CN110732186A - A kind of porous air filter membrane and its preparation method and use - Google Patents
A kind of porous air filter membrane and its preparation method and use Download PDFInfo
- Publication number
- CN110732186A CN110732186A CN201911016889.1A CN201911016889A CN110732186A CN 110732186 A CN110732186 A CN 110732186A CN 201911016889 A CN201911016889 A CN 201911016889A CN 110732186 A CN110732186 A CN 110732186A
- Authority
- CN
- China
- Prior art keywords
- pyroelectric
- porous air
- particles
- porous
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0435—Electret
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0471—Surface coating material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明提供一种多孔空气过滤膜及其制备方法和用途。所述多孔空气过滤膜包括多孔基底材料和覆盖在所述多孔基底材料的纤维上的具有热释电功能的聚合物层。本发明所述多孔空气过滤膜可阻留比本身孔隙小得多的细小颗粒,而且容尘量高、过滤效率高、空气过滤阻力低,并且能够再生以重复多次使用。本发明使用喷涂法将具有热释电功能的聚合物层覆盖在多孔基底材料的纤维上,从而制备得到多孔空气过滤膜,所述制备方法简单,制备条件温和,耗能低,易于工业化生产。
The present invention provides a porous air filter membrane and its preparation method and use. The porous air filtration membrane includes a porous base material and a polymer layer with pyroelectric function overlying fibers of the porous base material. The porous air filtration membrane of the present invention can retain fine particles much smaller than its own pores, has high dust holding capacity, high filtration efficiency, low air filtration resistance, and can be regenerated for repeated use. The invention uses a spraying method to coat the polymer layer with pyroelectric function on the fibers of the porous base material, thereby preparing the porous air filtration membrane. The preparation method is simple, the preparation conditions are mild, the energy consumption is low, and the industrial production is easy.
Description
技术领域technical field
本发明属于复合材料领域,具体涉及一种多孔空气过滤膜及其制备方法和用途。The invention belongs to the field of composite materials, and in particular relates to a porous air filter membrane and a preparation method and application thereof.
背景技术Background technique
在工业化、城镇化不断推进的大背景下,能源和资源的消耗量也在不断地增大,由此引发的环境污染问题越来越不容忽视。同时,人们的生活水平在逐步提高,尤其对于居住、办公、出行交通工具、休闲娱乐场所等室内、车内密闭环境的空气质量要求也越来越高,对各类空气净化产品的需求越来越旺盛。In the context of the continuous advancement of industrialization and urbanization, the consumption of energy and resources is also increasing, and the environmental pollution problems caused by this are becoming more and more important. At the same time, people's living standards are gradually improving, especially the air quality requirements for indoor and car airtight environments such as living, office, travel vehicles, leisure and entertainment places are also getting higher and higher, and the demand for various air purification products is increasing. more prosperous.
市面上目前在售的各类空气净化产品,其产品的核心在于过滤的介质,绝大部分产品所采用的过滤介质为玻璃纤维或聚丙烯纤维的高效颗粒物空气过滤器(HEPA),在其多孔网络的基础上通过施加高压静电或电晕的方法使其带有一定量的电荷,从而使得过滤材料在保证低过滤气阻的前提下,可以尽可能地提高过滤效率。但该类材料的主要不足之处在于其所带电荷受使用环境(如高温、高湿等)的影响严重,因此其使用寿命短、不能重复使用,而其使用后的废弃物也会产生危废等二次污染。The core of the various air purification products currently on the market is the filtering medium. On the basis of the network, it is charged with a certain amount of electricity by applying high-voltage static electricity or corona, so that the filter material can improve the filtration efficiency as much as possible on the premise of ensuring low filtration air resistance. However, the main disadvantage of this type of material is that its electric charge is seriously affected by the use environment (such as high temperature, high humidity, etc.), so its service life is short and cannot be reused, and the waste after use will also produce dangerous Waste and other secondary pollution.
CN106237717A公开了一种高效低阻静电纺纳米纤维空气过滤材料及批量化制备方法,所述过滤材料为纺粘非织造布与纳米纤维相间排列的夹层结构;采用无针式静电纺丝喷头,然后通过静电纺丝与静电喷雾同步相结合技术,制得纳米纤维/微球复合膜,该发明虽然可实现纳米纤维过滤材料的批量化生产,但是对于空气中细小微尘的过滤能力较低,而且滤材再生重复使用的利用率低。CN106237717A discloses a high-efficiency and low-resistance electrospinning nanofiber air filter material and a batch preparation method. The filter material is a sandwich structure in which spunbond non-woven fabric and nanofibers are arranged alternately; The nanofiber/microsphere composite membrane is prepared by the synchronous combination of electrospinning and electrostatic spraying. Although this invention can realize the mass production of nanofiber filter materials, it has low filtering ability for fine dust in the air, and The utilization rate of filter material regeneration and reuse is low.
CN107583377A公开了一种功能化石墨烯修饰的空气过滤膜及其制备方法,所述复合滤膜包括:无纺布基底支撑层、静电纺丝复合纤维致密层两部分,该滤膜可低阻地过滤空气中的烟雾、花粉、PM2.5等细小颗粒物,但是长时间使用,功能化石墨烯易团聚成石墨大颗粒,造成吸附能力的下降,而且该空气过滤膜也较难再生以重复使用。CN107583377A discloses a functionalized graphene-modified air filter membrane and a preparation method thereof. The composite filter membrane includes two parts: a non-woven base support layer and an electrospinning composite fiber dense layer. Filter smoke, pollen, PM2.5 and other fine particles in the air, but when used for a long time, functionalized graphene is easy to agglomerate into large graphite particles, resulting in a decrease in adsorption capacity, and the air filter membrane is also difficult to regenerate for repeated use.
CN110028741A公开了一种热释电复合材料及其制备方法和应用,所述复合材料包括热释电性的聚合物基体材料和无机纳米颗粒填料。所述复合材料形成的纤维网络结构,孔隙率较大,对于PM2.5等细小颗粒物吸附能力较弱,而且所述复合材料通过熔融热压法制得,材料成本高、耗能较高。CN110028741A discloses a pyroelectric composite material and its preparation method and application. The composite material includes a pyroelectric polymer matrix material and an inorganic nanoparticle filler. The fiber network structure formed by the composite material has a large porosity and a weak adsorption capacity for fine particles such as PM2.5, and the composite material is prepared by a fusion hot pressing method, which has high material cost and high energy consumption.
因此,开发一种过滤效果好,并能再生以重复使用的滤材是本领域目前研究的重点之一。Therefore, it is one of the current research priorities in this field to develop a filter material that has good filtering effect and can be regenerated for repeated use.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的在于提供一种多孔空气过滤膜及其制备方法和用途,所述多孔空气过滤膜能够吸附空气中细小颗粒物,并能再生以重复使用。In view of the deficiencies of the prior art, the purpose of the present invention is to provide a porous air filter membrane, its preparation method and use, which can absorb fine particles in the air and can be regenerated for repeated use.
为达到此发明目的,本发明采用以下技术方案:In order to achieve this object of the invention, the present invention adopts the following technical solutions:
第一方面,本发明提供一种多孔空气过滤膜,所述多孔空气过滤膜包括多孔基底材料和覆盖在所述多孔基底材料的纤维上的具有热释电功能的聚合物层。In a first aspect, the present invention provides a porous air filtration membrane, the porous air filtration membrane comprising a porous base material and a polymer layer with pyroelectric function covering fibers of the porous base material.
在本发明中,利用具有热释电功能的聚合物层的静电吸附效应,以吸附空气中细小颗粒物。本发明所述过滤材料的孔隙相当于无数个无源集尘电极,当气流中的极性细小微粒尤其是亚微米级粒子通过材料的孔隙时,就在静电力的作用下被捕获。气流中的中性细小微粒因感应或极化而成为偶极子,从而也可有效地被捕获。In the present invention, the electrostatic adsorption effect of the polymer layer with pyroelectric function is utilized to adsorb fine particles in the air. The pores of the filter material of the present invention are equivalent to countless passive dust collecting electrodes. When the polar fine particles in the air flow, especially the submicron particles pass through the pores of the material, they are captured under the action of electrostatic force. Neutral fine particles in the airflow become dipoles due to induction or polarization, which can also be effectively trapped.
