CN116731886A - Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications - Google Patents
Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications Download PDFInfo
- Publication number
- CN116731886A CN116731886A CN202211577714.XA CN202211577714A CN116731886A CN 116731886 A CN116731886 A CN 116731886A CN 202211577714 A CN202211577714 A CN 202211577714A CN 116731886 A CN116731886 A CN 116731886A
- Authority
- CN
- China
- Prior art keywords
- astaxanthin
- glycosylated
- producing
- seq
- nucleotide sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域Technical field
本发明涉及产糖基化虾青素的工程菌及其构建方法与应用,属于发酵工程技术领域。The invention relates to an engineering bacterium that produces glycosylated astaxanthin and its construction method and application, and belongs to the technical field of fermentation engineering.
背景技术Background technique
糖基化虾青素又称虾青素葡萄糖苷,是一种稀有天然类胡萝卜素,它是由虾青素在糖基转移酶CrtX的催化下,与两分子葡萄糖脱水缩合而成的。虾青素具有强抗氧化性和红色赋色性能,是唯一可以穿透血脑和血视网膜屏障并对中枢神经和脑功能有积极作用的类胡萝卜素,在食品、饲料、制药和化妆品行业有着广泛的应用。然而,由于虾青素具有疏水性,在应用中会受到限制,而糖基化虾青素通过糖基化作用可以使分子极性增强,疏水性降低,作为食品添加剂和药物更容易被人体吸收。此外,类胡萝卜素的糖基化也导致了结构多样性和其他一些好处,例如提高生物利用度,提高作为食品补充剂和药物的功效,改善类胡萝卜素的光稳定性和生物活性(如抗氧化活性)。Glycosylated astaxanthin, also known as astaxanthin glucoside, is a rare natural carotenoid. It is formed by the dehydration condensation of astaxanthin with two molecules of glucose under the catalysis of glycosyltransferase CrtX. Astaxanthin has strong antioxidant properties and red coloring properties. It is the only carotenoid that can penetrate the blood-brain and blood-retina barriers and have a positive effect on the central nervous system and brain function. It has an important role in the food, feed, pharmaceutical and cosmetics industries. Wide range of applications. However, due to the hydrophobicity of astaxanthin, its application will be limited. Glycosylated astaxanthin can increase the polarity of the molecule and reduce its hydrophobicity through glycosylation, making it easier to be absorbed by the human body as a food additive and drug. . In addition, glycosylation of carotenoids has also led to structural diversity and several other benefits, such as increased bioavailability, enhanced efficacy as food supplements and pharmaceuticals, and improved photostability and bioactivity of carotenoids (e.g., anti- oxidative activity).
糖基化虾青素在自然界中的分布稀少(主要分布于一些细菌中),目前仍缺少对于糖基化虾青素的性质研究,其对人体或动物的健康作用也知之甚少。自然界中存在的天然合成的糖基化虾青素含量很低,且提取分离困难。通过代谢工程生物合成是获取糖基化虾青素的一个有效途径,但迄今为止,只有几项研究实现了类胡萝卜素糖苷在大肠杆菌和几种天然微生物中的生物合成,这些研究只产生了可检测到的类胡萝卜素糖苷,与工业应用的最低要求相去甚远。Glycosylated astaxanthin is sparsely distributed in nature (mainly distributed in some bacteria). There is still a lack of research on the properties of glycosylated astaxanthin, and its health effects on humans or animals are also poorly understood. The content of naturally synthesized glycosylated astaxanthin that exists in nature is very low, and it is difficult to extract and separate it. Biosynthesis through metabolic engineering is an effective way to obtain glycosylated astaxanthin, but to date, only a few studies have achieved the biosynthesis of carotenoid glycosides in E. coli and several natural microorganisms, and these studies have only produced Detectable carotenoid glycosides, far from the minimum requirements for industrial applications.
解脂耶氏酵母(Yarrowia lipolytica)是一种非常规酵母,被美国FDA认证为GRAS(generally recognized as safe)菌株,其具有较宽的底物谱、对各种环境胁迫的耐受性、胞内乙酰辅酶A供应充分、可进行高密度发酵以及对人体安全等特性,近年来在合成生物制造领域得到很多关注。Yarrowia lipolytica is an unconventional yeast that has been certified as a GRAS (generally recognized as safe) strain by the US FDA. It has a wide substrate spectrum, tolerance to various environmental stresses, and Lactoacetyl-CoA has attracted a lot of attention in the field of synthetic biology manufacturing in recent years due to its sufficient supply, high-density fermentation, and safety to the human body.
发明内容Contents of the invention
针对上述现有技术,为实现糖基化虾青素的工业化生产,本发明构建了产糖基化虾青素的工程菌,并提供了其构建方法,以及在制备糖基化虾青素中的应用。本发明还通过对工程菌的筛选,得到了一株产糖基化虾青素的工程菌。In view of the above-mentioned existing technology, in order to realize the industrial production of glycosylated astaxanthin, the present invention constructs an engineering bacterium that produces glycosylated astaxanthin, and provides its construction method, as well as in the preparation of glycosylated astaxanthin. Applications. The present invention also obtains an engineering bacterium that produces glycosylated astaxanthin through screening of engineering bacteria.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一株产糖基化虾青素的工程菌,菌株名为OUC-AdGHB1-7CJ,已于2022年08月01日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC NO.25446,分类命名为解脂耶氏酵母Yarrowia lipolytica。An engineered bacterium that produces glycosylated astaxanthin, named OUC-AdGHB1-7CJ, has been deposited in the General Microbiology Center of the China Microbial Culture Collection Committee on August 1, 2022, with the deposit number CGMCC NO.25446 , classified as Yarrowia lipolytica.
上述产糖基化虾青素的工程菌的生物学特征为:YPD固体培养基30℃培养24小时,菌落圆形、砖红色、有褶皱、边缘毛状、质干,自然状态下一般以酵母形态和菌丝形态共同存在。The biological characteristics of the above-mentioned engineered bacteria that produce glycosylated astaxanthin are: cultured on YPD solid medium at 30°C for 24 hours, the colonies are round, brick red, wrinkled, with hairy edges and dry texture. In the natural state, they are generally yeast morphology and hyphal morphology coexist.
上述产糖基化虾青素的工程菌在制备糖基化虾青素中的应用。本发明的产糖基化虾青素的工程菌,能高效率地制备糖基化虾青素,远远优于其它转化子,用于制备糖基化虾青素时具有巨大优势和应用前景。Application of the above engineered bacteria producing glycosylated astaxanthin in the preparation of glycosylated astaxanthin. The engineering bacteria producing glycosylated astaxanthin of the present invention can prepare glycosylated astaxanthin with high efficiency, which is far superior to other transformants, and has huge advantages and application prospects when used to prepare glycosylated astaxanthin. .
进一步地,具体应用时,培养上述产糖基化虾青素的工程菌,提取得到糖基化虾青素。所述培养的具体方式可以为:挑取产糖基化虾青素的工程菌的菌落,接入YPD培养基中,培养获得种子培养液;将种子培养液接入YPD培养基中,培养得发酵液;取发酵液,离心得到菌体沉淀和发酵上清液,对菌体沉淀萃取即可得到糖基化虾青素。Further, for specific application, the above engineered bacteria producing glycosylated astaxanthin are cultured and glycosylated astaxanthin is extracted. The specific method of culturing can be as follows: picking colonies of engineering bacteria that produce glycosylated astaxanthin, inserting them into YPD culture medium, and culturing them to obtain seed culture fluid; inserting the seed culture fluid into YPD culture medium, and culturing them to obtain Fermentation broth; take the fermentation broth, centrifuge to obtain the bacterial cell precipitate and fermentation supernatant, and extract the bacterial cell precipitate to obtain glycosylated astaxanthin.
进一步地,所述种子培养液的培养的条件为:30℃,200转/分培养24小时。Further, the culture conditions of the seed culture liquid are: 30°C, 200 rpm for 24 hours.
进一步地,所述种子培养液的接种量为2%(体积比)。Further, the inoculum amount of the seed culture solution is 2% (volume ratio).
进一步地,所述发酵液的培养条件为:30℃,200转/分培养84小时。Further, the culture conditions of the fermentation broth are: 30°C, 200 rpm for 84 hours.
所述YPD培养基是现有技术中已有的商品化培养基,其成分包括:1%酵母膏,2%蛋白胨,2%葡萄糖,余量为水。The YPD culture medium is a commercial culture medium existing in the prior art, and its ingredients include: 1% yeast extract, 2% peptone, 2% glucose, and the balance is water.
一种产糖基化虾青素的工程菌,宿主为产β-胡萝卜素的解脂耶氏酵母,其基因组中包含有下述基因①②⑤或③④⑤:An engineered bacterium that produces glycosylated astaxanthin. The host is β-carotene-producing Yarrowia lipolytica. Its genome contains the following genes ①②⑤ or ③④⑤:
①类胡萝卜素4-羟基-β-环4-脱氢酶(HBFD)的编码基因HBFD,核苷酸序列如SEQID NO.2所示;①The encoding gene HBFD of carotenoid 4-hydroxy-β-ring 4-dehydrogenase (HBFD), the nucleotide sequence is shown in SEQID NO.2;
②去除了叶绿体转运肽的类胡萝卜素β-环4-脱氢酶(tr53-CBFD)的编码基因tr53-CBFD,核苷酸序列如SEQ ID NO.3所示;其启动子为hp4d启动子,核苷酸序列如SEQ IDNO.7所示;②The coding gene tr53-CBFD for carotenoid β-ring 4-dehydrogenase (tr53-CBFD) with chloroplast transit peptide removed, the nucleotide sequence is shown in SEQ ID NO.3; its promoter is the hp4d promoter , the nucleotide sequence is shown in SEQ IDNO.7;
③β-胡萝卜素羟化酶(crtZ)的编码基因crtZ,核苷酸序列如SEQ ID NO.10所示;③The encoding gene crtZ of β-carotene hydroxylase (crtZ), the nucleotide sequence is shown in SEQ ID NO.10;
④β-胡萝卜素酮醇酶(crtW)的编码基因crtW,核苷酸序列如SEQ ID NO.9所示;④The encoding gene crtW of β-carotene ketolase (crtW), the nucleotide sequence is shown in SEQ ID NO.9;
⑤糖基转移酶(crtX)的编码基因crtX,核苷酸序列如SEQ ID NO.8所示。⑤The coding gene crtX for glycosyltransferase (crtX), the nucleotide sequence is shown in SEQ ID NO.8.
其中,CBFD和HBFD来源于夏侧金盏花(Adonis aestivali),crtW来源于布氏单胞菌(Brevundimonas sp.SD212),crtZ和crtX来源于菠萝泛菌(Pantoea ananatis)。其产糖基化虾青素的过程为:β-胡萝卜素经过CBFD和HBFD或CrtW和CrtZ的催化,转变为虾青素,再经过CrtX的催化转变为糖基化虾青素。Among them, CBFD and HBFD are derived from Adonis aestivali, crtW is derived from Brevundimonas sp. SD212, and crtZ and crtX are derived from Pantoea ananatis. The process of producing glycosylated astaxanthin is: β-carotene is converted into astaxanthin through the catalysis of CBFD and HBFD or CrtW and CrtZ, and then converted into glycosylated astaxanthin through the catalysis of CrtX.
上述产糖基化虾青素的工程菌的构建方法,包括以下步骤:The construction method of the above-mentioned engineering bacteria producing glycosylated astaxanthin includes the following steps:
(1)构建含有下述核苷酸片段的重组质粒:hp4d启动子;tr53-CBFD-RIDD片段;HBFD-RIAD片段;(1) Construct a recombinant plasmid containing the following nucleotide fragments: hp4d promoter; tr53-CBFD-RIDD fragment; HBFD-RIAD fragment;
其中,RIDD为短肽RIDD的编码基因,核苷酸序列如SEQ ID NO.5所示;RIAD为短肽RIAD的编码基因,核苷酸序列如SEQ ID NO.6所示;Among them, RIDD is the coding gene for the short peptide RIDD, and the nucleotide sequence is as shown in SEQ ID NO.5; RIAD is the coding gene for the short peptide RIAD, and the nucleotide sequence is as shown in SEQ ID NO.6;
或:构建含有下述核苷酸片段的重组质粒:crtZ,crtW;Or: construct a recombinant plasmid containing the following nucleotide fragments: crtZ, crtW;
(2)构建含有crtX的重组质粒;(2) Construct a recombinant plasmid containing crtX;
(3)步骤(1)中构建的重组质粒转化产β-胡萝卜素的解脂耶氏酵母,得到转化子;再用步骤(2)构建的重组质粒转化该转化子,得到产糖基化虾青素的工程菌。(3) Transform β-carotene-producing Yarrowia lipolytica with the recombinant plasmid constructed in step (1) to obtain a transformant; then transform the transformant with the recombinant plasmid constructed in step (2) to obtain glycosylated shrimp. Cyanin-containing engineering bacteria.
SEQ ID NO.3:SEQ ID NO.3:
5’-ATGTCTGTGGCTGGAAGAACTCGAAATCTGGACATCCCCCAAATCGAGGAGGAGGAGGAGAACGTGGAGGAG CTGATTGAGCAGACCGACTCTGACATCGTGCACATCAAGAAGACCCTGGGCGGCAAGCAGTCTAAGCGACCCACTGGATCTATCGTGGCCCCTGTGTCTTGCCTGGGCATTCTGTCTATGATCGGCCCCGCCGTTTATTTCAAGTTCTCTCGACTGATGGAGGGCGGCGACATCCCCGTTGCAGAGATGGGCATTACTTTTGCTACCTTTGTGGCCGCCGCCGTGGGCACTGAATTTCTGTCTGCTTGGGTGCACAAGGAGCTGTGGCACGAGTCTCTGTGGTACATCCACAAGTCTCACCACCGATCTCGAAAGGGCCGATTCGAGTTCAACGACGTGTTCGCCATCATCAACGCCCTGCCCGCTATTGCCCTTATCAACTACGGCTTCTCTAACGAGGGCCTGCTGCCCGGAGCTTGTTTTGGAGTTGGACTGGGAACCACTGTGTGTGGCATGGCTTATATCTTTCTGCACAACGGCCTGTCTCACCGACGATTCCCCGTGTGGCTGATTGCCAATGTGCCCTATTTCCACAAGCTGGCCGCCGCCCATCAAATCCATCATTCTGGAAAGTTTCAGGGCGTGCCCTTTGGCCTGTTTCTGGGCCCTAAAGAGCTGGAGGAGGTGCGAGGAGGAACTGAGGAGCTGGAAAGAGTGATTTCTAGAACCACCAAGCGAACCCAGCCCTCTACCTAA-3’。5’-ATGTCTGTGGCTGGAAGAACTCGAAATCTGGACATCCCCAAATCGAGGAGGAGGAGGAACGTGGAGGAG CTGATTGAGCAGACCGACTCTGACATCGTGCACATCAAGAAGACCCTGGGCGGCAAGCAGTCTAAGCGACCCACTGGATCTATCGTGGCCCCTGTGTCTTGCCTGGGCATTCTGTCTATGATCGGCCCCGCCGTTTATTTCAAGTTCTCTCGACTGATGGAGGGCGGCGACATCCCCGTT GCAGAGATGGGCATTACTTTTGCTACCTTTGGTGGCCGCCGCCGTGGGCACTGAATTTCTGTCTGCTTGGGTGCACAAGGAGCTGTGGCACGAGTCTCTGTGGTACATCCACAAGTCTCACCACCGATCTCGAAAGGGCCGATTCGAGTTCAACGACGTGTTCGCCATCATCAACGCCCTGCCCGCTATTGCCCTTATCAACTACGGCTTCTCTAACGAGGGCCTGCTGCCCGGAGCTTGTTTTGGAGTTGGACTGGGAACCACTGT GTGTGGCATGGCTTATCTTTCTGCACAACGGCCTGTCTCACCGACGATTCCCCGTGTGGCTGATTGCCAATGTGCCCTATTTCCACAAGCTGGCCGCCGCCCATCAAATCCATTCTGGAAAGTTTCAGGGCGTGCCCTTTGGCCTGTTTCTGGGCCCTAAAGAGCTGGAGGAGGTGCGAGGAGGAACTGAGGAGCTGGAAAGAGTGATTTCTAGAACCACCAAGCGAACCCAGCCCTCTACCTAA-3’.
SEQ ID NO.4:SEQ ID NO.4:
5’-ATGGGCGGAACTGGCAAAGTGGGAGGATCTACTGCCCTGGCTCTGTCTAAATTCTCTCCCGACCTGCGACTG GTGATCGGCGGAAGAAATCGAGAGAAAGGCGACGCCGTGGTGTCTAAGCTGGGCGAAAATTCTGAGTTCGTGGAGGTGAACGTGGACTCTGTGCGATCTCTGGAGTCTGCCCTGGAGGACGTGGATCTGGTGGTGCATGCTGCTGGACCTTTTCAACAAGCTGAGAAGTGTACCGTGCTGGAGGCTGCCATTTCTACCCGAACTGCCTACGTGGACGTGTGCGACAATACCTCTTACTCTATGCAGGCCAAGTCTTTCCACGACAAGGCCGTGGCCGCCAATGTGCCTGCCATTACTACTGCCGGAATCTTCCCTGGCGTGTCTAACGTGATCGCCGCCGAACTGGTGAGATCTGCTCGAGATGAAAACACCGAGCCCCAGAGACTGAGATTTTCTTACTTCACCGCCGGCTCTGGCGGCGCTGGACCTACTTCTCTGGTGACTTCTTTTCTGCTGCTGGGCGAGGAGGTGGTGGCCTATTCTGAAGGAGAGAAAGTGGAGCTGAAACCCTACACCGGCAAGCTGAACATCGACTTCGGCAAGGGCGTGGGCAAACGAGATGTGTATCTGTGGAACCTGCCCGAGGTGCGATCTGGCCATGAAATTCTGGGCGTGCCTACCGTGTCTGCCAGATTTGGCA CTGCCCCCTTTTTTTGGAACTGGGCCATGGTGGCCATGACCACCCTGCTGCCTCCTGGAATTCTGCGAGATAGAAATAAAATCGGCATGCTGGCCAACTTCGTGTACCCCTCTGTGCAGATCTTCGACGGCATCGCCGGAGAGTGTCTGGCCATGAGAGTGGATCTGGAGTGCGCCAATGGAAGAAACACCTTCGGCATCCTGTCTCACGAGCGACTGTCTGTGCTGGTGGGCACTTCTACTGCCGTGTTTGCCATGGCCATCCTGGAGGGATCTACCCAGCCTGGCGTTTGGTTTCCTGAAGAACCCGGCGGAATTGCCATCTCTGATCGAGAGCTGCTGCTGCAGAGAGCCTCTCAGGGAGCTATTAATTTCATCATGAAGCAG-3’。5’-ATGGGCGGAACTGGCAAAGTGGGAGGATCTACTGCCCTGGCTCTGTCTAAATTCTCTCCCGACCTGCGACTG GTGATCGGCGGAAGAAATCGAGAGAAAGGCGACGCCGTGGTGTCTAAGCTGGGCGAAAATTCTGAGTTCGTGGAGGTGAACGTGGACTCTGTGCGATCTCTGGAGTCTGCCCTGGAGGACGTGGATCTGGTGGTGCATGCTGCTGGACCTTTTCAAGCTGAGAAGTGTACC GTGCTGGAGGCTGCCATTTCTACCCGAACTGCCTACTGGACGTGTGCGACAATACCTCTTACTCTATGCAGGCCAAGTCTTTCCACGACAAGGCCGTGGCCGCCAATGTGCCTGCCATTACTACTGCCGGAATCTTCCCTGGCGTGTCTAACGTGATCGCCGCCGAACTGGTGAGATCTGCTCGAGATGAAAACACCGAGCCCCAGAGACTGAGATTTTCTTACTTCACCGCCGGCTCTGGCGGCGCTGGACCTACTTCTC TGGTGACTTCTTTTCTGCTGCTGGGCGAGGAGGTGGTGGCCTATTCTGAAGGAGAGAAAGTGGAGCTGAAACCCTACACCGGCAAGCTGAACATCGACTTCGGCAAGGGCGTGGGCAAACGAGATGTGTATCTGTGGAACCTGCCCGAGGTGCGATCTGGCCATGAAATTCTGGGCGTGCCTACCGTGTCTGCCAGATTTGGCA CTGCCCCCTTTTTTTGGAACTGGGCCATGGTGGCCATGACCACCCTGCTGCCTC CTGGAATTCTGCGAGATAGAAATAAAATCGGCATGCTGGCCAACTTCGTGTACCCCTCTGTGCAGATCTTCGACGGCATCGCCGGAGAGTGTCTGGCCATGAGAGTGGATCTGGAGTGCGCCAATGGAAGAAACACCTTCGGCATCCTGTCTCACGAGCCGACTGTCTGTGCTGGTGGGCACTTCTACTGCCGGTTTGCCATGGCCATCCTGGAGGGATCTACCCAGCCTGGCGTTTGGTTTCCTGAAGAACCCGG CGGAATTGCCATCTCTGATCGAGAGCTGCTGCTGCAGAGAGCCTCTCAGGGAGCTATTAATTTCATCATGAAGCAG-3’.
SEQ ID NO.5:SEQ ID NO.5:
5’-GGAGGAGGCGGATCTGGAGGAGGAGGATCTGGAGGAGGAGGATGCGGATCTCTGAGAGAATGTGAACTGTAT GTGCAGAAGCACAACATCCAGGCCCTGCTGAAGGACTCTATCGTGCAGCTGTGCACCGCCCGACCTGAAAGACCTATGGCTTTTCTGAGAGAGTACTTCGAGCGACTGGAGAAGGAGGAGGCCAAGTAA-3’。5’-GGAGGAGGCGGATCTGGAGGAGGAGGATTGGAGGAGGAGGATGCGGATCTCTGAGAGAATGTGAACTGTAT GTGCAGAAGCACAACATCCAGGCCCTGCTGAAGGACTCTATCGTGCAGCTGTGCACCGCCCGACCTGAAAGACCTATGGCTTTTCTGAGAGAGTACTTCGAGCGACTGGAGAAGGAGGAGGCCAAGTAA-3’.
SEQ ID NO.6:SEQ ID NO.6:
5’-GGAGGAGGAGGATCTGGAGGAGGAGGATCTGGAGGAGGAGGATGCGGACTGGAACAATATGCTAATCAGCTG GCTGATCAGATTATCAAGGAGGCCACCGAGGGCTGCTAA-3’。5’-GGAGGAGGAGGATCTGGAGGAGGAGGATCTGGAGGAGGAGGATGCGGACTGGAACAATATGCTAATCAGCTG GCTGATCAGATTATCAAGGAGGCCACCGAGGGCTGCTAA-3’.
SEQ ID NO.7:SEQ ID NO.7:
5’-GCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTA CATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCACTGATCACGGGCAAAAGTGCGTATATATACAAGAGCGTTTGCCAGCCACAGATTTTCACTCCACACACCACATCACACATACAACCACACACATCCACGATG-3’。5’-GCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTA CATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCA GTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCTGAGGTGTCTCACAAGTGCCGTGCAGTCCCGCCCCCACTTGCTTCTCTTTGTGTGTAGTGTACGTACATTATCGAGACCGTTGTTCCCGCCCACCTCGATCCGGCATGCACTGATCACGGGCAAAAGTGCGTATATATACAAGAGCGTTTGCCAGCCACAGATTTTCACTCCACACACC ACATCACACATACAACCACACACATCCACGATG-3’.
SEQ ID NO.8:SEQ ID NO.8:
5’-ATGAGCCATTTCGCGGCGATCGCACCGCCTTTTTACAGCCATGTTCGCGCATTACAGAATCTCGCTCAGGAA CTGGTCGCGCGCGGTCATCGGGTGACCTTTATTCAGCAATACGATATTAAACACTTGATCGATAGCGAAACCATTGGATTTCATTCCGTCGGGACAGACAGCCATCCCCCCGGCGCGTTAACGCGCGTGCTACACCTGGCGGCTCATCCTCTGGGGCCGTCAATGCTGAAGCTCATCAATGAAATGGCGCGCACCACCGATATGCTGTGCCGCGAACTCCCCCAGGCATTTAACGATCTGGCCGTCGATGGCGTCATTGTTGATCAAATGGAACCGGCAGGCGCGCTCGTTGCTGAAGCACTGGGACTGCCGTTTATCTCTGTCGCCTGCGCGCTGCCTCTCAATCGTGAACCGGATATGCCCCTGGCGGTTATGCCTTTCGAATACGGGACCAGCGACGCGGCTCGCGAACGTTATGCCGCCAGTGAAAAAATTTATGACTGGCTAATGCGTCGTCATGACCGTGTCATTGCCGAACACAGCCACAGAATGGGCTTAGCCCCCCGGCAAAAGCTTCACCAGTGTTTTTCGCCACTGGCGCAAATCAGCCAGCTTGTTCC TGAACTGGATTTTCCCCGCAAAGCGTTACCGGCTTGTTTTCATGCCGTCGGGCCTCTGCGCGAAACGCACGCACCGTCAACGTCTTCATCCCGTTATTTTACATCCTCAGAAAAACCCCGGATTTTCGCCTCGCTGGGCACGCTTCAGGGACACCGTTATGGGCTGTTTAAAACGATAGTGAAAGCCTGTGAAGAAATTGACGGTCAGCTCCTGTTAGCCCACTGTGGTCGTCTTACGGACTCTCAGTGTGAAGAGCTGGCGCGAAGCCGTCATACACAGGTGGTGGATTTTGCCGATCAGTCAGCCGCGCTGTCTCAGGCGCAGCTGGCGATCACCCACGGCGGCATGAATACGGTACTGGACGCGATTAATTACCGGACGCCCCTTTTAGCGCTTCCGCTGGCCTTTGATCAGCCCGGCGTCGCGTCACGCATCGTTTATCACGGCATCGGCAAGCGTGCTTCCCGCTTTACCACCAGCCATGCTTTGGCTCGTCAGATGCGTTCATTGCTGACCAACGTCGACTTTCAGCAGCGCATGGCGAAAATCCAGACAGCCCTTCGTTTGGCAGGGGGCACCATGGCCGCTGCCGATATCATTGAGCAGGTTATGTGCACCGGTCAGCCTGTCTTAAGTGGGAGCGGCTATGCAACCGCATTATGA-3’。5’-ATGAGCCATTTCGCGGCGATCGCACCGCCTTTTTACAGCCATGTTCGCGCATTACAGAATCTCGCTCAGGAA CTGGTCGCGCGCGGTCATCGGGTGACCTTTATTCAGCAATACGATATTAAACACTTGATCGATAGCGAAACCATTGGATTTCATTCCGTCGGGACAGACAGCCATCCCCCCGGCGCGTTAACGCGCGTGCTACACCTGGCGGCTCATCCTCTGGGGCCGTCAATGCTGAAGCTCATCAATGAAATG GCGCGCACCACCGATATGCTGTGCCGCGAACTCCCCAGGCATTTAACGATCTGGCCGTCGATGGCGTCATTGTTGATCAAATGGAACCGGCAGGCGCGCTCGTTGCTGAAGCACTGGGACTGCCGTTTATCTCTGTCGCCTGCGCGCTGCCTCTCAATCGTGAACCGGATATGCCCCTGGCGGTTATGCCTTTCGAATACGGGACCAGCGACGCGGCTCGCGAACGTTATGCCGCCAGTGAAAAAATTTATGGGCTAA TGCGTCGTCATGACCGTGTCATTGCCGAACACAGCCACAGAATGGGCTTAGCCCCCCGGCAAAAGCTTCACCAGTGTTTTTCGCCACTGGCGCAAATCAGCCAGCTTGTTCC TGAACTGGATTTTCCCCGCAAAGCGTTACCGGCTTGTTTTCATGCCGTCGGGCCTCTGCGCGAAACGCACGCACCGTCAACGTCTTCATCCCGTTATTTTACATCCTCAGAAAAACCCGGATTTTCGCCTCGCTGGGCACGCTTCAGGGAC ACCGTTATGGGCTGTTTAAAACGATAGTGAAAGCCTGTGAAGAAATTGACGGTCAGCTCCTGTTAGCCCACTGTGGTCGTCTTACGGACTCTCAGTGTGAAAGAGCTGGCGCGAAGCCGTCATACACAGGTGGTGGATTTTGCCGATCAGTCAGCCGCGCTGTCTCAGGCGCAGCTGGCGATCACCCACGGCGGCATGAATACGGTACTGGACGCGATTAATTACCGGACGCCCCTTTTAGCGCTTCCGCTGGCCTTT GATCAGCCCGGCGTCGCGTCACGCATCGTTTATCACGGCATCGGCAAGCGTGCTTCCCGCTTTACCACCAGCCATGCTTTGGCCTCGTCAGATGCGTTCATTGCTGACCAACGTCGACTTTCAGCAGCGCATGGCGAAAATCCAGACAGCCCTTCGTTTGGCAGGGGGCACCATGGCCGCTGCCGATATCATTGAGCAGGTTATGTGCACCGGTCAGCCTGTCTTAAGTGGGAGCGGCTATGCAACCGCATTATGA- 3’.
SEQ ID NO.9:SEQ ID NO.9:
5’-ATGACCGCCGCCGTCGCCGAGCCCCGAATCGTCCCCCGACAGACCTGGATTGGCCTGACCCTGGCCGGCATG ATTGTGGCCGGCTGGGGCTCCCTCCACGTCTACGGTGTCTACTTCCACCGATGGGGCACCTCTTCCCTCGTGATTGTTCCCGCTATTGTCGCTGTTCAAACCTGGCTGTCTGTTGGACTTTTTATTGTCGCTCACGACGCCATGCATGGTTCTCTGGCTCCTGGTAGACCCCGACTTAACGCTGCCGTTGGTAGATTGACCTTGGGTCTCTACGCTGGCTTTAGATTTGATAGGCTGAAAACCGCACACCATGCCCATCACGCCGCTCCTGGTACTGCTGATGATCCTGATTTTTATGCTCCTGCACCTCGTGCTTTTCTCCCTTGGTTCCTCAACTTCTTCCGAACCTACTTCGGCTGGCGAGAGATGGCCGTCCTGACCGCTCTCGTGCTGATCGCCCTGTTCGGCCTCGGCGCCCGACCCGCCAACCTGCTGACCTTCTGGGCCGCCCCCGCCCTCCTGTCCGCCCTGCAGCTGTTCACCTTCGGCACCTGGCTCCCCCACCGACACACCGACCAGCCCTTCGCCGACGCTCACCACGCCCGATCCTCTGGTTACGGCCCCGTCCTGTCGCTGCTGACCTGCTTCCACTTCGGCCGACACCACGAGCACCACCTGACCCCCTGGCGACCCTGGTGGCGACTGTGGCGAGGTGAGTCGTAA-3’。5’-ATGACCGCCGCCGTCGCCGAGCCCCGAATCGTCCCCCGACAGACCTGGATTGGCCTGACCCTGGCCGGCATG ATTGTGGCCGGCTGGGGCTCCCTCCACGTCTACGGTGTCTACTTCCACCGATGGGGCACCTCTTCCCTCGTGATTGTTCCCGCTATTGTCGCTGTTCAAACCTGGCTGTCTGTTGGACTTTTTATTGTCGCTCACGACGCCATGCATGGTTCTCTGGCTCCTGGTAGACCCGACT TAACGCTGCCGTTGGTAGATTGACCTTGGGTCTCTACGCTGGCTTTAGATTTGATAGGCTGAAAACCGCACACCATGCCCATCACGCCGCTCCTGGTACTGCTGATGATCCTGATTTTTATGCTCCTGCACCTCGTGCTTTTCTCCCTTGGTTCCTCAACTTCTTCCGAACCTACTTCGGCTGGCGAGAGATGGCCGTCCTGACCGCTCTCGTGCTGATCGCCCTGTTCGGCCTCGGCGCCCGACCCGCCAACCTG CTGACCTTCTGGGCCGCCCCGCCCTCCTGTCCGCCCTGCAGCTGTTCACCTTCGGCACCTGGCTCCCCCACCGACACACCGACCAGCCCTTCGCCGACGCTCACCACGCCCGATCCTCTGGTTACGGCCCCGTCCTGTCGCTGCTGACCTGCTTCCACTTCGGCCGACACCACGAGCACCACCTGACCCCCTGGCGACCCTGGTGGCGACTGTGGCGAGGTGAGTCGTAA-3’.
SEQ ID NO.10:SEQ ID NO.10:
5’-ATGCTGTGGATTTGGAACGCCCTGATTGTCTTTGTTACTGTTATCGGTATGGAAGTGATTGCTGCTCTCGCT CACAAGTACATTATGCACGGCTGGGGCTGGGGCTGGCACCTGTCCCACCACGAGCCCCGAAAGGGCGCCTTCGAGGTCAACGACCTGTACGCCGTCGTCTTCGCCGCCCTGTCCATCCTGCTGATCTACCTGGGCTCCACCGGCATGTGGCCACTGCAGTGGATCGGTGCCGGAATGACCGCCTACGGCCTGCTGTACTTCATGGTCCACGACGGCCTGGTCCACCAGCGATGGCCCTTCCGATACATCCCCCGAAAGGGCTACCTGAAGCGACTGTACATGGCCCACCGAATGCACCACGCCGTCCGAGGCAAGGAGGGCTGCGTCTCTTTCGGCTTCCTGTACGCCCCCCCCCTGTCCAAGCTGCAGGCCACCCTGCGAGAGCGACATGGTGCTAGAGCTGGCGCCGCCCGAGACGCTCAGGGAGGTGAGGATGAGCCTGCTTCCGGAAAGTAA-3’。5’-ATGCTGTGGATTTGGAACGCCCTGATTGTCTTTGTTACTGTTATCGGTATGGAAGTGATTGCTGCTCTCGCT CACAAGTACATTATGCACGGCTGGGCTGGGGCTGGCACCTGTCCCACCACGAGCCCCGAAAGGGCGCCTTCGAGGTCAACGACCTGTACGCCGTCGTCTTCGCCGCCCTGTCCATCCTGCTGATCTACCTGGGCTCCACCGGCATGTGGCCACTGCAGTGGATCGGTGCCGGAA TGACCGCCTACGGCCTGCTGTACTTCATGGTCCACGACGGCCTGGTCCACCAGCGATGGCCCTTCCGATACATCCCCCGAAAGGGCTACCTGAAGCGACTGTACATGGCCCACCGAATGCACCACGCCGTCCGAGGCAAGGAGGGCTGCGTCTCTTTCGGCTTCCTGTACGCCCCCCTGTCCAAGCTGCAGGCCACCCTGCGAGAGCGACATGGTGCTAGAGCTGGCGCCGCCCGAGACGCTCAGGGAGGGTGAGGAT GAGCCTGCTTCCGGAAAGTAA-3’.
所述产糖基化虾青素的工程菌在制备糖基化虾青素中的应用。具体应用时,培养产糖基化虾青素的工程菌,提取得到糖基化虾青素。Application of the engineered bacteria producing glycosylated astaxanthin in the preparation of glycosylated astaxanthin. For specific applications, engineered bacteria that produce glycosylated astaxanthin are cultured and glycosylated astaxanthin is extracted.
一种制备糖基化虾青素的方法:培养上述的产糖基化虾青素的工程菌或利用上述方法构建得到的产糖基化虾青素的工程菌,提取得到糖基化虾青素。A method for preparing glycosylated astaxanthin: culturing the above-mentioned engineering bacteria producing glycosylated astaxanthin or the engineering bacteria producing glycosylated astaxanthin constructed by the above method, and extracting the glycosylated astaxanthin white.
进一步地,所述制备糖基化虾青素的方法具体为:将产糖基化虾青素的工程菌接入培养基中,培养获得种子培养液;将种子培养液接入培养基中,培养得发酵液;取发酵液,离心得到菌体沉淀和发酵上清液,对菌体沉淀萃取即可得到糖基化虾青素。所述种子培养液的培养的条件可以为:30℃,200转/分培养24小时;所述种子培养液的接种量可以为2%;所述培养基可以为YPD培养基;所述发酵液的培养条件可以为:30℃,200转/分培养84小时。Further, the method for preparing glycosylated astaxanthin specifically includes: inserting the engineered bacteria producing glycosylated astaxanthin into the culture medium, cultivating it to obtain a seed culture liquid; inserting the seed culture liquid into the culture medium, Culture the fermentation broth to obtain the fermentation broth; take the fermentation broth, centrifuge to obtain the bacterial cell precipitate and fermentation supernatant, and extract the bacterial cell precipitate to obtain glycosylated astaxanthin. The conditions for culturing the seed culture liquid can be: 30°C, 200 rpm for 24 hours; the inoculum amount of the seed culture liquid can be 2%; the culture medium can be YPD culture medium; the fermentation liquid The culture conditions can be: 30°C, 200 rpm for 84 hours.
本发明以解脂耶氏酵母为宿主合成类胡萝卜素,具有独特的优势:首先,解脂耶氏酵母可以合成大量的乙酰辅酶A作为MVA途径的前体,这更有利于类胡萝卜素积累。其次,酵母细胞中积累了大量油脂,形成了良好的疏水空间,可以潜在地储存亲脂类胡萝卜素。再次,解脂耶氏酵母对生长环境要求较低,可以以多种低成本的碳源作为其培养基质,具有高渗透压且对各种pH值具有极强的耐忍性。此外,该菌株遗传背景清楚,近些年来也相应开发了较为完善的遗传代谢改造工具,是理想的积累糖基化虾青素等类胡萝卜素的工业宿主菌株。The present invention uses Yarrowia lipolytica as a host to synthesize carotenoids, which has unique advantages: first, Yarrowia lipolytica can synthesize a large amount of acetyl-CoA as the precursor of the MVA pathway, which is more conducive to the accumulation of carotenoids. Secondly, a large amount of lipids accumulate in yeast cells, forming a good hydrophobic space that can potentially store lipophilic carotenoids. Thirdly, Yarrowia lipolytica has low requirements for the growth environment, can use a variety of low-cost carbon sources as its culture substrate, has high osmotic pressure and is extremely tolerant to various pH values. In addition, the genetic background of this strain is clear, and relatively complete genetic and metabolic modification tools have been developed in recent years. It is an ideal industrial host strain for accumulating glycosylated astaxanthin and other carotenoids.
本发明首次在解脂耶氏酵母中生产糖基化虾青素。在CBFD和HBFD或CrtW和CrtZ的共同作用下可以将β-胡萝卜素合成虾青素,这一合成途径与微生物和藻类中虾青素的合成途径相比是独一无二的,目前该途径只在大肠杆菌中验证过。HBFD只作用于带有4-羟基-β环的类胡萝卜素,同时,CBFD不能使未修饰的β环的3号碳或4-羟基-β环发生羟基化,这一特性使其能够严格控制催化反应的顺序,有助于虾青素的高效合成,且没有带羟基的中间产物产生,对于糖基化虾青素的产生和提取纯化是非常有益的。The present invention produces glycosylated astaxanthin in Yarrowia lipolytica for the first time. Under the combined action of CBFD and HBFD or CrtW and CrtZ, β-carotene can be synthesized into astaxanthin. This synthesis pathway is unique compared with the astaxanthin synthesis pathway in microorganisms and algae. Currently, this pathway is only found in the large intestine. Bacilli. HBFD only acts on carotenoids with a 4-hydroxy-β ring. At the same time, CBFD cannot hydroxylate the No. 3 carbon of the unmodified β ring or the 4-hydroxy-β ring. This feature allows it to be strictly controlled. The sequence of catalytic reactions contributes to the efficient synthesis of astaxanthin without the production of intermediate products with hydroxyl groups, which is very beneficial for the production, extraction and purification of glycosylated astaxanthin.
本发明借助合成生物学技术,将合成糖基化虾青素所需基因导入产β-胡萝卜素的解脂耶氏酵母中,获得生产糖基化虾青素的菌株,并通过代谢工程策略调控工程菌株中虾青素的产量,最终提高了酵母发酵生产糖基化虾青素的产量,本发明筛选得到的产糖基化虾青素的工程菌OUC-AdGHB1-7CJ的糖基化虾青素的产量达到了27.274mg/L,是糖基化虾青素产量最高的工程菌株,这为其他糖基化类胡萝卜素在微生物中的高效合成提供可行性,为工业化生产奠定基础。The present invention uses synthetic biology technology to introduce genes required for the synthesis of glycosylated astaxanthin into β-carotene-producing Yarrowia lipolytica, obtain a strain that produces glycosylated astaxanthin, and regulate it through metabolic engineering strategies The production of astaxanthin in the engineering strain ultimately improves the production of glycosylated astaxanthin by yeast fermentation. The glycosylated astaxanthin produced by the engineering strain OUC-AdGHB1-7CJ screened in the present invention The production of astaxanthin reached 27.274mg/L, making it the engineering strain with the highest production of glycosylated astaxanthin. This provides the feasibility for the efficient synthesis of other glycosylated carotenoids in microorganisms and lays the foundation for industrial production.
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。Various terms and phrases used herein have their ordinary meanings known to those skilled in the art.
附图说明Description of drawings
本发明的产糖基化虾青素的工程菌,菌株名为OUC-AdGHB1-7CJ,保藏日期为2022年08月01日,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC NO.25446,分类命名为解脂耶氏酵母Yarrowia lipolytica,保藏地址为北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,邮编100101。The engineered bacterium that produces glycosylated astaxanthin of the present invention has a strain name of OUC-AdGHB1-7CJ, and the date of preservation is August 1, 2022. The preservation unit is the General Microbiology Center of the Chinese Microbial Culture Collection Committee, and the preservation number is CGMCC NO.25446, classified as Yarrowia lipolytica, is deposited at the Institute of Microbiology, Chinese Academy of Sciences, No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, Postal Code 100101.
图1:F-A1、F-A2菌株发酵样品液相检测图。Figure 1: Liquid phase detection chart of F-A1 and F-A2 strain fermentation samples.
图2:F-A3、F-A4、F-A5、F-X1、F-X2、F-X3菌株发酵样品液相检测图。Figure 2: Liquid phase detection chart of fermentation samples of strains F-A3, F-A4, F-A5, F-X1, F-X2, and F-X3.
图3:F-A2、F-A3、F-A4菌株虾青素产量测定结果示意图。Figure 3: Schematic diagram of the determination results of astaxanthin production of strains F-A2, F-A3 and F-A4.
图4:F-A5菌株虾青素产量测定结果示意图。Figure 4: Schematic diagram of the determination results of astaxanthin production of F-A5 strain.
图5:F-X3菌株糖基化虾青素产量测定结果示意图。Figure 5: Schematic diagram of the determination results of glycosylated astaxanthin production by F-X3 strain.
图6:F-X1、F-X2、F-X3菌株糖基化虾青素产量测定结果示意图。Figure 6: Schematic diagram of the determination results of glycosylated astaxanthin production by F-X1, F-X2, and F-X3 strains.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域技术人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。The present invention will be further described below in conjunction with the examples. However, the scope of the present invention is not limited to the following examples. It will be understood by those skilled in the art that various changes and modifications can be made to the present invention without departing from the spirit and scope of the invention.
下述实施例中所涉及的仪器、试剂、材料,若无特别说明,均为现有技术中已有的常规仪器、试剂、材料,可通过正规商业途径获得。下述实施例中所涉及的实验方法、检测方法等,若无特别说明,均为现有技术中已有的常规实验方法、检测方法。Unless otherwise specified, the instruments, reagents, and materials involved in the following examples are conventional instruments, reagents, and materials that are already in the prior art and can be obtained through regular commercial channels. The experimental methods, detection methods, etc. involved in the following examples are all conventional experimental methods and detection methods existing in the prior art unless otherwise specified.
本发明所涉及的解脂耶氏酵母菌株Polh,所涉及的pMT015质粒,为中国科学院青岛生物能源与工程研究所王士安赠送。The Yarrowia lipolytica strain Polh and the pMT015 plasmid involved in the present invention were donated by Wang Shi'an of Qingdao Institute of Bioenergy and Engineering, Chinese Academy of Sciences.
本发明所涉及的的菌株F0,是在解脂耶氏酵母菌Polh中导入carB(八氢番茄红素脱氢酶)和carRP(番茄红色环化酶/八氢番茄红素合酶)基因而获得的,其β胡萝卜素产量为21.2mg/L,具体构建方法如下:carB和carRP基因委托生工生物工程(上海)股份有限公司全基因合成,以合成的基因为模板,PCR扩增得到carB和carRP基因片段,以pMT015质粒为模板,PCR扩增得到质粒骨架,采用同源重组无缝拼接技术进行连接,将重组质粒转化至大肠杆菌DH5α感受态细胞,使用快速质粒小提试剂盒提取质粒。将该质粒通过PCR进行线性化,采用化学转化法将线性DNA片段以随机插入的方式整合进解脂耶氏酵母基因组。通过高效液相色谱检测筛选出β-胡萝卜素产量最高的菌株,即为F0。构建菌株F0所涉及的具体方法参考文献:张桂林.解脂耶氏酵母中β-胡萝卜素合成途径的构建与调控:[硕士学位论文].青岛:中国海洋大学,2022。The strain F0 involved in the present invention is obtained by introducing carB (phytoene dehydrogenase) and carRP (tomato red cyclase/phytoene synthase) genes into Yarrowia lipolytica Polh. Obtained, its β-carotene yield is 21.2 mg/L. The specific construction method is as follows: carB and carRP genes were entrusted to Sangon Bioengineering (Shanghai) Co., Ltd. for full gene synthesis. The synthesized genes were used as templates and PCR amplification was performed to obtain carB. and carRP gene fragments, using pMT015 plasmid as a template, PCR amplified the plasmid skeleton, used homologous recombination seamless splicing technology for connection, transformed the recombinant plasmid into E. coli DH5α competent cells, and used a rapid plasmid miniprep kit to extract the plasmid . The plasmid was linearized by PCR, and the linear DNA fragment was randomly inserted into the Yarrowia lipolytica genome using chemical transformation. The strain with the highest β-carotene production was screened out through high-performance liquid chromatography, which is F0. References for specific methods involved in constructing strain F0: Zhang Guilin. Construction and regulation of β-carotene synthesis pathway in Yarrowia lipolytica: [Master's thesis]. Qingdao: Ocean University of China, 2022.
本发明所涉及的菌株F1,是将酿酒酵母来源的ERG12S基因,模块化的IDI-GGS1基因,模块化的ERG20Y-GGS1基因及粪肠球菌(Enterococcus faecalis)来源的mvaE-mvaSMT基因转化至菌株F0中,通过高效液相色谱检测筛选β-胡萝卜素产量最高的菌株得到的,其β胡萝卜素产量为607.1mg/L。具体构建方法参考文献:张桂林.解脂耶氏酵母中β-胡萝卜素合成途径的构建与调控:[硕士学位论文].青岛:中国海洋大学,2022。The strain F1 involved in the present invention is transformed into strain F0 by transforming the ERG12S gene derived from Saccharomyces cerevisiae, the modular IDI-GGS1 gene, the modular ERG20Y-GGS1 gene and the mvaE-mvaSMT gene derived from Enterococcus faecalis. Among them, the strain with the highest beta-carotene production was screened through high-performance liquid chromatography, and its beta-carotene production was 607.1 mg/L. References for specific construction methods: Zhang Guilin. Construction and regulation of β-carotene synthesis pathway in Yarrowia lipolytica: [Master's thesis]. Qingdao: Ocean University of China, 2022.
本发明中所用相关菌株和构建菌株,其基本描述如表1所示。本发明所用到的特异性引物,如表2所示。The basic descriptions of relevant strains and constructed strains used in the present invention are shown in Table 1. The specific primers used in the present invention are shown in Table 2.
表1Table 1
表2Table 2
实施例1产虾青素菌株F-A1的构建Example 1 Construction of astaxanthin-producing strain F-A1
CBFD和HBFD两个酶共同催化β-胡萝卜素反应生成虾青素,因此,本实施例在产β-胡萝卜素的工程菌F0的基础上进一步整合CBFD、HBFD基因,构建产虾青素的底盘菌株。The two enzymes CBFD and HBFD jointly catalyze the reaction of β-carotene to generate astaxanthin. Therefore, in this example, the CBFD and HBFD genes are further integrated on the basis of the β-carotene-producing engineering strain F0 to construct an astaxanthin-producing chassis. strains.
(一)pMT-1质粒的构建(1) Construction of pMT-1 plasmid
(1)来源于夏侧金盏花的CBFD基因,根据解脂耶氏酵母偏爱性进行密码子优化,优化后的核苷酸序列如SEQ ID NO.1所示,委托北京六合华大基因科技有限公司人工合成该基因片段。以合成的基因片段为模板,用引物CBFD-1-F/CBFD-1-R和P525酶PCR扩增得到921bp的CBFD片段。(1) The CBFD gene derived from Calendula officinale was codon-optimized based on the preference of Yarrowia lipolytica. The optimized nucleotide sequence is shown in SEQ ID NO.1, commissioned by Beijing Liuhe BGI Technology Ltd. artificially synthesized this gene fragment. Using the synthesized gene fragment as a template, the CBFD fragment of 921 bp was amplified by PCR using primers CBFD-1-F/CBFD-1-R and P525 enzyme.
以质粒pMT015为模板,用引物PMT-1-F/PMT-1-R进行PCR扩增,得到8422bp的质粒骨架1,使用PCR回收试剂盒进行回收,将回收后的CBFD片段和质粒骨架1采用同源重组无缝拼接技术进行连接,获得质粒pMT-a。Using plasmid pMT015 as a template, PCR amplification was performed with primers PMT-1-F/PMT-1-R to obtain 8422 bp plasmid backbone 1, which was recovered using a PCR recovery kit. The recovered CBFD fragment and plasmid backbone 1 were used Homologous recombination seamless splicing technology was used to connect the plasmid pMT-a.
(2)来源于夏侧金盏花中的HBFD基因,根据解脂耶氏酵母偏爱性进行密码子优化,优化后的核苷酸序列如SEQ ID NO.2所示,委托北京六合华大基因科技有限公司人工合成该基因片段。以合成的基因片段为模板,用引物HBFD-1-F/HBFD-1-R和P525酶PCR扩增得到1221bp的HBFD片段。(2) The HBFD gene derived from Calendula officinale was codon-optimized based on the preference of Yarrowia lipolytica. The optimized nucleotide sequence is shown in SEQ ID NO.2 and was commissioned by Beijing Liuhe BGI. Technology Co., Ltd. artificially synthesized the gene fragment. Using the synthesized gene fragment as a template, the HBFD fragment of 1221 bp was amplified by PCR using primers HBFD-1-F/HBFD-1-R and P525 enzyme.
以质粒pMT-a为模板,用引物PMT-2-F/PMT-2-R进行PCR扩增,得到9187bp的质粒骨架2,使用PCR回收试剂盒进行回收,将回收后的HBFD片段和质粒骨架2采用同源重组无缝拼接技术进行连接,获得质粒pMT-1。Use plasmid pMT-a as a template and use primers PMT-2-F/PMT-2-R to perform PCR amplification to obtain 9187 bp plasmid backbone 2. Use a PCR recovery kit to recover the recovered HBFD fragment and plasmid backbone. 2 Use homologous recombination seamless splicing technology to connect and obtain plasmid pMT-1.
SEQ ID NO.1:SEQ ID NO.1:
5’-ATGGCAATTTCAGTGTTCAGTTCAGGTTATTCTTTCTACAAGAATCTCTTGTTGGACTCAAAACCAAATATT CTCAAACCCCCATGCCTGCTATTCTCTCCAGTTGTGATCATGTCGCCTATGAGAAAGAAAAAGAAACATGGTGATCCATGTATCTGCTCCGTTGCAGGGAGAACAAGGAACCTTGATATTCCTCAAATTGAAGAAGAGGAAGAGAATGTGGAAGAACTAA TAGAACAGACCGATTCTGACATAGTGCATATAAAGAAAACACTAGGGGGGAAACAATCAAAACGGCCCACTGGCTCCATTGTCGCACCCGTATCTTGTCTTGGGATCCTTTCAATGATTGGACCTGCTGTTTACTTCAAGTTTTCACGGCTAATGGAGGGTGGAGATATACCTGTAGCAGAAATGGGGATTACGTTTGCCACCTTTGTTGCTGCTGCTGTTGGCACGGAGTTTTTGTCAGCATGGGTTCACAAAGAACTCTGGCACGAGTCTTTGTGGTACATTCACAAGTCTCACCATCGGTCACGAAAAGGCCGCTTCGAGTTCAATGATGTGTTTGCTATTATTAACGCGCTTCCCGCTATTGCTCTTATCAATTATGGATTCTCCAATGAAGGCCTCCTTCCTGGAGCGTGCTTTGGTGTCGGTCTTGGAACAACAGTCTGTGGTATGGCTTACATTTTTCTTCACAATGGCCTATCACACCGAAGGTTCCCAGTATGGCTTATTGCGAACGTCCCTTATTTCCACAAGCTGGCTGCAGCTCACCAAATACACCACTCAGGAAAATTTCAGGGTGTACCATTTGGCCTGTTCCTTGGACCCAAGGAATTGGAAGAAGTAAGAGGAGGCACTGAAGAGTTGGAGAGGGTAATCAGTCGTACAACTAAACGAACGCAACCATCTACC-3’。5’-ATGGCAATTTCAGTGTTTCAGTTCAGGTTATTCTTTCTACAAGAATCTCTTGTTGGACTCAAAACCAAATATT CTCAAACCCCCATGCCTGCTATTCTCTCCAGTTGTGATCATGTCGCCTATGAGAAAGAAAAAGAAACATGGTGATCCATGTATCTGCTCCGTTGCAGGGAGAACAAGGAACCTTGATATTCCTCAAATTGAAGAAGAGGAAGAGAATGTGGAAGAACTAA TAGAACAGACCGATTCT GACATAGTGCATATAAAGAAAACACTAGGGGGGGAAACAATCAAAACGGCCCACTGGCTCCATTGTCGCACCCGTATCTTGTCTTGGGATCCTTTCAATGATTGGACCTGCTGTTTACTTCAAGTTTTCACGGCTAATGGAGGGTGGAGATATACCTGTAGCAGAAATGGGGATTACGTTTGCCACCTTTGTTGCTGCTGCTGTTGGCACGGAGTTTTTGTCAGCATGGGTTCACAAAGAACTCTGGCACGAGTCTTTGTGGTA CATTCACAAGTCTCACCATCGGTCACGAAAAGGCCGCTTCGAGTTCAATGATGTGTTTGCTATTATTAACGCGCTTCCCGCTATTGCTCTTATCAATTATGGATTCTCCAATGAAGGCCTCCTTCCTGGAGCGTGCTTTGGTGTCGGTCTTGGAACAACAGTCTGTGGTATGGCTTACATTTTTCTTCACAATGGCCTATCACACCGAAGGTTCCCAGTATGGCTTATTGCGAACGTCCTTATTTCCACAAGCTGGCTG CAGCTCACCAAATACACCACTCAGGAAAATTTCAGGGTGTACCATTTGGCCTGTTCCTTGGACCCAAGGAATTGGAAGAAGTAAGAGGAGGCACTGAAGAGTTGGAGAGGGTAATCAGTCGTACAACTAAACGAACGCAACCATCTACC-3’.
SEQ ID NO.2:SEQ ID NO.2:
5’-ATGGCTCCTGTGCTGCTGGGACTGAAGCCTACTCTGTCTACTGGCTCTGTGGTGAAGGAGACTAACGTGGGC TCTACCCTGGCCTCTCCTCTGAATAAAACCCAGAACTCTCGAGTGCTGGTGCTGGGCGGAACTGGCAAAGTGGGAGGATCTACTGCCCTGGCTCTGTCTAAATTCTCTCCCGACCTGCGACTGGTGATCGGCGGAAGAAATCGAGAGAAAGGCGACGCCGTGGTGTCTAAGCTGGGCGAAAATTCTGAGTTCGTGGAGGTGAACGTGGACTCTGTGCGATCTCTGGAGTCTGCCCTGGAGGACGTGGATCTGGTGGTGCATGCTGCTGGACCTTTTCAACAAGCTGAGAAGTGTACCGTGCTGGAGGCTGCCATTTCTACCCGAACTGCCTACGTGGACGTGTGCGACAATACCTCTTACTCTATGCAGGCCAAGTCTTTCCACGACAAGGCCGTGGCCGCCAATGTGCCTGCCATTACTACTGCCGGAATCTTCCCTGGCGTGTCTAACGTGATCGCCGCCGAACTGGTGAGATCTGCTCGAGATGAAAACACCGAGCCCCAGAGACTGAGATTTTCTTACTTCACCGCCGGCTCTGGCGGCGCTGGACCTACTTCTCTGGTGACTTCTTTTCTGCTGCTGGGCGAGGAGGTGGTGGCCTATTCTGAAGGAGAGAAAGTGGAGCTGAAACCCTACACCGGCAAGCTGAACATCGACTTCGGCAAGGGCGTGGGCAAACGAGATGTGTATCTGTGGAACCTGCCCGAGGTGCGATCTGGCCATGAAATTCTGGGCGTGCCTACCGTGTCTGCCAGATTTGGCACTGCCCCCTTTTTTTGGAACTGGGCCATGGTGGCCATGACCACCCTGCTGCCTCCTGGAATTCTGCGAGATAGAAATAAAATCGGCATGCTGGCCAACTTCGTGTACCCCTCTGTGCAGATCTTCGACGGCATCGCCGGAGAGTGTCTGGCCATGAGAGTGGATCTGGAGTGCGCCAATGGAAGAAACACCTTCGGCATCCTGTCTCACGAGCGACTGTCTGTGCTGGTGGGCACTTCTACTGCCGTGTTTGCCATGGCCATCCTGGAGGGATCTACCCAGCCTGGCGTTTGGTTTCCTGAAGAACCCGGCGGAATTGCCATCTCTGATCGAGAGCTGCTGCTGCAGAGAGCCTCTCAGGGAGCTATTAATTTCATCATGAAGCAG-3’。5’-ATGGCTCCTGTGCTGCTGGGACTGAAGCCTACTCTGTCTACTGGCTCTGTGGTGAAGGAGACTAACGTGGGGC TCTACCCTGGCCTCTCCTCTGAATAAAACCCAGAACTCTCGAGTGCTGGTGCTGGGCGGAACTGGCAAAGTGGGAGGATCTACTGCCCTGGCTCTGTCTAAATTCTCTCCCGACCTGCGACTGGTGATCGGCGGAAGAAATCGAGAGAAAGGCGACGCTGTGGTCTAAGC TGGGCGAAAATTCTGAGTTCGTGGAGGTGAACGTGGACTCTGTGCGATCTCTGGAGTCTGCCCTGGAGGACGTGGATCTGGTGGTGCATGCTGCTGGACCTTTTCAACAAGCTGAGAAGTGTACCGTGCTGGAGGCTGCCATTTCTACCCGAACTGCCTACGTGGACGTGTGCGACAATACCTCTTACTCTATGCAGGCCAAGTCTTTCCACGACAAGGCCGTGGCCGCCAATGTGCCTGCCATTACTACTGCCGGAATCTTC CCTGGCGTGTCTAACGTGATCGCCGCCGAACTGGTGAGATCTGCTCGAGATGAAAACACCGAGCCCCAGAGACTGAGATTTTCTTACTTCACCGCCGGCTCTGGCGGCGCTGGACCTACTTCTCTGGTGACTTCTTTTCTGCTGCTGGGCGAGGAGGTGGTGGCCTATTCTGAAGGAGAGAAAGTGGAGCTGAAACCCTACACCGGCAAGCTGAACATCGACTTCGGCAAGGGCGTGGGCAAACGAGATGTGTATCTG TGGAACCTGCCCGAGGTGCGATCTGGCCATGAAATTCTGGGCGTGCCTACCGTGTCTGCCAGATTTGGCACTGCCCCCTTTTTTTGGAACTGGGCCATGGTGGCCATGACCACCCTGCTGCCTCCTGGAATTCTGCGAGATAGAAATAAAATCGGCATGCTGGCCAACTTCGTGTACCCCTCTGTGCAGATCTTCGACGGCATCGCCGGAGAGAGTGTCTGGCCATGAGAGTGGATCTGGAGTGCGCCAATGGAAGAAACACC TTCGGCATCCTGTCTCACGAGCGACTGTCTGTGCTGGTGGGCACTTCTACTGCCGGTTTGCCATGGCCATCCTGGAGGGATCTACCCAGCCTGGCGTTTGGTTTCCTGAAGAACCCGGCGGAATTGCCATCTCTGATCGAGAGCTGCTGCTGCAGAGAGCCTCTCAGGGAGCTATTAATTTCATCATGAAGCAG-3’.
(二)产虾青素菌株F-A1的构建(2) Construction of astaxanthin-producing strain F-A1
将pMT-1质粒通过PCR进行线性化,将线性化的目的片段转化至菌株F0,获得工程菌F-A1,对其进行发酵,测定虾青素及其他类胡萝卜素的产量,具体步骤如下:Linearize the pMT-1 plasmid through PCR, transform the linearized target fragment into strain F0, and obtain the engineering strain F-A1, ferment it, and determine the production of astaxanthin and other carotenoids. The specific steps are as follows:
(A)质粒线性化(A) Plasmid linearization
以pMT-1质粒为模板,使用引物1-F/1-R通过PCR将目的片段线性化,使用PCR回收试剂盒进行回收,获得线性化目的片段。Using pMT-1 plasmid as a template, use primers 1-F/1-R to linearize the target fragment by PCR, and use a PCR recovery kit to recover the linearized target fragment.
(B)转化(B)Conversion
将回收的线性化片段化学法转化至产β-胡萝卜素的解脂耶氏酵母菌株F0,具体步骤如下:The recovered linearized fragments are chemically transformed into β-carotene-producing Yarrowia lipolytica strain F0. The specific steps are as follows:
(1)将F0接入YPD培养基(10mL),在温控摇床中30℃,200rpm培养36h;(1) Plug F0 into YPD medium (10 mL) and culture it in a temperature-controlled shaker at 30°C and 200 rpm for 36 hours;
(2)收集适量菌体,用约l mL 1×TE缓冲液重悬,3000g离心2min,弃上清,用约1mL0.1M的LiAc溶液重悬,30℃静置培养1h,3000g离心2min,弃上清;(2) Collect an appropriate amount of bacterial cells, resuspend in about 1 mL of 1×TE buffer, centrifuge at 3000g for 2 minutes, discard the supernatant, resuspend in about 1 mL of 0.1M LiAc solution, incubate at 30°C for 1 hour, and centrifuge at 3000g for 2 minutes. Discard the supernatant;
(3)加入约200μL 0.1M的LiAc溶液重悬至适宜浓度(参照E.coli DH5α等感受态浓度),分装40μL/管;(3) Add about 200 μL of 0.1M LiAc solution and resuspend to the appropriate concentration (refer to the competent concentration of E.coli DH5α and other competent cells), and dispense 40 μL/tube;
(4)每管感受态加入3μL鱼精DNA和3μg线性目的片段,吹打混匀,30℃静置培养15min;(4) Add 3 μL fish sperm DNA and 3 μg linear target fragment to each competent tube, mix by pipetting, and incubate at 30°C for 15 minutes;
(5)加入350μL PEG-LiAc(315μL的50%PEG和35μL的1M的LiAc)和16μL 1M的DTT,30℃静置培养1h;(5) Add 350 μL PEG-LiAc (315 μL 50% PEG and 35 μL 1M LiAc) and 16 μL 1M DTT, and incubate at 30°C for 1 hour;
(6)加40μL DMSO,39℃热激10min,加600μL LiAc,室温静置30min;(6) Add 40 μL DMSO, heat shock at 39°C for 10 minutes, add 600 μL LiAc, and let stand at room temperature for 30 minutes;
(7)3000g离心2min,弃部分上清,剩余菌液100μL左右,混匀,涂SD-URA平板,30℃培养箱倒置培养3天;(7) Centrifuge at 3000g for 2 minutes, discard part of the supernatant, and leave about 100 μL of the remaining bacterial solution, mix well, apply SD-URA plate, and incubate in a 30°C incubator for 3 days with an inversion;
(8)从长菌的URA平板上挑取红颜色较深的20个单菌落接入新的SD-URA平板,30℃培养箱倒置培养24h。(8) Pick 20 single colonies with darker red color from the long bacterial URA plate and insert them into the new SD-URA plate, and incubate them upside down in the 30°C incubator for 24 hours.
(C)菌株发酵及细胞干重的测定(C) Strain fermentation and determination of cell dry weight
从上述(8)中SD-URA平板上挑取10个菌落分别接入10mL YPD培养基,30℃,200rpm培养24h,获得种子培养液。取1mL种子培养液加入YPD培养基(50mL),30℃,200rpm培养84h。Pick 10 colonies from the SD-URA plate in (8) above and insert them into 10 mL of YPD medium, and culture them at 30°C and 200 rpm for 24 hours to obtain a seed culture medium. Add 1 mL of seed culture solution to YPD medium (50 mL) and culture at 30°C and 200 rpm for 84 hours.
发酵完成的工程菌株取1mL菌液于含500μL 50%甘油的保菌管中于-20℃保藏,再取2mL菌液加入2mL已称重的EP管中,12000rpm离心2min,弃上清,开盖在80℃烘箱中放置24h,称重,继续放置1h,再次称重,直至重量无变化后取出,根据重量变化计算细胞干重。After the fermentation is completed, take 1 mL of the bacterial liquid in a bacteria preservation tube containing 500 μL of 50% glycerol and store it at -20°C. Then take 2 mL of the bacterial liquid and add it to a 2 mL weighed EP tube. Centrifuge at 12,000 rpm for 2 min. Discard the supernatant and open the lid. Place in an 80°C oven for 24 hours, weigh, continue to place for 1 hour, weigh again until there is no change in weight, then take it out, and calculate the dry weight of the cells based on the weight change.
(D)发酵产物的提取及检测(D) Extraction and detection of fermentation products
将上述剩余菌液取500μL加入2mL研磨管中,12000rpm离心3min,弃上清,加入1mL甲基叔丁基醚,混匀,按照65Hz,120s/0Hz,10s,10个循环的程序在研磨机中进行研磨,研磨结束后,12000rpm离心3min,取上清溶液于5mL离心管中,采用氮吹法将上清液吹干,并用500μL丙酮溶液复溶,复溶液体使用0.22μm有机滤膜过滤,用于检测。Add 500 μL of the above remaining bacterial liquid into a 2 mL grinding tube, centrifuge at 12,000 rpm for 3 min, discard the supernatant, add 1 mL of methyl tert-butyl ether, mix well, and grind in the grinder according to the program of 65 Hz, 120 s/0 Hz, 10 s, 10 cycles. After grinding, centrifuge at 12,000 rpm for 3 minutes, put the supernatant solution into a 5 mL centrifuge tube, blow dry the supernatant with nitrogen blowing, and reconstitute it with 500 μL acetone solution. The reconstituted liquid is filtered with a 0.22 μm organic filter. , for detection.
发酵产物采用高效液相色谱法进行检测。检测条件为色谱柱:C18液相色谱柱;柱温:35℃;流速:0.9mL/min;进样体积:20μL;检测波长:470nm;检测时间:45min;流动相:A水,B乙腈、四氢呋喃(1:1),洗脱梯度如下(min-%A):0-95;5-95;15-20;24-20;25-0;35-0;40-95;45-95。Fermentation products were detected using high performance liquid chromatography. The detection conditions are chromatographic column: C18 liquid chromatography column; column temperature: 35°C; flow rate: 0.9mL/min; injection volume: 20μL; detection wavelength: 470nm; detection time: 45min; mobile phase: A water, B acetonitrile, Tetrahydrofuran (1:1), the elution gradient is as follows (min-%A): 0-95; 5-95; 15-20; 24-20; 25-0; 35-0; 40-95; 45-95.
糖基化虾青素、虾青素、β-胡萝卜素、番茄红素出峰时间分别为18.4、23.2、34.0、33.3min。The peak elution times of glycosylated astaxanthin, astaxanthin, β-carotene, and lycopene were 18.4, 23.2, 34.0, and 33.3 minutes respectively.
准确称量一定量的虾青素标准品,用丙酮溶解后,稀释不同倍数,用上述方法在高效液相色谱测定不同浓度标准品的峰面积,根据标准品浓度和峰面积绘制标准曲线。将待测菌萃取样品经HPLC测定的峰面积代入标准曲线中,得到待测菌虾青素含量(mg/L,具体为每升菌液中虾青素含量)。Accurately weigh a certain amount of astaxanthin standard, dissolve it in acetone, and dilute it to different times. Use the above method to measure the peak areas of different concentrations of the standard using high performance liquid chromatography. Draw a standard curve based on the concentration and peak area of the standard. Substitute the peak area of the extracted sample of the bacteria to be tested by HPLC into the standard curve to obtain the astaxanthin content of the bacteria to be tested (mg/L, specifically the astaxanthin content per liter of bacterial liquid).
液相检测结果表明10个菌株均没有虾青素产生,其中一个菌株F-A1发酵液的液相检测图如图1所示。考虑到CBFD和HBFD来源于植物,使用TargetP-2.0分析了完整的蛋白序列,预测了CBFD和HBFD的叶绿体转运肽的序列,CBFD和HBFD可能存在叶绿体转运肽从而影响了酶的表达。因此为了获得产虾青素的菌株,下面实验将去除CBFD和HBFD的叶绿体转运肽序列。The liquid phase test results showed that none of the 10 strains produced astaxanthin. The liquid phase test chart of the fermentation broth of one strain, F-A1, is shown in Figure 1. Considering that CBFD and HBFD are derived from plants, TargetP-2.0 was used to analyze the complete protein sequence and predict the sequences of the chloroplast transit peptides of CBFD and HBFD. CBFD and HBFD may have chloroplast transit peptides that affect the expression of the enzyme. Therefore, in order to obtain astaxanthin-producing strains, the following experiments will remove the chloroplast transit peptide sequences of CBFD and HBFD.
实施例2去除叶绿体转运肽的产虾青素菌株F-A2的构建Example 2 Construction of astaxanthin-producing strain F-A2 with removal of chloroplast transit peptide
(一)去除叶绿体转运肽的CBFD和HBFD质粒pMT-2的构建(1) Construction of CBFD and HBFD plasmid pMT-2 that removes chloroplast transit peptides
使用TargetP-2.0网站对CBFD和HBFD的氨基酸序列进行叶绿体转运肽的预测,并根据预测结果,分别去除CBFD和HBFD的叶绿体转运肽序列,使用引物CBFD-2-F/CBFD-2-R以CBFD基因为模板扩增得到768bp的tr53-CBFD片段(去除了叶绿体转运肽序列的核苷酸序列如SEQ ID NO.3所示),使用引物HBFD-2-F/HBFD-2-R以HBFD基因为模板扩增得到tr45-HBFD片段(去除了叶绿体转运肽序列的核苷酸序列如SEQ ID NO.4所示)。Use the TargetP-2.0 website to predict the chloroplast transit peptides of the amino acid sequences of CBFD and HBFD, and based on the prediction results, remove the chloroplast transit peptide sequences of CBFD and HBFD respectively, and use the primers CBFD-2-F/CBFD-2-R to predict the chloroplast transit peptides of CBFD and HBFD. The gene was amplified as a template to obtain a tr53-CBFD fragment of 768 bp (the nucleotide sequence excluding the chloroplast transit peptide sequence is shown in SEQ ID NO.3), and primers HBFD-2-F/HBFD-2-R were used to HBFD-based Because the tr45-HBFD fragment was obtained by template amplification (the nucleotide sequence with the chloroplast transit peptide sequence removed is shown in SEQ ID NO. 4).
用引物PMT-3-F/PMT-3-R以质粒pMT-1为模板扩增得到9507bp的质粒骨架3,将扩增的tr53-CBFD片段和质粒骨架3进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-2-1。用引物PMT-10-F/PMT-10-R以质粒pMT-2-1为模板扩增得到质粒骨架10,将扩增的tr45-HBFD片段和质粒骨架10进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-2-2。Use primers PMT-3-F/PMT-3-R to amplify plasmid pMT-1 as a template to obtain 9507 bp plasmid backbone 3. The amplified tr53-CBFD fragment and plasmid backbone 3 were recovered by PCR, and homologous recombination was used. Seamless splicing technology is used to connect and construct pMT-2-1. Using primers PMT-10-F/PMT-10-R and plasmid pMT-2-1 as a template, plasmid backbone 10 was amplified. The amplified tr45-HBFD fragment and plasmid backbone 10 were recovered by PCR, and homologous recombination was used. Seamless splicing technology is used to connect and build pMT-2-2.
(二)去除CBFD和HBFD的叶绿体转运肽对虾青素产量的影响(2) Effect of chloroplast transit peptides removing CBFD and HBFD on astaxanthin production
将pMT-2-1和pMT-2-2质粒使用引物1-F/1-R通过PCR进行线性化,将线性化的目的片段转化至菌株F0,获得工程菌F-A2-1和F-A2-2(注:pMT-2-1转化菌株F0后,涂布SD-URA缺陷培养基,3天后挑取红颜色最深的20个转化子转接至新的SD-URA缺陷培养基,24h后挑取红颜色最深的10个转化子接入50mL液体YPD培养基中,200rpm、30℃培养84小时;10个菌株均产生虾青素,将虾青素产量最高的菌株命名为F-A2-1)(同理,F-A2-2以及下述实施例中的菌株,如无特别说明,都是如此筛选得到的),对其进行发酵,测定虾青素及其他类胡萝卜素的产量。Linearize pMT-2-1 and pMT-2-2 plasmids by PCR using primers 1-F/1-R, and transform the linearized target fragment into strain F0 to obtain engineering bacteria F-A2-1 and F- A2-2 (Note: After transforming strain F0 with pMT-2-1, apply SD-URA-deficient medium. After 3 days, pick the 20 transformants with the darkest red color and transfer them to the new SD-URA-deficient medium for 24 hours. Then, the 10 transformants with the deepest red color were picked and inserted into 50 mL liquid YPD medium, and cultured at 200 rpm and 30°C for 84 hours; all 10 strains produced astaxanthin, and the strain with the highest astaxanthin production was named F-A2. -1) (Similarly, F-A2-2 and the strains in the following examples, unless otherwise stated, are all screened in this way), ferment them, and measure the production of astaxanthin and other carotenoids. .
F-A2-1、F-A2-2菌株发酵液的液相检测图如图1所示,F-A2-1菌株产生了虾青素。虾青素含量的测定结果如图3所示,菌株F-A2-1产生了0.597mg/L(0.054mg/g DCW)虾青素,菌株F-A2-2没有产生虾青素,说明CBFD去除预测的叶绿体转运肽时有活性,而HBFD去除预测的叶绿体转运肽时没有活性。菌株F-A2-1还有较多的β-胡萝卜素积累,β-胡萝卜素的转化率较低,可能是CBFD和HBFD的表达水平低,要提高虾青素的产量就需要对CBFD和HBFD进行改造。The liquid phase detection diagram of the fermentation broth of F-A2-1 and F-A2-2 strains is shown in Figure 1. The F-A2-1 strain produced astaxanthin. The measurement results of astaxanthin content are shown in Figure 3. Strain F-A2-1 produced 0.597mg/L (0.054mg/g DCW) astaxanthin, but strain F-A2-2 did not produce astaxanthin, indicating that CBFD It is active when removing the predicted chloroplast transit peptide, while HBFD is inactive when removing the predicted chloroplast transit peptide. Strain F-A2-1 also accumulates more β-carotene, and the conversion rate of β-carotene is low. This may be due to the low expression levels of CBFD and HBFD. To increase the production of astaxanthin, it is necessary to control CBFD and HBFD. Make a transformation.
实施例3虾青素产量提高菌株F-A3、F-A4的构建Example 3 Construction of astaxanthin production-improving strains F-A3 and F-A4
构建多酶复合物可以防止中间产物扩散,提高最终产物的产量,并控制代谢产物的通量。通过一对短肽标签(RIAD和RIDD)可以实现CBFD和HBFD的模块组装。将tr53-CBFD-RIDD-HBFD-RIAD酶复合体在产β-胡萝卜素的菌株F0中表达,可以提高虾青素的产量;启动子强度的增加可以提高基因的转录水平,从而提高酶的表达,将CBFD的启动子更换为强度更高的hp4d,也可以提高虾青素得到产量,具体方法如下:Constructing multi-enzyme complexes can prevent the diffusion of intermediate products, increase the yield of final products, and control the flux of metabolites. Modular assembly of CBFD and HBFD can be achieved through a pair of short peptide tags (RIAD and RIDD). Expressing the tr53-CBFD-RIDD-HBFD-RIAD enzyme complex in the β-carotene-producing strain F0 can increase the production of astaxanthin; the increase in promoter strength can increase the transcription level of the gene, thereby increasing the expression of the enzyme. , replacing the promoter of CBFD with the stronger hp4d can also increase the yield of astaxanthin. The specific method is as follows:
(一)CBFD和HBFD模块化组装质粒pMT-3的构建(1) Construction of CBFD and HBFD modular assembly plasmid pMT-3
将短肽RIDD的基因序列(其核苷酸序列如SEQ ID NO.5所示)、RIAD的基因序列分别(其核苷酸序列如SEQ ID NO.6所示)与tr53-CBFD和HBFD一同合成(委托北京六合华大基因科技有限公司人工合成),以合成的片段为模板,用引物CBFD-3-F/CBFD-3-R和P525酶PCR扩增得到1032bp的tr53-CBFD-RIDD片段;用引物HBFD-3-F/HBFD-3-R和P525酶PCR扩增得到1374bp的HBFD-RIAD片段。The gene sequence of the short peptide RIDD (the nucleotide sequence of which is shown in SEQ ID NO.5) and the gene sequence of RIAD (the nucleotide sequence of which is shown in SEQ ID NO.6) were together with tr53-CBFD and HBFD. Synthesis (entrusted to Beijing Liuhe Huada Gene Technology Co., Ltd. for artificial synthesis), using the synthesized fragment as a template, using primers CBFD-3-F/CBFD-3-R and P525 enzyme to PCR amplify the tr53-CBFD-RIDD fragment of 1032 bp ; Use primers HBFD-3-F/HBFD-3-R and P525 enzyme to PCR amplify the 1374bp HBFD-RIAD fragment.
用引物PMT-4-F/PMT-4-R以质粒pMT015为模板扩增得到质粒骨架4,将扩增的tr53-CBFD-RIDD片段和质粒骨架4进行PCR回收,并采用同源重组无缝拼接技术进行连接构建质粒pMT-b。Use primers PMT-4-F/PMT-4-R to amplify plasmid pMT015 as a template to obtain plasmid backbone 4. The amplified tr53-CBFD-RIDD fragment and plasmid backbone 4 were recovered by PCR, and homologous recombination was used to seamlessly Splicing technology was used to connect and construct plasmid pMT-b.
用引物PMT-5-F/PMT-5-R以质粒pMT-b为模板扩增得到质粒骨架5,将扩增的HBFD-RIAD片段和质粒骨架5进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-3。Use primers PMT-5-F/PMT-5-R to amplify plasmid pMT-b as a template to obtain plasmid backbone 5. The amplified HBFD-RIAD fragment and plasmid backbone 5 were recovered by PCR, and homologous recombination was used to seamlessly Splicing technology was used to connect and construct pMT-3.
(二)CBFD更换启动子的质粒pMT-4的构建(2) Construction of plasmid pMT-4 with CBFD replacement promoter
通过北京六合华大基因科技有限公司合成hp4d序列(其核苷酸序列如SEQ IDNO.7所示),作为模板,使用引物hp4d-1-F/hp4d-1-R扩增hp4d片段。The hp4d sequence (its nucleotide sequence is shown in SEQ ID NO.7) was synthesized by Beijing Liuhe BGI Technology Co., Ltd. and used as a template to amplify the hp4d fragment using primers hp4d-1-F/hp4d-1-R.
用引物PMT-6-F/PMT-6-R以质粒pMT-3为模板扩增得到质粒骨架6,将扩增的hp4d片段和质粒骨架6进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-4。The primers PMT-6-F/PMT-6-R were used to amplify plasmid pMT-3 as a template to obtain plasmid backbone 6. The amplified hp4d fragment and plasmid backbone 6 were recovered by PCR, and homologous recombination seamless splicing technology was used. Ligation was performed to construct pMT-4.
(三)CBFF和HBFD模块化组装及CBFD更换启动子对虾青素产量的影响(3) Effects of CBFF and HBFD modular assembly and CBFD promoter replacement on astaxanthin production
将pMT-3质粒使用引物1-F/1-R通过PCR进行线性化,将线性化的目的片段转化至菌株F0,获得工程菌F-A3,对其进行发酵,测定虾青素及其他类胡萝卜素的产量。The pMT-3 plasmid was linearized by PCR using primers 1-F/1-R, and the linearized target fragment was transformed into strain F0 to obtain engineering strain F-A3, which was fermented to determine astaxanthin and other substances. Carotene production.
将pMT-4质粒使用引物1-F/1-R通过PCR进行线性化,将线性化的目的片段转化至菌株F0,获得工程菌F-A4,对其进行发酵,测定虾青素及其他类胡萝卜素的产量。The pMT-4 plasmid was linearized by PCR using primers 1-F/1-R, and the linearized target fragment was transformed into strain F0 to obtain engineering strain F-A4, which was fermented to determine astaxanthin and other substances. Carotene production.
以上均按照实施例1中的方法进行。All the above were carried out according to the method in Example 1.
F-A3、F-A4菌株发酵液的液相检测图如图2A所示,F-A3、F-A4菌株均产生了虾青素。虾青素含量的测定结果如图3所示,可以看出,F-A3和F-A4菌株的虾青素产量分别为1.112mg/L、1.480mg/L,分别比F-A2-1菌株提高了86.3%和1.48倍,其中F-A4菌株的虾青素产量最高为1.480mg/L,单位细胞产量为0.142mg/g DCW。The liquid phase detection diagram of the fermentation broth of F-A3 and F-A4 strains is shown in Figure 2A. Both F-A3 and F-A4 strains produced astaxanthin. The measurement results of astaxanthin content are shown in Figure 3. It can be seen that the astaxanthin production of F-A3 and F-A4 strains are 1.112mg/L and 1.480mg/L respectively, which are respectively higher than those of F-A2-1 strain. It increased by 86.3% and 1.48 times, among which the F-A4 strain had the highest astaxanthin production of 1.480mg/L, and the unit cell production was 0.142mg/g DCW.
实施例4产糖基化虾青素菌株F-X1、F-X2的构建Example 4 Construction of glycosylated astaxanthin-producing strains F-X1 and F-X2
将经过体外酶学验证可以利用UDP-葡萄糖和虾青素合成糖基化虾青素的来自Pantoea ananatis ATCC 19321的crtX基因转入产虾青素的解脂耶氏酵母F-A2-1和F-A4中,生产糖基化虾青素,具体方法如下:The crtX gene from Pantoea ananatis ATCC 19321, which has been verified by in vitro enzymology to synthesize glycosylated astaxanthin using UDP-glucose and astaxanthin, was transformed into astaxanthin-producing Yarrowia lipolytica F-A2-1 and F In -A4, glycosylated astaxanthin is produced. The specific method is as follows:
(一)pMT-5质粒的构建(1) Construction of pMT-5 plasmid
来源于Pantoea ananatis ATCC 19321的crtX基因,进行密码子,优化后的核苷酸序列如SEQ ID NO.8所示,委托北京六合华大基因科技有限公司合成该基因片段,以合成的基因片段为模板,用引物crtX-1-F/crtX-1-R扩增得到1296bp的crtX片段。The crtX gene derived from Pantoea ananatis ATCC 19321 was codoned and the optimized nucleotide sequence is shown in SEQ ID NO.8. Beijing Liuhe Huada Gene Technology Co., Ltd. was entrusted to synthesize the gene fragment. The synthesized gene fragment is Template, use primers crtX-1-F/crtX-1-R to amplify a 1296bp crtX fragment.
用引物PMT-9-F/PMT-9-R以质粒pMT015为模板扩增得到8275bp的质粒骨架9,将扩增的crtX片段和质粒骨架9进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-5。Using primers PMT-9-F/PMT-9-R and using plasmid pMT015 as a template, an 8275 bp plasmid backbone 9 was amplified. The amplified crtX fragment and plasmid backbone 9 were recovered by PCR, and homologous recombination seamless splicing technology was used. Ligation was performed to construct pMT-5.
(二)产糖基化虾青素菌株F-X1、F-X2的构建(2) Construction of glycosylated astaxanthin-producing strains F-X1 and F-X2
将pMT-5质粒使用引物2-F/2-R通过PCR进行线性化,将线性化的目的片段转化至菌株F-A2-1,获得工程菌F-X1,将线性化的目的片段转化至菌株F-A4,获得工程菌F-X2,对其进行发酵,测定糖基化虾青素及其他类胡萝卜素的产量。The pMT-5 plasmid was linearized by PCR using primers 2-F/2-R, and the linearized target fragment was transformed into strain F-A2-1 to obtain engineering strain F-X1. The linearized target fragment was transformed into Strain F-A4, the engineering strain F-X2 was obtained, fermented, and the production of glycosylated astaxanthin and other carotenoids was measured.
以上均按照实施例1中的方法进行。All the above were carried out according to the method in Example 1.
F-X1、F-X2菌株发酵液的液相检测图如图2B所示,在18.4min时,F-X1、F-X2菌株均产生了糖基化虾青素。糖基化虾青素含量的测定结果如图6所示,F-X1菌株中糖基化虾青素的产量为0.741mg/L,F-X2菌株的糖基化虾青素产量为1.157mg/L,比F-X1菌株提高了56.2%。The liquid phase detection diagram of the fermentation broth of F-X1 and F-X2 strains is shown in Figure 2B. At 18.4 minutes, both F-X1 and F-X2 strains produced glycosylated astaxanthin. The measurement results of glycosylated astaxanthin content are shown in Figure 6. The yield of glycosylated astaxanthin in F-X1 strain is 0.741mg/L, and the yield of glycosylated astaxanthin in F-X2 strain is 1.157mg. /L, which is 56.2% higher than that of F-X1 strain.
实施例5细菌来源CrtW、CrtZ生产虾青素菌株F-A5的构建Example 5 Construction of astaxanthin-producing strain F-A5 derived from bacteria CrtW and CrtZ
(一)crtW和crtZ质粒pMT-6的构建(1) Construction of crtW and crtZ plasmid pMT-6
来源于Brevundimonas sp.SD212的crtW基因和来自Pantoea ananatis的crtZ基因,进行密码子,优化后的核苷酸序列分别如SEQ ID NO.9、10所示,委托北京六合华大基因科技有限公司合成该基因片段,以合成的基因片段为模板,分别用引物crtW-1-F/crtW-1-R和crtZ-1-F/crtZ-1-R扩增crtW和crtZ片段,用引物PMT-7-F/PMT-7-R以质粒pMT015为模板扩增得到质粒骨架7,并采用同源重组无缝拼接技术将crtW片段和骨架7进行连接构建质粒pMT-c;The crtW gene derived from Brevundimonas sp.SD212 and the crtZ gene derived from Pantoea ananatis were codon-coded and the optimized nucleotide sequences are shown in SEQ ID NO.9 and 10 respectively, and were commissioned to be synthesized by Beijing Liuhe Huada Gene Technology Co., Ltd. For this gene fragment, use the synthesized gene fragment as a template, use primers crtW-1-F/crtW-1-R and crtZ-1-F/crtZ-1-R to amplify the crtW and crtZ fragments respectively, and use primer PMT-7 -F/PMT-7-R used plasmid pMT015 as a template to amplify plasmid backbone 7, and used homologous recombination seamless splicing technology to connect the crtW fragment and backbone 7 to construct plasmid pMT-c;
用引物PMT-8-F/PMT-8-R以质粒pMT-c为模板扩增得到质粒骨架8,将扩增的crtZ片段和质粒骨架8进行PCR回收,并采用同源重组无缝拼接技术进行连接构建pMT-6。Plasmid backbone 8 was amplified using primers PMT-8-F/PMT-8-R using plasmid pMT-c as a template. The amplified crtZ fragment and plasmid backbone 8 were recovered by PCR, and homologous recombination seamless splicing technology was used. Ligation was performed to construct pMT-6.
(二)来源于细菌的CrtW和CrtZ生产虾青素菌株的构建(2) Construction of astaxanthin-producing strains derived from bacteria CrtW and CrtZ
将pMT-6质粒使用引物1-F/1-R通过PCR进行线性化,将线性化的目的片段转化至菌株F1,获得工程菌F-A5(共得到10个菌株,分别命名为F-A5-1~F-A5-10),对其进行发酵,测定虾青素及其他类胡萝卜素的产量。The pMT-6 plasmid was linearized by PCR using primers 1-F/1-R, and the linearized target fragment was transformed into strain F1 to obtain engineering strain F-A5 (a total of 10 strains were obtained, each named F-A5 -1~F-A5-10), ferment it, and measure the production of astaxanthin and other carotenoids.
以上均按照实施例1中的方法进行。All the above were carried out according to the method in Example 1.
菌株发酵液的液相检测图如图2A所示,F-A5菌株产生了虾青素(图2A中的F-A5菌株,具体是F-A5-8),如图4,虾青素产量最高的菌株F-A5-8产生了79.077mg/L(7.567mg/gDCW)虾青素。The liquid phase detection chart of the strain fermentation broth is shown in Figure 2A. The F-A5 strain produced astaxanthin (the F-A5 strain in Figure 2A, specifically F-A5-8), as shown in Figure 4. Astaxanthin production The highest strain, F-A5-8, produced 79.077mg/L (7.567mg/gDCW) astaxanthin.
实施例6细菌来源途径产糖基化虾青素菌株F-X3的构建Example 6 Construction of glycosylated astaxanthin-producing strain F-X3 derived from bacterial pathways
将经过体外酶学验证可以利用UDP-葡萄糖和虾青素合成糖基化虾青素的来自Pantoea ananatis ATCC 19321的crtX基因转入产虾青素的解脂耶氏酵母F-A5中,生产糖基化虾青素,具体方法如下:The crtX gene from Pantoea ananatis ATCC 19321, which has been verified by in vitro enzymology to synthesize glycosylated astaxanthin using UDP-glucose and astaxanthin, was transferred into astaxanthin-producing Yarrowia lipolytica F-A5 to produce sugar. Kylated astaxanthin, the specific method is as follows:
将pMT-6质粒使用引物2-F/2-R通过PCR进行线性化,将线性化的目的片段转化至菌株F-A5-8,获得工程菌F-X3(共得到10个菌株,临时命名为F-X3-1~F-X3-10),对其进行发酵(挑取10个菌落分别接入10mL YPD培养基,30℃,200rpm培养24h,获得种子培养液;取1mL种子培养液加入到50mL YPD培养基中,30℃,200rpm培养84h),测定糖基化虾青素及其他类胡萝卜素的产量。The pMT-6 plasmid was linearized by PCR using primers 2-F/2-R, and the linearized target fragment was transformed into strain F-A5-8 to obtain engineering strain F-X3 (a total of 10 strains were obtained, temporarily named (F-X3-1~F-X3-10), ferment them (pick 10 colonies and insert them into 10mL YPD medium respectively, culture them at 30℃, 200rpm for 24h to obtain the seed culture liquid; take 1mL seed culture liquid and add Into 50mL YPD medium, culture at 30°C, 200rpm for 84h), and measure the production of glycosylated astaxanthin and other carotenoids.
以上均按照实施例1中的方法进行。All the above were carried out according to the method in Example 1.
菌株发酵液的液相检测图如图2B所示,可以看出菌株F-X3有糖基化虾青素产生。F-X3菌株糖基化虾青素含量的测定结果图5和图6所示(图6中的F-X3是F-X3-7菌株),其中F-X3-7菌株的糖基化虾青素的产量最高,为27.274mg/L,明显高于其他菌株(其他9株菌株F-X3-1、2、3、4、5、6、8、9、10的产量分别为:8.079mg/L、7.975mg/L、7.445mg/L、7.066mg/L、6.909mg/L、6.666mg/L、7.035mg/L、9.044mg/L、7.514mg/L),本发明对其进行了保藏,菌株正式命名为OUC-AdGHB1-7CJ,保藏日期为2022年08月01日,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC NO.25446,分类命名为解脂耶氏酵母Yarrowia lipolytica,保藏地址为北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,邮编100101。The liquid phase detection chart of the strain fermentation broth is shown in Figure 2B. It can be seen that strain F-X3 produces glycosylated astaxanthin. The determination results of glycosylated astaxanthin content of F-X3 strain are shown in Figure 5 and Figure 6 (F-X3 in Figure 6 is F-X3-7 strain), in which the glycosylated astaxanthin content of F-X3-7 strain The yield of cyanin is the highest, 27.274 mg/L, which is significantly higher than that of other strains (the yields of the other 9 strains F-X3-1, 2, 3, 4, 5, 6, 8, 9, and 10 are: 8.079 mg respectively) /L, 7.975mg/L, 7.445mg/L, 7.066mg/L, 6.909mg/L, 6.666mg/L, 7.035mg/L, 9.044mg/L, 7.514mg/L), the present invention has carried out Preserved, the strain is officially named OUC-AdGHB1-7CJ, the preservation date is August 1, 2022, the preservation unit is the General Microbiology Center of the Chinese Microbial Culture Collection Committee, the preservation number is CGMCC NO.25446, and the classification name is Lipolytica Yarrowia lipolytica is deposited at the Institute of Microbiology, Chinese Academy of Sciences, No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, Postal Code 100101.
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权利要求的范围内。The above examples are provided to those skilled in the art to fully disclose and describe how to make and use the claimed embodiments, and are not intended to limit the scope of the disclosure herein. Modifications apparent to those skilled in the art will be within the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211577714.XA CN116731886A (en) | 2022-12-09 | 2022-12-09 | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211577714.XA CN116731886A (en) | 2022-12-09 | 2022-12-09 | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116731886A true CN116731886A (en) | 2023-09-12 |
Family
ID=87903201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211577714.XA Pending CN116731886A (en) | 2022-12-09 | 2022-12-09 | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116731886A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117965334A (en) * | 2024-03-28 | 2024-05-03 | 中国农业科学院生物技术研究所 | Recombinant Pichia yeast strain expressing astaxanthin and its construction method and application |
CN118272421A (en) * | 2024-06-04 | 2024-07-02 | 山东金城生物药业有限公司 | Method for producing astaxanthin by engineering yarrowia lipolytica |
CN118599689A (en) * | 2024-07-03 | 2024-09-06 | 深圳元育生物科技有限公司 | An engineered Yarrowia lipolytica bacteria that secretes a large amount of L-astaxanthin and a method for producing astaxanthin by two-phase fermentation |
-
2022
- 2022-12-09 CN CN202211577714.XA patent/CN116731886A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117965334A (en) * | 2024-03-28 | 2024-05-03 | 中国农业科学院生物技术研究所 | Recombinant Pichia yeast strain expressing astaxanthin and its construction method and application |
CN118272421A (en) * | 2024-06-04 | 2024-07-02 | 山东金城生物药业有限公司 | Method for producing astaxanthin by engineering yarrowia lipolytica |
CN118599689A (en) * | 2024-07-03 | 2024-09-06 | 深圳元育生物科技有限公司 | An engineered Yarrowia lipolytica bacteria that secretes a large amount of L-astaxanthin and a method for producing astaxanthin by two-phase fermentation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116731886A (en) | Engineering bacteria that produce glycosylated astaxanthin and their construction methods and applications | |
CN104651287B (en) | A kind of engineering bacteria and application for synthetic glycerine glucoside | |
CN108060092A (en) | A kind of recombinant bacterium and application thereof | |
CN103992959B (en) | Long-chain dibasic acid producing strain and preparation method and application thereof | |
CN114507613B (en) | Yeast engineering bacteria for producing alpha-santalene by fermentation and application thereof | |
CN109988722A (en) | A kind of recombinant Saccharomyces cerevisiae strain and its application and production method of tyrosol and/or salidroside | |
CN110713940B (en) | High-yield heavy oil aureobasidium pullulans strain and construction method and application thereof | |
CN111032875A (en) | Use of type III polyketide synthases as phloroglucinol synthases | |
CN111088175A (en) | Yarrowia lipolytica producing bisabolene and its construction method and use | |
CN102827880B (en) | Method for biologically synthesizing fatty alcohol from fatty acyl ACP (acyl carrier protein) reductase | |
CN104789512A (en) | Isoprene producing bacterial and isoprene producing method | |
CN109055417B (en) | Recombinant microorganism, preparation method thereof and application thereof in production of coenzyme Q10 | |
CN103820506A (en) | Method for producing coenzyme Q10 by fermenting genetic recombinant bacteria | |
CN115820702A (en) | Method for efficiently preparing abienol by catalyzing isopentenol through recombinant escherichia coli resting cells | |
CN115125181A (en) | Construction method of menaquinone-7 storage space in bacillus subtilis | |
CN114736918A (en) | Recombinant escherichia coli for producing salidroside through integrated expression and application thereof | |
CN114606146B (en) | A kind of yeast producing D-limonene and its application | |
CN114908067B (en) | Application of oxygen methyltransferase fsr2 in catalyzing the oxymethylation of kaempferol 4'hydroxyl group | |
CN114456964B (en) | Recombinant yarrowia lipolytica for high yield of stigmasterol, construction method thereof, fermentation medium for producing stigmasterol and application | |
CN109852600A (en) | A kind of calyculus tongue fur sesquiterpene synthase MTb and its gene order | |
CN108913732A (en) | A kind of method and application of citrinin J heterologous production | |
CN111454338B (en) | Mutant of sepamycin precursor peptide, application of mutant and prepared sepamycin analogue | |
CN116355776A (en) | Synthesis of Hydroxysalidroside and Its Recombinant Plasmid Composition, Engineering Bacteria and Application | |
WO2016106988A1 (en) | Recombinant eukaryotic strain for producing taxadiene and method for preparing taxadiene using same | |
CN106987601B (en) | Construction of Recombinant Vector of Monascus polyketide synthase gene PKS1 and its expression in recombinant Aspergillus oryzae |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |