A, treatment for 1min, so that the surface tension of the copper foil reaches 60 dynes.
保持真空度为2.0×10-2Pa,氩气流量为20sccm,以金属铜作为靶材,打开第一磁过滤多弧离子镀电源,调整电弧电流至50A,引出电流9A,施加于铜箔的偏压为5V,沉积时间35s,在铜箔上形成厚度为35nm的铜预制层,关闭第一磁过滤多弧离子镀电源。以金属钛作为靶材,打开第二磁过滤多弧离子镀电源,调整电弧电流至50A,引出电流10A,施加于铜箔的偏压为7V,沉积时间60s,得到厚度为50nm的钛预制层以及厚度为10nm的铜钛合金预制层,此时铜预制层的厚度减小为25nm。Keep the vacuum degree at 2.0×10 -2 Pa, the argon gas flow rate at 20 sccm, use metal copper as the target material, turn on the first magnetic filter multi-arc ion plating power supply, adjust the arc current to 50A, draw the current to 9A, and apply it to the copper foil The bias voltage is 5V, the deposition time is 35s, a copper prefabricated layer with a thickness of 35nm is formed on the copper foil, and the first magnetic filter multi-arc ion plating power supply is turned off. With metal titanium as the target material, turn on the second magnetic filter multi-arc ion plating power supply, adjust the arc current to 50A, draw the current to 10A, apply a bias voltage of 7V to the copper foil, and deposit for 60s to obtain a titanium prefabricated layer with a thickness of 50nm And a copper-titanium alloy prefabricated layer with a thickness of 10nm, at this time, the thickness of the copper prefabricated layer is reduced to 25nm.
关闭第二磁过滤多弧离子镀电源和氩气开关阀门,打开氧气阀门,调整氧气流量为50sccm,真空度为5.0×10-2Pa,打开霍尔离子源,电压为1000V,电流为0.6A,处理时间为10min,使钛预制层表面氧化,得到厚度为10nm的二氧化钛预制层,此时钛预制层的厚度减小为40nm。Turn off the second magnetic filter multi-arc ion plating power supply and argon switch valve, open the oxygen valve, adjust the oxygen flow rate to 50 sccm, the vacuum degree to 5.0×10 -2 Pa, turn on the Hall ion source, the voltage is 1000V, and the current is 0.6A , the treatment time is 10min, the surface of the titanium prefabricated layer is oxidized to obtain a titanium dioxide prefabricated layer with a thickness of 10nm, and the thickness of the titanium prefabricated layer is reduced to 40nm at this time.
关闭霍尔离子源和氧气阀门,打开氩气阀门,调整氩气流量为30sccm,真空度为0.1Pa,打开磁控溅射电源,调节功率为100W,沉积时间为30s,得到厚度为40nm的二氧化钛预制薄膜,二氧化钛预制薄膜的晶粒大小为20nm,进而得到预制储能陶瓷薄膜。Turn off the Hall ion source and the oxygen valve, open the argon valve, adjust the argon flow rate to 30sccm, and the vacuum degree to 0.1Pa, turn on the magnetron sputtering power supply, adjust the power to 100W, and the deposition time to 30s to obtain titanium dioxide with a thickness of 40nm The prefabricated thin film, the grain size of the prefabricated titanium dioxide thin film is 20nm, and then the prefabricated energy storage ceramic thin film is obtained.
关闭磁控溅射电源和氩气阀门,开大氩气流量至100sccm,使真空腔室的真空度为0.1Pa,加热温度至300℃,保温时间30min,消除预制储能陶瓷薄膜的残余应力,得到储能陶瓷薄膜。该储能陶瓷薄膜包括铜箔以及依次形成于铜箔上的铜层、铜钛合金层、钛层、二氧化钛层和二氧化钛薄膜,其中,二氧化钛层和二氧化钛薄膜构成陶瓷薄膜。Turn off the magnetron sputtering power supply and the argon gas valve, increase the flow rate of argon gas to 100sccm, make the vacuum degree of the vacuum chamber 0.1Pa, heat the temperature to 300°C, and hold it for 30 minutes to eliminate the residual stress of the prefabricated energy storage ceramic film, An energy storage ceramic thin film is obtained. The energy storage ceramic thin film includes copper foil and sequentially formed on the copper foil are a copper layer, a copper-titanium alloy layer, a titanium layer, a titanium dioxide layer and a titanium dioxide film, wherein the titanium dioxide layer and the titanium dioxide film constitute the ceramic film.
经过磁控溅射工艺在上述储能薄膜的二氧化钛薄膜上沉积铜金属作为上电极,进行电性能测试。Copper metal was deposited on the titanium dioxide film of the energy storage film as an upper electrode through a magnetron sputtering process, and the electrical performance test was carried out.