在本发明中,多孔基底材料和覆盖在所述多孔基底材料的纤维上的具有热释电功能的聚合物层相结合,使得多孔空气过滤膜在保持孔隙率相对较大、孔隙密度较大、孔径也较大的前提下,对于空气中更为细小的颗粒物的吸附能力更强。In the present invention, the porous base material is combined with the polymer layer with pyroelectric function covering the fibers of the porous base material, so that the porous air filtration membrane maintains a relatively large porosity, high pore density, Under the premise that the pore size is also larger, the adsorption capacity for finer particles in the air is stronger.
优选地,所述多孔基底材料为针刺无纺布。Preferably, the porous base material is a needle-punched non-woven fabric.
所述针刺无纺布呈现致密的三维结构,其孔隙为弯曲迂回的通道,材料纤维杂乱排列,上下穿插,相互缠绕。纤维之间孔隙较大,滤阻较低、滤效也较低,可以阻留与本身孔隙相当的尘粒,而且具有容尘量高,在较大的过滤风量下仍能保持一定的过滤效果的特性。此外,针刺无纺布还具有透湿、结构均匀、强度高的特点。The needle-punched non-woven fabric has a dense three-dimensional structure, and its pores are curved and circuitous channels. The pores between the fibers are larger, the filtration resistance is lower, and the filtration efficiency is also lower, which can retain dust particles equivalent to their own pores, and has a high dust holding capacity, which can still maintain a certain filtration effect under a larger filtration air volume. characteristics. In addition, needle punched non-woven fabrics also have the characteristics of moisture permeability, uniform structure and high strength.
优选地,所述针刺无纺布包括聚丙烯(PP)针刺无纺布、聚对苯二甲酸乙二醇酯(PET)针刺无纺布、聚酰胺(PA)针刺无纺布或聚酰亚胺(PI)针刺无纺布中的任意一种或至少两种的组合。Preferably, the needle-punched non-woven fabric includes polypropylene (PP) needle-punched non-woven fabric, polyethylene terephthalate (PET) needle-punched non-woven fabric, and polyamide (PA) needle-punched non-woven fabric Or any one or a combination of at least two of the polyimide (PI) needle punched non-woven fabrics.
优选地,所述针刺无纺布密度在50g/m2以上,例如可以是50g/m2、60g/m2、 70g/m2、80g/m2、90g/m2、100g/m2、110g/m2、120g/m2、130g/m2、140g/m2、 150g/m2、160g/m2、170g/m2、180g/m2、190g/m2、200g/m2、210g/m2、220g/m2、 230g/m2、240g/m2、250g/m2、300g/m2、350g/m2、400g/m2、450g/m2、500g/m2。Preferably, the density of the needle-punched non-woven fabric is above 50g/m 2 , such as 50g/m 2 , 60g/m 2 , 70g/m 2 , 80g/m 2 , 90g/m 2 , 100g/m 2 , 110g/m 2 , 120g/m 2 , 130g/m 2 , 140g/m 2 , 150g/m 2 , 160g/m 2 , 170g/m 2 , 180g/m 2 , 190g/m 2 , 200g/m 2 , 210g/m 2 , 220g/m 2 , 230g/m 2 , 240g/m 2 , 250g/m 2 , 300g/m 2 , 350g/m 2 , 400g/m 2 , 450g/m 2 , 500g/m 2 .
优选地,所述针刺无纺布密度为100-250g/m2,优选为100-200g/m2。Preferably, the density of the needle-punched non-woven fabric is 100-250 g/m 2 , preferably 100-200 g/m 2 .
优选地,所述具有热释电功能的聚合物层的厚度为0.1-10μm,例如可以是 0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1 μm、1.2μm、1.4μm、1.6μm、1.8μm、2μm、3μm、4μm、5μm、6μm、7μm、 8μm、9μm、10μm,优选为0.2-2μm。Preferably, the thickness of the polymer layer with pyroelectric function is 0.1-10 μm, such as 0.1 μm, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm, 0.8 μm, 0.9 μm , 1 μm, 1.2 μm, 1.4 μm, 1.6 μm, 1.8 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, preferably 0.2-2 μm.
作为本发明优选方案,所述具有热释电功能的聚合物层的厚度为0.2-2μm,在此范围内既能保证较高的过滤效率,同时还能保证气阻不会过大,原因是因为当具有热释电功能的聚合物层的厚度达到0.2μm时,能够产生足够大量的静电荷,维持足够强度的静电场强,达到吸附颗粒物的要求;但当厚度超过2μm 时,会由于大幅降低孔隙率而导致整个多孔过滤膜的气阻过大。As a preferred solution of the present invention, the thickness of the polymer layer with pyroelectric function is 0.2-2 μm. Within this range, it can not only ensure high filtration efficiency, but also ensure that the gas resistance will not be too large. The reason is that Because when the thickness of the polymer layer with pyroelectric function reaches 0.2μm, it can generate a sufficient amount of electrostatic charge, maintain a sufficient electrostatic field strength, and meet the requirements of adsorbing particles; but when the thickness exceeds 2μm, it will be due to a large amount of electrostatic charge. The reduction of porosity leads to excessive air resistance of the entire porous filter membrane.
优选地,所述具有热释电功能的聚合物层包括热释电性聚合物和热释电颗粒。Preferably, the polymer layer with pyroelectric function includes pyroelectric polymer and pyroelectric particles.
在本发明中,热释电性聚合物作为有机驻极体,在其中加入热释电颗粒来增大电荷的储存能力,减缓聚合物层的电荷衰减速度,并提高成纤性能。因此,当大气中的细微颗粒物通过时,不管是极性的还是可以被极化的,都可以被具有热释电功能的聚合物层捕获,此外,还可以延长具有热释电功能的聚合物层的衰减期,从而延长其使用寿命。In the present invention, the pyroelectric polymer is used as an organic electret, and pyroelectric particles are added therein to increase the charge storage capacity, slow down the charge decay rate of the polymer layer, and improve fiber-forming properties. Therefore, when the fine particles in the atmosphere pass through, whether they are polar or can be polarized, they can be captured by the polymer layer with pyroelectric function, and in addition, the polymer layer with pyroelectric function can be extended the decay period of the layer, thereby extending its service life.
优选地,所述热释电颗粒占所述具有热释电功能的聚合物层总重量的 0.1-20%,例如可以是0.1%、0.2%、0.4%、0.6%、0.8%、1%、1.5%、2%、2.5%、 3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、 15.5%、16%、17%、18%、19%、20%。Preferably, the pyroelectric particles account for 0.1-20% of the total weight of the polymer layer with pyroelectric function, such as 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 10% , 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 17%, 18%, 19%, 20%.
优选地,所述热释电性聚合物包括聚偏氟乙烯(PVDF)和/或聚酰胺-11 (PA-11)。Preferably, the pyroelectric polymer comprises polyvinylidene fluoride (PVDF) and/or polyamide-11 (PA-11).
在本发明中,所述聚偏氟乙烯(PVDF)是一种稳定的柔性有机材料,极化后具有强压电和热释电性,PVDF为链状半结晶高聚合物,β晶相PVDF的全部 F原子和H原子分别位于分子链两侧,呈全反式构象。在其中加入热释电颗粒来增大电荷的储存能力,减缓聚合物层的电荷衰减速度。In the present invention, the polyvinylidene fluoride (PVDF) is a stable and flexible organic material, which has strong piezoelectricity and pyroelectricity after being polarized. All the F atoms and H atoms of , are located on both sides of the molecular chain, respectively, in an all-trans conformation. Pyroelectric particles are added therein to increase the charge storage capacity and slow down the charge decay rate of the polymer layer.
在本发明中,所述聚酰胺-11,分子链中的亚甲基链较长,酰胺基密度低,在其中加入热释电颗粒来增大电荷的储存能力,减缓聚合物层的电荷衰减速度,并提高成纤性能。In the present invention, the polyamide-11 has a long methylene chain in the molecular chain and a low density of amide groups, and pyroelectric particles are added to it to increase the charge storage capacity and slow down the charge decay of the polymer layer. speed and improve fiber forming performance.
优选地,所述聚偏氟乙烯的重均分子量5000-600000,例如可以是5000、 6000、7000、8000、9000、10000、20000、50000、80000、100000、200000、 300000、400000、500000、600000。Preferably, the polyvinylidene fluoride has a weight average molecular weight of 5,000-600,000, such as 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 20,000, 50,000, 80,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000.
优选地,所述聚酰胺-11的重均分子量为5000-200000,例如可以是5000、 6000、8000、10000、12000、14000、16000、18000、20000、30000、50000、 80000、100000、150000、200000。Preferably, the weight average molecular weight of the polyamide-11 is 5000-200000, such as 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 30000, 50000, 80000, 100000, 150000, 200000 .
优选地,所述热释电颗粒为热释电驻极性无机微纳米颗粒。Preferably, the pyroelectric particles are pyroelectric electret inorganic micro-nano particles.
优选地,所述热释电颗粒包括铌酸锂和/或电气石。Preferably, the pyroelectric particles include lithium niobate and/or tourmaline.
铌酸锂具有铁电相结构,属于3m点群,是目前已知居里点最高和自发极化趋势最大的铁电体。因此,通过简单地温度调节即可以使铌酸锂表面产生大量表面电荷,具有驻电过程简单、操作方便的优点。由于大气中的细微颗粒物具有一定的极性或者可以被极化,因此,利用铌酸锂热释电产生的电荷,可以直接捕获空气中的极性颗粒物或者使中性颗粒物被极化后捕获。而且,由于铌酸锂晶体不发生介电损耗,因此可以反复驻电,使用寿命得到延长。因此,综合铌酸锂本身的热释电性能和聚合物驻极体材料良好的储电性能,制备得到的具有热释电功能的聚合物层,既具有铌酸锂本身的热释电效应,也易于制作具有多孔结构的空气过滤膜。Lithium niobate has a ferroelectric phase structure and belongs to the 3m point group. It is currently known as a ferroelectric with the highest Curie point and the largest spontaneous polarization trend. Therefore, a large amount of surface charges can be generated on the surface of the lithium niobate by simply adjusting the temperature, which has the advantages of simple electrification process and convenient operation. Since the fine particles in the atmosphere have a certain polarity or can be polarized, the polar particles in the air can be directly captured or neutral particles can be captured after being polarized by using the charge generated by lithium niobate pyroelectricity. Moreover, since the lithium niobate crystal does not suffer from dielectric loss, it can be repeatedly charged and the service life can be extended. Therefore, combining the pyroelectric properties of lithium niobate itself and the good power storage properties of polymer electret materials, the prepared polymer layer with pyroelectric function has both the pyroelectric effect of lithium niobate itself, It is also easy to fabricate an air filtration membrane with a porous structure.
优选地,所述热释电颗粒的粒径为10-900nm,例如可以是10nm、20nm、 40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130 nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm、250nm、 300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm,优选为50-200nm。Preferably, the particle size of the pyroelectric particles is 10-900 nm, such as 10 nm, 20 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm , 170nm, 180nm, 190nm, 200nm, 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm, 650nm, 700nm, 750nm, 800nm, 850nm, 900nm, preferably 50-200nm.
作为本发明的优选方案,所述热释电颗粒的粒径为50-200nm,若热释电颗粒的粒径过小则不能保证其热释电性,其捕获被极化中性颗粒物的能力相对较小,若热释电颗粒的粒径过大,则热释电颗粒将严重降低聚合物基体的力学性能,同时材料的均匀性变差,过滤膜吸附能力下降。As a preferred solution of the present invention, the particle size of the pyroelectric particles is 50-200 nm. If the particle size of the pyroelectric particles is too small, the pyroelectric properties cannot be guaranteed, and their ability to capture polarized neutral particles Relatively small, if the particle size of the pyroelectric particles is too large, the pyroelectric particles will seriously reduce the mechanical properties of the polymer matrix, and at the same time, the uniformity of the material will deteriorate, and the adsorption capacity of the filter membrane will decrease.
第二方面,本发明提供一种如第一方面所述的多孔空气过滤膜的制备方法,所述制备方法为:使用喷涂法将具有热释电功能的聚合物层覆盖在多孔基底材料的纤维上,得到所述多孔空气过滤膜。In a second aspect, the present invention provides a preparation method of the porous air filtration membrane according to the first aspect, the preparation method is: using a spraying method to coat a polymer layer with a pyroelectric function on the fibers of the porous base material to obtain the porous air filtration membrane.
优选地,所述制备方法具体包括以下步骤:Preferably, the preparation method specifically comprises the following steps:
(1)向热释电颗粒中加入溶剂进行分散,再加入热释电性聚合物进行混合,得到含有热释电颗粒的聚合物分散液;(1) adding a solvent to the pyroelectric particles for dispersion, and then adding a pyroelectric polymer for mixing to obtain a polymer dispersion liquid containing the pyroelectric particles;
(2)将步骤(1)得到的含有热释电颗粒的聚合物分散液喷涂入针刺无纺布后,进行干燥和热极化处理,得到所述多孔空气过滤膜。(2) After spraying the polymer dispersion liquid containing pyroelectric particles obtained in step (1) into the needle-punched non-woven fabric, drying and thermal polarization treatment are performed to obtain the porous air filter membrane.
优选地,步骤(1)所述的溶剂为N,N-二甲基甲酰胺(DMF)和/或甲酸(FA)。Preferably, the solvent described in step (1) is N,N-dimethylformamide (DMF) and/or formic acid (FA).
优选地,步骤(1)所述分散为超声分散。Preferably, the dispersion in step (1) is ultrasonic dispersion.
优选地,所述超声分散的时间为0.5-1h,例如可以是0.5h、0.6h、0.7h、 0.8h、0.9h、1h。Preferably, the ultrasonic dispersion time is 0.5-1 h, for example, it can be 0.5 h, 0.6 h, 0.7 h, 0.8 h, 0.9 h, 1 h.
优选地,步骤(1)所述混合的温度为60-70℃,例如可以是60℃、61℃、 62℃、63℃、64℃、65℃、66℃、67℃、68℃、69℃、70℃。Preferably, the mixing temperature in step (1) is 60-70°C, such as 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, 69°C , 70℃.
优选地,步骤(1)所述混合的时间为2-3h,例如可以是2h、2.1h、2.2h、 2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h、3h。Preferably, the mixing time in step (1) is 2-3h, for example, it can be 2h, 2.1h, 2.2h, 2.3h, 2.4h, 2.5h, 2.6h, 2.7h, 2.8h, 2.9h, 3h .
优选地,步骤(1)所述含有热释电颗粒的聚合物分散液中热释电性聚合物的浓度为0.1-10wt%,例如可以是0.1wt%、0.2wt%、0.4wt%、0.6wt%、0.8wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%。Preferably, the concentration of the pyroelectric polymer in the polymer dispersion liquid containing pyroelectric particles in step (1) is 0.1-10 wt %, for example, it can be 0.1 wt %, 0.2 wt %, 0.4 wt %, 0.6 wt % wt%, 0.8wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%.
优选地,步骤(1)所述加入热释电性聚合物混合后还包括二次分散和脱泡的步骤。Preferably, after adding the pyroelectric polymer and mixing, the step (1) further includes the steps of secondary dispersion and defoaming.
优选地,所述二次分散的时间为1-2h,例如可以是1h、1.1h、1.2h、1.3h、 1.4h、1.5h、1.6h、1.7h、1.8h、1.9h、2h。Preferably, the time of the secondary dispersion is 1-2h, for example, it can be 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h, 2h.
优选地,所述脱泡为真空脱泡.Preferably, the defoaming is vacuum defoaming.
优选地,所述真空脱泡的时间为10-30min,例如可以是10min、12min、 14min、16min、18min、20min、22min、24min、26min、28min、30min。Preferably, the vacuum defoaming time is 10-30min, for example, 10min, 12min, 14min, 16min, 18min, 20min, 22min, 24min, 26min, 28min, 30min.
优选地,步骤(2)所述喷涂为利用高压喷枪喷涂。Preferably, the spraying in step (2) is spraying with a high-pressure spray gun.
优选地,所述高压喷枪喷涂的速度为0.5-30mL/min,例如可以是0.5 mL/min、1mL/min、2mL/min、4mL/min、6mL/min、8mL/min、10mL/min、 12mL/min、14mL/min、16mL/min、18mL/min、20mL/min、22mL/min、24 mL/min、26mL/min、28mL/min、30mL/min。Preferably, the spraying speed of the high-pressure spray gun is 0.5-30mL/min, such as 0.5mL/min, 1mL/min, 2mL/min, 4mL/min, 6mL/min, 8mL/min, 10mL/min, 12mL /min, 14mL/min, 16mL/min, 18mL/min, 20mL/min, 22mL/min, 24mL/min, 26mL/min, 28mL/min, 30mL/min.
优选地,步骤(2)所述干燥为放入鼓风干燥箱中干燥。Preferably, the drying in step (2) is drying in a blast drying oven.
优选地,步骤(2)所述热极化的温度为90-150℃,例如可以是90℃、100℃、 110℃、120℃、130℃、140℃或150℃等,优选为90-120℃。Preferably, the temperature of the thermal polarization in step (2) is 90-150°C, such as 90°C, 100°C, 110°C, 120°C, 130°C, 140°C or 150°C, etc., preferably 90-120°C °C.
优选地,步骤(2)所述热极化的电场强度为20-250MV/m,例如可以是20 MV/m、50MV/m、100MV/m、150MV/m、200MV/m或250MV/m等,优选为50-200MV/m。Preferably, the electric field strength of the thermal polarization in step (2) is 20-250MV/m, such as 20MV/m, 50MV/m, 100MV/m, 150MV/m, 200MV/m or 250MV/m, etc. , preferably 50-200MV/m.
优选地,步骤(2)所述热极化的时间为5-60min,例如可以是5min、10min、 20min、30min、40min、50min或60min,优选为10-30min。Preferably, the time for the thermal polarization in step (2) is 5-60 min, for example, 5 min, 10 min, 20 min, 30 min, 40 min, 50 min or 60 min, preferably 10-30 min.
优选地,所述制备方法具体包括以下步骤:Preferably, the preparation method specifically comprises the following steps:
(1)向热释电颗粒中加入溶剂,超声分散0.5-1h,再加入热释电性聚合物,在60-70℃下搅拌混合2-3h,再进行二次超声分散1-2h,真空脱泡10-30min,得到含有热释电颗粒的聚合物分散液;(1) Add a solvent to the pyroelectric particles, ultrasonically disperse for 0.5-1h, then add the pyroelectric polymer, stir and mix at 60-70°C for 2-3h, and then perform secondary ultrasonic dispersion for 1-2h, vacuum Degassing for 10-30min to obtain a polymer dispersion containing pyroelectric particles;
(2)将步骤(1)得到的含有热释电颗粒的聚合物分散液利用高压喷枪喷涂入针刺无纺布后,放入鼓风干燥箱中干燥,再在90-150℃下进行热极化处理 5-60min,所述热极化的电场强度为20-250MV/m,得到所述多孔空气过滤膜。(2) After spraying the polymer dispersion liquid containing pyroelectric particles obtained in step (1) into the needle-punched non-woven fabric with a high-pressure spray gun, put it into a blast drying oven to dry, and then heat it at 90-150 ° C. The polarization treatment is carried out for 5-60 min, and the electric field strength of the thermal polarization is 20-250 MV/m to obtain the porous air filtration membrane.
第三方面,本发明提供了一种如第一方面所述多孔空气过滤膜的用途,所述多孔空气过滤膜用于吸附大气中的颗粒物。In a third aspect, the present invention provides the use of the porous air filtration membrane according to the first aspect, the porous air filtration membrane being used for adsorbing particulate matter in the atmosphere.
优选地,所述颗粒物包括油性颗粒物和/或非油性颗粒物。Preferably, the particulate matter includes oily particulate matter and/or non-oily particulate matter.
优选地,所述复合材料吸附大气中的细微颗粒物后,使用清洗结合热处理的方法,使所述多孔空气过滤膜再生重复使用。Preferably, after the composite material adsorbs fine particles in the atmosphere, a method of cleaning combined with heat treatment is used to regenerate and reuse the porous air filter membrane.
作为本发明优选的技术方案,在所述复合材料吸附大气中的颗粒物达到饱和后使用清理和水洗进行脱附然后加热处理再生。As a preferred technical solution of the present invention, after the composite material adsorbs the particulate matter in the atmosphere and reaches saturation, cleaning and water washing are used for desorption, and then heat treatment is used for regeneration.
本发明中,所述清理和水洗脱附和加热再生的方法具体为:当所述热释电复合材料吸附细微颗粒物达到饱和后,用毛刷清理,然后将其放入超声清洗槽中超声处理,使吸附在表面的细微颗粒物脱附;一定温度下重新加热基于热释电性聚合物/无机颗粒复合体系的热释电材料,使得热释电复合材料表面重新表现出带电性,从而热释电复合材料可以重新吸附细微颗粒物,实现再生以重复使用。In the present invention, the method of cleaning, water desorption and heating regeneration is specifically as follows: when the pyroelectric composite material adsorbs fine particles and reaches saturation, clean it with a brush, and then put it into an ultrasonic cleaning tank for ultrasonic treatment , desorb the fine particles adsorbed on the surface; reheat the pyroelectric material based on the pyroelectric polymer/inorganic particle composite system at a certain temperature, so that the surface of the pyroelectric composite material re-exhibits charge, thereby pyroelectric Electrocomposites can re-adsorb fine particulate matter, enabling regeneration for reuse.
优选地,所述清洗为超声清洗。Preferably, the cleaning is ultrasonic cleaning.
优选地,所述热处理的温度为40-120℃,例如可以是40℃、50℃、60℃、 70℃、80℃、90℃、100℃、110℃或120℃等,优选为40-70℃。Preferably, the temperature of the heat treatment is 40-120°C, such as 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C or 120°C, etc., preferably 40-70°C °C.
优选地,所述热处理的时间为0.1-2min,例如可以是0.1min、0.2min、0.5 min、0.6min、0.8min、1min、1.2min、1.5min、1.8min或2min,优选为0.5-2 min。Preferably, the time of the heat treatment is 0.1-2min, for example, it can be 0.1min, 0.2min, 0.5min, 0.6min, 0.8min, 1min, 1.2min, 1.5min, 1.8min or 2min, preferably 0.5-2min .
相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明所述多孔空气过滤膜包括多孔基底材料和覆盖在所述多孔基底材料的纤维上的具有热释电功能的聚合物层,其孔隙率相对较高,孔隙密度较大,孔径也较大,并可阻留比本身孔隙小得多的细小颗粒,而且具有容尘量高、过滤效率高、空气过滤阻力低,以及能够再生重复多次使用的优点。The porous air filtration membrane of the present invention includes a porous base material and a polymer layer with pyroelectric function covering the fibers of the porous base material, and has relatively high porosity, high pore density and large pore size. It can retain fine particles much smaller than its own pores, and has the advantages of high dust holding capacity, high filtration efficiency, low air filtration resistance, and the ability to be regenerated and reused for many times.
附图说明Description of drawings
图1为聚丙烯针刺无纺布的扫描电子显微镜(SEM)图。FIG. 1 is a scanning electron microscope (SEM) image of the polypropylene needle-punched nonwoven fabric.
图2为铌酸锂微纳米颗粒的扫描电子显微镜(SEM)图。FIG. 2 is a scanning electron microscope (SEM) image of lithium niobate micro-nanoparticles.
图3为电气石微纳米颗粒的扫描电子显微镜(SEM)图。FIG. 3 is a scanning electron microscope (SEM) image of tourmaline micro-nano particles.
图4为实施例1制备的多孔空气过滤膜的扫描电子显微镜(SEM)图。FIG. 4 is a scanning electron microscope (SEM) image of the porous air filtration membrane prepared in Example 1. FIG.
图5为实施例8制备的多孔空气过滤膜的扫描电子显微镜(SEM)图。FIG. 5 is a scanning electron microscope (SEM) image of the porous air filtration membrane prepared in Example 8. FIG.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention are further described below through specific embodiments. It should be understood by those skilled in the art that the embodiments are only for helping the understanding of the present invention, and should not be regarded as a specific limitation of the present invention.
实施例1Example 1
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚丙烯(PP) 针刺无纺布和覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚偏氟乙烯(PVDF)和铌酸锂(LN)纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polypropylene (PP) needle-punched non-woven fabric and a polymer with pyroelectric function covered on the fibers of the polypropylene needle-punched non-woven fabric layer comprising polyvinylidene fluoride (PVDF) and lithium niobate (LN) nanoparticles.
本实施例的制备方法具体包括以下步骤:The preparation method of this embodiment specifically comprises the following steps:
(1)掺杂LN纳米颗粒的PVDF溶液的配制(1) Preparation of PVDF solution doped with LN nanoparticles
将0.04g LN纳米颗粒(平均粒径约为200nm)加入盛有98g DMF溶剂的带塞锥形瓶中,超声分散0.5h,然后加入2g的PVDF粉末(重均分子量为 200000),65℃搅拌3h溶解均匀,得到均一的溶液,再次超声分散1h,然后真空脱泡10min,其中PVDF的浓度为2wt%,LN纳米颗粒的质量浓度为PVDF 量的2%。Add 0.04g LN nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 98g DMF solvent, ultrasonically disperse for 0.5h, then add 2g PVDF powder (weight average molecular weight is 200000), stir at 65°C Dissolved uniformly for 3 hours to obtain a uniform solution, ultrasonically dispersed again for 1 hour, and then vacuum defoamed for 10 minutes, wherein the concentration of PVDF was 2wt%, and the mass concentration of LN nanoparticles was 2% of the amount of PVDF.
(2)喷涂法制备多孔空气过滤膜(2) Preparation of porous air filter membrane by spraying method
将步骤(1)制备的PVDF溶液加入到气动喷枪的壶中,利用高压气体将 PVDF溶液以3mL/min的喷涂速率喷涂入PP针刺无纺布基底(无纺布密度为 150g/m2)中,在其纤维上形成约0.2μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在120℃下进行热极化处理10min,所述热极化的电场强度为100 MV/m,得到所述多孔空气过滤膜。The PVDF solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PVDF solution was sprayed into the PP needle-punched non-woven fabric substrate (the non-woven fabric density was 150 g/m 2 ) at a spray rate of 3 mL/min using high-pressure gas. , a coating layer about 0.2 μm thick is formed on its fibers. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 120° C. for 10 minutes, and the electric field strength of the thermal polarization is 100 MV/m to obtain the porous air filtration membrane.
聚丙烯针刺无纺布的扫描电子显微镜图如图1所示,其纤维直径约为5-15 μm。铌酸锂微纳米颗粒的扫描电子显微镜图如图2所示,其直径约为100-600 nm。实施例1制备的多孔空气过滤膜的扫描电子显微镜图如图4所示,由图4 可以看出所述具有热释电功能的聚合物层覆盖在多孔基底材料的纤维上的,其厚度约为0.2μm。多孔空气过滤膜,孔隙率相对较大,孔隙密度大,孔径也较大,但由于热释电聚合物层的静电作用可阻留比本身孔隙小得多的尘粒。(显微镜型号为日本JEOL公司JSM-7500F型)The scanning electron microscope image of the polypropylene needle-punched nonwoven fabric is shown in Figure 1, and its fiber diameter is about 5-15 μm. The scanning electron microscope image of lithium niobate micro-nanoparticles is shown in Fig. 2, and its diameter is about 100-600 nm. The scanning electron microscope image of the porous air filtration membrane prepared in Example 1 is shown in Figure 4. It can be seen from Figure 4 that the polymer layer with pyroelectric function is covered on the fibers of the porous base material, and its thickness is about is 0.2 μm. Porous air filtration membranes have relatively large porosity, large pore density and large pore size, but due to the electrostatic effect of the pyroelectric polymer layer, dust particles that are much smaller than their own pores can be retained. (The microscope model is JSM-7500F from JEOL, Japan)
实施例2Example 2
同实施例1,区别仅在于:覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层厚度为0.5μm。The same as in Example 1, the only difference is that the thickness of the polymer layer with pyroelectric function covering the fibers of the polypropylene needle-punched non-woven fabric is 0.5 μm.
实施例3Example 3
同实施例1,区别仅在于:覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层厚度为1μm。The same as in Example 1, the only difference is that the thickness of the polymer layer with pyroelectric function covering the fibers of the polypropylene needle-punched non-woven fabric is 1 μm.
实施例4Example 4
同实施例1,区别仅在于:覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层厚度为2μm。Same as Example 1, the only difference is that the thickness of the polymer layer with pyroelectric function covering the fibers of the polypropylene needle-punched non-woven fabric is 2 μm.
实施例5Example 5
同实施例1,区别仅在于:覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层厚度为5μm。The same as in Example 1, the only difference is that the thickness of the polymer layer with pyroelectric function covering the fibers of the polypropylene needle-punched non-woven fabric is 5 μm.
实施例6Example 6
同实施例1,区别仅在于:覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层厚度为8μm。Same as Example 1, the only difference is that the thickness of the polymer layer with pyroelectric function covering the fibers of the polypropylene needle-punched non-woven fabric is 8 μm.
实施例7Example 7
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚丙烯(PP) 针刺无纺布和覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚酰胺-11(PA-11)和铌酸锂(LN)纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polypropylene (PP) needle-punched non-woven fabric and a polymer with pyroelectric function covered on the fibers of the polypropylene needle-punched non-woven fabric layer comprising polyamide-11 (PA-11) and lithium niobate (LN) nanoparticles.
(1)掺杂LN纳米颗粒的PA-11溶液的配制(1) Preparation of PA-11 solution doped with LN nanoparticles
将0.02g的LN纳米颗粒(平均粒径约为200nm)加入盛有99g FA溶剂的带塞锥形瓶中,超声分散1h,然后加入1g的PA-11颗粒(重均分子量为30000),常温下搅拌3h溶解均匀,得到均一的溶液,再次超声分散2h,然后真空脱泡 20min,其中PA-11的浓度为1wt%,LN纳米颗粒的质量浓度为PA-11量的2%。Add 0.02g of LN nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 99g of FA solvent, ultrasonically disperse for 1h, then add 1g of PA-11 particles (weight average molecular weight is 30000), room temperature Stir under stirring for 3h to dissolve uniformly to obtain a homogeneous solution, ultrasonically dispersed again for 2h, and then vacuum defoamed for 20min, wherein the concentration of PA-11 is 1wt%, and the mass concentration of LN nanoparticles is 2% of the amount of PA-11.
(2)喷涂法制备多孔空气过滤膜(2) Preparation of porous air filter membrane by spraying method
将步骤(1)制备的PA-11溶液加入到气动喷枪的壶中,利用高压气体将PA-11 溶液以2mL/min的喷涂速率喷涂入PP针刺无纺布基底(无纺布密度为150g/m2) 中,在其纤维上形成约0.3μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在100℃下进行热极化处理40min,所述热极化的电场强度为120MV/m,得到所述多孔空气过滤膜。The PA-11 solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PA-11 solution was sprayed into the PP needle-punched non-woven substrate (the non-woven fabric density was 150 g at a spray rate of 2 mL/min) using high pressure gas. /m 2 ), a coating layer of about 0.3 μm thick is formed on the fibers thereof. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 100° C. for 40 min. The electric field strength of the thermal polarization is 120 MV/m to obtain the porous air filter membrane.
实施例8Example 8
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚丙烯(PP) 针刺无纺布和覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚酰胺-11(PA-11)和电气石纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polypropylene (PP) needle-punched non-woven fabric and a polymer with pyroelectric function covered on the fibers of the polypropylene needle-punched non-woven fabric layer comprising polyamide-11 (PA-11) and tourmaline nanoparticles.
(1)掺杂电气石纳米颗粒的PA 11溶液的配制(1) Preparation of PA 11 solution doped with tourmaline nanoparticles
将0.04g电气石纳米颗粒(平均粒径约为200nm)加入盛有98g DMF的带塞锥形瓶中,超声分散1h,然后加入2g的PVDF粉末(重均分子量为200000), 65℃搅拌3h溶解均匀,得到均一的溶液,再次超声分散1.5h,然后真空脱泡 20min,其中PVDF的浓度为2wt%,电气石纳米颗粒的质量浓度为PVDF量的 2%。Add 0.04g of tourmaline nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 98g of DMF, ultrasonically disperse for 1h, then add 2g of PVDF powder (weight average molecular weight is 200000), stir at 65°C for 3h Dissolve uniformly to obtain a uniform solution, ultrasonically dispersed again for 1.5h, and then vacuum defoamed for 20min, wherein the concentration of PVDF is 2wt%, and the mass concentration of tourmaline nanoparticles is 2% of the amount of PVDF.
(2)喷涂法制备具有热释电功能的可重复使用的多孔空气过滤膜(2) Preparation of reusable porous air filter membrane with pyroelectric function by spraying method
将步骤(1)制备的PVDF溶液加入到气动喷枪的壶中,利用高压气体将 PVDF溶液以3mL/min的喷涂速率喷涂入PP针刺无纺布基底(无纺布密度为 150g/m2)中,在其纤维上形成约0.2μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在90℃下进行热极化处理30min,所述热极化的电场强度为200 MV/m,得到所述多孔空气过滤膜。The PVDF solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PVDF solution was sprayed into the PP needle-punched non-woven fabric substrate (the non-woven fabric density was 150 g/m 2 ) at a spray rate of 3 mL/min using high-pressure gas. , a coating layer about 0.2 μm thick is formed on its fibers. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 90° C. for 30 min. The electric field strength of the thermal polarization is 200 MV/m to obtain the porous air filtration membrane.
电气石微纳米颗粒的扫描电子显微镜(SEM)图如图3所示,由图3可以看出其直径约为100-700nm,实施例8制备的多孔空气过滤膜的扫描电子显微镜图如图5所示,由图5可以看出所述具有热释电功能的聚合物层覆盖在多孔基底材料的纤维上的,其厚度约为0.2μm。多孔空气过滤膜,孔隙率相对较大,孔隙密度大,孔径也较大,但由于热释电材料的静电荷可阻留比本身孔隙小得多的尘粒。The scanning electron microscope (SEM) image of tourmaline micro-nano particles is shown in Figure 3. It can be seen from Figure 3 that its diameter is about 100-700 nm. The scanning electron microscope image of the porous air filtration membrane prepared in Example 8 is shown in Figure 5 As shown in FIG. 5 , it can be seen from FIG. 5 that the polymer layer with pyroelectric function covers the fibers of the porous base material, and its thickness is about 0.2 μm. Porous air filtration membranes have relatively large porosity, large pore density and large pore size, but due to the electrostatic charge of pyroelectric materials, they can retain dust particles that are much smaller than their own pores.
实施例9Example 9
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚对苯二甲酸乙二醇酯(PET)针刺无纺布和覆盖在聚对苯二甲酸乙二醇酯(PET)针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚偏氟乙烯 (PVDF)和铌酸锂(LN)纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polyethylene terephthalate (PET) needle-punched non-woven fabric and a polyethylene terephthalate (PET) A polymer layer with a pyroelectric function on the fibers of a needle punched nonwoven fabric, the polymer layer comprising polyvinylidene fluoride (PVDF) and lithium niobate (LN) nanoparticles.
本实施例的制备方法具体包括以下步骤:The preparation method of this embodiment specifically comprises the following steps:
(1)掺杂LN纳米颗粒的PVDF溶液的配制(1) Preparation of PVDF solution doped with LN nanoparticles
将0.04g LN纳米颗粒(平均粒径约为200nm)加入盛有98g DMF溶剂的带塞锥形瓶中,超声分散0.5h,然后加入2g的PVDF粉末(重均分子量为 200000),65℃搅拌3h溶解均匀,得到均一的溶液,再次超声分散1h,然后真空脱泡10min,其中PVDF的浓度为2wt%,电气石纳米颗粒的质量浓度为 PVDF量的2%。Add 0.04g LN nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 98g DMF solvent, ultrasonically disperse for 0.5h, then add 2g PVDF powder (weight average molecular weight is 200000), stir at 65°C Dissolve uniformly for 3 hours to obtain a homogeneous solution, ultrasonically dispersed again for 1 hour, and then vacuum defoamed for 10 minutes, wherein the concentration of PVDF is 2wt%, and the mass concentration of tourmaline nanoparticles is 2% of the amount of PVDF.
(2)喷涂法制备多孔空气过滤膜(2) Preparation of porous air filter membrane by spraying method
将步骤(1)制备的PVDF溶液加入到气动喷枪的壶中,利用高压气体将 PVDF溶液以3mL/min的喷涂速率喷涂入聚对苯二甲酸乙二醇酯(PET)(无纺布密度为150g/m2)中,在其纤维上形成约2μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在120℃下进行热极化处理10min,所述热极化的电场强度为100MV/m,得到所述多孔空气过滤膜。The PVDF solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PVDF solution was sprayed into polyethylene terephthalate (PET) (the non-woven density was 150 g/m 2 ), a coating layer of about 2 μm thick was formed on its fibers. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 120° C. for 10 min. The electric field strength of the thermal polarization is 100 MV/m to obtain the porous air filter membrane.
实施例10Example 10
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚丙烯(PP) 针刺无纺布和覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚偏氟乙烯(PVDF)和铌酸锂(LN)纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polypropylene (PP) needle-punched non-woven fabric and a polymer with pyroelectric function covered on the fibers of the polypropylene needle-punched non-woven fabric layer comprising polyvinylidene fluoride (PVDF) and lithium niobate (LN) nanoparticles.
本实施例的制备方法具体包括以下步骤:The preparation method of this embodiment specifically comprises the following steps:
(1)掺杂LN纳米颗粒的PVDF溶液的配制(1) Preparation of PVDF solution doped with LN nanoparticles
将0.04g LN纳米颗粒(平均粒径约为200nm)加入盛有98g DMF溶剂的带塞锥形瓶中,超声分散0.5h,然后加入2g的PVDF粉末(重均分子量为 200000),65℃搅拌3h溶解均匀,得到均一的溶液,再次超声分散1h,然后真空脱泡10min,其中PVDF的浓度为2wt%,电气石纳米颗粒的质量浓度为 PVDF量的2%。Add 0.04g LN nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 98g DMF solvent, ultrasonically disperse for 0.5h, then add 2g PVDF powder (weight average molecular weight is 200000), stir at 65°C Dissolve uniformly for 3 hours to obtain a homogeneous solution, ultrasonically dispersed again for 1 hour, and then vacuum defoamed for 10 minutes, wherein the concentration of PVDF is 2wt%, and the mass concentration of tourmaline nanoparticles is 2% of the amount of PVDF.
(2)喷涂法制备多孔空气过滤膜(2) Preparation of porous air filter membrane by spraying method
将步骤(1)制备的PVDF溶液加入到气动喷枪的壶中,利用高压气体将 PVDF溶液以3mL/min的喷涂速率喷涂入PP针刺无纺布基底(无纺布密度为 50g/m2)中,在其纤维上形成约2μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在120℃下进行热极化处理10min,所述热极化的电场强度为100 MV/m,得到所述多孔空气过滤膜。The PVDF solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PVDF solution was sprayed into the PP needle-punched non-woven substrate (the non-woven fabric density was 50 g/m 2 ) at a spray rate of 3 mL/min by using high pressure gas. , a coating layer about 2 μm thick is formed on its fibers. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 120° C. for 10 minutes, and the electric field strength of the thermal polarization is 100 MV/m to obtain the porous air filtration membrane.
实施例11Example 11
本实施例提供一种多孔空气过滤膜,所述多孔空气过滤膜包括聚丙烯(PP) 针刺无纺布和覆盖在聚丙烯针刺无纺布的纤维上的具有热释电功能的聚合物层,所述聚合物层包括聚偏氟乙烯(PVDF)和钛酸钡纳米颗粒。This embodiment provides a porous air filter membrane, the porous air filter membrane includes a polypropylene (PP) needle-punched non-woven fabric and a polymer with pyroelectric function covered on the fibers of the polypropylene needle-punched non-woven fabric layer comprising polyvinylidene fluoride (PVDF) and barium titanate nanoparticles.
本实施例的制备方法具体包括以下步骤:The preparation method of this embodiment specifically comprises the following steps:
(1)掺杂钛酸钡颗粒的PVDF溶液的配制(1) Preparation of PVDF solution doped with barium titanate particles
将0.04g钛酸钡纳米颗粒(平均粒径约为200nm)加入盛有98g DMF溶剂的带塞锥形瓶中,超声分散0.5h,然后加入2g的PVDF粉末(重均分子量为200000),65℃搅拌3h溶解均匀,得到均一的溶液,再次超声分散1h,然后真空脱泡10min,其中PVDF的浓度为2wt%,钛酸钡颗粒的质量浓度为PVDF 量的2%。Add 0.04g of barium titanate nanoparticles (average particle size is about 200nm) into a stoppered conical flask containing 98g of DMF solvent, ultrasonically disperse for 0.5h, then add 2g of PVDF powder (weight average molecular weight is 200000), 65 Stir at °C for 3 hours to obtain a uniform solution, ultrasonically dispersed for 1 hour again, and then vacuum defoamed for 10 minutes, wherein the concentration of PVDF is 2wt%, and the mass concentration of barium titanate particles is 2% of the amount of PVDF.
(2)喷涂法制备多孔空气过滤膜(2) Preparation of porous air filter membrane by spraying method
将步骤(1)制备的PVDF溶液加入到气动喷枪的壶中,利用高压气体将 PVDF溶液以3mL/min的喷涂速率喷涂入PP针刺无纺布基底(无纺布密度为150g/m2)中,在其纤维上形成约2μm厚的覆盖层。然后放入鼓风干燥箱中干燥处理,再在120℃下进行热极化处理10min,所述热极化的电场强度为100 MV/m,得到所述多孔空气过滤膜。The PVDF solution prepared in step (1) was added to the pot of the pneumatic spray gun, and the PVDF solution was sprayed into the PP needle-punched non-woven fabric substrate (the non-woven fabric density was 150 g/m 2 ) at a spray rate of 3 mL/min using high-pressure gas. , a coating layer about 2 μm thick is formed on its fibers. Then put it into a blast drying oven for drying treatment, and then perform thermal polarization treatment at 120° C. for 10 minutes, and the electric field strength of the thermal polarization is 100 MV/m to obtain the porous air filtration membrane.
对比例1Comparative Example 1
本对比例提供一种过滤膜,同实施例4,区别仅在于:所述过滤膜仅含多孔基底材料层,不含覆盖在所述多孔基底材料的纤维上的具有热释电功能的聚合物层。This comparative example provides a filter membrane, which is the same as Example 4, except that the filter membrane only contains a porous base material layer, and does not contain a polymer with pyroelectric function covering the fibers of the porous base material Floor.
对比例2Comparative Example 2
本对比例提供一种过滤膜,同实施例4,区别仅在于:所述过滤膜仅含由具有热释电功能的聚合物层制备的纤维膜(纤维直径约30-100μm,克重约150 g/m2),不含多孔基底材料。This comparative example provides a filter membrane, which is the same as Example 4, except that the filter membrane only contains a fiber membrane (fiber diameter of about 30-100 μm, gram weight of about 150 μm) prepared from a polymer layer with pyroelectric function. g/m 2 ) without porous substrate material.
试验例1Test Example 1
过滤效率和气阻试验Filtration efficiency and air resistance test
对上述实施例1-11制备的多孔过滤膜和对比例1-2制备的过滤膜进行过滤效率和气阻,测试仪器为美国TSI公司8130型滤料测试仪,测试方法为:使用 2wt%NaCl溶液,气溶胶颗粒质量中值直径约为0.26μm,空气流速为32L/min (气流速度约合0.053m/s)。具体测试结果如表1所示。The filtration efficiency and air resistance of the porous filtration membranes prepared in the above-mentioned examples 1-11 and the filtration membranes prepared in the comparative examples 1-2 were carried out. The testing instrument was the 8130 type filter material tester of TSI company in the United States, and the test method was: use 2wt% NaCl solution , the mass median diameter of aerosol particles is about 0.26μm, and the air flow rate is 32L/min (the air flow rate is about 0.053m/s). The specific test results are shown in Table 1.
表1Table 1
由表1的测试数据可知,本发明制备的多孔过滤膜PM0.3过滤效率78%以上,作为本实施例优选方案,制备的多孔过滤膜PM0.3过滤效率高达95%以上,过滤气阻可以达到在50Pa以下,均优于对比例1-2制备的过滤膜。这说明本发明所述所述多孔空气过滤膜,孔隙率相对较小,孔隙密度大,孔径小,并可阻留比本身孔隙小得多的尘粒,而且具有容尘量高、过滤效率高、空气过滤阻力低。It can be seen from the test data in Table 1 that the PM0.3 filtration efficiency of the porous filter membrane prepared by the present invention is more than 78%. As the preferred solution of this embodiment, the PM0.3 filtration efficiency of the prepared porous filter membrane is as high as 95% or more, and the filtration air resistance can be It reaches below 50Pa, which is better than the filtration membrane prepared in Comparative Examples 1-2. This shows that the porous air filtration membrane of the present invention has relatively small porosity, large pore density, small pore size, and can retain dust particles much smaller than its own pores, and has high dust holding capacity and high filtration efficiency. , Air filtration resistance is low.
试验例2Test Example 2
多孔空气过滤膜再生试验Porous air filter membrane regeneration test
对上述实施例4制备的多孔过滤膜、实施例8-11制备的多孔过滤膜和对比例1-2制备的过滤膜重复进行处理,再对过滤效率和气阻进行测试,测试方法为:将实施例4、实施例8-11制备的多孔空气过滤膜和对比例1-2制备的过滤膜在同等环境下进行多次容尘后,放入超声设备中超声清洗;再放入60℃的烘箱中加热处理,使得过滤膜实现再生,具体测试结果如表2所示。The porous filter membrane prepared in Example 4, the porous filter membrane prepared in Example 8-11, and the filter membrane prepared in Comparative Example 1-2 were repeatedly processed, and then the filtration efficiency and air resistance were tested. Example 4. The porous air filtration membranes prepared in Examples 8-11 and the filtration membranes prepared in Comparative Examples 1-2 were subjected to multiple dust holdings in the same environment, and then placed in ultrasonic equipment for ultrasonic cleaning; then placed in an oven at 60°C medium heat treatment, so that the filter membrane can be regenerated, and the specific test results are shown in Table 2.
表2Table 2
由表2的测试数据可知,本发明制备的多孔空气过滤膜多次吸附细微颗粒物达到饱和后,放入超声清洗槽中超声处理,就能够使吸附在表面的细微颗粒物脱附;再重新加热基于热释电性聚合物/无机颗粒复合体系的热释电材料,就能使热释电复合材料可以重新吸附细微颗粒物,实现再生和过滤膜的多次重复使用。本发明所述多孔空气过滤膜在重复清理10次后,PM0.3过滤效率仍可达 80%以上,气阻可保证在55Pa以下,过滤膜在容尘后可通过简单的清理并结合热处理的方法实现再生,得以重复多次使用,其过滤效率只有小幅下降。It can be seen from the test data in Table 2 that after the porous air filtration membrane prepared by the present invention adsorbs fine particles for many times and reaches saturation, it is put into an ultrasonic cleaning tank for ultrasonic treatment, and the fine particles adsorbed on the surface can be desorbed; The pyroelectric material of the pyroelectric polymer/inorganic particle composite system can enable the pyroelectric composite material to re-adsorb fine particles, and realize regeneration and repeated use of the filter membrane. The porous air filter membrane of the present invention can still achieve PM0.3 filtration efficiency of more than 80% after repeated cleaning for 10 times, and the air resistance can be guaranteed to be less than 55Pa. The method realizes regeneration and can be used repeatedly, and its filtration efficiency only decreases slightly.
申请人声明,本发明通过上述实施例来说明本发明的多孔空气过滤膜及其制备方法和用途,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the porous air filtration membrane of the present invention and its preparation method and use by the above-mentioned embodiments, but the present invention is not limited to the above-mentioned process steps, that is, it does not mean that the present invention must rely on the above-mentioned process steps to be implemented . Those skilled in the art should understand that any improvement to the present invention, the equivalent replacement of the selected raw materials of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911016889.1A CN110732186B (en) | 2019-10-24 | 2019-10-24 | Porous air filtering membrane and preparation method and application thereof |
PCT/CN2020/100198 WO2021077799A1 (en) | 2019-10-24 | 2020-07-03 | Porous air filter membrane, preparation method therefor and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911016889.1A CN110732186B (en) | 2019-10-24 | 2019-10-24 | Porous air filtering membrane and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110732186A true CN110732186A (en) | 2020-01-31 |
CN110732186B CN110732186B (en) | 2022-02-22 |
Family
ID=69271122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911016889.1A Active CN110732186B (en) | 2019-10-24 | 2019-10-24 | Porous air filtering membrane and preparation method and application thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110732186B (en) |
WO (1) | WO2021077799A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111350029A (en) * | 2020-02-02 | 2020-06-30 | 江苏大学 | Fibroin-based multifunctional nanofiber membrane for smoke filtration and preparation method thereof |
WO2021077799A1 (en) * | 2019-10-24 | 2021-04-29 | 国家纳米科学中心 | Porous air filter membrane, preparation method therefor and application thereof |
CN113527957A (en) * | 2020-04-15 | 2021-10-22 | 日本泰克斯株式会社 | Polyimide-fluororesin-polar crystal microparticle mixed aqueous dispersion and preparation method thereof |
CN113797649A (en) * | 2021-08-12 | 2021-12-17 | 浙江大学 | Antibacterial and antivirus air filtering material and preparation method thereof |
CN113979778A (en) * | 2021-12-09 | 2022-01-28 | 广西碧清源环保投资有限公司 | Ceramic filtering membrane with pyroelectric function and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113831964A (en) * | 2021-09-02 | 2021-12-24 | 重庆大学 | Integrated treatment method based on basic alumina and electrospinning filter membrane suction filtration |
WO2023080175A1 (en) * | 2021-11-05 | 2023-05-11 | ジャパンマテックス株式会社 | Powder composition containing polyimide and method for producing molded article formed from powder composition |
CN114146577A (en) * | 2021-12-09 | 2022-03-08 | 广西碧清源环保投资有限公司 | Ceramic filtering membrane capable of releasing negative ions and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105195325A (en) * | 2014-06-03 | 2015-12-30 | 中国人民大学 | Application of lithium niobate pyroelectric material in atmospheric particulate adsorption on basis of temperature control |
CN104906970B (en) * | 2015-06-08 | 2017-04-05 | 上海洁晟环保科技有限公司 | Printing opacity, ventilative, Coulomb repulsion PM2.5 air-filtering membranes and preparation method |
CN108697992A (en) * | 2015-12-23 | 2018-10-23 | 索尔维特殊聚合物意大利有限公司 | Porous polymer membranes comprising silicates |
CN109157916A (en) * | 2018-09-10 | 2019-01-08 | 中原工学院 | A kind of LiNbO3/ PVDF composite nano fiber electret air filtering material and preparation method thereof |
CN110237608A (en) * | 2019-07-04 | 2019-09-17 | 江苏中科睿赛污染控制工程有限公司 | A kind of air filter material and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109746120B (en) * | 2017-11-03 | 2021-02-26 | 北京中科艾加科技有限公司 | Filter device comprising piezoelectric composite material and application of filter device in adsorption of atmospheric particulates |
CN109367165B (en) * | 2018-09-10 | 2020-09-29 | 中原工学院 | LiNbO3Anti-haze window screen with/PAN (polyacrylonitrile) composite nanofiber electret and preparation method of anti-haze window screen |
CN110028741A (en) * | 2019-04-19 | 2019-07-19 | 国家纳米科学中心 | A kind of thermal history modeling and its preparation method and application |
CN110732186B (en) * | 2019-10-24 | 2022-02-22 | 国家纳米科学中心 | Porous air filtering membrane and preparation method and application thereof |
-
2019
- 2019-10-24 CN CN201911016889.1A patent/CN110732186B/en active Active
-
2020
- 2020-07-03 WO PCT/CN2020/100198 patent/WO2021077799A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105195325A (en) * | 2014-06-03 | 2015-12-30 | 中国人民大学 | Application of lithium niobate pyroelectric material in atmospheric particulate adsorption on basis of temperature control |
CN104906970B (en) * | 2015-06-08 | 2017-04-05 | 上海洁晟环保科技有限公司 | Printing opacity, ventilative, Coulomb repulsion PM2.5 air-filtering membranes and preparation method |
CN108697992A (en) * | 2015-12-23 | 2018-10-23 | 索尔维特殊聚合物意大利有限公司 | Porous polymer membranes comprising silicates |
CN109157916A (en) * | 2018-09-10 | 2019-01-08 | 中原工学院 | A kind of LiNbO3/ PVDF composite nano fiber electret air filtering material and preparation method thereof |
CN110237608A (en) * | 2019-07-04 | 2019-09-17 | 江苏中科睿赛污染控制工程有限公司 | A kind of air filter material and its preparation method and application |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021077799A1 (en) * | 2019-10-24 | 2021-04-29 | 国家纳米科学中心 | Porous air filter membrane, preparation method therefor and application thereof |
CN111350029A (en) * | 2020-02-02 | 2020-06-30 | 江苏大学 | Fibroin-based multifunctional nanofiber membrane for smoke filtration and preparation method thereof |
CN113527957A (en) * | 2020-04-15 | 2021-10-22 | 日本泰克斯株式会社 | Polyimide-fluororesin-polar crystal microparticle mixed aqueous dispersion and preparation method thereof |
TWI781586B (en) * | 2020-04-15 | 2022-10-21 | 日商日本瑪泰克斯股份有限公司 | Polyimide-fluororesin-polar crystal fine particle mixed aqueous dispersion dispersion liquid, a method for manufacturing the same |
CN113797649A (en) * | 2021-08-12 | 2021-12-17 | 浙江大学 | Antibacterial and antivirus air filtering material and preparation method thereof |
CN113979778A (en) * | 2021-12-09 | 2022-01-28 | 广西碧清源环保投资有限公司 | Ceramic filtering membrane with pyroelectric function and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110732186B (en) | 2022-02-22 |
WO2021077799A1 (en) | 2021-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110732186B (en) | Porous air filtering membrane and preparation method and application thereof | |
Yang et al. | Multifunctional composite membrane based on BaTiO3@ PU/PSA nanofibers for high-efficiency PM2. 5 removal | |
CN108796823B (en) | High-efficiency and low-resistance micro-nanofiber micro-gradient structure filter material and preparation method thereof | |
CN104645715B (en) | High-efficiency and low-resistance nanofiber air filter material for masks and preparation method thereof | |
CN104722216B (en) | A kind of preparation method of composite air filter membrane | |
CN106541683A (en) | A kind of preparation method of multilayer structure nanofiber composite membrane used for particulate matter filtration in air | |
CN106039839B (en) | A kind of Ke Xunhuanliyong, efficient low-resistance, antibacterial antifogging haze air filting material | |
CN109046040B (en) | Gradient filter membrane material based on nano-fibers and preparation method thereof | |
CN103505942A (en) | Nanofiber filter material | |
CN106807250A (en) | A kind of preparation method of graphene oxide/silica/high molecular polymer composite nanometer filtering film | |
KR20090103351A (en) | An air filter comprising electrostatic filtering layer(s) consisting of spunlace non-woven fabric produced from polyolefin short fibers | |
CN110465134B (en) | Novel composite filtering material and preparation method thereof | |
CN106621571A (en) | Air filtering material capable of releasing negative ions and preparation method of air filtering material | |
CN111569531B (en) | Nanofiber filter and method of making the same | |
KR102230448B1 (en) | Non-woven fabric filter for reducing particulate matter and Method for preparing the same | |
CN110237608A (en) | A kind of air filter material and its preparation method and application | |
CN114272680A (en) | Composite chromatographic filter membrane material based on nano-fiber and polymer microsphere and preparation method thereof | |
CN207225037U (en) | It is a kind of can long-acting negative ion release, antibacterial automobile air conditioner filter element | |
CN111974090A (en) | Preparation method of static-free high-efficiency filter fiber material | |
CN111013272A (en) | PVDF (polyvinylidene fluoride) dendritic structure nanofiber air filtering material and preparation method thereof | |
KR102116377B1 (en) | Manufacturing method of fine dust filter | |
CN110028741A (en) | A kind of thermal history modeling and its preparation method and application | |
Li et al. | Research of electret air filter: A review | |
CN113769481A (en) | An organic-inorganic hybrid multi-level structure air filter protection material | |
CN111330355B (en) | A kind of electret nanofiber high-efficiency filter material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |