CN104722216B - A kind of preparation method of composite air filter membrane - Google Patents
A kind of preparation method of composite air filter membrane Download PDFInfo
- Publication number
- CN104722216B CN104722216B CN201510111643.8A CN201510111643A CN104722216B CN 104722216 B CN104722216 B CN 104722216B CN 201510111643 A CN201510111643 A CN 201510111643A CN 104722216 B CN104722216 B CN 104722216B
- Authority
- CN
- China
- Prior art keywords
- woven fabric
- metal plate
- composite
- spinning needle
- air filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 107
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 111
- 229920000642 polymer Polymers 0.000 claims abstract description 79
- 239000002121 nanofiber Substances 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000004745 nonwoven fabric Substances 0.000 claims description 134
- 239000002184 metal Substances 0.000 claims description 89
- 238000009987 spinning Methods 0.000 claims description 74
- 239000000758 substrate Substances 0.000 claims description 63
- 239000004743 Polypropylene Substances 0.000 claims description 61
- 229920001155 polypropylene Polymers 0.000 claims description 61
- 229920000728 polyester Polymers 0.000 claims description 47
- 229920005594 polymer fiber Polymers 0.000 claims description 42
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 38
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 27
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 27
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 18
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 18
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 15
- -1 polypropylene Polymers 0.000 claims description 14
- 238000003466 welding Methods 0.000 claims description 14
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical group COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 9
- 239000004677 Nylon Substances 0.000 claims description 9
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 235000019253 formic acid Nutrition 0.000 claims description 9
- 229920001778 nylon Polymers 0.000 claims description 9
- 229920002492 poly(sulfone) Polymers 0.000 claims description 9
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 8
- 239000007921 spray Substances 0.000 claims description 7
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000004626 polylactic acid Substances 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims 1
- 229920000747 poly(lactic acid) Polymers 0.000 claims 1
- 229920006393 polyether sulfone Polymers 0.000 claims 1
- 229920002223 polystyrene Polymers 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 5
- 239000004744 fabric Substances 0.000 abstract description 4
- 238000003672 processing method Methods 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 238000010041 electrostatic spinning Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 59
- 150000001875 compounds Chemical class 0.000 description 20
- 238000001914 filtration Methods 0.000 description 11
- 239000000835 fiber Substances 0.000 description 10
- 238000001523 electrospinning Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000003365 glass fiber Substances 0.000 description 5
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 3
- 239000004750 melt-blown nonwoven Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000048 melt cooling Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种复合空气过滤膜的制备方法,属于空气过滤技术领域。The invention relates to a preparation method of a composite air filter membrane, belonging to the technical field of air filter.
背景技术Background technique
随着人们对大气环境与室内空气质量的日益重视,环境标准日趋严格,要达到高等级的空气洁净度,所选用的过滤材料就需要有优越的过滤性能。近年来,各类高效空气过滤材料取得了很大进展。高效空气过滤材料具有过滤效率高、气流阻力小、机械强度大和均匀性好等特点,能满足特定行业对空气过滤材料特殊功能需求的滤材。As people pay more and more attention to the atmospheric environment and indoor air quality, the environmental standards are becoming stricter and stricter. To achieve a high level of air cleanliness, the selected filter materials must have superior filter performance. In recent years, various high-efficiency air filter materials have made great progress. High-efficiency air filter materials have the characteristics of high filtration efficiency, small airflow resistance, high mechanical strength and good uniformity, and can meet the special functional requirements of air filter materials in specific industries.
目前商用过滤材料主要有:(1)熔喷驻极非织造布材料,如专利US4874659,US4178157,以及熔喷非织造布与玻璃纤维纸相结合,如专利CN101352631;(2)纳米膜材料,如专利CN101795747公布了一种由纤维和微珠制成的纳米纤维过滤材料,专利CN03129430公布的一种聚四氟乙烯复合膜过滤材料。At present, commercial filter materials mainly include: (1) melt-blown electret non-woven fabric materials, such as patent US4874659, US4178157, and the combination of melt-blown non-woven fabric and glass fiber paper, such as patent CN101352631; (2) nano-membrane materials, such as Patent CN101795747 discloses a nanofiber filter material made of fibers and microbeads, and patent CN03129430 discloses a polytetrafluoroethylene composite membrane filter material.
为了有效提高过滤材料的过滤效率,通常对过滤材料进行褶裥加工,增大过滤面积从而提高其过滤效率。In order to effectively improve the filtration efficiency of the filter material, the filter material is usually pleated to increase the filtration area to improve its filtration efficiency.
熔喷驻极非织造布材料是基于静电电荷而实现颗粒的有效捕捉,这种过滤材料的性能被空气湿度严重影响,产生电荷损耗,当静电电荷因吸附微小颗粒被中和时其性能下降。并且熔喷非织造布材料本身厚度薄,比较柔软,刚性差,不适合褶裥加工。然而使用玻璃纤维复合的熔喷非织造布材料,由于玻璃纤维纸结构密集,空隙小且少,会导致过滤阻力大,并且在褶裥过程中玻璃纤维相对易碎,造成产率损失。Melt-blown electret nonwoven material is based on electrostatic charge to achieve effective capture of particles. The performance of this filter material is seriously affected by air humidity, resulting in charge loss. When the electrostatic charge is neutralized due to the adsorption of tiny particles, its performance declines. Moreover, the melt-blown nonwoven material itself is thin, relatively soft, and has poor rigidity, so it is not suitable for pleat processing. However, the use of glass fiber composite melt-blown non-woven fabric materials, due to the dense structure of glass fiber paper and small and few voids, will result in high filtration resistance, and the glass fiber is relatively fragile during the pleating process, resulting in loss of productivity.
纳米膜材料,尤其是电纺纤维膜强度低,且制备高面密度的电纺膜缺乏经济性,因此使用单纯的纳米膜材料作为过滤材料使用时无法达到其最佳过滤效果。然而其他膜材料加工方式,如专利CN03129430使用相转变方式造孔成膜,膜的孔径无法控制,从而造成其过滤精度的不可控性。Nano-membrane materials, especially electrospun fiber membranes, have low strength, and it is not economical to prepare electrospun membranes with high surface density. Therefore, the best filtration effect cannot be achieved when pure nano-membrane materials are used as filter materials. However, other membrane material processing methods, such as the patent CN03129430, use the phase transition method to form pores and form membranes, and the pore size of the membrane cannot be controlled, resulting in uncontrollable filtration accuracy.
静电纺丝法是化学纤维传统溶液干法纺丝和熔体纺丝的新发展,是当前纳米纤维等超细纤维制造最主要的方法。与传统的方法有着明显的不同,它将聚合物溶液或熔体带上几千至上万伏高压静电。这一技术的核心,是使带电荷的高分子溶液或熔体在静电场中流动与变形,当电场力足够大时,聚合物液滴可克服表面张力形成喷射细流。然后经溶剂蒸发或熔体冷却而固化得到纤维状物质,因此这一过程称为静电纺丝。目前静电纺纳米纤维很难单独收集,一般最终都落在接收装置上,形成类似非织造布状的纤维毡。Electrospinning is a new development of traditional solution dry spinning and melt spinning of chemical fibers, and is currently the most important method for manufacturing ultrafine fibers such as nanofibers. It is obviously different from the traditional method, which brings thousands to tens of thousands of volts of high-voltage static electricity to the polymer solution or melt. The core of this technology is to make the charged polymer solution or melt flow and deform in the electrostatic field. When the electric field force is strong enough, the polymer droplets can overcome the surface tension to form a jet stream. Then the fibrous material is solidified by solvent evaporation or melt cooling, so this process is called electrospinning. At present, electrospun nanofibers are difficult to collect separately, and generally end up on the receiving device, forming a fiber mat similar to non-woven fabric.
由于静电纺纳米纤维直径细、比表面积大,由这种纤维形成的非织造布表现出优良的吸附性能,可用作吸附媒质,包覆活性炭、生物杀灭剂等,用这些纤维制作的生物化学防护服,能够高效地吸收并降解有害液体和气体。同时这种静电纺纳米纤维非织造布也是高效低阻的优良过滤材料,尺寸为0.3μm的细小颗粒能够轻易地被此类过滤材料捕获;除了满足常规过滤,这种聚合物纳米纤维与其它选择性机体复合涂层后,还可以应用于如分子过滤、化学和生化药物的隔离等。由于纳米纤维具有很高的比表面积,使其应用领域得到更大的拓展,还可用作生物医用材料、细胞培养基体、植入器官、组织载体的基础物质。Due to the fine diameter and large specific surface area of electrospun nanofibers, the nonwoven fabrics formed by such fibers exhibit excellent adsorption properties, and can be used as adsorption media, coated with activated carbon, biocides, etc., and biocides made of these fibers Chemical protective clothing that efficiently absorbs and degrades hazardous liquids and gases. At the same time, this electrospun nanofiber nonwoven fabric is also an excellent filter material with high efficiency and low resistance, and fine particles with a size of 0.3 μm can be easily captured by this type of filter material; in addition to meeting conventional filtration, this polymer nanofiber is compatible with other options After the composite coating of sexual organisms, it can also be applied such as molecular filtration, isolation of chemical and biochemical drugs, etc. Due to the high specific surface area of nanofibers, its application field has been greatly expanded, and it can also be used as a basic material for biomedical materials, cell culture substrates, implanted organs, and tissue carriers.
发明内容:Invention content:
本发明的目的是提出一种复合空气过滤膜的制备方法,通过静电纺丝的加工方法,在非织造布材料上负载一层高分子聚合物纳米纤维膜材料作为过滤层,然后利用超声波复合的方法在此复合材料的表面再负载一层相同或其他材质的透气性支撑材料,从而构成高效复合空气过滤膜,通过褶裥加工制成打折过滤器。The purpose of the present invention is to propose a preparation method of a composite air filter membrane, through the processing method of electrospinning, a layer of high molecular polymer nanofiber membrane material is loaded on the non-woven fabric material as a filter layer, and then composited by ultrasonic waves Methods A layer of the same or other breathable support material is loaded on the surface of the composite material to form a high-efficiency composite air filter membrane, which is made into a pleated filter through pleat processing.
本发明提出的复合空气过滤膜的制备方法,包括以下步骤:The preparation method of the composite air filter membrane that the present invention proposes comprises the following steps:
(1)将非织造布基材平铺在内部接地的金属板上,所述的非织造布基材为水刺涤纶/聚丙烯(PET/PP)或聚乳酸(PLA),所述的非织造布的面密度为40~85g/m2;(1) Lay the non-woven fabric base material on the internally grounded metal plate, the non-woven fabric base material is spunlace polyester/polypropylene (PET/PP) or polylactic acid (PLA), and the non-woven fabric base material The surface density of the woven fabric is 40-85g/m 2 ;
(2)将纳米纤维膜聚合物溶解于溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为10~20wt%,所述的纳米纤维膜聚合物为尼龙(PA)、聚丙烯腈(PAN)、聚砜(PSU)、聚偏氟乙烯(PVDF)或聚醚砜(PES)、聚氨酯(PU)、聚碳酸酯(PC)、聚苯乙烯(PS)中的任何一种,溶剂为甲酸、乙酸、氯仿、N、N-二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)、丙酮(AC)、四氢呋喃(THF)、十六烷基三甲基溴化胺(CTAB)中的一种或两种以一定比例进行混合,所述溶剂的混合比例为1:1~1:199;(2) dissolving the nanofiber membrane polymer in a solvent to obtain a polymer solution, the mass percent concentration of the polymer solution is 10 to 20 wt%, and the nanofiber membrane polymer is nylon (PA), polyacrylonitrile ( Any one of PAN), polysulfone (PSU), polyvinylidene fluoride (PVDF) or polyethersulfone (PES), polyurethane (PU), polycarbonate (PC), polystyrene (PS), the solvent is Formic acid, acetic acid, chloroform, N,N-dimethylformamide (DMF), dimethylacetamide (DMAC), acetone (AC), tetrahydrofuran (THF), cetyltrimethylammonium bromide (CTAB ) in one or two are mixed in a certain ratio, and the mixing ratio of the solvent is 1:1~1:199;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30~60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为10~40cm,在纺丝针头和金属板之间施加一个12~33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1~4mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into a micro-syringe, control the ambient humidity to 30-60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle on the above-mentioned metal plate covered with non-woven fabric Above the spinning needle and the metal plate, the distance between the spinning needle and the metal plate is 10-40 cm, and a 12-33 kV high voltage is applied between the spinning needle and the metal plate. solution, spray ultrafine polymer fibers at a flow rate of 0.1-4mL/h, the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate , to obtain the nanofiber membrane filter layer material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将上层非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合方法,将三层复合材料焊接成复合空气过滤膜,超声波复合时的超声波频率为20KHz,焊接压力为50~200牛顿,所述的上层非织造布基材为针刺涤纶(PET)、水刺涤纶/聚丙烯(PET/PP)或纺粘聚丙烯(PP),所述的上层非织造布的面密度为50~85g/m2。(4) The nonwoven fabric substrate loaded with nanofiber membrane filter layer material is removed from the metal plate, and the upper nonwoven fabric is covered on the above-mentioned nonwoven fabric substrate loaded with nanofiber membrane filter layer material, using Ultrasonic composite method, three layers of composite materials are welded into a composite air filter membrane, the ultrasonic frequency during ultrasonic composite is 20KHz, the welding pressure is 50-200 Newton, and the base material of the upper non-woven fabric is needle-punched polyester (PET), Spunlace polyester/polypropylene (PET/PP) or spun-bonded polypropylene (PP), the surface density of the upper non-woven fabric is 50-85g/m 2 .
本发明提出的复合空气过滤膜的制备方法,其优点是:The preparation method of composite air filter membrane that the present invention proposes, its advantage is:
1、本发明方法制备的高效复合空气过滤膜,其打褶性能好,风阻低,使用寿命长,具有优越的的PM0.3~PM10的过滤性,可用于恶劣气候条件下的口罩材料。1. The high-efficiency composite air filter membrane prepared by the method of the present invention has good pleating performance, low wind resistance, long service life, excellent filterability of PM0.3~PM10, and can be used as a mask material under harsh weather conditions.
2、本发明方法中的静电纺丝制的纳米纤维膜,纤维直径可控,从而可以保证良好的孔径大小和孔隙率,为复合材料提供了良好的颗粒阻隔性,同时非织造布基材作为基体材料提供了良好的顶破和断裂强度,可以使低密度的纳米膜提供很好的颗粒过滤性,透气性支撑材料则提供了刚性使得复合材料易于进行褶裥加工。2. The nanofiber membrane made by electrospinning in the method of the present invention has controllable fiber diameter, so that good pore size and porosity can be guaranteed, and good particle barrier properties are provided for composite materials. The matrix material provides good bursting and breaking strength, which enables the low-density nano-membrane to provide good particle filtration, and the air-permeable support material provides rigidity to make the composite easy to be pleated.
附图说明Description of drawings
图1是本发明制备方法涉及的一个静电纺丝装置的结构示意图。Figure 1 is a schematic structural view of an electrospinning device involved in the preparation method of the present invention.
图2是本发明方法制备的复合空气过滤膜的电镜照片。Fig. 2 is the electron micrograph of the composite air filter membrane prepared by the method of the present invention.
图1中,1是注射器,2是纺丝针头,3是高压直流电源,4是非织造布,5是金属平板。In Fig. 1, 1 is a syringe, 2 is a spinning needle, 3 is a high-voltage DC power supply, 4 is a nonwoven fabric, and 5 is a metal plate.
具体实施方式detailed description
本发明提出的复合空气过滤膜的制备方法,包括以下步骤:The preparation method of the composite air filter membrane that the present invention proposes comprises the following steps:
(1)将非织造布基材平铺在内部接地的金属板上,所述的非织造布基材为水刺涤纶/聚丙烯(PET/PP)或聚乳酸(PLA),所述的非织造布的面密度为40~85g/m2;(1) Lay the non-woven fabric base material on the internally grounded metal plate, the non-woven fabric base material is spunlace polyester/polypropylene (PET/PP) or polylactic acid (PLA), and the non-woven fabric base material The surface density of the woven fabric is 40-85g/m 2 ;
(2)将纳米纤维膜聚合物溶解于溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为10~20wt%,所述的纳米纤维膜聚合物为尼龙(PA)、聚丙烯腈(PAN)、聚砜(PSU)、聚偏氟乙烯(PVDF)或聚醚砜(PES)、聚氨酯(PU)、聚碳酸酯(PC)、聚苯乙烯(PS)中的任何一种,溶剂为甲酸、乙酸、氯仿、N、N-二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)、丙酮(AC)、四氢呋喃(THF)、十六烷基三甲基溴化胺(CTAB)中的一种或两种以一定比例进行混合,所述溶剂的混合比例为1:1~1:199;(2) dissolving the nanofiber membrane polymer in a solvent to obtain a polymer solution, the mass percent concentration of the polymer solution is 10 to 20 wt%, and the nanofiber membrane polymer is nylon (PA), polyacrylonitrile ( Any one of PAN), polysulfone (PSU), polyvinylidene fluoride (PVDF) or polyethersulfone (PES), polyurethane (PU), polycarbonate (PC), polystyrene (PS), the solvent is Formic acid, acetic acid, chloroform, N,N-dimethylformamide (DMF), dimethylacetamide (DMAC), acetone (AC), tetrahydrofuran (THF), cetyltrimethylammonium bromide (CTAB ) in one or two are mixed in a certain ratio, and the mixing ratio of the solvent is 1:1~1:199;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30~60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为10~40cm,在纺丝针头和金属板之间施加一个12~33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1~4mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料,本步骤中静电纺丝的示意图如图1所示,图1中,1是注射器,2是纺丝针头,3是高压直流电源,4是非织造布,5是金属平板;(3) Add the above-mentioned polymer solution into a micro-syringe, control the ambient humidity to 30-60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle on the above-mentioned metal plate covered with non-woven fabric Above the spinning needle and the metal plate, the distance between the spinning needle and the metal plate is 10-40 cm, and a 12-33 kV high voltage is applied between the spinning needle and the metal plate. solution, spray ultrafine polymer fibers at a flow rate of 0.1-4mL/h, the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate , to obtain the nanofiber membrane filter layer material, the schematic diagram of electrospinning in this step is as shown in Figure 1, in Figure 1, 1 is a syringe, 2 is a spinning needle, 3 is a high-voltage direct current power supply, 4 is a nonwoven fabric, 5 is metal plate;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将上层非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合方法,将三层复合材料焊接成复合空气过滤膜,超声波复合时的超声波频率为20KHz,焊接压力为50~200牛顿,所述的上层非织造布基材为针刺涤纶(PET)、水刺涤纶/聚丙烯(PET/PP)或纺粘聚丙烯(PP),所述的上层非织造布的面密度为50~85g/m2。(4) The nonwoven fabric substrate loaded with nanofiber membrane filter layer material is removed from the metal plate, and the upper nonwoven fabric is covered on the above-mentioned nonwoven fabric substrate loaded with nanofiber membrane filter layer material, using Ultrasonic composite method, three layers of composite materials are welded into a composite air filter membrane, the ultrasonic frequency during ultrasonic composite is 20KHz, the welding pressure is 50-200 Newton, and the base material of the upper non-woven fabric is needle-punched polyester (PET), Spunlace polyester/polypropylene (PET/PP) or spun-bonded polypropylene (PP), the surface density of the upper non-woven fabric is 50-85g/m 2 .
本发明方法中,可以根据非织造布通气性的难易、非织造布基材的表面形貌、容尘量和机械强度来选择非织造布基材。非织造布基材可以是针刺涤纶(PET)非织造布、水刺涤纶/聚丙烯(PET/PP)非织造布、聚乳酸(PLA)非织造布、纺粘聚丙烯(PP)非织造布,从经济性和可加工性考虑,优选水刺涤纶/聚丙烯(PET/PP)非织造布,面密度控制在40~85g/m2。In the method of the present invention, the nonwoven fabric substrate can be selected according to the difficulty of air permeability of the nonwoven fabric, the surface morphology, dust holding capacity and mechanical strength of the nonwoven fabric substrate. The nonwoven fabric substrate can be needle punched polyester (PET) nonwoven fabric, spunlace polyester/polypropylene (PET/PP) nonwoven fabric, polylactic acid (PLA) nonwoven fabric, spunbonded polypropylene (PP) nonwoven fabric For the cloth, in consideration of economy and processability, spunlace polyester/polypropylene (PET/PP) nonwoven fabric is preferred, and the surface density is controlled at 40-85g/m 2 .
本发明方法中,纳米纤维膜的聚合物材料可以是尼龙(PA)、聚丙烯腈(PAN)、聚砜(PSU)、聚偏氟乙烯(PVDF)或聚醚砜(PES)、聚氨酯(PU)、聚碳酸酯(PC)、聚苯乙烯(PS)中的任何一种,溶剂为甲酸、乙酸、氯仿、N、N-二甲基甲酰胺(DMF)、二甲基乙酰胺(DMAC)、丙酮(AC)、四氢呋喃(THF)、十六烷基三甲基溴化胺(CTAB)中的一种或两种以一定比例进行混合。从经济性以及环境友好性考虑聚合物材料优选为尼龙(PA),溶剂是甲酸、乙酸。In the method of the present invention, the polymer material of the nanofibrous membrane can be nylon (PA), polyacrylonitrile (PAN), polysulfone (PSU), polyvinylidene fluoride (PVDF) or polyethersulfone (PES), polyurethane (PU ), polycarbonate (PC), polystyrene (PS), the solvent is formic acid, acetic acid, chloroform, N, N-dimethylformamide (DMF), dimethylacetamide (DMAC) , acetone (AC), tetrahydrofuran (THF), cetyltrimethylammonium bromide (CTAB), or two are mixed in a certain proportion. In view of economy and environmental friendliness, the polymer material is preferably nylon (PA), and the solvent is formic acid and acetic acid.
聚合物溶液浓度不到5wt%时无法纤维化,超过20wt%时则无法从纺丝通道喷出,因此优选聚合物溶液的浓度为10~20%。When the concentration of the polymer solution is less than 5wt%, it cannot be fibrillated, and if it exceeds 20wt%, it cannot be ejected from the spinning channel. Therefore, the concentration of the polymer solution is preferably 10 to 20%.
静电纺丝加工时聚合物溶液挤出流量过小容易导致纤维膜不均匀,造成过滤性差,挤出流量过大容易造成滴液导致纤维膜破损,因此电纺时聚合物溶液挤出流量为0.1~4mL/h。Excessive extrusion flow rate of polymer solution during electrospinning process will easily lead to uneven fiber film, resulting in poor filterability, and excessive extrusion flow rate will easily cause dripping and damage to fiber film. Therefore, the extrusion flow rate of polymer solution during electrospinning is 0.1 ~4mL/h.
静电纺丝时,电压为10~40千伏;环境湿度为30~60%。纺丝针头与接收材料间距为10~40cm。During electrospinning, the voltage is 10-40 kV; the ambient humidity is 30-60%. The distance between the spinning needle and the receiving material is 10-40cm.
通过以上工艺控制可制的纤维直径为0.01~0.3μm;厚度为0.5~5μm的纳米纤维膜过滤层材料。纳米膜材料孔径为为0.1~2.5μm。膜材料的孔隙率为70~98%。Through the above process control, the nanofiber membrane filter material with a fiber diameter of 0.01-0.3 μm and a thickness of 0.5-5 μm can be produced. The pore diameter of the nano-membrane material is 0.1-2.5 μm. The porosity of the membrane material is 70-98%.
复合材料的复合加工Composite Machining of Composite Materials
通过热压、超声波复合等后处理技术将非织造布基材、纳米纤维层以及骨架增强材料复合制成三明治夹心结构的复合过滤材料,使之进一步满足过滤器材的使用要求。Through post-processing technologies such as hot pressing and ultrasonic compounding, the non-woven fabric substrate, nanofiber layer and skeleton reinforcement material are combined to form a composite filter material with a sandwich sandwich structure, so that it can further meet the use requirements of filter materials.
为了增加复合材料的褶裥加工性能并进一步保护纳米纤维层,须在上述工艺制造的复合材料基础上增加一层骨架非织造布材料,提高复合材料的刚性,便于褶裥加工,该骨架材料可以是玻璃纤维增强非织造布、湿法非织造布、热粘合非织造布,从可加工性考虑,优选为湿法非织造布。In order to increase the pleating performance of the composite material and further protect the nanofiber layer, it is necessary to add a layer of skeleton nonwoven fabric material on the basis of the composite material manufactured by the above process to improve the rigidity of the composite material and facilitate pleat processing. The skeleton material can be It is a glass fiber reinforced nonwoven fabric, a wet-laid nonwoven fabric, and a thermally bonded nonwoven fabric. From the viewpoint of processability, a wet-laid nonwoven fabric is preferred.
复合工艺可以是辊扎热压、超声波复合,为了保证纳米纤维膜材料完整性,优选超声波复合工艺。The composite process can be rolling hot pressing and ultrasonic composite. In order to ensure the integrity of the nanofiber membrane material, the ultrasonic composite process is preferred.
通过上述各工艺加工制成的复合空气过滤膜材料,具有打褶性能好,风阻低,使用寿命长,具有具有优越的的PM0.3~PM10的过滤性。在风量为150m3/h测试条件下,风阻低于100Pa,PM0.3过滤率大于99.6%。The composite air filter membrane material processed by the above processes has good pleating performance, low wind resistance, long service life, and excellent filterability of PM0.3-PM10. Under the test condition of an air volume of 150m 3 /h, the wind resistance is lower than 100Pa, and the PM0.3 filtration rate is greater than 99.6%.
以下介绍本发明方法的实施例:Introduce the embodiment of the inventive method below:
实施例1Example 1
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物尼龙(PA)溶解于甲酸、乙酸混合比例为4:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为12wt%;(2) dissolving the nanofiber membrane polymer nylon (PA) in a solvent having a mixing ratio of formic acid and acetic acid of 4:1 to obtain a polymer solution, and the mass percent concentration of the polymer solution is 12wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为15cm,在纺丝针头和金属板之间施加一个33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 15cm, and a 33 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.1mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将上层面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合方法,将三层复合材料焊接得到复合空气过滤膜,本发明的实施例中,超声波复合操作采用常州市劲普自动化设备有限公司生产的Jp-60s型超声波复合机,超声波的工作频率为20KHz,焊接压力为50牛顿。(4) The nonwoven fabric substrate loaded with the nanofiber membrane filter layer material is removed from the metal plate, and the upper layer density is 85g/m 2 Spunlaced polyester/polypropylene (PET/PP) nonwoven fabric covering On the above-mentioned non-woven fabric substrate loaded with nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by ultrasonic composite method. In the embodiment of the present invention, the ultrasonic composite operation adopts Changzhou Jinpu The Jp-60s ultrasonic compound machine produced by Automation Equipment Co., Ltd. has an ultrasonic working frequency of 20KHz and a welding pressure of 50 Newton.
本实施例制备的复合空气过滤膜的电镜图如图2所示。The electron micrograph of the composite air filter membrane prepared in this embodiment is shown in Fig. 2 .
实施例2Example 2
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物尼龙(PA)溶解于甲酸、乙酸的混合比例为4:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为12wt%;(2) dissolving the nanofiber membrane polymer nylon (PA) in a solvent whose mixing ratio of formic acid and acetic acid is 4:1 to obtain a polymer solution, the mass percentage concentration of the polymer solution is 12wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为15cm,在纺丝针头和金属板之间施加一个33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 15cm, and a 33 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.1mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为50牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 50 Newton.
实施例3Example 3
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物尼龙(PA)溶解于甲酸、乙酸的混合比例为4:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为12wt%;(2) dissolving the nanofiber membrane polymer nylon (PA) in a solvent whose mixing ratio of formic acid and acetic acid is 4:1 to obtain a polymer solution, the mass percentage concentration of the polymer solution is 12wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为15cm,在纺丝针头和金属板之间施加一个33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 15cm, and a 33 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.1mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为60g/m2的针刺涤纶(PET)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为50牛顿。(4) The non-woven fabric substrate loaded with the nanofiber membrane filter layer material is removed from the metal plate, and another needle - punched polyester (PET) non-woven fabric with a layer density of 60g/m2 is covered on the above-mentioned load. On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is the Jp-60s type of Changzhou Jinpu Automation Equipment Co., Ltd. Ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 50 Newton.
实施例4Example 4
(1)将面密度为40g/m2的聚乳酸(PLA)非织造布基材平铺在内部接地的金属板上;(1) Lay a polylactic acid (PLA) nonwoven substrate with an area density of 40g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物尼龙(PA)溶解于甲酸、乙酸的混合比例为4:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为12wt%;(2) dissolving the nanofiber membrane polymer nylon (PA) in a solvent whose mixing ratio of formic acid and acetic acid is 4:1 to obtain a polymer solution, the mass percentage concentration of the polymer solution is 12wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为60%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为15cm,在纺丝针头和金属板之间施加一个33千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.1mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 60%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 15cm, and a 33 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.1mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为50牛顿。(4) The nonwoven fabric base material loaded with the nanofiber membrane filter layer material is removed from the metal plate, and another layer of spunlace polyester/polypropylene (PET/PP) nonwoven fabric with a density of 85g/ m2 Cover the above-mentioned non-woven fabric substrate loaded with nanofiber membrane filter layer material, and use an ultrasonic composite machine to weld the three-layer composite material to obtain a composite air filter membrane. The ultrasonic composite machine is Changzhou Jinpu Automation Equipment Co., Ltd. The company's Jp-60s ultrasonic compound machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 50 Newton.
实施例5Example 5
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚丙烯腈(PAN)溶解于N、N-二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中的任一种,得到聚合物溶液,聚合物溶液的质量百分比浓度为10wt%;(2) Dissolve the nanofiber membrane polymer polyacrylonitrile (PAN) in any of N, N-dimethylformamide (DMF) or dimethylacetamide (DMAC) to obtain a polymer solution, and polymerize The mass percent concentration of the substance solution is 10wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为35%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为25cm,在纺丝针头和金属板之间施加一个22.5千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以1mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to be 35%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 25cm, and a 22.5 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injection through the pipeline is 1mL/ The flow rate of h sprays ultrafine polymer fibers, and the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate to obtain the nanofiber membrane filter layer material ;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为150牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 150 Newton.
实施例6Example 6
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚砜(PSU)溶解于N、N-二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中的任一种与丙酮(AC)混合比例为9:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为12wt%;(2) Dissolving the nanofibrous membrane polymer polysulfone (PSU) in N, N-dimethylformamide (DMF) or dimethylacetamide (DMAC) in any one and acetone (AC) mixing ratio is In the solvent of 9:1, obtain polymer solution, the mass percent concentration of polymer solution is 12wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为20cm,在纺丝针头和金属板之间施加一个12千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以4mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 30%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 20cm, and a 12 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 4mL/ The flow rate of h sprays ultrafine polymer fibers, and the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate to obtain the nanofiber membrane filter layer material ;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为50牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 50 Newton.
实施例7Example 7
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚偏氟乙烯(PVDF)溶解于N、N-二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中的任一种,得到聚合物溶液,聚合物溶液的质量百分比浓度为10wt%;(2) dissolving the nanofiber membrane polymer polyvinylidene fluoride (PVDF) in any one of N, N-dimethylformamide (DMF) or dimethylacetamide (DMAC) to obtain a polymer solution, The mass percentage concentration of polymer solution is 10wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为40%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为40cm,在纺丝针头和金属板之间施加一个22.5千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以3mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 40%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 40cm, and a 22.5 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injection through the pipeline is 3mL/ The flow rate of h sprays ultrafine polymer fibers, and the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate to obtain the nanofiber membrane filter layer material ;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为200牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 200 Newton.
实施例8Example 8
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚醚砜(PES)溶解于N、N-二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中的任一种与丙酮(AC)混合比例为8.5:1.5的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为18wt%;(2) Dissolving the nanofibrous membrane polymer polyethersulfone (PES) in any one of N, N-dimethylformamide (DMF) or dimethylacetamide (DMAC) and the mixing ratio of acetone (AC) In the solvent of 8.5:1.5, obtain polymer solution, the mass percent concentration of polymer solution is 18wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为10cm,在纺丝针头和金属板之间施加一个15千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.5mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 30%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 10cm, and a 15 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.5mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为100牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 100 Newton.
实施例9Example 9
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚氨酯(PU)溶解于N、N-二甲基甲酰胺(DMF)和四氢呋喃(THF)混合比例为1:1的溶剂中,得到聚合物溶液,聚合物溶液的质量百分比浓度为10wt%;(2) Dissolving the nanofiber membrane polymer polyurethane (PU) in a solvent with a mixing ratio of 1:1 of N, N-dimethylformamide (DMF) and tetrahydrofuran (THF) to obtain a polymer solution, a polymer solution The mass percentage concentration is 10wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为20cm,在纺丝针头和金属板之间施加一个20千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以0.9mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 30%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 20cm, and a 20 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 0.9mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为100牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 100 Newton.
实施例10Example 10
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚碳酸脂(PC)溶解于十六烷基三甲基溴化胺质量分数是0.5wt%的氯仿中,得到聚合物溶液,聚合物溶液的质量百分比浓度为14wt%;(2) nanofiber membrane polymer polycarbonate (PC) is dissolved in the chloroform that cetyltrimethylammonium bromide massfraction is 0.5wt%, obtains polymer solution, the mass percent concentration of polymer solution is 14wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为10cm,在纺丝针头和金属板之间施加一个20千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以1.5mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 30%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 10cm, and a 20 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 1.5mL The ultrafine polymer fibers are ejected at a flow rate of /h, and the ultrafine polymer fibers land on the nonwoven fabric substrate on the surface of the metal plate, and the ultrafine polymer fibers on the nonwoven fabric substrate are collected to obtain a nanofiber membrane filter layer Material;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为100牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 100 Newton.
实施例11Example 11
(1)将面密度为85g/m2的水刺涤纶/聚丙烯(PET/PP)非织造布基材平铺在内部接地的金属板上;(1) Lay a spunlace polyester/polypropylene (PET/PP) nonwoven fabric substrate with an area density of 85g/m2 on an internally grounded metal plate;
(2)将纳米纤维膜聚合物聚苯乙烯(PS)溶解于N、N-二甲基甲酰胺中,得到聚合物溶液,聚合物溶液的质量百分比浓度为20wt%;(2) dissolving the nanofiber membrane polymer polystyrene (PS) in N,N-dimethylformamide to obtain a polymer solution, the mass percent concentration of the polymer solution being 20wt%;
(3)将上述聚合物溶液加入到微量注射器中,控制环境湿度为30%,使微量注射器与纺丝针头通过管道相连,使纺丝针头置于上述平铺有非织造布的金属板的上方,纺丝针头与金属板的间距为15cm,在纺丝针头和金属板之间施加一个15千伏的高压电,使通过管道从微量注射器到达纺丝针头中的聚合物溶液,以2mL/h的流量喷出超细聚合物纤维,超细聚合物纤维降落在金属板表面的非织造布基材上,收集非织造布基材上的超细聚合物纤维,得到纳米纤维膜过滤层材料;(3) Add the above-mentioned polymer solution into the micro-syringe, control the ambient humidity to 30%, connect the micro-syringe to the spinning needle through a pipeline, and place the spinning needle above the above-mentioned metal plate covered with non-woven fabric , the distance between the spinning needle and the metal plate is 15cm, and a 15 kV high voltage is applied between the spinning needle and the metal plate, so that the polymer solution in the spinning needle from the micro-injector through the pipeline is 2mL/ The flow rate of h sprays ultrafine polymer fibers, and the ultrafine polymer fibers land on the non-woven fabric substrate on the surface of the metal plate, and collect the ultrafine polymer fibers on the non-woven fabric substrate to obtain the nanofiber membrane filter layer material ;
(4)将负载了纳米纤维膜过滤层材料的非织造布基材从金属板上取下,将另一层面密度为50g/m2的纺粘聚丙烯(PP)非织造布覆盖于上述负载了纳米纤维膜过滤层材料的非织造布基材上,利用超声波复合机,将三层复合材料焊接得到复合空气过滤膜,所述的超声波复合机为常州市劲普自动化设备有限公司Jp-60s型超声波复合机,所述超声波工作频率为20KHz,焊接压力为100牛顿。(4) Remove the non-woven fabric base material loaded with nanofiber membrane filter layer material from the metal plate, and cover the above-mentioned load with a spun - bonded polypropylene (PP) non-woven fabric with a layer density of 50g/m2 On the non-woven fabric substrate of the nanofiber membrane filter layer material, the three-layer composite material is welded to obtain a composite air filter membrane by using an ultrasonic compound machine. The ultrasonic compound machine is Jp-60s of Changzhou Jinpu Automation Equipment Co., Ltd. type ultrasonic composite machine, the ultrasonic working frequency is 20KHz, and the welding pressure is 100 Newton.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510111643.8A CN104722216B (en) | 2015-03-13 | 2015-03-13 | A kind of preparation method of composite air filter membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510111643.8A CN104722216B (en) | 2015-03-13 | 2015-03-13 | A kind of preparation method of composite air filter membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104722216A CN104722216A (en) | 2015-06-24 |
CN104722216B true CN104722216B (en) | 2017-01-25 |
Family
ID=53446993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510111643.8A Expired - Fee Related CN104722216B (en) | 2015-03-13 | 2015-03-13 | A kind of preparation method of composite air filter membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104722216B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105195028A (en) * | 2015-07-03 | 2015-12-30 | 东华大学 | Preparation method of composite nanofiber ultra-filtration membrane |
CN105080355A (en) * | 2015-07-06 | 2015-11-25 | 南通百博丝纳米科技有限公司 | Nano fiber composite film and preparation method |
CN106079759B (en) * | 2016-06-24 | 2018-10-26 | 崔建中 | Polyphenylene sulfide nanofiltration net and its Preparation equipment |
CN105996230A (en) * | 2016-07-26 | 2016-10-12 | 苏州艾美医疗用品有限公司 | Super-high-moisture-absorption-and-filtration medical protective mask |
CN106063600A (en) * | 2016-07-26 | 2016-11-02 | 苏州艾美医疗用品有限公司 | A kind of medical filtration type protective mask |
CN106582124A (en) * | 2016-11-25 | 2017-04-26 | 浙江绿净环保科技有限公司 | Production process for dedusting filter bag |
CN106731328A (en) * | 2016-11-25 | 2017-05-31 | 浙江绿净环保科技有限公司 | A kind of two-layer compound air-filtering membrane and its preparation technology |
DE102016014894A1 (en) | 2016-12-15 | 2018-06-21 | Mann + Hummel Gmbh | Filter medium, process for its preparation and use of the filter medium in a filter element |
CN108434898A (en) * | 2017-07-22 | 2018-08-24 | 浙江龙碧新材料有限公司 | A kind of nano-energy-saving filter and its manufacture craft |
CN113260443B (en) * | 2018-12-28 | 2023-06-13 | 日东电工株式会社 | Filter pleat pack and air filter unit |
CN110126377A (en) * | 2019-05-24 | 2019-08-16 | 多凌洁净空气科技有限公司 | Absorbing sweat hydrofuge is ventilative and may filter that composite material, its preparation method and the application of particulate matter |
CN111746076A (en) * | 2020-06-02 | 2020-10-09 | 张逸晖 | Filtering fabric, mask and production method of mask |
CN111607908A (en) * | 2020-06-04 | 2020-09-01 | 常州市晋纯环保科技有限公司 | Novel nano mask filtering material and manufacturing method thereof |
CN114176276A (en) * | 2021-08-26 | 2022-03-15 | 青岛尼希米生物科技有限公司 | Antibacterial and antiviral mask |
CN116141802A (en) * | 2022-12-13 | 2023-05-23 | 厦门数字智造工业研究院有限公司 | A kind of antibacterial anti-mite material and its manufacturing process and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001239406B2 (en) * | 2000-03-22 | 2005-11-03 | Victrex Manufacturing Limited | Composite ion exchange material |
CN101829454A (en) * | 2009-03-12 | 2010-09-15 | 北京服装学院 | Preparation method of electric spinning-based composite nano fiber material for filters |
CN103111195A (en) * | 2013-03-13 | 2013-05-22 | 株洲时代新材料科技股份有限公司 | High-temperature resistance polyamide composite membrane and preparation method thereof |
CN103480285B (en) * | 2013-09-06 | 2015-10-21 | 东华大学 | A kind of enhancing polysulfone nano-fiber air filter membrane and electrostatic spinning preparation method thereof |
-
2015
- 2015-03-13 CN CN201510111643.8A patent/CN104722216B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104722216A (en) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104722216B (en) | A kind of preparation method of composite air filter membrane | |
JP5037034B2 (en) | Filter filter medium, its production method and method of use, and filter unit | |
CN104028047B (en) | A kind of high abrasion antistripping electrostatic spinning nano fiber composite filter material and spinning process thereof | |
CN104436865B (en) | High-efficiency low-resistance PM2.5 composite fiber filtering membrane and electrostatic spinning preparation method | |
EP2259860B1 (en) | Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment | |
JP6172924B2 (en) | Manufacturing method of nonwoven fabric substrate for air filter or mask | |
CN107502960B (en) | An electrospun multi-component nanofiber composite screen window and its preparation method | |
CN104645715B (en) | High-efficiency and low-resistance nanofiber air filter material for masks and preparation method thereof | |
CN101829454A (en) | Preparation method of electric spinning-based composite nano fiber material for filters | |
CN107335346B (en) | A kind of bacterial cellulose nanofiber composite filter membrane and preparation method thereof | |
KR20080017324A (en) | Filter medium, its production method and method of use, and filter unit | |
JP2010509056A (en) | Particle filter system incorporating nanofibers | |
CN102872654A (en) | Filtering material for mask and method for manufacturing filtering material | |
CN103505942A (en) | Nanofiber filter material | |
CN106925033B (en) | A kind of composite nano fiber PM2.5 filtering material and preparation method thereof | |
CN108579212A (en) | A kind of functionalized nano-fiber filtering material and its preparation method and application | |
CN105624927B (en) | The industrialized preparing process of sack cleaner base material nanofiber composite filtering material | |
CN110302592B (en) | Back-blowing resistant nanofiber composite filter material and preparation method thereof | |
JP6624589B2 (en) | Manufacturing method of laminated nonwoven fabric | |
WO2021082090A1 (en) | Anti-backflushing nanofiber composite filter material having anchor points | |
CN106639844A (en) | Anti-haze window gauze and preparation method thereof | |
KR20200033669A (en) | Filter media for electret filter comprising nano fiber sheet and manufacturing methode of the same | |
CN113085306A (en) | Reusable mask filter material and preparation method thereof | |
JP4737039B2 (en) | Filter nonwoven fabric for air intake | |
KR102116377B1 (en) | Manufacturing method of fine dust filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170125 |