经测试,储能陶瓷薄膜中二氧化钛薄膜的厚度为25nm,二氧化钛薄膜的晶粒大小为30nm,二氧化钛层的厚度为5nm,钛层的厚度为30nm,铜钛合金层的厚度为5nm,铜层的厚度为20nm,各层之间的的结合力均为5B。该储能陶瓷薄膜具有柔性,最小弯曲半径为2mm,击穿场强为2000kV/cm,储能密度为35J/cm3。经过1000次弯曲后,各层之间的结合力均为5B,储能密度为34.8J/cm3,保持率为99.5%,可应用于薄膜电容器中。After testing, the thickness of the titanium dioxide film in the energy storage ceramic film is 25nm, the grain size of the titanium dioxide film is 30nm, the thickness of the titanium dioxide layer is 5nm, the thickness of the titanium layer is 30nm, the thickness of the copper-titanium alloy layer is 5nm, and the thickness of the copper layer is 5nm. The thickness is 20nm, and the binding force between each layer is 5B. The energy storage ceramic thin film is flexible, the minimum bending radius is 2 mm, the breakdown field strength is 2000 kV/cm, and the energy storage density is 35 J/cm 3 . After 1000 times of bending, the binding force between each layer is 5B, the energy storage density is 34.8J/cm 3 , and the retention rate is 99.5%, which can be applied in film capacitors.
实施例2:Example 2:
以柔性低粗糙度的铜箔为衬底,厚度为10μm,表面粗糙度为20nm,置于真空腔室,抽真空至3×10-3Pa。真空腔室加热至100℃,保温时间20min,充入氩气,氩气流量为30sccm,真空腔室真空度为3×10-2Pa,打开霍尔离子源,设置霍尔离子源的电压为800V,电流为0.6A,处理5min,使铜箔的表面张力达到65达因。A flexible and low-roughness copper foil is used as a substrate with a thickness of 10 μm and a surface roughness of 20 nm, placed in a vacuum chamber, and evacuated to 3×10 -3 Pa. The vacuum chamber is heated to 100°C, the holding time is 20min, filled with argon gas, the flow rate of argon gas is 30 sccm, the vacuum degree of the vacuum chamber is 3×10 -2 Pa, the Hall ion source is turned on, and the voltage of the Hall ion source is set to 800V, current 0.6A, treatment for 5min, so that the surface tension of the copper foil reaches 65 dynes.
保持真空度为3.0×10-2Pa,氩气流量为30sccm,以金属铜作为靶材,打开第一磁过滤多弧离子镀电源,调整电弧电流至55A,引出电流10A,施加于铜箔的偏压为6V,沉积时间45s,在铜箔上形成厚度为45nm的铜预制层,关闭第一磁过滤多弧离子镀电源。以金属钛作为靶材,打开第二磁过滤多弧离子镀电源,调整电弧电流至45A,引出电流10A,施加于铜箔的偏压为8V,沉积时间70s,得到厚度为60nm的钛预制层以及厚度为11nm的铜钛合金预制层,此时铜预制层的厚度减小为34nm。Keep the vacuum degree at 3.0×10 -2 Pa, the argon gas flow rate at 30 sccm, use metal copper as the target material, turn on the first magnetic filter multi-arc ion plating power supply, adjust the arc current to 55A, draw the current to 10A, and apply it to the copper foil The bias voltage is 6V, the deposition time is 45s, a copper prefabricated layer with a thickness of 45nm is formed on the copper foil, and the first magnetic filter multi-arc ion plating power supply is turned off. With metal titanium as the target material, turn on the second magnetic filter multi-arc ion plating power supply, adjust the arc current to 45A, draw the current to 10A, apply a bias voltage of 8V to the copper foil, and deposit for 70s to obtain a titanium prefabricated layer with a thickness of 60nm And a copper-titanium alloy prefabricated layer with a thickness of 11nm, at this time, the thickness of the copper prefabricated layer is reduced to 34nm.
关闭第二磁过滤多弧离子镀电源和氩气开关阀门,打开氧气阀门,调整氧气流量为60sccm,真空度为6.0×10-2Pa,打开霍尔离子源,电压为1200V,电流为0.7A,处理时间为15min,使钛预制层表面氧化,得到厚度为12nm的二氧化钛预制层,此时钛预制层的厚度减小为48nm。Turn off the second magnetic filter multi-arc ion plating power supply and argon switching valve, open the oxygen valve, adjust the oxygen flow rate to 60 sccm, the vacuum degree to 6.0×10 -2 Pa, turn on the Hall ion source, the voltage is 1200V, and the current is 0.7A , the treatment time is 15min, the surface of the titanium prefabricated layer is oxidized to obtain a titanium dioxide prefabricated layer with a thickness of 12nm, and the thickness of the titanium prefabricated layer is reduced to 48nm at this time.
关闭霍尔离子源和氧气阀门,打开氩气阀门,调整氩气流量为60sccm,真空度为0.4Pa,打开磁控溅射电源,调节功率为120W,沉积时间为1min,得到厚度为80nm的二氧化钛预制薄膜,二氧化钛预制薄膜的晶粒大小为80nm,进而得到预制储能陶瓷薄膜。Turn off the Hall ion source and the oxygen valve, open the argon valve, adjust the argon flow rate to 60sccm, and the vacuum degree to 0.4Pa, turn on the magnetron sputtering power supply, adjust the power to 120W, and set the deposition time to 1min to obtain titanium dioxide with a thickness of 80nm The prefabricated thin film, the grain size of the prefabricated titanium dioxide thin film is 80nm, and then the prefabricated energy storage ceramic thin film is obtained.
关闭磁控溅射电源和氩气阀门,开大氩气流量至150sccm,使真空腔室的真空度为0.5Pa,加热温度至400℃,保温时间3h,消除预制储能陶瓷薄膜的残余应力,得到储能陶瓷薄膜。该储能陶瓷薄膜包括铜箔以及依次形成于铜箔上的铜层、铜钛合金层、钛层、二氧化钛层和二氧化钛薄膜,其中,二氧化钛层和二氧化钛薄膜构成陶瓷薄膜。Turn off the magnetron sputtering power supply and the argon gas valve, increase the flow rate of argon gas to 150sccm, make the vacuum degree of the vacuum chamber 0.5Pa, heat the temperature to 400°C, and hold the temperature for 3h to eliminate the residual stress of the prefabricated energy storage ceramic film. An energy storage ceramic thin film is obtained. The energy storage ceramic thin film includes copper foil and sequentially formed on the copper foil are a copper layer, a copper-titanium alloy layer, a titanium layer, a titanium dioxide layer and a titanium dioxide film, wherein the titanium dioxide layer and the titanium dioxide film constitute the ceramic film.
经过磁控溅射工艺在上述储能薄膜的二氧化钛薄膜上沉积银金属作为上电极,进行电性能测试。Silver metal was deposited on the titanium dioxide film of the energy storage film as an upper electrode through a magnetron sputtering process, and the electrical performance test was carried out.
经测试,储能陶瓷薄膜中二氧化钛薄膜的厚度为50nm,二氧化钛薄膜的晶粒大小为120nm,二氧化钛层的厚度为7nm,钛层的厚度为40nm,铜钛合金层的厚度为6nm,铜层的厚度为29nm,各层之间的的结合力均为5B。该储能陶瓷薄膜具有柔性,最小弯曲半径为5mm,击穿场强为4000kV/cm,储能密度为65J/cm3。经过1000次弯曲后,各层之间的结合力均为5B,储能密度为64.7J/cm3,保持率为99.6%,可应用于薄膜电容器中。After testing, the thickness of the titanium dioxide film in the energy storage ceramic film is 50nm, the grain size of the titanium dioxide film is 120nm, the thickness of the titanium dioxide layer is 7nm, the thickness of the titanium layer is 40nm, the thickness of the copper-titanium alloy layer is 6nm, and the thickness of the copper layer is The thickness is 29nm, and the binding force between each layer is 5B. The energy storage ceramic thin film is flexible, the minimum bending radius is 5 mm, the breakdown field strength is 4000 kV/cm, and the energy storage density is 65 J/cm 3 . After 1000 times of bending, the binding force between each layer is 5B, the energy storage density is 64.7J/cm 3 , and the retention rate is 99.6%, which can be applied in film capacitors.
实施例3:Example 3:
以柔性低粗糙度的铜箔为衬底,厚度为12μm,表面粗糙度为80nm,置于真空腔室,抽真空至3×10-3Pa。真空腔室加热至300℃,保温时间30min,充入氩气,氩气流量为50sccm,真空腔室真空度为6×10-2Pa,打开霍尔离子源,设置霍尔离子源的电压为1500V,电流为2A,处理10min,使铜箔的表面张力达到75达因。A flexible and low-roughness copper foil is used as a substrate with a thickness of 12 μm and a surface roughness of 80 nm, placed in a vacuum chamber, and evacuated to 3×10 -3 Pa. The vacuum chamber is heated to 300°C, the holding time is 30min, filled with argon gas, the flow rate of argon gas is 50 sccm, the vacuum degree of the vacuum chamber is 6×10 -2 Pa, the Hall ion source is turned on, and the voltage of the Hall ion source is set to 1500V, current 2A, treatment for 10min, so that the surface tension of the copper foil reaches 75 dynes.
保持真空度为6.0×10-2Pa,氩气流量为50sccm,以金属铜作为靶材,打开第一磁过滤多弧离子镀电源,调整电弧电流至60A,引出电流11A,施加于铜箔的偏压为10V,沉积时间65s,在铜箔上形成厚度为65nm的铜预制层,关闭第一磁过滤多弧离子镀电源。以金属钛作为靶材,打开第二磁过滤多弧离子镀电源,调整电弧电流至60A,引出电流11A,施加于铜箔的偏压为10V,沉积时间100s,得到厚度为85nm的钛预制层以及厚度为15nm的铜钛合金预制层,此时铜预制层的厚度减小为50nm。Keep the vacuum at 6.0×10 -2 Pa, the argon gas flow rate at 50 sccm, use metal copper as the target material, turn on the first magnetic filter multi-arc ion plating power supply, adjust the arc current to 60A, draw the current to 11A, and apply it to the copper foil. The bias voltage is 10V, the deposition time is 65s, a copper prefabricated layer with a thickness of 65nm is formed on the copper foil, and the first magnetic filter multi-arc ion plating power supply is turned off. With metal titanium as the target material, turn on the second magnetic filter multi-arc ion plating power supply, adjust the arc current to 60A, draw the current to 11A, apply a bias voltage of 10V to the copper foil, and deposit for 100s to obtain a titanium prefabricated layer with a thickness of 85nm And a copper-titanium alloy prefabricated layer with a thickness of 15nm, at this time, the thickness of the copper prefabricated layer is reduced to 50nm.
关闭第二磁过滤多弧离子镀电源和氩气开关阀门,打开氧气阀门,调整氧气流量为80sccm,真空度为8.0×10-2Pa,打开霍尔离子源,电压为2000V,电流为2A,处理时间为20min,使钛预制层表面氧化,得到厚度为15nm的二氧化钛预制层,此时钛预制层的厚度减小为70nm。Turn off the second magnetic filter multi-arc ion plating power supply and argon switch valve, open the oxygen valve, adjust the oxygen flow rate to 80sccm, the vacuum degree to 8.0×10 -2 Pa, turn on the Hall ion source, the voltage is 2000V, the current is 2A, The treatment time is 20 minutes to oxidize the surface of the titanium prefabricated layer to obtain a titanium dioxide prefabricated layer with a thickness of 15 nm. At this time, the thickness of the titanium prefabricated layer is reduced to 70 nm.
关闭霍尔离子源和氧气阀门,打开氩气阀门,调整氩气流量为120sccm,真空度为0.5Pa,打开磁控溅射电源,调节功率为200W,沉积时间为40min,得到厚度为3.2μm的二氧化钛预制薄膜,二氧化钛预制薄膜的晶粒大小为200nm,进而得到预制储能陶瓷薄膜。Turn off the Hall ion source and the oxygen valve, open the argon valve, adjust the argon flow rate to 120 sccm, the vacuum degree to 0.5 Pa, turn on the magnetron sputtering power supply, adjust the power to 200W, and the deposition time to 40min to obtain a film with a thickness of 3.2μm. The titanium dioxide prefabricated thin film has a grain size of 200nm, and then the prefabricated energy storage ceramic thin film is obtained.
关闭磁控溅射电源和氩气阀门,开大氩气流量至200sccm,使真空腔室的真空度为1Pa,加热温度至500℃,保温时间5h,消除预制储能陶瓷薄膜的残余应力,得到储能陶瓷薄膜。该储能陶瓷薄膜包括铜箔以及依次形成于铜箔上的铜层、铜钛合金层、钛层、二氧化钛层和二氧化钛薄膜,其中,二氧化钛层和二氧化钛薄膜构成陶瓷薄膜。Turn off the magnetron sputtering power supply and the argon gas valve, increase the flow rate of argon gas to 200 sccm, make the vacuum degree of the
经过磁控溅射工艺在上述储能薄膜的二氧化钛薄膜上沉积铂金属作为上电极,进行电性能测试。Platinum metal was deposited on the titanium dioxide film of the energy storage film as an upper electrode through a magnetron sputtering process, and the electrical performance test was carried out.
经测试,储能陶瓷薄膜中二氧化钛薄膜的厚度为1.99μm,二氧化钛薄膜的晶粒大小为300nm,二氧化钛层的厚度为10nm,钛层的厚度为60nm,铜钛合金层的厚度为10nm,铜层的厚度为40nm,各层之间的的结合力均为5B。该储能陶瓷薄膜具有柔性,最小弯曲半径为20mm,击穿场强为2000kV/cm,储能密度为25J/cm3。经过1000次弯曲后,各层之间的结合力均为5B,储能密度为24.9J/cm3,保持率为99.8%,可应用于薄膜电容器中。After testing, the thickness of the titanium dioxide film in the energy storage ceramic film is 1.99 μm, the grain size of the titanium dioxide film is 300 nm, the thickness of the titanium dioxide layer is 10 nm, the thickness of the titanium layer is 60 nm, the thickness of the copper-titanium alloy layer is 10 nm, and the copper layer The thickness is 40nm, and the binding force between each layer is 5B. The energy storage ceramic thin film is flexible, the minimum bending radius is 20 mm, the breakdown field strength is 2000 kV/cm, and the energy storage density is 25 J/cm 3 . After 1000 times of bending, the binding force between each layer is 5B, the energy storage density is 24.9J/cm 3 , and the retention rate is 99.8%, which can be applied in film capacitors.
实施例4:Example 4:
以柔性低粗糙度的铜箔为衬底,厚度为18μm,表面粗糙度为400nm,置于真空腔室,抽真空至3×10-3Pa。真空腔室加热至300℃,保温时间30min,充入氩气,氩气流量为40sccm,真空腔室真空度为4×10-2Pa,打开霍尔离子源,设置霍尔离子源的电压为800V,电流为0.5A,处理7min,使铜箔的表面张力达到65达因。A flexible and low-roughness copper foil is used as a substrate with a thickness of 18 μm and a surface roughness of 400 nm, placed in a vacuum chamber, and evacuated to 3×10 -3 Pa. The vacuum chamber is heated to 300°C, the holding time is 30min, filled with argon gas, the flow rate of argon gas is 40 sccm, the vacuum degree of the vacuum chamber is 4×10 -2 Pa, the Hall ion source is turned on, and the voltage of the Hall ion source is set to 800V, current 0.5A, treatment for 7 minutes, so that the surface tension of the copper foil reaches 65 dynes.
保持真空度为3.0×10-2Pa,氩气流量为40sccm,以金属铜作为靶材,打开第一磁过滤多弧离子镀电源,调整电弧电流至45A,引出电流7A,施加于铜箔的偏压为6V,沉积时间50s,在铜箔上形成厚度为50nm的铜预制层,关闭第一磁过滤多弧离子镀电源。以金属钛作为靶材,打开第二磁过滤多弧离子镀电源,调整电弧电流至45A,引出电流7A,施加于铜箔的偏压为5V,沉积时间100s,得到厚度为60nm的钛预制层以及厚度为10nm的铜钛合金预制层,此时铜预制层的厚度减小为40nm。Keep the vacuum degree at 3.0×10 -2 Pa, the argon gas flow rate at 40 sccm, and use metal copper as the target material, turn on the first magnetic filter multi-arc ion plating power supply, adjust the arc current to 45A, draw the current to 7A, and apply it to the copper foil. The bias voltage is 6V, the deposition time is 50s, a copper prefabricated layer with a thickness of 50nm is formed on the copper foil, and the first magnetic filter multi-arc ion plating power supply is turned off. With metal titanium as the target material, turn on the second magnetic filter multi-arc ion plating power supply, adjust the arc current to 45A, draw the current to 7A, apply a bias voltage of 5V to the copper foil, and deposit for 100s to obtain a titanium prefabricated layer with a thickness of 60nm and a copper-titanium alloy prefabricated layer with a thickness of 10 nm, at this time, the thickness of the copper prefabricated layer is reduced to 40 nm.
关闭第二磁过滤多弧离子镀电源和氩气开关阀门,打开氧气阀门,调整氧气流量为60sccm,真空度为6.0×10-2Pa,打开霍尔离子源,电压为1500V,电流为1.2A,处理时间为10min,使钛预制层表面氧化,得到厚度为13nm的二氧化钛预制层,此时钛预制层的厚度减小为47nm。Turn off the second magnetic filter multi-arc ion plating power supply and argon switch valve, open the oxygen valve, adjust the oxygen flow rate to 60sccm, the vacuum degree to 6.0×10 -2 Pa, turn on the Hall ion source, the voltage is 1500V, and the current is 1.2A , the treatment time is 10min, the surface of the titanium prefabricated layer is oxidized to obtain a titanium dioxide prefabricated layer with a thickness of 13nm, and the thickness of the titanium prefabricated layer is reduced to 47nm at this time.
关闭霍尔离子源和氧气阀门,打开氩气阀门,调整氩气流量为100sccm,真空度为0.3Pa,打开磁控溅射电源,调节功率为150W,沉积时间为30min,得到厚度为2.4μm的二氧化钛预制薄膜,二氧化钛预制薄膜的晶粒大小为150nm,进而得到预制储能陶瓷薄膜。Turn off the Hall ion source and the oxygen valve, open the argon valve, adjust the argon flow rate to 100 sccm, the vacuum degree to 0.3 Pa, turn on the magnetron sputtering power supply, adjust the power to 150W, and the deposition time to 30min to obtain a film with a thickness of 2.4μm. The titanium dioxide prefabricated thin film has a grain size of 150nm, and then a prefabricated energy storage ceramic thin film is obtained.
关闭磁控溅射电源和氩气阀门,开大氩气流量至150sccm,使真空腔室的真空度为0.5Pa,加热温度至450℃,保温时间4h,消除预制储能陶瓷薄膜的残余应力,得到储能陶瓷薄膜。该储能陶瓷薄膜包括铜箔以及依次形成于铜箔上的铜层、铜钛合金层、钛层、二氧化钛层和二氧化钛薄膜,其中,二氧化钛层和二氧化钛薄膜构成陶瓷薄膜。Turn off the magnetron sputtering power supply and the argon gas valve, increase the argon gas flow rate to 150sccm, make the vacuum degree of the vacuum chamber 0.5Pa, heat the temperature to 450°C, and hold the temperature for 4h to eliminate the residual stress of the prefabricated energy storage ceramic film. An energy storage ceramic thin film is obtained. The energy storage ceramic thin film includes copper foil and sequentially formed on the copper foil are a copper layer, a copper-titanium alloy layer, a titanium layer, a titanium dioxide layer and a titanium dioxide film, wherein the titanium dioxide layer and the titanium dioxide film constitute the ceramic film.
经过磁控溅射工艺在上述储能薄膜的二氧化钛薄膜上沉积铂金属作为上电极,进行电性能测试。Platinum metal was deposited on the titanium dioxide film of the energy storage film as an upper electrode through a magnetron sputtering process, and the electrical performance test was carried out.
经测试,储能陶瓷薄膜中二氧化钛薄膜的厚度为1.49μm,二氧化钛薄膜的晶粒大小为200nm,二氧化钛层的厚度为8nm,钛层的厚度为42nm,铜钛合金层的厚度为5nm,铜层的厚度为30nm,各层之间的的结合力均为5B。该储能陶瓷薄膜具有柔性,最小弯曲半径为12mm,击穿场强为2500kV/cm,储能密度为30J/cm3。经过1000次弯曲后,各层之间的结合力均为5B,储能密度为29.8J/cm3,保持率为99.5%,可应用于薄膜电容器中。After testing, the thickness of the titanium dioxide film in the energy storage ceramic film is 1.49 μm, the grain size of the titanium dioxide film is 200 nm, the thickness of the titanium dioxide layer is 8 nm, the thickness of the titanium layer is 42 nm, the thickness of the copper-titanium alloy layer is 5 nm, and the copper layer The thickness of the layer is 30nm, and the binding force between each layer is 5B. The energy storage ceramic thin film is flexible, the minimum bending radius is 12 mm, the breakdown field strength is 2500 kV/cm, and the energy storage density is 30 J/cm 3 . After 1000 times of bending, the binding force between each layer is 5B, the energy storage density is 29.8J/cm 3 , and the retention rate is 99.5%, which can be applied in film capacitors.
实施例5:Example 5:
以柔性低粗糙度铜箔为衬底,厚度为13μm,表面粗糙度为250nm,置于真空腔室,抽真空至3×10-3Pa。真空腔室加热至200℃,保温时间25min,充入氩气,氩气流量为40sccm,真空腔室真空度为5×10-2Pa,打开霍尔离子源,设置霍尔离子源的电压为1200V,电流为1.2A,处理6min,使铜箔的表面张力达到65达因。A flexible low-roughness copper foil is used as a substrate with a thickness of 13 μm and a surface roughness of 250 nm, placed in a vacuum chamber, and evacuated to 3×10 -3 Pa. The vacuum chamber was heated to 200°C, the holding time was 25min, filled with argon gas, the flow rate of argon gas was 40 sccm, the vacuum degree of the vacuum chamber was 5×10 -2 Pa, the Hall ion source was turned on, and the voltage of the Hall ion source was set to 1200V, current 1.2A, treatment for 6min, so that the surface tension of the copper foil reaches 65 dynes.
保持真空度为2.5×10-2Pa,氩气流量为25sccm,以金属铜作为靶材,打开第一磁过滤多弧离子镀电源,调整电弧电流至50A,引出电流9A,施加于铜箔的偏压为8V,沉积时间40s,在铜箔上形成厚度为40nm的铜预制层,关闭第一磁过滤多弧离子镀电源。以金属钛作为靶材,打开第二磁过滤多弧离子镀电源,调整电弧电流至55A,引出电流11A,施加于铜箔的偏压为10V,沉积时间80s,得到厚度为65nm的钛预制层以及厚度为15nm的铜钛合金预制层,此时铜预制层的厚度减小为25nm。Keep the vacuum degree at 2.5×10 -2 Pa, the argon gas flow rate at 25 sccm, use metal copper as the target material, turn on the first magnetic filter multi-arc ion plating power supply, adjust the arc current to 50A, draw the current to 9A, and apply it to the copper foil The bias voltage is 8V, the deposition time is 40s, a copper prefabricated layer with a thickness of 40nm is formed on the copper foil, and the first magnetic filter multi-arc ion plating power supply is turned off. With metal titanium as the target material, turn on the second magnetic filter multi-arc ion plating power supply, adjust the arc current to 55A, draw the current to 11A, apply a bias voltage of 10V to the copper foil, and deposit for 80s to obtain a titanium prefabricated layer with a thickness of 65nm And a copper-titanium alloy prefabricated layer with a thickness of 15nm, at this time, the thickness of the copper prefabricated layer is reduced to 25nm.
关闭第二磁过滤多弧离子镀电源和氩气开关阀门,打开氧气阀门,调整氧气流量为70sccm,真空度为7.0×10-2Pa,打开霍尔离子源,电压为1500V,电流为1.5A,处理时间为15min,使钛预制层表面氧化,得到厚度为13nm的二氧化钛预制层,此时钛预制层的厚度减小为52nm。Turn off the second magnetic filter multi-arc ion plating power supply and argon switch valve, open the oxygen valve, adjust the oxygen flow rate to 70sccm, the vacuum degree to 7.0×10 -2 Pa, turn on the Hall ion source, the voltage is 1500V, and the current is 1.5A , the treatment time is 15min, the surface of the titanium prefabricated layer is oxidized to obtain a titanium dioxide prefabricated layer with a thickness of 13nm, and the thickness of the titanium prefabricated layer is reduced to 52nm at this time.
关闭霍尔离子源和氧气阀门,打开氩气阀门,调整氩气流量为110sccm,真空度为0.4Pa,打开磁控溅射电源,调节功率为170W,沉积时间为20min,得到厚度为1.6μm的二氧化钛预制薄膜,二氧化钛预制薄膜的晶粒大小为50nm,进而得到预制储能陶瓷薄膜。Turn off the Hall ion source and the oxygen valve, open the argon valve, adjust the argon flow rate to 110 sccm, the vacuum degree to 0.4Pa, turn on the magnetron sputtering power supply, adjust the power to 170W, and the deposition time to 20min to obtain a film with a thickness of 1.6μm. The titanium dioxide prefabricated thin film has a grain size of 50nm, and then a prefabricated energy storage ceramic thin film is obtained.
关闭磁控溅射电源和氩气阀门,开大氩气流量至180sccm,使真空腔室的真空度为0.8Pa,加热温度至350℃,保温时间4h,消除预制储能陶瓷薄膜的残余应力,得到储能陶瓷薄膜。该储能陶瓷薄膜包括铜箔以及依次形成于铜箔上的铜层、铜钛合金层、钛层、二氧化钛层和二氧化钛薄膜,其中,二氧化钛层和二氧化钛薄膜构成陶瓷薄膜。Turn off the magnetron sputtering power supply and the argon gas valve, increase the argon gas flow rate to 180sccm, make the vacuum degree of the vacuum chamber 0.8Pa, heat the temperature to 350°C, and hold for 4h to eliminate the residual stress of the prefabricated energy storage ceramic film, An energy storage ceramic thin film is obtained. The energy storage ceramic thin film includes copper foil and sequentially formed on the copper foil are a copper layer, a copper-titanium alloy layer, a titanium layer, a titanium dioxide layer and a titanium dioxide film, wherein the titanium dioxide layer and the titanium dioxide film constitute the ceramic film.
经过磁控溅射工艺在上述储能薄膜的二氧化钛薄膜上沉积铜金属作为上电极,进行电性能测试。Copper metal was deposited on the titanium dioxide film of the energy storage film as an upper electrode through a magnetron sputtering process, and the electrical performance test was carried out.
经测试,储能陶瓷薄膜中二氧化钛薄膜的厚度为1.2μm,二氧化钛薄膜的晶粒大小为100nm,二氧化钛层的厚度为8nm,钛层的厚度为46nm,铜钛合金层的厚度为10nm,铜层的厚度为20nm,各层之间的的结合力均为5B。该储能陶瓷薄膜具有柔性,最小弯曲半径为8mm,击穿场强为3000kV/cm,储能密度为40J/cm3。经过1000次弯曲后,各层之间的结合力均为5B,储能密度为39.8J/cm3,保持率为99.5%,可应用于薄膜电容器中。After testing, the thickness of the titanium dioxide film in the energy storage ceramic film is 1.2 μm, the grain size of the titanium dioxide film is 100 nm, the thickness of the titanium dioxide layer is 8 nm, the thickness of the titanium layer is 46 nm, the thickness of the copper-titanium alloy layer is 10 nm, and the copper layer The thickness of the layer is 20nm, and the binding force between each layer is 5B. The energy storage ceramic thin film is flexible, the minimum bending radius is 8 mm, the breakdown field strength is 3000 kV/cm, and the energy storage density is 40 J/cm 3 . After 1000 times of bending, the binding force between each layer is 5B, the energy storage density is 39.8J/cm 3 , and the retention rate is 99.5%, which can be applied in film capacitors.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811196381.XA CN110760802B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810848153.XA CN110760801B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film and preparation method thereof |
CN201811196381.XA CN110760802B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810848153.XA Division CN110760801B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110760802A CN110760802A (en) | 2020-02-07 |
CN110760802B true CN110760802B (en) | 2023-04-11 |
Family
ID=69328383
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811196367.XA Active CN110767450B (en) | 2018-07-27 | 2018-07-27 | Film capacitors |
CN201810848153.XA Active CN110760801B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film and preparation method thereof |
CN201811196381.XA Active CN110760802B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811196367.XA Active CN110767450B (en) | 2018-07-27 | 2018-07-27 | Film capacitors |
CN201810848153.XA Active CN110760801B (en) | 2018-07-27 | 2018-07-27 | Energy storage ceramic film and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN110767450B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240158905A1 (en) * | 2021-02-17 | 2024-05-16 | Coeurdor | Protective coating for a copper allow substrate and corresponding process |
CN113691083A (en) * | 2021-08-20 | 2021-11-23 | 张振亚 | Novel accelerator and energy storage ring formed by direct current motor |
CN119008243A (en) * | 2023-05-22 | 2024-11-22 | 成都柔电云科科技有限公司 | Film capacitor for human tumor treatment and preparation method thereof, tumor treatment electrode patch and tumor treatment system |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828346A (en) * | 1985-10-08 | 1989-05-09 | The Boc Group, Inc. | Transparent article having high visible transmittance |
JP2942128B2 (en) * | 1993-11-29 | 1999-08-30 | 静岡県 | Thin film capacitor and method of manufacturing the same |
JPH10199751A (en) * | 1997-01-14 | 1998-07-31 | Mitsubishi Shindoh Co Ltd | Metallized films and film capacitors |
JP4428500B2 (en) * | 2001-07-13 | 2010-03-10 | 富士通マイクロエレクトロニクス株式会社 | Capacitor element and manufacturing method thereof |
JP2004047705A (en) * | 2002-07-11 | 2004-02-12 | Toray Ind Inc | Metal depositing film and ceramic laminate |
JP4148293B2 (en) * | 2004-02-19 | 2008-09-10 | 日立化成工業株式会社 | Thin film composite material, wiring board material using the same, wiring board, electronic component material, electronic component, and methods for producing the same |
KR100620451B1 (en) * | 2005-01-10 | 2006-09-11 | 삼성전자주식회사 | Method for forming metal oxide alloy film, metal oxide alloy film, method for manufacturing gate structure using same and method for manufacturing capacitor |
US20070121274A1 (en) * | 2005-07-12 | 2007-05-31 | Talvacchio John J | Small volume thin film and high energy density crystal capacitors |
JP4877017B2 (en) * | 2007-03-30 | 2012-02-15 | Tdk株式会社 | Thin film capacitor |
CN101071860A (en) * | 2007-06-08 | 2007-11-14 | 大连理工大学 | Flexible current-collecting body |
JP5375582B2 (en) * | 2008-12-26 | 2013-12-25 | Tdk株式会社 | Thin film capacitor manufacturing method |
JP5267268B2 (en) * | 2009-03-26 | 2013-08-21 | Tdk株式会社 | Thin film capacitor and manufacturing method thereof |
US8088658B2 (en) * | 2009-04-28 | 2012-01-03 | E. I. Du Pont De Nemours And Company | Thin film capacitor and method of fabrication thereof |
JP2014041949A (en) * | 2012-08-23 | 2014-03-06 | Panasonic Corp | Capacitor and circuit board incorporated therewith and manufacturing method of capacitor |
WO2014081917A2 (en) * | 2012-11-21 | 2014-05-30 | 3M Innovative Properties Company | Multilayer film including first and second dielectric layers |
CN103151339B (en) * | 2013-02-08 | 2016-01-20 | 日月光半导体制造股份有限公司 | Capacitor structure and manufacturing method |
CN103680978B (en) * | 2013-12-20 | 2017-04-19 | 南京理工大学 | High-specific-volume low-voltage aluminum electrolytic capacitor and manufacturing method thereof |
CN103928233B (en) * | 2014-03-18 | 2016-06-29 | 天津大学 | There is thin film capacitor of stabilized electrodes structure and preparation method thereof |
CN107077967A (en) * | 2014-08-26 | 2017-08-18 | 株式会社村田制作所 | Capacitor and its production technology |
CN105679840B (en) * | 2016-04-11 | 2018-07-13 | 南京大学 | A kind of novel patch formula recalls container and preparation method thereof |
CN106340404B (en) * | 2016-09-12 | 2018-11-27 | 肇庆华锋电子铝箔股份有限公司 | A kind of preparation method of the high dielectric nano complex oxide film anode foils of low-voltage aluminum electrolytic capacitor |
CN108257922A (en) * | 2016-12-29 | 2018-07-06 | 比亚迪股份有限公司 | A kind of heat-radiating substrate and its preparation method and application and electronic component |
CN108008476B (en) * | 2017-12-22 | 2019-09-10 | 武汉大学 | A kind of laser generator reflecting plate |
-
2018
- 2018-07-27 CN CN201811196367.XA patent/CN110767450B/en active Active
- 2018-07-27 CN CN201810848153.XA patent/CN110760801B/en active Active
- 2018-07-27 CN CN201811196381.XA patent/CN110760802B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110760801B (en) | 2021-09-28 |
CN110760801A (en) | 2020-02-07 |
CN110767450B (en) | 2022-05-24 |
CN110760802A (en) | 2020-02-07 |
CN110767450A (en) | 2020-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110760802B (en) | Energy storage ceramic film | |
CN110660583B (en) | Thin film capacitor | |
CN105543796A (en) | Method for preparing nano porous copper thin film material by magnetron sputtering | |
CN108231322B (en) | Sintered neodymium-iron-boron magnet deposited with composite film and preparation method thereof | |
CN108517487B (en) | A kind of TiAlN/W2N multilayer coating with high hardness and high wear resistance and preparation method thereof | |
TW201234920A (en) | Electrochromic layer, coated article having same, and method for making the article | |
CN108456843A (en) | A kind of high performance Ti AlSiN nano-composite coatings and its preparation method and application | |
CN113981392B (en) | A Ti-Al-C MAX phase coating and low temperature phase preparation method thereof | |
JPS6365074A (en) | Method for laminating works by amorphous moisture-containing carbon | |
CN104004992B (en) | Stainless steel hydrogen permeation barrier composite membrane and preparation method thereof | |
CN109166790B (en) | A method for exfoliating perovskite oxide piezoelectric thin films on graphene using metal stress layers | |
CN110767448B (en) | Preparation method of flexible energy storage film | |
CN116855888A (en) | Flexible high-entropy alloy coating and preparation method and application thereof | |
CN110767473B (en) | Flexible energy storage film | |
TW201031482A (en) | Manufacturing method of inorganic nano-particles and a device using the same | |
CN110970720B (en) | High-temperature-resistant frequency-adjustable flexible antenna and manufacturing method thereof | |
TW201235496A (en) | Housing and method for making the same | |
CN105970170A (en) | Method for preparing conductive and corrosion-resistant multilayer-structured Hf/Si3N4 coating on Mg alloy | |
CN109207939B (en) | NiCrAlSi/CeO2 doped YSZ coating on the surface of a γ-TiAl alloy and its preparation method | |
CN110783595A (en) | Metal bipolar plate, preparation method thereof and fuel cell | |
CN114540766A (en) | Nano-size metal W film/NiTi composite board and preparation method thereof | |
WO2024207173A1 (en) | Copper interconnect structure system and preparation method therefor, and electronic component | |
CN116065122A (en) | Composite deuterium storage coating for neutron launch tube and preparation method thereof | |
CN115612996A (en) | Cutter and TiB x Coating, preparation method and application thereof | |
TW201231697A (en) | Housing and method for making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |