CN110423732A - A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method - Google Patents
A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method Download PDFInfo
- Publication number
- CN110423732A CN110423732A CN201910749343.0A CN201910749343A CN110423732A CN 110423732 A CN110423732 A CN 110423732A CN 201910749343 A CN201910749343 A CN 201910749343A CN 110423732 A CN110423732 A CN 110423732A
- Authority
- CN
- China
- Prior art keywords
- seq
- tocotrienols
- tmt
- saccharomyces cerevisiae
- mpbqmt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1003—Transferases (2.) transferring one-carbon groups (2.1)
- C12N9/1007—Methyltransferases (general) (2.1.1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/06—Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y113/00—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
- C12Y113/11—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
- C12Y113/11027—4-Hydroxyphenylpyruvate dioxygenase (1.13.11.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y201/00—Transferases transferring one-carbon groups (2.1)
- C12Y201/01—Methyltransferases (2.1.1)
- C12Y201/01095—Tocopherol O-methyltransferase (2.1.1.95)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y201/00—Transferases transferring one-carbon groups (2.1)
- C12Y201/01—Methyltransferases (2.1.1)
- C12Y201/01201—2-Methoxy-6-polyprenyl-1,4-benzoquinol methylase (2.1.1.201)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y505/00—Intramolecular lyases (5.5)
- C12Y505/01—Intramolecular lyases (5.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及基因工程和微生物领域,特别是涉及一种在酿酒酵母中表达的酶及高产α-和γ-生育三烯酚的基因工程菌及其构建方法。The invention relates to the fields of genetic engineering and microorganisms, in particular to an enzyme expressed in Saccharomyces cerevisiae and a genetically engineered bacterium with high production of α- and γ-tocotrienol and a construction method thereof.
背景技术Background technique
维生素E是一种重要的脂溶性化合物,包括生育酚和生育三烯酚,它是维持机体正常代谢和机能的必需维生素。天然维生素E只存在于光合生物中,人和动物不能自我合成,只能从外界摄取。市面上的维生素E产品主要是α-生育酚,但最近研究表明,相比生育酚,生育三烯酚具有降低胆固醇的功效(生育三烯酚独有),以及更好的抗氧化、抗癌、抗炎、心脏保护和神经保护功能。但生育三烯酚的来源稀少,商业化的天然生育三烯酚主要从油棕果中提取,由于其含量较低,分离难度大,产量受到限制,导致生产成本较高。而化学合成的生育三烯酚由于步骤复杂,副产物较多,无法实现商业化生产。因此,利用微生物异源合成生产生育三烯酚是一种高效且有前景的方法。Vitamin E is an important fat-soluble compound, including tocopherol and tocotrienol, which is an essential vitamin for maintaining normal metabolism and function of the body. Natural vitamin E only exists in photosynthetic organisms. Humans and animals cannot synthesize it by themselves and can only ingest it from the outside world. Vitamin E products on the market are mainly α-tocopherol, but recent studies have shown that compared to tocopherol, tocotrienol has the effect of lowering cholesterol (tocotrienol is unique), and better anti-oxidation, anti-cancer , anti-inflammatory, cardioprotective and neuroprotective functions. However, the sources of tocotrienols are scarce, and the commercialized natural tocotrienols are mainly extracted from oil palm fruit. Due to their low content, the separation is difficult and the yield is limited, resulting in high production costs. However, chemically synthesized tocotrienols cannot be commercially produced due to complex steps and many by-products. Therefore, the heterologous synthesis of tocotrienols by microorganisms is an efficient and promising method.
2008年,德国斯图加特大学的研究人员通过导入拟南芥和蓝藻来源的基因在大肠杆菌中实现的δ-生育三烯酚的合成,但产量很低,只有15μg/g细胞干重,且δ-生育三烯酚是未经甲基化的生育三烯酚形式,应用受到一定限制。到目前为止,仍未实现功能更强大,应用更广泛的α-或γ-生育三烯酚的异源生物合成。本发明提供一种以安全、高效的酿酒酵母为细胞工厂异源合成α-和γ-生育三烯酚的方法,为工业生产生育三烯酚提供新的思路和方法,解决目前产量低、生产成本高的难题。In 2008, researchers from the University of Stuttgart in Germany realized the synthesis of δ-tocotrienol in Escherichia coli by introducing genes from Arabidopsis and cyanobacteria, but the yield was very low, only 15 μg/g dry weight of cells, and δ- Tocotrienols are unmethylated forms of tocotrienols and their applications are limited. So far, the heterologous biosynthesis of the more powerful and widely applicable α- or γ-tocotrienols has not been achieved. The invention provides a method for heterologously synthesizing α- and γ-tocotrienols with safe and efficient Saccharomyces cerevisiae as a cell factory, provides a new idea and method for industrial production of tocotrienols, and solves the problem of low output and production problems. high cost problem.
发明内容Contents of the invention
为解决现有技术的不足,本发明的目的在于提供一种可以在酿酒酵母中表达的关键酶及高产α-和γ-生育三烯酚的基因工程菌及其构建方法,以植物或蓝藻维生素E合成途径中的关键酶为模板,通过基因克隆和密码子优化,获得五个可以在酿酒酵母中成功表达的酶,将其逐步整合到酿酒酵母染色体上,构建出一株产α-和γ-生育三烯酚的基因工程酵母菌株,并进一步通过切除叶绿体转运肽和过表达限速酶,构建出一株高产菌株,能够安全、高效、高产量、低成本的生产α-和γ-生育三烯酚。In order to solve the deficiencies in the prior art, the object of the present invention is to provide a key enzyme that can be expressed in Saccharomyces cerevisiae and a genetically engineered bacterium that can produce α- and γ-tocotrienol and its construction method, and use plant or blue-green algae vitamin The key enzymes in the synthesis pathway of E are templates. Through gene cloning and codon optimization, five enzymes that can be successfully expressed in S. - Genetically engineered yeast strains of tocotrienols, and further construct a high-yielding strain by excising chloroplast transit peptides and overexpressing rate-limiting enzymes, which can produce α- and γ-tocopherols safely, efficiently, with high yields, and at low cost Trienols.
为了实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种可以在酿酒酵母中表达的酶,包括:4-羟苯丙酮酸二加氧酶(HPPD);尿黑酸植基转移酶(HPT);2-甲基-6-植基苯醌甲基转移酶(MPBQMT);生育酚环化酶(TC);γ-生育酚甲基转移酶(γ-TMT)。An enzyme that can be expressed in Saccharomyces cerevisiae, including: 4-hydroxyphenylpyruvate dioxygenase (HPPD); homogentisate phytotransferase (HPT); 2-methyl-6-phytylbenzoquinone Methyltransferase (MPBQMT); Tocopherol Cyclase (TC); γ-Tocopheryl Methyltransferase (γ-TMT).
前述的一种在酿酒酵母中表达的酶,经密码子优化后,获得的序列:The aforementioned enzyme expressed in Saccharomyces cerevisiae, after codon optimization, the obtained sequence:
4-羟苯丙酮酸二加氧酶(HPPD)的核苷酸序列如SEQ ID NO:1所示;The nucleotide sequence of 4-hydroxyphenylpyruvate dioxygenase (HPPD) is shown in SEQ ID NO: 1;
尿黑酸植基转移酶(HPT)的核苷酸序列如SEQ ID NO:2所示;The nucleotide sequence of homogentisate phytotransferase (HPT) is shown in SEQ ID NO: 2;
2-甲基-6-植基苯醌甲基转移酶(MPBQMT)的核苷酸序列如SEQ ID NO:3所示;The nucleotide sequence of 2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT) is shown in SEQ ID NO: 3;
生育酚环化酶(TC)的核苷酸序列如SEQ ID NO:4所示;The nucleotide sequence of tocopherol cyclase (TC) is shown in SEQ ID NO: 4;
γ-生育酚甲基转移酶(γ-TMT)的核苷酸序列如SEQ ID NO:5所示。The nucleotide sequence of γ-tocopheryl methyltransferase (γ-TMT) is shown in SEQ ID NO:5.
一种高产α-和γ-生育三烯酚的基因工程菌,新菌种的命名为:酿酒酵母YS-356c,Saccharomyces cerevisiae YS-356c,保藏编号为:CCTCC NO:M2019572。A genetically engineered bacterium for high-yielding α- and γ-tocotrienol, the new strain is named: Saccharomyces cerevisiae YS-356c, and the preservation number is: CCTCC NO: M2019572.
一种高产α-和γ-生育三烯酚的基因工程菌的构建方法,其特征在于,将可以在酿酒酵母中表达的酶:4-羟苯丙酮酸二加氧酶(HPPD);尿黑酸植基转移酶(HPT);2-甲基-6-植基苯醌甲基转移酶(MPBQMT);生育酚环化酶(TC);γ-生育酚甲基转移酶(γ-TMT),逐步导入到酿酒酵母菌株中,获得产α-和γ-生育三烯酚的基因工程菌株YS-16。A method for constructing a genetically engineered bacterium with high production of α- and γ-tocotrienol, characterized in that enzymes that can be expressed in Saccharomyces cerevisiae: 4-hydroxyphenylpyruvate dioxygenase (HPPD); Acid phytyltransferase (HPT); 2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT); Tocopherol cyclase (TC); γ-tocopherol methyltransferase (γ-TMT) , and gradually introduced into Saccharomyces cerevisiae strains to obtain the genetically engineered strain YS-16 producing α- and γ-tocotrienol.
一种高产α-和γ-生育三烯酚的基因工程菌的构建方法,其特征在于,将可以在酿酒酵母中表达的酶:4-羟苯丙酮酸二加氧酶(HPPD);尿黑酸植基转移酶(HPT);2-甲基-6-植基苯醌甲基转移酶(MPBQMT);生育酚环化酶(TC);γ-生育酚甲基转移酶(γ-TMT),逐步导入到酿酒酵母菌株中,获得产α-和γ-生育三烯酚的基因工程菌株YS-16;并切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽,再过表达限速酶HPT,TC和γ-TMT,获得一株高产α- 和γ-生育三烯酚的基因工程菌YS-356c。A method for constructing a genetically engineered bacterium with high production of α- and γ-tocotrienol, characterized in that enzymes that can be expressed in Saccharomyces cerevisiae: 4-hydroxyphenylpyruvate dioxygenase (HPPD); Acid phytyltransferase (HPT); 2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT); Tocopherol cyclase (TC); γ-tocopherol methyltransferase (γ-TMT) , and gradually introduced into Saccharomyces cerevisiae strains to obtain a genetically engineered strain YS-16 producing α- and γ-tocotrienol; and excised the chloroplast transit peptides of the three enzymes MPBQMT, TC and γ-TMT, and then overexpressed the rate-limiting Enzymes HPT, TC and γ-TMT, and obtained a genetically engineered strain YS-356c that can produce high α- and γ-tocotrienol.
前述的一种高产α-和γ-生育三烯酚的基因工程菌构建方法,以PGal1或PGal10为启动子,将外源基因逐步整合到宿主菌染色体上;宿主菌为酿酒酵母。The aforementioned method for constructing genetically engineered bacteria with high α- and γ-tocotrienol production uses P Gal1 or P Gal10 as a promoter, and gradually integrates foreign genes into the chromosome of the host bacteria; the host bacteria is Saccharomyces cerevisiae.
前述的一种高产α-和γ-生育三烯酚的基因工程菌构建方法,通过切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽,得到改造后的酶,其氨基酸序列:MPBQMT如SEQ ID NO: 6所示,TC如SEQ ID NO:8所示,γ-TMT如SEQ ID NO:10所示;其核苷酸序列:MPBQMT 如SEQID NO:7所示,TC如SEQ ID NO:9所示,γ-TMT如SEQ ID NO:11所示;再过表达限速酶HPT(SEQ ID NO:2),TC(SEQ ID NO:9)和γ-TMT(SEQ ID NO:11),获得一株高产α-和γ-生育三烯酚的基因工程菌YS-356c。In the aforementioned method for constructing genetically engineered bacteria with high α- and γ-tocotrienol production, the modified enzyme is obtained by excising the chloroplast transit peptides of the three enzymes MPBQMT, TC and γ-TMT. The amino acid sequence of MPBQMT is as follows: SEQ ID NO: 6, TC as shown in SEQ ID NO: 8, γ-TMT as shown in SEQ ID NO: 10; its nucleotide sequence: MPBQMT as shown in SEQ ID NO: 7, TC as shown in SEQ ID NO : shown in 9, γ-TMT as shown in SEQ ID NO: 11; then overexpress rate-limiting enzymes HPT (SEQ ID NO: 2), TC (SEQ ID NO: 9) and γ-TMT (SEQ ID NO: 11 ) to obtain a genetically engineered strain YS-356c that can produce high α- and γ-tocotrienol.
本发明的有益之处在于:The benefits of the present invention are:
本发明以植物或蓝藻维生素E合成途径中的关键酶基因序列为模板,通过基因克隆以及密码子优化,获得五个可以在酿酒酵母中成功表达的酶,再将这五个酶逐步整合到敲除GAL80 基因的酿酒酵母YS40染色体上,得到工程菌株YS-16,首次实现通过生物发酵法异源合成α- 和γ-生育三烯酚,其总生育三烯酚产量达到243.3μg/g细胞干重;The present invention uses the key enzyme gene sequence in the vitamin E synthesis pathway of plants or cyanobacteria as a template, through gene cloning and codon optimization, to obtain five enzymes that can be successfully expressed in Saccharomyces cerevisiae, and then gradually integrate these five enzymes into the knockout On the chromosome of Saccharomyces cerevisiae YS40 with the GAL80 gene removed, the engineered strain YS-16 was obtained, which achieved the heterologous synthesis of α- and γ-tocotrienol through biological fermentation for the first time, and its total tocotrienol production reached 243.3 μg/g stem cell Heavy;
本发明进一步切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽,再过表达限速酶HPT,TC和γ-TMT,获得一株高产α-和γ-生育三烯酚的基因工程菌YS-356c,其总生育三烯酚产量达到2085.3μg/g细胞干重,相比菌株YS-16,产量提高了7.57倍,具有一定的市场前景和应用价值;The present invention further excises the chloroplast transit peptide of the three enzymes MPBQMT, TC and γ-TMT, and then overexpresses the rate-limiting enzymes HPT, TC and γ-TMT to obtain a genetically engineered strain of high-yield α- and γ-tocotrienol YS-356c, its total tocotrienol yield reached 2085.3μg/g cell dry weight, compared with strain YS-16, the yield increased by 7.57 times, which has a certain market prospect and application value;
用本发明构建的基因工程菌可以安全,高效地实现α-和γ-生育三烯酚的生产。The genetically engineered bacteria constructed by the invention can realize the production of α- and γ-tocotrienol safely and efficiently.
附图说明Description of drawings
图1是本发明基因工程菌株YS-356c一种实施例的构建方法;Fig. 1 is the construction method of a kind of embodiment of genetic engineering bacterial strain YS-356c of the present invention;
图2是本发明实施例1的产物的生育三烯酚菌株的HPLC检测图谱;Fig. 2 is the HPLC detection spectrum of the tocotrienol bacterial strain of the product of embodiment 1 of the present invention;
图3是本发明实施例1产出的γ-生育三烯酚的质谱图(正离子模式);Fig. 3 is the mass spectrogram (positive ion mode) of the gamma-tocotrienol output of embodiment 1 of the present invention;
图4是本发明实施例1产出的γ-生育三烯酚的质谱图(负离子模式);Fig. 4 is the mass spectrogram (negative ion mode) of the gamma-tocotrienol output of embodiment 1 of the present invention;
图5是本发明实施例1产出的α-生育三烯酚的质谱图(正离子模式);Fig. 5 is the mass spectrogram (positive ion mode) of the α-tocotrienol produced in Example 1 of the present invention;
图6是本发明实施例1产出的α-生育三烯酚的质谱图(负离子模式);Fig. 6 is the mass spectrogram (negative ion mode) of α-tocotrienol produced in Example 1 of the present invention;
图7是本发明两个实施例的工程菌株的HPLC峰图对比图。Fig. 7 is a comparison chart of HPLC peak diagrams of engineering strains of two embodiments of the present invention.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作具体的介绍。The present invention will be specifically introduced below in conjunction with the accompanying drawings and specific embodiments.
一种高产α-和γ-生育三烯酚的基因工程菌的构建方法,包括如下内容:A method for constructing a genetically engineered bacterium with high production of α- and γ-tocotrienol, comprising the following contents:
一、克隆与表达生育三烯酚生物合成途径中关键酶,1. Cloning and expression of key enzymes in the biosynthetic pathway of tocotrienols,
以植物或蓝藻维生素E合成途径中的关键酶基因序列为模板,通过基因克隆以及密码子优化,获得五个可以在酿酒酵母中成功表达的酶;Using the key enzyme gene sequences in the vitamin E synthesis pathway of plants or cyanobacteria as templates, through gene cloning and codon optimization, five enzymes that can be successfully expressed in Saccharomyces cerevisiae were obtained;
分别是:They are:
4-羟苯丙酮酸二加氧酶(HPPD),4-hydroxyphenylpyruvate dioxygenase (HPPD),
尿黑酸植基转移酶(HPT),Homogentisate phytotransferase (HPT),
2-甲基-6-植基苯醌甲基转移酶(MPBQMT),2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT),
生育酚环化酶(TC),tocopherol cyclase (TC),
γ-生育酚甲基转移酶(γ-TMT);γ-tocopheryl methyltransferase (γ-TMT);
4-羟苯丙酮酸二加氧酶(HPPD),尿黑酸植基转移酶(HPT),2-甲基-6-植基苯醌甲基转移酶(MPBQMT),生育酚环化酶(TC),γ-生育酚甲基转移酶(γ-TMT),其获得过程为:4-hydroxyphenylpyruvate dioxygenase (HPPD), homogentisate phytotransferase (HPT), 2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT), tocopherol cyclase ( TC), gamma-tocopherol methyltransferase (gamma-TMT), its acquisition process is:
1、提取植物的RNA并反转录成cDNA,或者提取蓝藻基因组DNA;1. Extract plant RNA and reverse transcribe it into cDNA, or extract cyanobacteria genomic DNA;
2、克隆目的基因,2. Clone the target gene,
以cDNA或者基因组DNA为模板,采用高保真酶进行PCR扩增;Using cDNA or genomic DNA as a template, high-fidelity enzymes are used for PCR amplification;
将PCR产物目的片段和载体质粒通过限制性内切酶进行双酶切;The target fragment of the PCR product and the vector plasmid are double-digested with restriction endonucleases;
对酶切后的片段和质粒,使用T4DNA连接酶进行连接;The digested fragments and plasmids were ligated using T4 DNA ligase;
将连接产物转化到大肠杆菌感受态细胞溶液后,涂布于抗性平板培养;After the ligation product was transformed into E. coli competent cell solution, it was spread on the resistant plate culture;
挑选出抗性平板上的阳性克隆;Pick out the positive clones on the resistant plate;
将阳性克隆菌接种并培养后,进行质粒抽提,对重组质粒进行进一步DNA测序验证,序列比对;After the positive clones were inoculated and cultured, the plasmids were extracted, and the recombinant plasmids were further verified by DNA sequencing and sequence comparison;
3、优化目的基因序列的密码子,3. Optimize the codons of the target gene sequence,
通过密码子优化网站,以酿酒酵母为宿主进行密码子优化,将优化后的基因序列进行化学合成,并将相应的片段连接到pUMRI载体质粒上,得到连有目的基因的重组质粒;Through the codon optimization website, Saccharomyces cerevisiae was used as the host for codon optimization, the optimized gene sequence was chemically synthesized, and the corresponding fragment was connected to the pUMRI vector plasmid to obtain a recombinant plasmid with the target gene;
4、将连有目的基因的重组质粒线性化后整合到酿酒酵母染色体上,4. Linearize the recombinant plasmid with the target gene and integrate it into the chromosome of Saccharomyces cerevisiae,
先用SfiI内切酶对重组质粒进行酶切得到线性化片段,再将其通过化学转化到酿酒酵母感受态细胞中,涂布于G418抗性平板上培养,PCR验证得到正确整合的菌株。Firstly, the recombinant plasmid was digested with SfiI endonuclease to obtain a linearized fragment, which was then chemically transformed into Saccharomyces cerevisiae competent cells, spread on G418 resistant plates and cultured, and PCR was verified to obtain correctly integrated strains.
5、对整合菌株进行产物的检测,确定相应酶的表达。5. Detection of the product of the integrated strain to determine the expression of the corresponding enzyme.
二、将HPPD、HPT、MPBQMT、TC和γ-TMT这五个酶,以PGal1或PGal10为启动子,通过酶切酶连分别连接到pUMRI载体质粒上,将重组质粒用内切酶sfiI酶切线性化后,通过化学转化逐步整合到敲除GAL80基因的酿酒酵母YS40染色体上,构建得到一株产α-和γ- 生育三烯酚的基因工程酵母菌株YS-16。2. Connect the five enzymes HPPD, HPT, MPBQMT, TC and γ-TMT to the pUMRI vector plasmid with pGal1 or pGal10 as the promoter respectively, and use the endonuclease sfiI to recombine the plasmid After enzyme digestion and linearization, it was gradually integrated into the chromosome of Saccharomyces cerevisiae YS40, which knocked out the GAL80 gene, through chemical transformation, and a genetically engineered yeast strain YS-16 producing α- and γ-tocotrienol was constructed.
三、在前期构建的基因工程酵母菌株YS-16的基础上,进一步切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽,再过表达限速酶HPT,TC和γ-TMT,获得一株高产α-和γ- 生育三烯酚的基因工程菌YS-356c;3. On the basis of the previously constructed genetically engineered yeast strain YS-16, the chloroplast transit peptides of the three enzymes MPBQMT, TC and γ-TMT were further excised, and then the rate-limiting enzymes HPT, TC and γ-TMT were overexpressed to obtain a Genetically engineered strain YS-356c producing α- and γ-tocotrienols;
该菌种的命名为:酿酒酵母YS-356c,Saccharomyces cerevisiae YS-356c,保藏编号为: CCTCC NO:M2019572,保藏单位为:中国典型培养物保藏中心(CCTCC),地址:中国武汉武汉大学;保藏日期为:2019年7月19日。The name of the strain is: Saccharomyces cerevisiae YS-356c, Saccharomyces cerevisiae YS-356c, the preservation number is: CCTCC NO: M2019572, the preservation unit is: China Center for Type Culture Collection (CCTCC), address: Wuhan University, Wuhan, China; The date is: July 19, 2019.
切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽的方法为:The method for excising the chloroplast transit peptides of MPBQMT, TC and γ-TMT three enzymes is:
根据叶绿体转运肽预测网站,确定MPBQMT,TC和γ-TMT这三个酶的转运肽长度分别为51aa、47aa和40aa;According to the chloroplast transit peptide prediction website, the lengths of the transit peptides of the three enzymes MPBQMT, TC and γ-TMT were determined to be 51aa, 47aa and 40aa, respectively;
根据预测得到的叶绿体转运肽剪切位点,定位到相应的DNA序列,重新设计引物,通过PCR的方式将相应转运肽的DNA序列切除,然后通过酶切酶连的方式连接到质粒载体上,再转化到相应的酵母菌株中。According to the predicted cleavage site of the chloroplast transit peptide, locate the corresponding DNA sequence, redesign the primers, excise the DNA sequence of the corresponding transit peptide by PCR, and then connect it to the plasmid vector by enzyme digestion and enzyme ligation. Then transformed into the corresponding yeast strains.
过表达限速酶HPT,TC和γ-TMT的方法为:在单拷贝菌株的基础上,在不同整合位点,以PGal1或PGal10为启动子,增加限速酶一个拷贝。The method for overexpressing the rate-limiting enzymes HPT, TC and γ-TMT is as follows: on the basis of a single-copy strain, at different integration sites, use P Gal1 or P Gal10 as a promoter to increase a copy of the rate-limiting enzyme.
一种α-或γ-生育三烯酚的制备方法,是在基因工程菌株YS-16或高产菌株YS-356c的发酵培养物中制备得到。将菌株置于添加0.1%(w/v)酪氨酸的YPD液体培养基中,30℃,220 rpm下振荡培养96h,发酵液离心去上清,获得的菌体经研磨破碎,乙酸乙酯分离萃取,有机相干燥后得到α-和γ-生育三烯酚,具有良好的应用前景。A preparation method of α- or γ-tocotrienol is prepared in the fermentation culture of genetic engineering strain YS-16 or high-yield strain YS-356c. The strain was placed in YPD liquid medium supplemented with 0.1% (w/v) tyrosine, cultured with shaking at 30°C and 220 rpm for 96 hours, the fermentation broth was centrifuged to remove the supernatant, and the obtained cells were ground and broken, ethyl acetate After separation and extraction, the organic phase is dried to obtain α- and γ-tocotrienol, which have good application prospects.
△以下通过实验验证基因工程菌能够实现α-和γ-生育三烯酚的高效合成△The following experiments verify that genetically engineered bacteria can achieve efficient synthesis of α- and γ-tocotrienol
实验过程为:The experimental process is:
步骤一,生育三烯酚生物合成途径中关键基因的克隆与表达。Step 1, cloning and expression of key genes in the biosynthetic pathway of tocotrienols.
以植物或蓝藻维生素E合成途径中的关键酶基因序列为模板,通过基因克隆以及进一步密码子优化,获得五个可以在酿酒酵母中成功表达的酶;Using the key enzyme gene sequences in the vitamin E synthesis pathway of plants or cyanobacteria as templates, through gene cloning and further codon optimization, five enzymes that can be successfully expressed in Saccharomyces cerevisiae were obtained;
分别是:They are:
4-羟苯丙酮酸二加氧酶(HPPD),SEQ ID NO:1;4-hydroxyphenylpyruvate dioxygenase (HPPD), SEQ ID NO: 1;
尿黑酸植基转移酶(HPT),SEQ ID NO:2;Homogentisate phytotransferase (HPT), SEQ ID NO: 2;
2-甲基-6-植基苯醌甲基转移酶(MPBQMT),SEQ ID NO:3;2-methyl-6-phytylbenzoquinone methyltransferase (MPBQMT), SEQ ID NO: 3;
生育酚环化酶(TC),SEQ ID NO:4;Tocopherol cyclase (TC), SEQ ID NO: 4;
γ-生育酚甲基转移酶(γ-TMT),SEQ ID NO:5。Gamma-tocopherol methyltransferase (gamma-TMT), SEQ ID NO:5.
五个可以在酿酒酵母中成功表达的酶通过如下具体步骤得到:Five enzymes that can be successfully expressed in Saccharomyces cerevisiae were obtained through the following specific steps:
1.1获取维生素E合成途径中的关键酶基因序列,1.1 Obtain key enzyme gene sequences in the vitamin E synthesis pathway,
通过提取植物RNA并反转录成cDNA,获得维生素E合成途径中的关键酶基因序列;By extracting plant RNA and reverse-transcribing it into cDNA, the key enzyme gene sequences in the vitamin E synthesis pathway were obtained;
具体步骤如下:Specific steps are as follows:
(1)称取植物组织约100mg,放入冷冻过的研钵中,加入适量液氮,充分研磨,反复3次磨成粉末。(1) Weigh about 100 mg of plant tissue, put it into a frozen mortar, add an appropriate amount of liquid nitrogen, fully grind, and repeat 3 times to grind into powder.
(2)加入1ml RNAiso,匀浆,并转移到RNase-free的离心管中。(2) Add 1ml RNAiso, homogenate, and transfer to RNase-free centrifuge tube.
(3)室温放置5min,使其充分裂解。(3) Place at room temperature for 5 minutes to fully lyse.
(4)12000rpm离心5min,转移上清到新的1.5ml离心管中。(4) Centrifuge at 12000rpm for 5min, transfer the supernatant to a new 1.5ml centrifuge tube.
(5)加入200μl(1/5RNAiso Plus体积)氯仿,振荡混匀,室温静置5min。(5) Add 200 μl (1/5 RNAiso Plus volume) of chloroform, vortex and mix, and let stand at room temperature for 5 minutes.
(6)4℃,12000g离心15min,将上清转移到新的1.5ml离心管中。(6) Centrifuge at 12000g for 15min at 4°C, and transfer the supernatant to a new 1.5ml centrifuge tube.
(7)加入0.5-1倍RNAiso Plus体积的异丙醇,混匀,室温放置10min。(7) Add 0.5-1 times the volume of RNAiso Plus isopropanol, mix well, and let stand at room temperature for 10 minutes.
(8)4℃,12000g离心10min,弃上清,RNA为沉在管底的白色沉淀。(8) Centrifuge at 12,000 g for 10 min at 4°C, discard the supernatant, and the RNA is a white precipitate that settles at the bottom of the tube.
(9)加入RNAiso Plus等体积的75%乙醇清洗沉淀,温和振荡离心管,悬浮沉淀。(9) Add an equal volume of 75% ethanol to RNAiso Plus to wash the precipitate, shake the centrifuge tube gently, and suspend the precipitate.
(10)4℃,7500g离心5min,弃上清保留沉淀。(10) Centrifuge at 7500g for 5min at 4°C, discard the supernatant and keep the precipitate.
(11)室温晾干5-10min。注:RNA样品不能过于干燥,否则难以溶解。(11) Dry at room temperature for 5-10 minutes. Note: The RNA sample should not be too dry, otherwise it will be difficult to dissolve.
(12)加入50μl DEPC处理水溶解,取3μl跑核酸胶验证。(12) Add 50 μl DEPC-treated water to dissolve, take 3 μl to run nucleic acid gel for verification.
将上述跑胶验证后的RNA样品使用PrimeScriptTM1st Strand cDNA SynthesisKit试剂盒进行反转录,具体步骤详见产品说明书。取3μL反转录后的cDNA样品,跑核酸胶验证,并放置于﹣80℃冰箱,作为下一步PCR模板备用。The above-mentioned RNA samples verified by gel running were reverse-transcribed using the PrimeScript TM 1st Strand cDNA Synthesis Kit kit. For details, please refer to the product manual. Take 3 μL of reverse-transcribed cDNA samples, run nucleic acid gel verification, and place them in a -80°C refrigerator as a template for the next step of PCR.
1.2蓝藻基因组DNA的提取,1.2 Extraction of cyanobacteria genomic DNA,
将集胞藻PCC6803置于50ml BG-11液体培养基中,30℃,120rpm下振荡培养至对数生长期,取5ml藻液12000rpm离心,弃上清,使用BioFlux公司Biospin真菌基因组DNA 提取试剂盒提取集胞藻DNA,具体步骤详见产品说明书。Place Synechocystis sp. PCC6803 in 50ml BG-11 liquid medium, shake at 30°C and 120rpm until logarithmic growth phase, take 5ml of algae liquid and centrifuge at 12000rpm, discard the supernatant, and use the Biospin Fungal Genomic DNA Extraction Kit from BioFlux Company Extract Synechocystis DNA, see the product manual for details.
1.3目的基因的克隆,1.3 Cloning of the target gene,
以cDNA或者基因组DNA为模板,采用高保真酶(Prime STARTM HS DNA polymerase)进行PCR扩增。反应体系(50μl)如下:Using cDNA or genomic DNA as a template, high-fidelity enzyme (Prime STAR TM HS DNA polymerase) was used for PCR amplification. The reaction system (50μl) is as follows:
PCR程序如下:The PCR program is as follows:
将PCR产物目的片段和整合型pUMRI系列质粒通过Takara限制性内切酶进行双酶切,双酶切体系按照Takara限制性内切酶说明书,酶切后对体系进行DNA凝胶回收处理,具体步骤按照Axygen试剂盒说明书进行。The target fragment of the PCR product and the integrated pUMRI series plasmid are double-digested with Takara restriction endonuclease. The double-digestion system follows the instructions of Takara restriction endonuclease. After digestion, the system is subjected to DNA gel recovery treatment. The specific steps Follow the instructions of the Axygen kit.
对酶切后的片段和质粒,使用T4DNA连接酶进行连接,连接体系(10μl)如下:The digested fragments and plasmids were ligated using T4 DNA ligase, and the ligation system (10 μl) was as follows:
22℃,连接30min后,将10μl的连接产物加入到大肠杆菌感受态细胞溶液中,冰上放置 15min后,42℃热击90s,并迅速置于冰浴中3min,加入1ml LB液体培养基,37℃摇床下复苏45min,然后离心,弃部分上清,取适量涂到相应的抗性LB平板上,37℃培养箱放置15h。After 30 minutes of connection at 22°C, 10 μl of the ligation product was added to the E. coli competent cell solution, placed on ice for 15 minutes, then heat-shocked at 42°C for 90 seconds, and quickly placed in an ice bath for 3 minutes, and 1ml of LB liquid medium was added. Resuscitate on a shaker at 37°C for 45min, then centrifuge, discard part of the supernatant, apply an appropriate amount to the corresponding resistant LB plate, and place in a 37°C incubator for 15h.
为了挑选出抗性平板上的阳性克隆,首先从平板上随机挑取5-10个单克隆至400μl含相应抗性LB培养基的离心管中,37℃下培养3小时,在10μl PCR体系下,取0.5μl菌液作为模板,用Easy Taq DNA 聚合酶进行PCR验证,扩增体系(10μl)如下:In order to select positive clones on the resistant plate, first randomly pick 5-10 single clones from the plate to a centrifuge tube containing 400 μl of the corresponding resistant LB medium, culture at 37°C for 3 hours, in 10 μl PCR system , take 0.5 μl of bacterial liquid as a template, and use Easy Taq DNA polymerase for PCR verification. The amplification system (10 μl) is as follows:
PCR程序如下:The PCR program is as follows:
菌液PCR后,进行核酸电泳验证,将阳性克隆菌接种到5ml相应抗性的LB试管内,30℃,220rpm下,过夜培养12-16h后,进行质粒抽提,质粒抽提按Axygen相应试剂盒说明书进行,抽提后,对重组质粒进行进一步DNA测序验证,序列比对。After the PCR of the bacterial solution, carry out nucleic acid electrophoresis verification, inoculate the positive cloned bacteria into 5ml LB test tubes with corresponding resistance, at 30°C, 220rpm, culture overnight for 12-16h, then carry out plasmid extraction, which is extracted according to the corresponding Axygen reagent After extraction, the recombinant plasmids were further verified by DNA sequencing and sequence comparison.
1.4目的基因的密码子优化,1.4 Codon optimization of the target gene,
将目的基因的对应氨基酸序列上传到密码子优化网站www.jcat.de,以酿酒酵母为宿主进行密码子优化,优化后的基因序列由上海捷瑞生物工程有限公司化学合成。并将相应的片段连接到pUMRI系列质粒上。The corresponding amino acid sequence of the target gene was uploaded to the codon optimization website www.jcat.de, and the codon optimization was carried out with Saccharomyces cerevisiae as the host. The optimized gene sequence was chemically synthesized by Shanghai Jierui Bioengineering Co., Ltd. And the corresponding fragments were connected to pUMRI series plasmids.
1.5将连有目的基因的重组质粒整合到酿酒酵母染色体上,1.5 Integrate the recombinant plasmid with the target gene into the Saccharomyces cerevisiae chromosome,
需要说明的是:载体质粒选择pUMRI系列质粒只是一种优选实施例,pUMRI系列质粒是本课题组之前构建的用于酿酒酵母染色体整合的一套基因组装工具(GenBank:KM216412;KM216413;KM216415)。该质粒带有URA3和KanMX双重选择标记,其结构为:染色体上游同源区段-正向重复序列-KanMX表达盒-URA3表达盒-正向重复序列-多克隆位点-染色体下游同源区段。其中KanMX基因可以编码卡那霉素抗性用于大肠杆菌中克隆的筛选,也可以编码遗传霉素抗性用于酿酒酵母在G418抗性平板上筛选。这些质粒在上下游同源臂交接处含有Sfi I酶切位点,通过Sfi I酶切将其线性化。It should be noted that the selection of pUMRI series plasmids for vector plasmids is only a preferred embodiment. The pUMRI series plasmids are a set of gene assembly tools for Saccharomyces cerevisiae chromosome integration previously constructed by our research group (GenBank: KM216412; KM216413; KM216415). The plasmid has URA3 and KanMX dual selection markers, and its structure is: homologous segment upstream of the chromosome - direct repeat sequence - KanMX expression cassette - URA3 expression cassette - direct repeat sequence - multiple cloning site - homologous region downstream of the chromosome part. The KanMX gene can encode kanamycin resistance for the screening of clones in Escherichia coli, and can also encode geneticin resistance for selection of Saccharomyces cerevisiae on the G418 resistance plate. These plasmids contain Sfi I restriction sites at the junction of the upstream and downstream homology arms, which are linearized by Sfi I restriction.
酶切体系(30ul):26μl质粒,3μl 10×QuickCut Buffer,1μl Sfi I内切酶。Enzyme digestion system (30ul): 26μl plasmid, 3μl 10×QuickCut Buffer, 1μl Sfi I endonuclease.
酶切条件:在50℃下水浴2小时。Digestion conditions: water bath at 50°C for 2 hours.
将酶切之后的产物,使用PCR清洗试剂盒清洗,用于酿酒酵母化转实验。The digested product was cleaned with a PCR cleaning kit and used for the Saccharomyces cerevisiae transformation experiment.
酿酒酵母感受态制备:从YPD平板上挑取酵母单菌落接种到5ml YPD试管中,30℃,220rpm过夜培养,按2%的接种量转接到50ml YPD摇瓶中,30℃,220rpm培养4-5h, OD600长到约2.0左右。Competent preparation of Saccharomyces cerevisiae: Pick a single yeast colony from the YPD plate and inoculate it into a 5ml YPD test tube, culture overnight at 30°C, 220rpm, transfer 2% of the inoculum to a 50ml YPD shaker flask, culture at 30°C, 220rpm4 -5h, OD 600 grows to about 2.0.
酿酒酵母化转步骤:Saccharomyces cerevisiae transformation steps:
(1)将ssDNA置于100℃金属浴中加热5min后,迅速放入冰中冷却备用。(1) Heat the ssDNA in a metal bath at 100°C for 5 minutes, then quickly put it in ice and cool it for later use.
(2)取45ml感受态酵母菌液于50ml灭菌离心管中,在4000rpm,20℃下离心5min,弃上清。(2) Take 45ml of competent yeast liquid in a 50ml sterilized centrifuge tube, centrifuge at 4000rpm, 20°C for 5min, and discard the supernatant.
(3)用20ml无菌水清洗一次,离心弃上清,再用1ml无菌水重悬,按100μl每管分装于1.5ml灭菌离心管中,离心弃上清。(3) Wash once with 20ml sterile water, discard the supernatant by centrifugation, resuspend with 1ml sterile water, dispense 100μl per tube into 1.5ml sterilized centrifuge tubes, and discard the supernatant by centrifugation.
(4)在离心管中依次加入如下化转体系(360μl):(4) Add the following transformation systems (360 μl) in turn to the centrifuge tube:
(5)充分混匀,42℃金属浴中放置40min。(5) Mix well and place in a metal bath at 42°C for 40 minutes.
(6)12000rpm离心30s,弃上清,加入1ml YPD液体培养基复苏2h。(6) Centrifuge at 12000rpm for 30s, discard the supernatant, and add 1ml YPD liquid medium to resuscitate for 2h.
(7)12000rpm离心1min,弃上清,加1ml无菌水重悬浮,取100ul涂布于相应抗性平板。(7) Centrifuge at 12000rpm for 1min, discard the supernatant, add 1ml of sterile water to resuspend, take 100ul and spread on the corresponding resistance plate.
步骤二,将HPPD、HPT、MPBQMT、TC和γ-TMT这五个酶,逐步整合到敲除GAL80 基因的酿酒酵母YS40染色体上,构建得到一株产α-和γ-生育三烯酚的基因工程酵母菌株 YS-16,作为实施例1;Step 2, the five enzymes HPPD, HPT, MPBQMT, TC and γ-TMT are gradually integrated into the chromosome of Saccharomyces cerevisiae YS40, which has knocked out the GAL80 gene, to construct a gene producing α- and γ-tocotrienol Engineering yeast strain YS-16, as Example 1;
具体步骤如下所示:The specific steps are as follows:
2.1合成途径的构建2.1 Construction of synthetic pathway
将HPPD、HPT、MPBQMT、TC和γ-TMT这五个酶,以PGal1或PGal10为启动子,通过酶切酶连,分别连接到pUMRI系列质粒上,将重组质粒Sfi I酶切线性化后,通过化学转化逐步整合到酿酒酵母YS40染色体上,构建出产α-和γ-生育三烯酚的基因工程菌株YS-16。The five enzymes HPPD, HPT, MPBQMT, TC and γ-TMT, with PGal1 or PGal10 as the promoter, were connected to pUMRI series plasmids by enzyme digestion, and the recombinant plasmid Sfi I was digested and linearized Finally, it was gradually integrated into the chromosome of Saccharomyces cerevisiae YS40 through chemical transformation, and a genetically engineered strain YS-16 producing α- and γ-tocotrienol was constructed.
2.2工程菌的培养2.2 Cultivation of engineering bacteria
YPD平板上挑取酵母单菌落于5ml YPD液体试管中,在30℃,220rpm恒温摇床中过夜培养,然后转接到50ml添加0.1%(W/V)酪氨酸的YPD液体培养基的250ml三角摇瓶中,设定摇瓶中的初始OD600为0.05,置于30℃,220rpm恒温摇床中培养96h。Pick a yeast single colony on the YPD plate and put it in a 5ml YPD liquid test tube, culture overnight at 30°C and 220rpm in a constant temperature shaker, then transfer to 250ml of 50ml YPD liquid medium with 0.1% (W/V) tyrosine added In the Erlenmeyer shake flask, the initial OD 600 in the shake flask was set to 0.05, and placed in a constant temperature shaker at 30° C. at 220 rpm for 96 hours.
2.3产物提取2.3 Product extraction
(1)取5ml酵母发酵液,4000rpm离心5min,弃上清,然后用5ml蒸馏水清洗一次,离心弃上清,加入200μL的蒸馏水,重悬菌体。(1) Take 5ml of yeast fermentation broth, centrifuge at 4000rpm for 5min, discard the supernatant, then wash once with 5ml of distilled water, discard the supernatant by centrifugation, add 200μL of distilled water, and resuspend the bacteria.
(2)在2ml离心管中加入500ml体积的研磨珠(0.1mm和0.5mm的氧化锆珠子各半),然后将重悬后的菌液全部转移到2ml的离心管中。(2) Add 500ml of grinding beads (0.1mm and half of 0.5mm zirconia beads) into a 2ml centrifuge tube, and then transfer all the resuspended bacterial solution to a 2ml centrifuge tube.
(3)将装有珠子和菌体的离心管,置于全自动样品快速研磨仪中,65HZ,研磨5min。(3) Place the centrifuge tube containing the beads and bacteria in an automatic sample rapid grinder at 65HZ, and grind for 5 minutes.
(4)研磨完后,在该离心管中加入800μl的丙酮萃取,充分混匀,并置于超声10min。(4) After grinding, add 800 μl of acetone to the centrifuge tube for extraction, mix thoroughly, and place in ultrasonic for 10 min.
(5)超声后,4000rpm离心30s,吸上清到新的2ml离心管中,然后在原来的2ml 离心管中再加入1ml丙酮,复萃一次,充分混匀,超声10min。(5) After ultrasonication, centrifuge at 4000rpm for 30s, suck the supernatant into a new 2ml centrifuge tube, then add 1ml acetone to the original 2ml centrifuge tube, reextract once, mix thoroughly, and sonicate for 10min.
(6)不用离心,将浑浊的液体全部转移到步骤(5)的新离心管中,这样获得约2ml的浑浊萃取液。(6) Without centrifugation, all the turbid liquid is transferred to the new centrifuge tube of step (5), so that about 2 ml of turbid extract is obtained.
(7)12000rpm离心5min,取1ml上清至新的1.5ml离心管,再用0.22μm有机系滤头过滤,待进HPLC检测。(7) Centrifuge at 12000rpm for 5min, take 1ml of the supernatant into a new 1.5ml centrifuge tube, filter it with a 0.22μm organic filter, and wait for HPLC detection.
2.4生育三烯酚HPLC分析条件2.4 Tocotrienol HPLC analysis conditions
流动相:乙腈(A)和纯水(B)Mobile phase: acetonitrile (A) and pure water (B)
比例:70%A/30%BRatio: 70%A/30%B
色谱柱:Agilent,ZORBAX,SB-C18(4.6×250mm)Chromatographic column: Agilent, ZORBAX, SB-C18 (4.6×250mm)
流速:0.8ml/minFlow rate: 0.8ml/min
检测波长:292nm(紫外检测器)Detection wavelength: 292nm (ultraviolet detector)
梯度洗脱条件:0–10min:70%A/30%B—90%A/10%BGradient elution conditions: 0–10min: 70%A/30%B—90%A/10%B
10–40min:90%A/10%B—100%A/0%B10–40min: 90%A/10%B—100%A/0%B
40–70min:100%A/0%B40–70min: 100%A/0%B
70–80min:100%A/0%B—70%A/30%B70–80min: 100%A/0%B—70%A/30%B
2.5LC-MS分析条件2.5 LC-MS analysis conditions
液相条件:Liquid phase conditions:
流动相:甲醇(A)和纯水(B)Mobile phase: methanol (A) and pure water (B)
比例:70%A/30%BRatio: 70%A/30%B
色谱柱:Agilent,ZORBAX,SB-C18(4.6×250mm)Chromatographic column: Agilent, ZORBAX, SB-C18 (4.6×250mm)
流速:0.8ml/minFlow rate: 0.8ml/min
检测波长:292nm(紫外检测器)Detection wavelength: 292nm (ultraviolet detector)
梯度洗脱条件:0–10min:70%A/30%B—90%A/10%BGradient elution conditions: 0–10min: 70%A/30%B—90%A/10%B
10–40min:90%A/10%B—100%A/0%B10–40min: 90%A/10%B—100%A/0%B
40–70min:100%A/0%B40–70min: 100%A/0%B
70–80min:100%A/0%B—70%A/30%B70–80min: 100%A/0%B—70%A/30%B
质谱条件:Mass Spectrometry Conditions:
ESI电离;雾化器压力:25psi;干燥气流速:8L/min;干燥气温度:220℃;毛细管压力:4500V。ESI ionization; atomizer pressure: 25psi; drying gas flow rate: 8L/min; drying gas temperature: 220°C; capillary pressure: 4500V.
将实施例1的产物通过高效液相色谱(HPLC)分析检测,获得的产物峰与标准品γ-生育三烯酚和α-生育三烯酚相对应,并进一步结合质谱检测,结果如图2,确定其产物为γ-生育三烯酚和α-生育三烯酚,制作标准品曲线后,确定其产量,其中γ-生育三烯酚产量为172μg/g 细胞干重,α-生育三烯酚产量为71.3μg/g细胞干重,总生育三烯酚产量为243.3μg/g细胞干重,液相质谱结果如图3、4、5、6。The product of Example 1 was analyzed and detected by high-performance liquid chromatography (HPLC), and the obtained product peaks corresponded to the standard products γ-tocotrienol and α-tocotrienol, and further combined with mass spectrometry detection, the results are shown in Figure 2 , confirm that its products are γ-tocotrienol and α-tocotrienol, after making a standard curve, determine its yield, wherein the output of γ-tocotrienol is 172 μg/g cell dry weight, α-tocotrienol The yield of phenols was 71.3 μg/g dry weight of cells, and the yield of total tocotrienols was 243.3 μg/g dry weight of cells. The results of liquid phase mass spectrometry are shown in Figures 3, 4, 5, and 6.
步骤三,通过切除MPBQMT,TC和γ-TMT三个酶的叶绿体转运肽,提高其催化活性,改造后的酶其核苷酸序列分别如SEQ ID NO:7,SEQ ID NO:9和SEQ ID NO:11所示;再过表达限速酶HPT(SEQ ID NO:2),TC(SEQ ID NO:9)和γ-TMT(SEQ ID NO:11),获得一株高产α-和γ-生育三烯酚的基因工程菌YS-356C,作为实施例2;Step 3, by excising the chloroplast transit peptides of the three enzymes MPBQMT, TC and γ-TMT to improve their catalytic activity, the nucleotide sequences of the modified enzymes are respectively as SEQ ID NO: 7, SEQ ID NO: 9 and SEQ ID NO: 11; and then overexpress the rate-limiting enzymes HPT (SEQ ID NO: 2), TC (SEQ ID NO: 9) and γ-TMT (SEQ ID NO: 11), to obtain a high-yielding α- and γ- Genetically engineered bacteria YS-356C of tocotrienol, as embodiment 2;
具体步骤如下所示:The specific steps are as follows:
3.1叶绿体转运肽的预测和切除3.1 Prediction and excision of chloroplast transit peptides
根据叶绿体转运肽设计网站(http://www.cbs.dtu.dk/services/ChloroP/),分别导入 MPBQMT,TC和γ-TMT的氨基酸序列,提交后,如果cTP显示为Y,说明该片段存在叶绿体转运肽序列,cTP-length显示为叶绿体转运肽氨基酸序列长度,cTP-score指的是该剪切位点的分数,分数越高意味着可能性越大,但有时候cTP-length预测的长度不一定准确,可以再选择几个cTP-score相对较高的点,作为备选剪接位点,具体效果须进一步进行催化活性的比较,来最终确定最适叶绿体转运肽剪切位点,最终,确定这三个酶的转运肽长度分别为51aa、 47aa和40aa。According to the chloroplast transit peptide design website (http://www.cbs.dtu.dk/services/ChloroP/), import the amino acid sequences of MPBQMT, TC and γ-TMT respectively. After submission, if cTP is displayed as Y, it means the fragment There is a chloroplast transit peptide sequence, cTP-length is displayed as the length of the amino acid sequence of the chloroplast transit peptide, and cTP-score refers to the fraction of the cleavage site. The higher the score, the greater the possibility, but sometimes cTP-length predicts The length is not necessarily accurate, and several points with relatively high cTP-score can be selected as alternative splicing sites. The specific effect needs to be further compared with the catalytic activity to finally determine the optimal chloroplast transit peptide splicing site. , the lengths of the transit peptides of these three enzymes were determined to be 51aa, 47aa and 40aa, respectively.
根据预测得到的叶绿体转运肽剪切位点,定位到相应的DNA序列,重新设计引物,通过PCR的方式将相应转运肽的DNA序列切除,然后通过酶切酶连的方式连接到质粒载体上,再转化到相应的酵母菌株中。According to the predicted cleavage site of the chloroplast transit peptide, locate the corresponding DNA sequence, redesign the primers, excise the DNA sequence of the corresponding transit peptide by PCR, and then connect it to the plasmid vector by enzyme digestion and enzyme ligation. Then transformed into the corresponding yeast strains.
MPBQMT氨基酸序列SEQ ID NO:6;MPBQMT amino acid sequence SEQ ID NO: 6;
MPBQMT核苷酸序列如SEQ ID NO:7;MPBQMT nucleotide sequence such as SEQ ID NO: 7;
生育酚环化酶(TC)的氨基酸序列如SEQ ID NO:8所示;The amino acid sequence of tocopherol cyclase (TC) is shown in SEQ ID NO: 8;
生育酚环化酶(TC)核苷酸序列如SEQ ID NO:9所示。The nucleotide sequence of tocopherol cyclase (TC) is shown in SEQ ID NO:9.
γ-生育酚甲基转移酶(γ-TMT)的氨基酸序列如SEQ ID NO:10;The amino acid sequence of γ-tocopherol methyltransferase (γ-TMT) is shown as SEQ ID NO: 10;
γ-生育酚甲基转移酶(γ-TMT)核苷酸序列如SEQ ID NO:11所示。The nucleotide sequence of γ-tocopherol methyltransferase (γ-TMT) is shown in SEQ ID NO:11.
3.2过表达限速酶提高产物产量;3.2 Overexpression of the rate-limiting enzyme increases product yield;
在单拷贝菌株的基础上,在不同的整合位点,以PGal1或PGal10为启动子,增加限速酶一个拷贝的方式来进行过表达,通过过表达不同组合的关键酶来确定关键限速步骤,并且获得一个最佳的过表达组合,分别为限速酶HPT(SEQ ID NO:2),TC(SEQ ID NO:9)和γ-TMT(SEQ ID NO:11),在单拷贝菌株上过表达这三个限速酶,获得一株高产酵母工程菌株 YS-356c,相比出发菌株YS-16,其总生育三烯酚产量提高了7.54倍,达到2.09mg/g细胞干重,其中γ-生育三烯酚的产量为1407.9μg/g细胞干重,α-生育三烯酚为677.4μg/g细胞干重。On the basis of single-copy strains, at different integration sites, with P Gal1 or P Gal10 as the promoter, one copy of the rate-limiting enzyme is added for overexpression, and the key limit enzyme is determined by overexpressing different combinations of key enzymes. speed step, and obtain an optimal overexpression combination, respectively, the rate-limiting enzymes HPT (SEQ ID NO: 2), TC (SEQ ID NO: 9) and γ-TMT (SEQ ID NO: 11), in a single copy The three rate-limiting enzymes were overexpressed on the strain, and a high-yielding yeast engineering strain YS-356c was obtained. Compared with the original strain YS-16, the total tocotrienol production was increased by 7.54 times, reaching 2.09mg/g dry cell weight , wherein the output of γ-tocotrienol was 1407.9 μg/g dry cell weight, and that of α-tocotrienol was 677.4 μg/g dry cell weight.
将实施例1和实施例2的实验结果进行对比,HPLC峰图对比如图7所示:The experimental results of embodiment 1 and embodiment 2 are compared, and the HPLC peak diagram contrast is as shown in Figure 7:
结果分析:Result analysis:
基因工程菌株YS-16首次实现利用生物发酵法异源合成α-生育三烯酚和γ-生育三烯酚;而优化后的高产菌株YS-356c,其产量相比YS-16提高了7-8倍,具有一定的市场前景和应用价值。The genetically engineered strain YS-16 realized the heterologous synthesis of α-tocotrienol and γ-tocotrienol by biological fermentation for the first time; and the optimized high-yielding strain YS-356c, its yield increased by 7- 8 times, with certain market prospects and application value.
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the above-mentioned embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
序列表sequence listing
<110> 浙江大学<110> Zhejiang University
<120> 一种在酿酒酵母中表达的酶及高产α-和γ-生育三烯酚的基因工程菌及其构建方法<120> Enzyme expressed in Saccharomyces cerevisiae and genetically engineered bacteria with high α- and γ-tocotrienol production and its construction method
<141> 2019-08-13<141> 2019-08-13
<160> 11<160> 11
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1422<211> 1422
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 1<400> 1
atgtgtttgt ctttggcttc tactgctcaa agaaacactc aattcagatc tagagttttg 60atgtgtttgt ctttggcttc tactgctcaa agaaacactc aattcagatc tagagttttg 60
gttttggctg aattggttaa gtctatgggt caccaaaacg ctgctgtttc tgaaaaccaa 120gttttggctg aattggttaa gtctatgggt caccaaaacg ctgctgtttc tgaaaaccaa 120
aaccacgacg acggtgctgc ttcttctcca ggtttcaagt tggttggttt ctctaagttc 180aaccacgacg acggtgctgc ttcttctcca ggtttcaagt tggttggttt ctctaagttc 180
gttagaaaga acccaaagtc tgacaagttc aaggttaaga gattccacca catcgaattc 240gttagaaaga acccaaagtc tgacaagttc aaggttaaga gattccacca catcgaattc 240
tggtgtggtg acgctactaa cgttgctaga agattctctt ggggtttggg tatgagattc 300tggtgtggtg acgctactaa cgttgctaga agattctctt ggggtttggg tatgagattc 300
tctgctaagt ctgacttgtc tactggtaac atggttcacg cttcttactt gttgacttct 360tctgctaagt ctgacttgtc tactggtaac atggttcacg cttcttactt gttgacttct 360
ggtgacttga gattcttgtt cactgctcca tactctccat ctttgtctgc tggtgaaatc 420ggtgacttga gattcttgtt cactgctcca tactctccat ctttgtctgc tggtgaaatc 420
aagccaacta ctactgcttc tatcccatct ttcgaccacg gttcttgtag atctttcttc 480aagccaacta ctactgcttc tatcccatct ttcgaccacg gttcttgtag atctttcttc 480
tcttctcacg gtttgggtgt tagagctgtt gctatcgaag ttgaagacgc tgaatctgct 540tcttctcacg gtttgggtgt tagagctgtt gctatcgaag ttgaagacgc tgaatctgct 540
ttctctatct ctgttgctaa cggtgctatc ccatcttctc caccaatcgt tttgaacgaa 600ttctctatct ctgttgctaa cggtgctatc ccatcttctc caccaatcgt tttgaacgaa 600
gctgttacta tcgctgaagt taagttgtac ggtgacgttg ttttgagata cgtttcttac 660gctgttacta tcgctgaagt taagttgtac ggtgacgttg ttttgagata cgtttcttac 660
aaggctgaag acactgaaaa gtctgaattc ttgccaggtt tcgaaagagt tgaagacgct 720aaggctgaag acactgaaaa gtctgaattc ttgccaggtt tcgaaagagt tgaagacgct 720
tcttctttcc cattggacta cggtatcaga agattggacc acgctgttgg taacgttcca 780tcttctttcc cattggacta cggtatcaga agattggacc acgctgttgg taacgttcca 780
gaattgggtc cagctttgac ttacgttgct ggtttcactg gtttccacca attcgctgaa 840gaattgggtc cagctttgac ttacgttgct ggtttcactg gtttccacca attcgctgaa 840
ttcactgctg acgacgttgg tactgctgaa tctggtttga actctgctgt tttggcttct 900ttcactgctg acgacgttgg tactgctgaa tctggtttga actctgctgt tttggcttct 900
aacgacgaaa tggttttgtt gccaatcaac gaaccagttc acggtactaa gagaaagtct 960aacgacgaaa tggttttgtt gccaatcaac gaaccagttc acggtactaa gagaaagtct 960
caaatccaaa cttacttgga acacaacgaa ggtgctggtt tgcaacactt ggctttgatg 1020caaatccaaa cttacttgga acacaacgaa ggtgctggtt tgcaacactt ggctttgatg 1020
tctgaagaca tcttcagaac tttgagagaa atgagaaaga gatcttctat cggtggtttc 1080tctgaagaca tcttcagaac tttgagagaa atgagaaaga gatcttctat cggtggtttc 1080
gacttcatgc catctccacc accaacttac taccaaaact tgaagaagag agttggtgac 1140gacttcatgc catctccacc accaacttac taccaaaact tgaagaagag agttggtgac 1140
gttttgtctg acgaccaaat caaggaatgt gaagaattgg gtatcttggt tgacagagac 1200gttttgtctg acgaccaaat caaggaatgt gaagaattgg gtatcttggt tgacagagac 1200
gaccaaggta ctttgttgca aatcttcact aagccattgg gtgacagacc aactatcttc 1260gaccaaggta ctttgttgca aatcttcact aagccattgg gtgacagacc aactatcttc 1260
atcgaaatca tccaaagagt tggttgtatg atgaaggacg aagaaggtaa ggcttaccaa 1320atcgaaatca tccaaagagt tggttgtatg atgaaggacg aagaaggtaa ggcttaccaa 1320
tctggtggtt gtggtggttt cggtaagggt aacttctctg aattgttcaa gtctatcgaa 1380tctggtggtt gtggtggttt cggtaagggt aacttctctg aattgttcaa gtctatcgaa 1380
gaatacgaaa agactttgga agctaagcaa ttggttggtt aa 1422gaatacgaaa agactttgga agctaagcaa ttggttggtt aa 1422
<210> 2<210> 2
<211> 927<211> 927
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 2<400> 2
atggctacta ttcaagcttt ttggagattt tctaggccac atactattat tggtactact 60atggctacta ttcaagcttt ttggagattt tctaggccac atactattat tggtactact 60
ttgtctgttt gggctgttta tttgttgact attttgggtg atggtaactc tgttaactca 120ttgtctgttt gggctgttta tttgttgact attttgggtg atggtaactc tgttaactca 120
ccagcttctt tggacttggt tttcggtgct tggttggctt gcttgttggg taacgtctac 180ccagcttctt tggacttggt tttcggtgct tggttggctt gcttgttggg taacgtctac 180
attgttggat tgaatcaatt gtgggatgtt gatattgaca gaattaacaa acctaatttg 240attgttggat tgaatcaatt gtgggatgtt gatattgaca gaattaacaa acctaatttg 240
ccattagcta acggtgattt ttcaatagct caaggtaggt ggattgttgg tttgtgcggt 300ccattagcta acggtgattt ttcaatagct caaggtagt ggattgttgg tttgtgcggt 300
gtcgcttctt tggctattgc ttggggtttg ggtttgtggt tgggtttgac tgttggtatt 360gtcgcttctt tggctattgc ttggggtttg ggtttgtggt tgggtttgac tgttggtatt 360
tctttaatta ttggtactgc ttattctgtt ccaccagtta gattgaaaag attctctttg 420tctttaatta ttggtactgc ttattctgtt ccaccagtta gattgaaaag attctctttg 420
ttagctgcat tgtgtatttt aactgttaga ggtattgttg ttaatttggg tttattcttg 480ttagctgcat tgtgtatttt aactgttaga ggtattgttg ttaatttggg tttattcttg 480
ttctttagaa ttggtttggg ttatccacca actttgataa ctccaatttg ggttttaact 540ttctttagaa ttggtttggg ttatccacca actttgataa ctccaatttg ggttttaact 540
ttgtttattt tggttttcac tgttgcaatt gctattttca aggatgttcc agatatggaa 600ttgtttattt tggttttcac tgttgcaatt gctattttca aggatgttcc agatatggaa 600
ggtgatagac aattcaaaat tcaaacattg acattgcaaa ttggtaaaca aaatgtcttc 660ggtgatagac aattcaaaat tcaaacattg aattgcaaa ttggtaaaca aaatgtcttc 660
agaggtactt taattttgtt gacaggttgt tatttggcta tggctatttg gggtttgtgg 720agaggtactt taattttgtt gacaggttgttatttggcta tggctatttg gggtttgtgg 720
gctgctatgc ctttgaacac tgctttcttg attgtttctc atttgtgttt gttggctttg 780gctgctatgc ctttgaacac tgctttcttg attgtttctc atttgtgttt gttggctttg 780
ttgtggtgga ggtctaggga tgttcacttg gaatctaaaa ctgaaattgc ttcattctat 840ttgtggtgga ggtctaggga tgttcacttg gaatctaaaa ctgaaattgc ttcattctat 840
caatttattt ggaaattgtt ctttttagaa tatttgttgt acccattggc tttgtggtta 900caatttattt ggaaattgtt ctttttagaa tatttgttgt acccartggc tttgtggtta 900
ccaaattttt ctaatactat tttctaa 927ccaaattttt ctaatactat tttctaa 927
<210> 3<210> 3
<211> 1017<211> 1017
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 3<400> 3
atggcttctt tgatgttgaa cggtgctatc actttcccaa agggtttggg ttctccaggt 60atggcttctt tgatgttgaa cggtgctatc actttcccaa agggtttggg ttctccaggt 60
tctaacttgc acgctagatc tatcccaaga ccaactttgt tgtctgttac tagaacttct 120tctaacttgc acgctagatc tatcccaaga ccaactttgt tgtctgttac tagaacttct 120
actccaagat tgtctgttgc tactagatgt tcttcttctt ctgtttcttc ttctagacca 180actccaagat tgtctgttgc tactagatgt tcttcttctt ctgtttcttc ttctagacca 180
tctgctcaac caagattcat ccaacacaag aaggaagctt actggttcta cagattcttg 240tctgctcaac caagattcat ccaacacaag aaggaagctt actggttcta cagattcttg 240
tctatcgttt acgaccacgt tatcaaccca ggtcactgga ctgaagacat gagagacgac 300tctatcgttt acgaccacgt tatcaaccca ggtcactgga ctgaagacat gagagacgac 300
gctttggaac cagctgactt gtctcaccca gacatgagag ttgttgacgt tggtggtggt 360gctttggaac cagctgactt gtctcaccca gacatgagag ttgttgacgt tggtggtggt 360
actggtttca ctactttggg tatcgttaag actgttaagg ctaagaacgt tactatcttg 420actggtttca ctactttggg tatcgttaag actgttaagg ctaagaacgt tactatcttg 420
gaccaatctc cacaccaatt ggctaaggct aagcaaaagg aaccattgaa ggaatgtaag 480gaccaatctc cacaccaatt ggctaaggct aagcaaaagg aaccattgaa ggaatgtaag 480
atcgttgaag gtgacgctga agacttgcca ttcccaactg actacgctga cagatacgtt 540atcgttgaag gtgacgctga agacttgcca ttcccaactg actacgctga cagatacgtt 540
tctgctggtt ctatcgaata ctggccagac ccacaaagag gtatcagaga agcttacaga 600tctgctggtt ctatcgaata ctggccagac ccacaaagag gtatcagaga agcttacaga 600
gttttgaaga tcggtggtaa ggcttgtttg atcggtccag tttacccaac tttctggttg 660gttttgaaga tcggtggtaa ggcttgtttg atcggtccag tttacccaac tttctggttg 660
tctagattct tctctgacgt ttggatgttg ttcccaaagg aagaagaata catcgaatgg 720tctagattct tctctgacgt ttggatgttg ttcccaaagg aagaagaata catcgaatgg 720
ttcaagaacg ctggtttcaa ggacgttcaa ttgaagagaa tcggtccaaa gtggtacaga 780ttcaagaacg ctggtttcaa ggacgttcaa ttgaagagaa tcggtccaaa gtggtacaga 780
ggtgttagaa gacacggttt gatcatgggt tgttctgtta ctggtgttaa gccagcttct 840ggtgttagaa gacacggttt gatcatgggt tgttctgtta ctggtgttaa gccagcttct 840
ggtgactctc cattgcaatt gggtccaaag gaagaagacg ttgaaaagcc agttaacaac 900ggtgactctc cattgcaatt gggtccaaag gaagaagacg ttgaaaagcc agttaacaac 900
ccattctctt tcttgggtag attcttgttg ggtactttgg ctgctgcttg gttcgttttg 960ccattctctt tcttgggtag attcttgttg ggtactttgg ctgctgcttg gttcgttttg 960
atcccaatct acatgtggat caaggaccaa atcgttccaa aggaccaacc aatctaa 1017atcccaatct acatgtggat caaggaccaa atcgttccaa aggaccaacc aatctaa 1017
<210> 4<210> 4
<211> 1467<211> 1467
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 4<400> 4
atggaaatca gatctttgat cgtttctatg aacccaaact tgtcttcttt cgaattgtct 60atggaaatca gatctttgat cgtttctatg aacccaaact tgtcttcttt cgaattgtct 60
agaccagttt ctccattgac tagatctttg gttccattca gatctactaa gttggttcca 120agaccagttt ctccattgac tagatctttg gttccattca gatctactaa gttggttcca 120
agatctatct ctagagtttc tgcttctatc tctactccaa actctgaaac tgacaagatc 180agatctatct ctagagtttc tgcttctatc tctactccaa actctgaaac tgacaagatc 180
tctgttaagc cagtttacgt tccaacttct ccaaacagag aattgagaac tccacactct 240tctgttaagc cagtttaacgt tccaacttct ccaaacagag aattgagaac tccaacactct 240
ggttaccact tcgacggtac tccaagaaag ttcttcgaag gttggtactt cagagtttct 300ggttaccact tcgacggtac tccaagaaag ttcttcgaag gttggtactt cagagtttct 300
atcccagaaa agagagaatc tttctgtttc atgtactctg ttgaaaaccc agctttcaga 360atcccagaaa agagagaatc tttctgtttc atgtactctg ttgaaaaccc agctttcaga 360
caatctttgt ctccattgga agttgctttg tacggtccaa gattcactgg tgttggtgct 420caatctttgt ctccattgga agttgctttg tacggtccaa gattcactgg tgttggtgct 420
caaatcttgg gtgctaacga caagtacttg tgtcaatacg aacaagactc tcacaacttc 480caaatcttgg gtgctaacga caagtacttg tgtcaatacg aacaagactc tcacaacttc 480
tggggtgaca gacacgaatt ggttttgggt aacactttct ctgctgttcc aggtgctaag 540tggggtgaca gacacgaatt ggttttgggt aacactttct ctgctgttcc aggtgctaag 540
gctccaaaca aggaagttcc accagaagaa ttcaacagaa gagtttctga aggtttccaa 600gctccaaaca aggaagttcc accagaagaa ttcaacagaa gagtttctga aggtttccaa 600
gctactccat tctggcacca aggtcacatc tgtgacgacg gtagaactga ctacgctgaa 660gctactccat tctggcacca aggtcacatc tgtgacgacg gtagaactga ctacgctgaa 660
actgttaagt ctgctagatg ggaatactct actagaccag tttacggttg gggtgacgtt 720actgttaagt ctgctagatg ggaatactct actagaccag tttacggttg gggtgacgtt 720
ggtgctaagc aaaagtctac tgctggttgg ccagctgctt tcccagtttt cgaaccacac 780ggtgctaagc aaaagtctac tgctggttgg ccagctgctt tcccagtttt cgaaccacac 780
tggcaaatct gtatggctgg tggtttgtct actggttgga tcgaatgggg tggtgaaaga 840tggcaaatct gtatggctgg tggtttgtct actggttgga tcgaatgggg tggtgaaaga 840
ttcgaattca gagacgctcc atcttactct gaaaagaact ggggtggtgg tttcccaaga 900ttcgaattca gagacgctcc atcttactct gaaaagaact ggggtggtgg tttcccaaga 900
aagtggttct gggttcaatg taacgttttc gaaggtgcta ctggtgaagt tgctttgact 960aagtggttct gggttcaatg taacgttttc gaaggtgcta ctggtgaagt tgctttgact 960
gctggtggtg gtttgagaca attgccaggt ttgactgaaa cttacgaaaa cgctgctttg 1020gctggtggtg gtttgagaca attgccaggt ttgactgaaa cgtacgaaaa cgctgctttg 1020
gtttgtgttc actacgacgg taagatgtac gaattcgttc catggaacgg tgttgttaga 1080gtttgtgttc actacgacgg taagatgtac gaattcgttc catggaacgg tgttgttaga 1080
tgggaaatgt ctccatgggg ttactggtac atcactgctg aaaacgaaaa ccacgttgtt 1140tgggaaatgt ctccatgggg ttactggtac atcactgctg aaaacgaaaa ccacgttgtt 1140
gaattggaag ctagaactaa cgaagctggt actccattga gagctccaac tactgaagtt 1200gaattggaag ctagaactaa cgaagctggt actccattga gagctccaac tactgaagtt 1200
ggtttggcta ctgcttgtag agactcttgt tacggtgaat tgaagttgca aatctgggaa 1260ggtttggcta ctgcttgtag agactcttgt tacggtgaat tgaagttgca aatctgggaa 1260
agattgtacg acggttctaa gggtaaggtt atcttggaaa ctaagtcttc tatggctgct 1320agattgtacg acggttctaa gggtaaggtt atcttggaaa ctaagtcttc tatggctgct 1320
gttgaaatcg gtggtggtcc atggttcggt acttggaagg gtgacacttc taacactcca 1380gttgaaatcg gtggtggtcc atggttcggt acttggaagg gtgacacttc taacactcca 1380
gaattgttga agcaagcttt gcaagttcca ttggacttgg aatctgcttt gggtttggtt 1440gaattgttga agcaagcttt gcaagttcca ttggacttgg aatctgcttt gggtttggtt 1440
ccattcttca agccaccagg tttgtaa 1467ccattcttca agccaccagg tttgtaa 1467
<210> 5<210> 5
<211> 1047<211> 1047
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 5<400> 5
atgaaggcta ctttggctgc tccatcttct ttgacttctt tgccatacag aactaactct 60atgaaggcta ctttggctgc tccatcttct ttgacttctt tgccatacag aactaactct 60
tctttcggtt ctaagtcttc tttgttgttc agatctccat cttcttcttc ttctgtttct 120tctttcggtt ctaagtcttc tttgttgttc agatctccat cttcttcttc ttctgtttct 120
atgactacta ctagaggtaa cgttgctgtt gctgctgctg ctacttctac tgaagctttg 180atgactacta ctagaggtaa cgttgctgtt gctgctgctg ctacttctac tgaagctttg 180
agaaagggta tcgctgaatt ctacaacgaa acttctggtt tgtgggaaga aatctggggt 240agaaagggta tcgctgaatt ctacaacgaa acttctggtt tgtgggaaga aatctggggt 240
gaccacatgc accacggttt ctacgaccca gactcttctg ttcaattgtc tgactctggt 300gaccacatgc accacggttt ctacgaccca gactcttctg ttcaattgtc tgactctggt 300
cacaaggaag ctcaaatcag aatgatcgaa gaatctttga gattcgctgg tgttactgac 360cacaaggaag ctcaaatcag aatgatcgaa gaatctttga gattcgctgg tgttactgac 360
gaagaagaag aaaagaagat caagaaggtt gttgacgttg gttgtggtat cggtggttct 420gaagaagaag aaaagaagat caagaaggtt gttgacgttg gttgtggtat cggtggttct 420
tctagatact tggcttctaa gttcggtgct gaatgtatcg gtatcacttt gtctccagtt 480tctagatact tggcttctaa gttcggtgct gaatgtatcg gtatcacttt gtctccagtt 480
caagctaaga gagctaacga cttggctgct gctcaatctt tggctcacaa ggcttctttc 540caagctaaga gagctaacga cttggctgct gctcaatctt tggctcacaa ggcttctttc 540
caagttgctg acgctttgga ccaaccattc gaagacggta agttcgactt ggtttggtct 600caagttgctg acgctttgga ccaaccattc gaagacggta agttcgactt ggtttggtct 600
atggaatctg gtgaacacat gccagacaag gctaagttcg ttaaggaatt ggttagagtt 660atggaatctg gtgaacacat gccagacaag gctaagttcg ttaaggaatt ggttagagtt 660
gctgctccag gtggtagaat catcatcgtt acttggtgtc acagaaactt gtctgctggt 720gctgctccag gtggtagaat catcatcgtt acttggtgtc acagaaactt gtctgctggt 720
gaagaagctt tgcaaccatg ggaacaaaac atcttggaca agatctgtaa gactttctac 780gaagaagctt tgcaaccatg ggaacaaaac atcttggaca agatctgtaa gactttctac 780
ttgccagctt ggtgttctac tgacgactac gttaacttgt tgcaatctca ctctttgcaa 840ttgccagctt ggtgttctac tgacgactac gttaacttgt tgcaatctca ctctttgcaa 840
gacatcaagt gtgctgactg gtctgaaaac gttgctccat tctggccagc tgttatcaga 900gacatcaagt gtgctgactg gtctgaaaac gttgctccat tctggccagc tgttatcaga 900
actgctttga cttggaaggg tttggtttct ttgttgagat ctggtatgaa gtctatcaag 960actgctttga cttggaaggg tttggtttct ttgttgagat ctggtatgaa gtctatcaag 960
ggtgctttga ctatgccatt gatgatcgaa ggttacaaga agggtgttat caagttcggt 1020ggtgctttga ctatgccatt gatgatcgaa ggttacaaga agggtgttat caagttcggt 1020
atcatcactt gtcaaaagcc attgtaa 1047atcatcactt gtcaaaagcc attgtaa 1047
<210> 6<210> 6
<211> 288<211> 288
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<400> 6<400> 6
Met Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg PheMet Ser Ser Ser Ser Val Ser Ser Ser Arg Pro Ser Ala Gln Pro Arg Phe
1 5 10 151 5 10 15
Ile Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser IleIle Gln His Lys Lys Glu Ala Tyr Trp Phe Tyr Arg Phe Leu Ser Ile
20 25 30 20 25 30
Val Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met ArgVal Tyr Asp His Val Ile Asn Pro Gly His Trp Thr Glu Asp Met Arg
35 40 45 35 40 45
Asp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg ValAsp Asp Ala Leu Glu Pro Ala Asp Leu Ser His Pro Asp Met Arg Val
50 55 60 50 55 60
Val Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val LysVal Asp Val Gly Gly Gly Thr Gly Phe Thr Thr Leu Gly Ile Val Lys
65 70 75 8065 70 75 80
Thr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His GlnThr Val Lys Ala Lys Asn Val Thr Ile Leu Asp Gln Ser Pro His Gln
85 90 95 85 90 95
Leu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile ValLeu Ala Lys Ala Lys Gln Lys Glu Pro Leu Lys Glu Cys Lys Ile Val
100 105 110 100 105 110
Glu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp ArgGlu Gly Asp Ala Glu Asp Leu Pro Phe Pro Thr Asp Tyr Ala Asp Arg
115 120 125 115 120 125
Tyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg GlyTyr Val Ser Ala Gly Ser Ile Glu Tyr Trp Pro Asp Pro Gln Arg Gly
130 135 140 130 135 140
Ile Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys LeuIle Arg Glu Ala Tyr Arg Val Leu Lys Ile Gly Gly Lys Ala Cys Leu
145 150 155 160145 150 155 160
Ile Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser AspIle Gly Pro Val Tyr Pro Thr Phe Trp Leu Ser Arg Phe Phe Ser Asp
165 170 175 165 170 175
Val Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe LysVal Trp Met Leu Phe Pro Lys Glu Glu Glu Tyr Ile Glu Trp Phe Lys
180 185 190 180 185 190
Asn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys TrpAsn Ala Gly Phe Lys Asp Val Gln Leu Lys Arg Ile Gly Pro Lys Trp
195 200 205 195 200 205
Tyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val ThrTyr Arg Gly Val Arg Arg His Gly Leu Ile Met Gly Cys Ser Val Thr
210 215 220 210 215 220
Gly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro LysGly Val Lys Pro Ala Ser Gly Asp Ser Pro Leu Gln Leu Gly Pro Lys
225 230 235 240225 230 235 240
Glu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu GlyGlu Glu Asp Val Glu Lys Pro Val Asn Asn Pro Phe Ser Phe Leu Gly
245 250 255 245 250 255
Arg Phe Leu Leu Gly Thr Leu Ala Ala Ala Trp Phe Val Leu Ile ProArg Phe Leu Leu Gly Thr Leu Ala Ala Ala Trp Phe Val Leu Ile Pro
260 265 270 260 265 270
Ile Tyr Met Trp Ile Lys Asp Gln Ile Val Pro Lys Asp Gln Pro IleIle Tyr Met Trp Ile Lys Asp Gln Ile Val Pro Lys Asp Gln Pro Ile
275 280 285 275 280 285
<210> 7<210> 7
<211> 867<211> 867
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 7<400> 7
atgtcttctt ctgtttcttc ttctagacca tctgctcaac caagattcat ccaacacaag 60atgtcttctt ctgtttcttc ttctagacca tctgctcaac caagattcat ccaacacaag 60
aaggaagctt actggttcta cagattcttg tctatcgttt acgaccacgt tatcaaccca 120aaggaagctt actggttcta cagattcttg tctatcgttt acgaccacgt tatcaaccca 120
ggtcactgga ctgaagacat gagagacgac gctttggaac cagctgactt gtctcaccca 180ggtcactgga ctgaagacat gagagacgac gctttggaac cagctgactt gtctcaccca 180
gacatgagag ttgttgacgt tggtggtggt actggtttca ctactttggg tatcgttaag 240gacatgagag ttgttgacgt tggtggtggt actggtttca ctactttggg tatcgttaag 240
actgttaagg ctaagaacgt tactatcttg gaccaatctc cacaccaatt ggctaaggct 300actgttaagg ctaagaacgt tactatcttg gaccaatctc cacaccaatt ggctaaggct 300
aagcaaaagg aaccattgaa ggaatgtaag atcgttgaag gtgacgctga agacttgcca 360aagcaaaagg aaccattgaa ggaatgtaag atcgttgaag gtgacgctga agacttgcca 360
ttcccaactg actacgctga cagatacgtt tctgctggtt ctatcgaata ctggccagac 420ttcccaactg actacgctga cagatacgtt tctgctggtt ctatcgaata ctggccagac 420
ccacaaagag gtatcagaga agcttacaga gttttgaaga tcggtggtaa ggcttgtttg 480ccacaaagag gtatcagaga agcttacaga gttttgaaga tcggtggtaa ggcttgtttg 480
atcggtccag tttacccaac tttctggttg tctagattct tctctgacgt ttggatgttg 540atcggtccag tttacccaac tttctggttg tctagattct tctctgacgt ttggatgttg 540
ttcccaaagg aagaagaata catcgaatgg ttcaagaacg ctggtttcaa ggacgttcaa 600ttcccaaagg aagaagaata catcgaatgg ttcaagaacg ctggtttcaa ggacgttcaa 600
ttgaagagaa tcggtccaaa gtggtacaga ggtgttagaa gacacggttt gatcatgggt 660ttgaagagaa tcggtccaaa gtggtacaga ggtgttagaa gacacggttt gatcatgggt 660
tgttctgtta ctggtgttaa gccagcttct ggtgactctc cattgcaatt gggtccaaag 720tgttctgtta ctggtgttaa gccagcttct ggtgactctc cattgcaatt gggtccaaag 720
gaagaagacg ttgaaaagcc agttaacaac ccattctctt tcttgggtag attcttgttg 780gaagaagacg ttgaaaagcc agttaacaac ccattctctt tcttgggtag attcttgttg 780
ggtactttgg ctgctgcttg gttcgttttg atcccaatct acatgtggat caaggaccaa 840ggtactttgg ctgctgcttg gttcgttttg atcccaatct acatgtggat caaggaccaa 840
atcgttccaa aggaccaacc aatctaa 867atcgttccaa aggaccaacc aatctaa 867
<210> 8<210> 8
<211> 442<211> 442
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<400> 8<400> 8
Met Ala Ser Ile Ser Thr Pro Asn Ser Glu Thr Asp Lys Ile Ser ValMet Ala Ser Ile Ser Thr Pro Asn Ser Glu Thr Asp Lys Ile Ser Val
1 5 10 151 5 10 15
Lys Pro Val Tyr Val Pro Thr Ser Pro Asn Arg Glu Leu Arg Thr ProLys Pro Val Tyr Val Pro Thr Ser Pro Asn Arg Glu Leu Arg Thr Pro
20 25 30 20 25 30
His Ser Gly Tyr His Phe Asp Gly Thr Pro Arg Lys Phe Phe Glu GlyHis Ser Gly Tyr His Phe Asp Gly Thr Pro Arg Lys Phe Phe Glu Gly
35 40 45 35 40 45
Trp Tyr Phe Arg Val Ser Ile Pro Glu Lys Arg Glu Ser Phe Cys PheTrp Tyr Phe Arg Val Ser Ile Pro Glu Lys Arg Glu Ser Phe Cys Phe
50 55 60 50 55 60
Met Tyr Ser Val Glu Asn Pro Ala Phe Arg Gln Ser Leu Ser Pro LeuMet Tyr Ser Val Glu Asn Pro Ala Phe Arg Gln Ser Leu Ser Pro Leu
65 70 75 8065 70 75 80
Glu Val Ala Leu Tyr Gly Pro Arg Phe Thr Gly Val Gly Ala Gln IleGlu Val Ala Leu Tyr Gly Pro Arg Phe Thr Gly Val Gly Ala Gln Ile
85 90 95 85 90 95
Leu Gly Ala Asn Asp Lys Tyr Leu Cys Gln Tyr Glu Gln Asp Ser HisLeu Gly Ala Asn Asp Lys Tyr Leu Cys Gln Tyr Glu Gln Asp Ser His
100 105 110 100 105 110
Asn Phe Trp Gly Asp Arg His Glu Leu Val Leu Gly Asn Thr Phe SerAsn Phe Trp Gly Asp Arg His Glu Leu Val Leu Gly Asn Thr Phe Ser
115 120 125 115 120 125
Ala Val Pro Gly Ala Lys Ala Pro Asn Lys Glu Val Pro Pro Glu GluAla Val Pro Gly Ala Lys Ala Pro Asn Lys Glu Val Pro Pro Glu Glu
130 135 140 130 135 140
Phe Asn Arg Arg Val Ser Glu Gly Phe Gln Ala Thr Pro Phe Trp HisPhe Asn Arg Arg Val Ser Glu Gly Phe Gln Ala Thr Pro Phe Trp His
145 150 155 160145 150 155 160
Gln Gly His Ile Cys Asp Asp Gly Arg Thr Asp Tyr Ala Glu Thr ValGln Gly His Ile Cys Asp Asp Gly Arg Thr Asp Tyr Ala Glu Thr Val
165 170 175 165 170 175
Lys Ser Ala Arg Trp Glu Tyr Ser Thr Arg Pro Val Tyr Gly Trp GlyLys Ser Ala Arg Trp Glu Tyr Ser Thr Arg Pro Val Tyr Gly Trp Gly
180 185 190 180 185 190
Asp Val Gly Ala Lys Gln Lys Ser Thr Ala Gly Trp Pro Ala Ala PheAsp Val Gly Ala Lys Gln Lys Ser Thr Ala Gly Trp Pro Ala Ala Phe
195 200 205 195 200 205
Pro Val Phe Glu Pro His Trp Gln Ile Cys Met Ala Gly Gly Leu SerPro Val Phe Glu Pro His Trp Gln Ile Cys Met Ala Gly Gly Leu Ser
210 215 220 210 215 220
Thr Gly Trp Ile Glu Trp Gly Gly Glu Arg Phe Glu Phe Arg Asp AlaThr Gly Trp Ile Glu Trp Gly Gly Glu Arg Phe Glu Phe Arg Asp Ala
225 230 235 240225 230 235 240
Pro Ser Tyr Ser Glu Lys Asn Trp Gly Gly Gly Phe Pro Arg Lys TrpPro Ser Tyr Ser Glu Lys Asn Trp Gly Gly Gly Phe Pro Arg Lys Trp
245 250 255 245 250 255
Phe Trp Val Gln Cys Asn Val Phe Glu Gly Ala Thr Gly Glu Val AlaPhe Trp Val Gln Cys Asn Val Phe Glu Gly Ala Thr Gly Glu Val Ala
260 265 270 260 265 270
Leu Thr Ala Gly Gly Gly Leu Arg Gln Leu Pro Gly Leu Thr Glu ThrLeu Thr Ala Gly Gly Gly Leu Arg Gln Leu Pro Gly Leu Thr Glu Thr
275 280 285 275 280 285
Tyr Glu Asn Ala Ala Leu Val Cys Val His Tyr Asp Gly Lys Met TyrTyr Glu Asn Ala Ala Leu Val Cys Val His Tyr Asp Gly Lys Met Tyr
290 295 300 290 295 300
Glu Phe Val Pro Trp Asn Gly Val Val Arg Trp Glu Met Ser Pro TrpGlu Phe Val Pro Trp Asn Gly Val Val Arg Trp Glu Met Ser Pro Trp
305 310 315 320305 310 315 320
Gly Tyr Trp Tyr Ile Thr Ala Glu Asn Glu Asn His Val Val Glu LeuGly Tyr Trp Tyr Ile Thr Ala Glu Asn Glu Asn His Val Val Glu Leu
325 330 335 325 330 335
Glu Ala Arg Thr Asn Glu Ala Gly Thr Pro Leu Arg Ala Pro Thr ThrGlu Ala Arg Thr Asn Glu Ala Gly Thr Pro Leu Arg Ala Pro Thr Thr
340 345 350 340 345 350
Glu Val Gly Leu Ala Thr Ala Cys Arg Asp Ser Cys Tyr Gly Glu LeuGlu Val Gly Leu Ala Thr Ala Cys Arg Asp Ser Cys Tyr Gly Glu Leu
355 360 365 355 360 365
Lys Leu Gln Ile Trp Glu Arg Leu Tyr Asp Gly Ser Lys Gly Lys ValLys Leu Gln Ile Trp Glu Arg Leu Tyr Asp Gly Ser Lys Gly Lys Val
370 375 380 370 375 380
Ile Leu Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly GlyIle Leu Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly Gly
385 390 395 400385 390 395 400
Pro Trp Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu LeuPro Trp Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu Leu
405 410 415 405 410 415
Leu Lys Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu GlyLeu Lys Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu Gly
420 425 430 420 425 430
Leu Val Pro Phe Phe Lys Pro Pro Gly LeuLeu Val Pro Phe Phe Lys Pro Pro Gly Leu
435 440 435 440
<210> 9<210> 9
<211> 1329<211> 1329
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 9<400> 9
atggcttcta tctctactcc aaactctgaa actgacaaga tctctgttaa gccagtttac 60atggcttcta tctctactcc aaactctgaa actgacaaga tctctgttaa gccagtttac 60
gttccaactt ctccaaacag agaattgaga actccacact ctggttacca cttcgacggt 120gttccaactt ctccaaacag agaattgaga actccaacact ctggttacca cttcgacggt 120
actccaagaa agttcttcga aggttggtac ttcagagttt ctatcccaga aaagagagaa 180actccaagaa agttcttcga aggttggtac ttcagagttt ctatcccaga aaagagagaa 180
tctttctgtt tcatgtactc tgttgaaaac ccagctttca gacaatcttt gtctccattg 240tctttctgtt tcatgtactc tgttgaaaac ccagctttca gacaatcttt gtctccattg 240
gaagttgctt tgtacggtcc aagattcact ggtgttggtg ctcaaatctt gggtgctaac 300gaagttgctt tgtacggtcc aagattcact ggtgttggtg ctcaaatctt gggtgctaac 300
gacaagtact tgtgtcaata cgaacaagac tctcacaact tctggggtga cagacacgaa 360gacaagtact tgtgtcaata cgaacaagac tctcacaact tctggggtga cagacacgaa 360
ttggttttgg gtaacacttt ctctgctgtt ccaggtgcta aggctccaaa caaggaagtt 420ttggttttgg gtaacacttt ctctgctgtt ccaggtgcta aggctccaaa caaggaagtt 420
ccaccagaag aattcaacag aagagtttct gaaggtttcc aagctactcc attctggcac 480ccaccagaag aattcaacag aagagtttct gaaggtttcc aagctactcc attctggcac 480
caaggtcaca tctgtgacga cggtagaact gactacgctg aaactgttaa gtctgctaga 540caaggtcaca tctgtgacga cggtagaact gactacgctg aaactgttaa gtctgctaga 540
tgggaatact ctactagacc agtttacggt tggggtgacg ttggtgctaa gcaaaagtct 600tgggaatact ctactagacc agtttacggt tggggtgacg ttggtgctaa gcaaaagtct 600
actgctggtt ggccagctgc tttcccagtt ttcgaaccac actggcaaat ctgtatggct 660actgctggtt ggccagctgc tttcccagtt ttcgaaccac actggcaaat ctgtatggct 660
ggtggtttgt ctactggttg gatcgaatgg ggtggtgaaa gattcgaatt cagagacgct 720ggtggtttgt ctactggttg gatcgaatgg ggtggtgaaa gattcgaatt cagagacgct 720
ccatcttact ctgaaaagaa ctggggtggt ggtttcccaa gaaagtggtt ctgggttcaa 780ccatcttact ctgaaaagaa ctggggtggt ggtttcccaa gaaagtggtt ctgggttcaa 780
tgtaacgttt tcgaaggtgc tactggtgaa gttgctttga ctgctggtgg tggtttgaga 840tgtaacgttt tcgaaggtgc tactggtgaa gttgctttga ctgctggtgg tggtttgaga 840
caattgccag gtttgactga aacttacgaa aacgctgctt tggtttgtgt tcactacgac 900caattgccag gtttgactga aacttacgaa aacgctgctt tggtttgtgt tcactacgac 900
ggtaagatgt acgaattcgt tccatggaac ggtgttgtta gatgggaaat gtctccatgg 960ggtaagatgt acgaattcgt tccatggaac ggtgttgtta gatgggaaat gtctccatgg 960
ggttactggt acatcactgc tgaaaacgaa aaccacgttg ttgaattgga agctagaact 1020ggttactggt acatcactgc tgaaaacgaa aaccacgttg ttgaattgga agctagaact 1020
aacgaagctg gtactccatt gagagctcca actactgaag ttggtttggc tactgcttgt 1080aacgaagctg gtactccatt gagagctcca actactgaag ttggtttggc tactgcttgt 1080
agagactctt gttacggtga attgaagttg caaatctggg aaagattgta cgacggttct 1140agagactctt gttacggtga attgaagttg caaatctggg aaagattgta cgacggttct 1140
aagggtaagg ttatcttgga aactaagtct tctatggctg ctgttgaaat cggtggtggt 1200aagggtaagg ttatcttgga aactaagtct tctatggctg ctgttgaaat cggtggtggt 1200
ccatggttcg gtacttggaa gggtgacact tctaacactc cagaattgtt gaagcaagct 1260ccatggttcg gtacttggaa gggtgacact tctaacactc cagaattgtt gaagcaagct 1260
ttgcaagttc cattggactt ggaatctgct ttgggtttgg ttccattctt caagccacca 1320ttgcaagttc cattggactt ggaatctgct ttgggtttgg ttccattctt caagccacca 1320
ggtttgtaa 1329ggtttgtaa 1329
<210> 10<210> 10
<211> 308<211> 308
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<400> 10<400> 10
Met Thr Thr Thr Arg Gly Asn Val Ala Val Ala Ala Ala Ala Thr SerMet Thr Thr Thr Arg Gly Asn Val Ala Val Ala Ala Ala Ala Thr Ser
1 5 10 151 5 10 15
Thr Glu Ala Leu Arg Lys Gly Ile Ala Glu Phe Tyr Asn Glu Thr SerThr Glu Ala Leu Arg Lys Gly Ile Ala Glu Phe Tyr Asn Glu Thr Ser
20 25 30 20 25 30
Gly Leu Trp Glu Glu Ile Trp Gly Asp His Met His His Gly Phe TyrGly Leu Trp Glu Glu Ile Trp Gly Asp His Met His His Gly Phe Tyr
35 40 45 35 40 45
Asp Pro Asp Ser Ser Val Gln Leu Ser Asp Ser Gly His Lys Glu AlaAsp Pro Asp Ser Ser Val Gln Leu Ser Asp Ser Gly His Lys Glu Ala
50 55 60 50 55 60
Gln Ile Arg Met Ile Glu Glu Ser Leu Arg Phe Ala Gly Val Thr AspGln Ile Arg Met Ile Glu Glu Ser Leu Arg Phe Ala Gly Val Thr Asp
65 70 75 8065 70 75 80
Glu Glu Glu Glu Lys Lys Ile Lys Lys Val Val Asp Val Gly Cys GlyGlu Glu Glu Glu Lys Lys Ile Lys Lys Val Val Asp Val Gly Cys Gly
85 90 95 85 90 95
Ile Gly Gly Ser Ser Arg Tyr Leu Ala Ser Lys Phe Gly Ala Glu CysIle Gly Gly Ser Ser Arg Tyr Leu Ala Ser Lys Phe Gly Ala Glu Cys
100 105 110 100 105 110
Ile Gly Ile Thr Leu Ser Pro Val Gln Ala Lys Arg Ala Asn Asp LeuIle Gly Ile Thr Leu Ser Pro Val Gln Ala Lys Arg Ala Asn Asp Leu
115 120 125 115 120 125
Ala Ala Ala Gln Ser Leu Ala His Lys Ala Ser Phe Gln Val Ala AspAla Ala Ala Gln Ser Leu Ala His Lys Ala Ser Phe Gln Val Ala Asp
130 135 140 130 135 140
Ala Leu Asp Gln Pro Phe Glu Asp Gly Lys Phe Asp Leu Val Trp SerAla Leu Asp Gln Pro Phe Glu Asp Gly Lys Phe Asp Leu Val Trp Ser
145 150 155 160145 150 155 160
Met Glu Ser Gly Glu His Met Pro Asp Lys Ala Lys Phe Val Lys GluMet Glu Ser Gly Glu His Met Pro Asp Lys Ala Lys Phe Val Lys Glu
165 170 175 165 170 175
Leu Val Arg Val Ala Ala Pro Gly Gly Arg Ile Ile Ile Val Thr TrpLeu Val Arg Val Ala Ala Pro Gly Gly Arg Ile Ile Ile Val Thr Trp
180 185 190 180 185 190
Cys His Arg Asn Leu Ser Ala Gly Glu Glu Ala Leu Gln Pro Trp GluCys His Arg Asn Leu Ser Ala Gly Glu Glu Ala Leu Gln Pro Trp Glu
195 200 205 195 200 205
Gln Asn Ile Leu Asp Lys Ile Cys Lys Thr Phe Tyr Leu Pro Ala TrpGln Asn Ile Leu Asp Lys Ile Cys Lys Thr Phe Tyr Leu Pro Ala Trp
210 215 220 210 215 220
Cys Ser Thr Asp Asp Tyr Val Asn Leu Leu Gln Ser His Ser Leu GlnCys Ser Thr Asp Asp Tyr Val Asn Leu Leu Gln Ser His Ser Leu Gln
225 230 235 240225 230 235 240
Asp Ile Lys Cys Ala Asp Trp Ser Glu Asn Val Ala Pro Phe Trp ProAsp Ile Lys Cys Ala Asp Trp Ser Glu Asn Val Ala Pro Phe Trp Pro
245 250 255 245 250 255
Ala Val Ile Arg Thr Ala Leu Thr Trp Lys Gly Leu Val Ser Leu LeuAla Val Ile Arg Thr Ala Leu Thr Trp Lys Gly Leu Val Ser Leu Leu
260 265 270 260 265 270
Arg Ser Gly Met Lys Ser Ile Lys Gly Ala Leu Thr Met Pro Leu MetArg Ser Gly Met Lys Ser Ile Lys Gly Ala Leu Thr Met Pro Leu Met
275 280 285 275 280 285
Ile Glu Gly Tyr Lys Lys Gly Val Ile Lys Phe Gly Ile Ile Thr CysIle Glu Gly Tyr Lys Lys Gly Val Ile Lys Phe Gly Ile Ile Thr Cys
290 295 300 290 295 300
Gln Lys Pro LeuGln Lys Pro Leu
305305
<210> 11<210> 11
<211> 927<211> 927
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<400> 11<400> 11
atgactacta ctagaggtaa cgttgctgtt gctgctgctg ctacttctac tgaagctttg 60atgactacta ctagaggtaa cgttgctgtt gctgctgctg ctacttctac tgaagctttg 60
agaaagggta tcgctgaatt ctacaacgaa acttctggtt tgtgggaaga aatctggggt 120agaaagggta tcgctgaatt ctacaacgaa acttctggtt tgtgggaaga aatctggggt 120
gaccacatgc accacggttt ctacgaccca gactcttctg ttcaattgtc tgactctggt 180gaccacatgc accacggttt ctacgaccca gactcttctg ttcaattgtc tgactctggt 180
cacaaggaag ctcaaatcag aatgatcgaa gaatctttga gattcgctgg tgttactgac 240cacaaggaag ctcaaatcag aatgatcgaa gaatctttga gattcgctgg tgttactgac 240
gaagaagaag aaaagaagat caagaaggtt gttgacgttg gttgtggtat cggtggttct 300gaagaagaag aaaagaagat caagaaggtt gttgacgttg gttgtggtat cggtggttct 300
tctagatact tggcttctaa gttcggtgct gaatgtatcg gtatcacttt gtctccagtt 360tctagatact tggcttctaa gttcggtgct gaatgtatcg gtatcacttt gtctccagtt 360
caagctaaga gagctaacga cttggctgct gctcaatctt tggctcacaa ggcttctttc 420caagctaaga gagctaacga cttggctgct gctcaatctt tggctcacaa ggcttctttc 420
caagttgctg acgctttgga ccaaccattc gaagacggta agttcgactt ggtttggtct 480caagttgctg acgctttgga ccaaccattc gaagacggta agttcgactt ggtttggtct 480
atggaatctg gtgaacacat gccagacaag gctaagttcg ttaaggaatt ggttagagtt 540atggaatctg gtgaacacat gccagacaag gctaagttcg ttaaggaatt ggttagagtt 540
gctgctccag gtggtagaat catcatcgtt acttggtgtc acagaaactt gtctgctggt 600gctgctccag gtggtagaat catcatcgtt acttggtgtc acagaaactt gtctgctggt 600
gaagaagctt tgcaaccatg ggaacaaaac atcttggaca agatctgtaa gactttctac 660gaagaagctt tgcaaccatg ggaacaaaac atcttggaca agatctgtaa gactttctac 660
ttgccagctt ggtgttctac tgacgactac gttaacttgt tgcaatctca ctctttgcaa 720ttgccagctt ggtgttctac tgacgactac gttaacttgt tgcaatctca ctctttgcaa 720
gacatcaagt gtgctgactg gtctgaaaac gttgctccat tctggccagc tgttatcaga 780gacatcaagt gtgctgactg gtctgaaaac gttgctccat tctggccagc tgttatcaga 780
actgctttga cttggaaggg tttggtttct ttgttgagat ctggtatgaa gtctatcaag 840actgctttga cttggaaggg tttggtttct ttgttgagat ctggtatgaa gtctatcaag 840
ggtgctttga ctatgccatt gatgatcgaa ggttacaaga agggtgttat caagttcggt 900ggtgctttga ctatgccatt gatgatcgaa ggttacaaga agggtgttat caagttcggt 900
atcatcactt gtcaaaagcc attgtaa 927atcatcactt gtcaaaagcc attgtaa 927
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910749343.0A CN110423732B (en) | 2019-08-14 | 2019-08-14 | Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910749343.0A CN110423732B (en) | 2019-08-14 | 2019-08-14 | Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110423732A true CN110423732A (en) | 2019-11-08 |
CN110423732B CN110423732B (en) | 2022-01-07 |
Family
ID=68414655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910749343.0A Active CN110423732B (en) | 2019-08-14 | 2019-08-14 | Enzyme expressed in saccharomyces cerevisiae, genetic engineering bacteria for high yield of alpha-and gamma-tocotrienols and construction method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110423732B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235044A (en) * | 2019-12-31 | 2020-06-05 | 天津大学 | Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use |
CN113736677A (en) * | 2021-09-09 | 2021-12-03 | 西安海斯夫生物科技有限公司 | Recombinant yarrowia lipolytica for high yield of tocotrienol, construction method and application thereof |
CN113755356A (en) * | 2021-10-19 | 2021-12-07 | 浙江大学 | A genetically engineered bacterium that secretes extracellular tocotrienol and its application |
CN113930351A (en) * | 2021-11-03 | 2022-01-14 | 陕西海斯夫生物工程有限公司 | Application of GGH gene in increasing yield of tocopherol, recombinant yarrowia lipolytica for high yield of tocotrienol and application of recombinant yarrowia lipolytica |
CN114574373A (en) * | 2022-03-29 | 2022-06-03 | 陕西海斯夫生物工程有限公司 | Recombinant schizochytrium for producing tocopherol, construction method and application thereof |
CN115772507A (en) * | 2021-09-08 | 2023-03-10 | 中国科学院天津工业生物技术研究所 | Application of cytochrome P450 enzyme in synthesis of ganoderma triterpene |
CN116411013A (en) * | 2023-02-24 | 2023-07-11 | 江南大学 | A metabolic engineering method for the de novo synthesis of δ-tocotrienol in Saccharomyces cerevisiae |
CN118725065A (en) * | 2024-06-19 | 2024-10-01 | 中国农业大学 | Application of alfalfa MsTC protein and its encoding gene in regulating plant vitamin E content |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101503696A (en) * | 2009-03-19 | 2009-08-12 | 上海交通大学 | Lettuce tocopherol cyclase protein coding sequence |
CN101514346A (en) * | 2009-02-19 | 2009-08-26 | 上海交通大学 | Lettuce gamma-tocopherol methyltransferase protein coded sequence |
CN101565712A (en) * | 2008-11-27 | 2009-10-28 | 上海交通大学 | Lettuce mpbq mt protein coding sequence |
CN101586108A (en) * | 2008-11-27 | 2009-11-25 | 上海交通大学 | Lettuce HPPD protein coded sequence |
CN101736020A (en) * | 2008-11-21 | 2010-06-16 | 复旦大学 | Method for enhancing content of vitamin E in plants by gene cotransformation of gamma-tmt and hpt |
CN101842488A (en) * | 2007-10-04 | 2010-09-22 | 纳幕尔杜邦公司 | Compositions and methods for altering alpha-and beta-tocotrienol content using transpolygenes |
-
2019
- 2019-08-14 CN CN201910749343.0A patent/CN110423732B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101842488A (en) * | 2007-10-04 | 2010-09-22 | 纳幕尔杜邦公司 | Compositions and methods for altering alpha-and beta-tocotrienol content using transpolygenes |
CN101736020A (en) * | 2008-11-21 | 2010-06-16 | 复旦大学 | Method for enhancing content of vitamin E in plants by gene cotransformation of gamma-tmt and hpt |
CN101565712A (en) * | 2008-11-27 | 2009-10-28 | 上海交通大学 | Lettuce mpbq mt protein coding sequence |
CN101586108A (en) * | 2008-11-27 | 2009-11-25 | 上海交通大学 | Lettuce HPPD protein coded sequence |
CN101514346A (en) * | 2009-02-19 | 2009-08-26 | 上海交通大学 | Lettuce gamma-tocopherol methyltransferase protein coded sequence |
CN101503696A (en) * | 2009-03-19 | 2009-08-12 | 上海交通大学 | Lettuce tocopherol cyclase protein coding sequence |
Non-Patent Citations (3)
Title |
---|
XIE, W.等: "Cloning vector pUMRI-13,complete sequence", 《GENBANK登录号:KM216415.1》 * |
XIE,W.等: "Cloning vector pUMRI -10,complete sequence", 《GENBANK登录号:KM216412.1》 * |
XIE,W.等: "Cloning vector pUMRI-11,complete sequence", 《GENBANK登录号:KM216413.1》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235044B (en) * | 2019-12-31 | 2022-01-04 | 天津大学 | Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use |
CN111235044A (en) * | 2019-12-31 | 2020-06-05 | 天津大学 | Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use |
CN115772507B (en) * | 2021-09-08 | 2024-06-07 | 中国科学院天津工业生物技术研究所 | Application of Cytochrome P450 Enzyme in Synthesis of Ganoderma Lucidum Triterpenoids |
CN115772507A (en) * | 2021-09-08 | 2023-03-10 | 中国科学院天津工业生物技术研究所 | Application of cytochrome P450 enzyme in synthesis of ganoderma triterpene |
CN113736677B (en) * | 2021-09-09 | 2023-02-28 | 陕西海斯夫生物工程有限公司 | Recombinant yarrowia lipolytica for high yield of tocotrienol, construction method and application thereof |
CN113736677A (en) * | 2021-09-09 | 2021-12-03 | 西安海斯夫生物科技有限公司 | Recombinant yarrowia lipolytica for high yield of tocotrienol, construction method and application thereof |
CN113755356A (en) * | 2021-10-19 | 2021-12-07 | 浙江大学 | A genetically engineered bacterium that secretes extracellular tocotrienol and its application |
CN113930351B (en) * | 2021-11-03 | 2022-11-29 | 陕西海斯夫生物工程有限公司 | Application of GGH gene in increasing yield of tocopherol, recombinant yarrowia lipolytica for high yield of tocotrienol and application of recombinant yarrowia lipolytica |
CN113930351A (en) * | 2021-11-03 | 2022-01-14 | 陕西海斯夫生物工程有限公司 | Application of GGH gene in increasing yield of tocopherol, recombinant yarrowia lipolytica for high yield of tocotrienol and application of recombinant yarrowia lipolytica |
CN114574373A (en) * | 2022-03-29 | 2022-06-03 | 陕西海斯夫生物工程有限公司 | Recombinant schizochytrium for producing tocopherol, construction method and application thereof |
CN116411013A (en) * | 2023-02-24 | 2023-07-11 | 江南大学 | A metabolic engineering method for the de novo synthesis of δ-tocotrienol in Saccharomyces cerevisiae |
CN116411013B (en) * | 2023-02-24 | 2024-11-22 | 江南大学 | A method for metabolically engineering Saccharomyces cerevisiae to synthesize δ-tocotrienol from scratch |
CN118725065A (en) * | 2024-06-19 | 2024-10-01 | 中国农业大学 | Application of alfalfa MsTC protein and its encoding gene in regulating plant vitamin E content |
Also Published As
Publication number | Publication date |
---|---|
CN110423732B (en) | 2022-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110423732A (en) | A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method | |
CN110484572B (en) | Method for increasing yield of saccharomyces cerevisiae nerolidol | |
CN102605006B (en) | Biological method for producing resveratrol | |
CN109055327B (en) | Aldehyde ketone reductase mutant and application thereof | |
CN113265344B (en) | Genetic engineering bacterium for selectively producing retinol and construction method and application thereof | |
CN113604374B (en) | A genetically engineered bacterium that efficiently produces carotenoids and its construction method and application | |
CN111575310A (en) | Recombinant Saccharomyces cerevisiae expressing caveolin and its application | |
CN113832044A (en) | Recombinant yarrowia lipolytica, construction method and application thereof | |
WO2020119635A1 (en) | Method for construction of dihomo-gamma linolenic acid producing cell factory by mucor circinelloides, and fermentation technology | |
CN116731886A (en) | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications | |
CN101717745A (en) | Method for efficiently preparing (S)-styrene glycol from carbonyl reductase recombinant bacterium | |
JP2023500781A (en) | Engineered microbes for the production of cannabinoids | |
CN115851810A (en) | Engineering strain for de novo synthesis of naringenin by saccharomyces cerevisiae and construction method and application thereof | |
CN111235044A (en) | Synthesis of delta-tocotrienol recombinant Saccharomyces cerevisiae strain and construction method and use | |
CN111394269A (en) | Genetically engineered bacterium for efficiently synthesizing melatonin as well as construction method and application thereof | |
CN102827880B (en) | Method for biologically synthesizing fatty alcohol from fatty acyl ACP (acyl carrier protein) reductase | |
CN112852847A (en) | Recombinant saccharomyces cerevisiae strain and construction method and application thereof | |
CN114958700A (en) | Escherichia coli engineering bacterium and application thereof | |
CN109055417B (en) | Recombinant microorganism, preparation method thereof and application thereof in production of coenzyme Q10 | |
CN111440734A (en) | Genetically engineered yeast for producing baicalein compounds, construction method and application thereof | |
CN114525215B (en) | Recombinant strain producing terpenoids and construction method thereof, and method for producing terpenoids by fermentation and application thereof | |
CN112410353A (en) | A kind of fkbS gene, genetically engineered bacteria containing same, preparation method and use thereof | |
CN107880134B (en) | A kind of method of enzymatically synthesizing kaempferol | |
CN110551697A (en) | Application of ergothioneine synthetase PEGT1 and PEGT2 of Pleurotus ostreatus in synthesis of ergothioneine | |
CN116656520A (en) | Yarrowia lipolytica genetically engineered bacterium and application thereof in beta-carotene production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |