[go: up one dir, main page]

CN101514346A - Lettuce gamma-tocopherol methyltransferase protein coded sequence - Google Patents

Lettuce gamma-tocopherol methyltransferase protein coded sequence Download PDF

Info

Publication number
CN101514346A
CN101514346A CNA2009100463534A CN200910046353A CN101514346A CN 101514346 A CN101514346 A CN 101514346A CN A2009100463534 A CNA2009100463534 A CN A2009100463534A CN 200910046353 A CN200910046353 A CN 200910046353A CN 101514346 A CN101514346 A CN 101514346A
Authority
CN
China
Prior art keywords
lettuce
sequence
tocopherol
protein coding
methyltransferase protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100463534A
Other languages
Chinese (zh)
Other versions
CN101514346B (en
Inventor
唐岳立
唐克轩
任薇薇
王玥月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN2009100463534A priority Critical patent/CN101514346B/en
Publication of CN101514346A publication Critical patent/CN101514346A/en
Application granted granted Critical
Publication of CN101514346B publication Critical patent/CN101514346B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种基因工程技术领域的生菜γ-生育酚甲基转移酶蛋白编码序列,该序列具有SEQ ID NO.3中第112-1008位所示的核苷酸序列,该序列编码的多肽具有SEQ ID NO.4所示的氨基酸序列;利用该序列提高植物维生素E含量的方法,包括如下步骤:将生菜γ-生育酚甲基转移酶蛋白编码序列连接于植物表达调控序列上,得到植物表达载体;将步骤一中的表达载体转入农杆菌,利用该农杆菌转化拟南芥;通过抗生素筛选,获得含有生菜γ-生育酚甲基转移酶蛋白编码序列的转化细胞,最终再生转基因植株及其后代。本发明可提高蔬菜中维生素E的含量,改善食物的营养品质,可以使含γ-生育酚甲基转移酶蛋白编码序列的转基因植物成为生物反应器,进而实现维生素E的大规模生产。A lettuce gamma-tocopherol methyltransferase protein coding sequence in the field of genetic engineering technology, the sequence has the nucleotide sequence shown in the 112th-1008th position in SEQ ID NO.3, and the polypeptide encoded by the sequence has the SEQ ID The amino acid sequence shown in NO.4; the method for increasing the vitamin E content of plants by utilizing the sequence, comprising the following steps: connecting the lettuce γ-tocopheryl methyltransferase protein coding sequence to the plant expression control sequence to obtain a plant expression vector; Transform the expression vector in step 1 into Agrobacterium, and use the Agrobacterium to transform Arabidopsis thaliana; obtain transformed cells containing lettuce γ-tocopherol methyltransferase protein coding sequence through antibiotic screening, and finally regenerate transgenic plants and their offspring . The invention can increase the content of vitamin E in vegetables, improve the nutritional quality of food, and can make transgenic plants containing gamma-tocopheryl methyltransferase protein coding sequences into bioreactors, thereby realizing large-scale production of vitamin E.

Description

生菜γ-生育酚甲基转移酶蛋白编码序列 Lettuce γ-tocopheryl methyltransferase protein coding sequence

技术领域 technical field

本发明涉及一种基因工程技术领域的蛋白编码序列,具体是一种生菜γ-生育酚甲基转移酶蛋白编码序列。The invention relates to a protein coding sequence in the technical field of genetic engineering, in particular to a lettuce gamma-tocopherol methyltransferase protein coding sequence.

背景技术 Background technique

维生素E是一种脂溶性维生素,其天然产物依结构的不同分为八种类型,分别是α-生育酚、β-生育酚、γ-生育酚、δ-生育酚(tocopherol)和α-生育三烯酚、β-生育三烯酚、γ-生育三烯酚、δ-生育三烯酚(tocotrienol),其中α-生育酚的生物活性最高,被认为是维生素E的主要活性成分。Vitamin E is a fat-soluble vitamin, and its natural products are divided into eight types according to the structure, namely α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol (tocopherol) and α-tocopherol Trienols, β-tocotrienols, γ-tocotrienols, and δ-tocotrienols (tocotrienol), among which α-tocotrienol has the highest biological activity and is considered to be the main active ingredient of vitamin E.

1922年维生素E的生物学功能发现,医学研究表明,维生素E不仅与生殖系统有关,而且与中枢神经系统、消化系统、心血管系统和肌肉系统的正常代谢都有密切关系。维生素E对于人类和动物健康有重要作用。维生素E参与细胞膜的构建和维持,是动物和人体内重要的抗氧化物质。维生素E是治疗冠心病、动脉粥样硬化等心脑血管疾病的重要辅助性药物,有助于降低血脂和血胆固醇含量,抗凝血、抗氧化并且消除自由基,从而起到预防及治疗血管栓塞的作用。维生素E对于提高机体免疫能力有着重要的影响,具有抗衰老的功能,可以消除细胞色素沉淀,改善皮肤弹性,减弱性腺萎缩,因而在大量保健品和美容用品中广泛使用。维生素E可以预防和治疗多种妇科疾病,治疗早产儿溶血性贫血和蚕豆病,治疗营养不良儿童的巨幼红细胞性贫血。维生素E可以促进胆汁分泌、胆管形成和胆红素分泌,对急慢性肝炎和肝硬化有着治疗作用。维生素E可以预防癌症发生,对于癌症患者的治疗也有重要的辅助作用。The biological function of vitamin E was discovered in 1922. Medical research shows that vitamin E is not only related to the reproductive system, but also closely related to the normal metabolism of the central nervous system, digestive system, cardiovascular system and muscular system. Vitamin E plays an important role in human and animal health. Vitamin E is involved in the construction and maintenance of cell membranes, and is an important antioxidant substance in animals and humans. Vitamin E is an important auxiliary drug for the treatment of coronary heart disease, atherosclerosis and other cardiovascular and cerebrovascular diseases. The role of embolism. Vitamin E has an important impact on improving the body's immunity. It has anti-aging functions, can eliminate cytochrome deposition, improve skin elasticity, and weaken gonadal atrophy. Therefore, it is widely used in a large number of health care products and beauty products. Vitamin E can prevent and treat a variety of gynecological diseases, treat hemolytic anemia and favism in premature infants, and treat megaloblastic anemia in malnourished children. Vitamin E can promote bile secretion, bile duct formation and bilirubin secretion, and has a therapeutic effect on acute and chronic hepatitis and cirrhosis. Vitamin E can prevent cancer, and it also plays an important auxiliary role in the treatment of cancer patients.

维生素E的合成途径只存在于绿色光合植物中,包括低等单细胞植物蓝藻和高等植物;人体和动物体内不存在维生素E合成途径,故而日常营养所需的维生素E摄取自绿色植物,特别是各种油类作物的种子,以及由种子所榨取的植物油。The synthesis pathway of vitamin E only exists in green photosynthetic plants, including low single-celled plants cyanobacteria and higher plants; there is no vitamin E synthesis pathway in humans and animals, so the vitamin E intake required for daily nutrition comes from green plants, especially Seeds of various oil crops, and vegetable oils extracted from the seeds.

直接由植物油脱臭馏出物中获得的生育酚混缩液的生物活性很低,α-生育酚的含量较低。工业生产维生素E主要是以上述生育酚混缩液为原料,经过半合成法,将其中的非α-生育酚成分转变为α-生育酚,但是成本较高,而且产生的α-生育酚消旋性与天然α-生育酚不同,活性也低于天然α-生育酚。因此,提高植物天然生育酚含量及其α-生育酚比例具有很重要的应用价值。The biological activity of the tocopherol concentrate obtained directly from the deodorized distillate of vegetable oil is very low, and the content of α-tocopherol is low. The industrial production of vitamin E is mainly based on the above-mentioned tocopherol condensation liquid as raw material, and the non-α-tocopherol components in it are converted into α-tocopherol through a semi-synthetic method, but the cost is relatively high, and the produced α-tocopherol is eliminated. The spin is different from natural α-tocopherol, and the activity is also lower than that of natural α-tocopherol. Therefore, increasing the plant natural tocopherol content and its α-tocopherol ratio has very important application value.

随着近年来植物基因组学的发展,DellaPenna于1999年提出了营养基因组学(nutritional genomics)的概念,即充分的利用基因组学的研究成果,分离植物营养代谢途径的关键酶基因,解析植物微量营养素代谢途径,深入了解代谢途径的调控方式,从而利用代谢工程的方法和手段改良作物品质,提高作物营养价值。基于基因组学的基础,维生素E合成途径的基因分离、克隆和功能性研究已经取得了突破性的进展。人们已经初步完成了对参与维生素E合成途径关键基因的分离和功能验证工作,并分析了维生素E合成途径概貌。With the development of plant genomics in recent years, DellaPenna proposed the concept of nutritional genomics in 1999, that is, making full use of the research results of genomics, isolating key enzyme genes of plant nutrient metabolism pathways, and analyzing plant micronutrients Metabolic pathways, in-depth understanding of the regulation of metabolic pathways, so that the methods and means of metabolic engineering can be used to improve crop quality and increase crop nutritional value. Based on the basis of genomics, breakthroughs have been made in gene isolation, cloning and functional research of vitamin E synthesis pathway. People have preliminarily completed the isolation and functional verification of key genes involved in the vitamin E synthesis pathway, and analyzed the profile of the vitamin E synthesis pathway.

维生素E合成途径主要由以下五个步骤组成:(1)4-羟苯丙酮酸(HPP)在4-羟苯丙酮酸二加氧酶(HPPD)的催化下,生成尿黑酸(HGA);(2)尿黑酸在尿黑酸植基转移酶(HPT)催化下,与植基二磷酸(PDP)发生缩合,生成2-甲基-6-植基-苯醌;(3)2-甲基-6-植基-苯醌在甲基植基苯醌甲基转移酶(MPBQ MT)的催化下,生成2,3-二甲基-6-植基-苯醌;(4)2,3-二甲基-6-植基-苯醌在生育酚环化酶(TC)的催化下,生成γ-生育酚;(5)γ-生育酚在γ-生育酚甲基转移酶(γ-TMT)的催化下,生成α-生育酚。The vitamin E synthesis pathway is mainly composed of the following five steps: (1) 4-hydroxyphenylpyruvate (HPP) generates homogentisic acid (HGA) under the catalysis of 4-hydroxyphenylpyruvate dioxygenase (HPPD); (2) Under the catalysis of homogentisate phytotransferase (HPT), homogentisic acid condenses with phytyl diphosphate (PDP) to generate 2-methyl-6-phytyl-benzoquinone; (3) 2- Methyl-6-phytyl-benzoquinone generates 2,3-dimethyl-6-phytyl-benzoquinone under the catalysis of methylphytylbenzoquinone methyltransferase (MPBQ MT); (4)2 , 3-dimethyl-6-phytyl-benzoquinone generates γ-tocopherol under the catalysis of tocopherol cyclase (TC); (5) γ-tocopherol is activated by γ-tocopherol methyltransferase ( Under the catalysis of γ-TMT), α-tocopherol is generated.

经对现有技术的文献检索发现,尚未见与生菜γ-生育酚甲基转移酶蛋白编码序列有关的报道。After searching the literature of the prior art, it is found that there is no report related to the coding sequence of lettuce γ-tocopheryl methyltransferase protein.

发明内容 Contents of the invention

本发明的目的在于提供一种生菜γ-生育酚甲基转移酶蛋白编码序列。本发明可提高蔬菜中维生素E的含量,改善食物的营养品质,可以使含γ-生育酚甲基转移酶蛋白编码序列的转基因植物成为生物反应器,进而实现维生素E的大规模生产。本发明从菊科的生菜(Lactuca sativa)中克隆到了γ-生育酚甲基转移酶(γ-TMT),并将该基因转化拟南芥,证明它确实对植物中维生素E含量的提高有重要的作用。The purpose of the present invention is to provide a lettuce gamma-tocopherol methyltransferase protein coding sequence. The invention can increase the content of vitamin E in vegetables, improve the nutritional quality of food, and can make the transgenic plant containing the coding sequence of gamma-tocopherol methyltransferase protein become a bioreactor, thereby realizing the large-scale production of vitamin E. The present invention clones γ-tocopheryl methyltransferase (γ-TMT) from lettuce (Lactuca sativa) of Compositae, and transforms the gene into Arabidopsis thaliana, which proves that it is indeed important for the improvement of vitamin E content in plants role.

本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:

本发明涉及一种生菜γ-生育酚甲基转移酶蛋白编码序列,该序列具有SEQID NO.3中第112-1008位所示的核苷酸序列。The present invention relates to a lettuce gamma-tocopherol methyltransferase protein coding sequence, which has the nucleotide sequence shown in the 112th-1008th position in SEQ ID NO.3.

根据所述基因序列编码的多肽具有SEQ ID NO.4所示的氨基酸序列。The polypeptide encoded according to the gene sequence has the amino acid sequence shown in SEQ ID NO.4.

本发明还涉及一种利用生菜γ-生育酚甲基转移酶蛋白编码序列提高植物维生素E含量的方法,其步骤如下:The present invention also relates to a method for increasing the vitamin E content of plants by utilizing the lettuce gamma-tocopherol methyltransferase protein coding sequence, the steps of which are as follows:

步骤-,将生菜γ-生育酚甲基转移酶蛋白编码序列连接于植物表达调控序列上,得到含生菜γ-生育酚甲基转移酶蛋白编码序列的植物表达载体;Step-, connecting the lettuce gamma-tocopherol methyltransferase protein coding sequence to the plant expression control sequence to obtain a plant expression vector containing the lettuce gamma-tocopherol methyltransferase protein coding sequence;

步骤二,将步骤一中的表达载体转入农杆菌,利用该农杆菌转化拟南芥;In step 2, the expression vector in step 1 is transformed into Agrobacterium, and the Agrobacterium is used to transform Arabidopsis;

步骤三,通过抗生素筛选,获得含有生菜γ-生育酚甲基转移酶蛋白编码序列的转化细胞,最终再生转基因植株及其后代。The third step is to obtain transformed cells containing lettuce gamma-tocopherol methyltransferase protein coding sequence through antibiotic screening, and finally regenerate transgenic plants and their progeny.

本发明中,构建步骤一中含生菜γ-生育酚甲基转移酶蛋白编码序列的植物表达载体时可选用本领域已知的各种载体,如市售的载体,包括质粒,粘粒等。在生产本发明的生菜γ-生育酚甲基转移酶蛋白多肽时,可以将生菜γ-生育酚甲基转移酶蛋白编码序列可操作地连于表达调控序列,从而形成步骤一中的生菜γ-生育酚甲基转移酶蛋白表达载体;可操作地连于指,线性DNA序列的某些部分能够影响同一线性DNA序列其他部分的活性。In the present invention, various vectors known in the art, such as commercially available vectors, including plasmids and cosmids, can be used to construct the plant expression vector containing lettuce γ-tocopherol methyltransferase protein coding sequence in step 1. When producing the lettuce γ-tocopherol methyltransferase protein polypeptide of the present invention, the lettuce γ-tocopherol methyltransferase protein coding sequence can be operably linked to the expression control sequence, thereby forming the lettuce γ-tocopherol methyltransferase protein polypeptide in step 1. Tocopherol methyltransferase protein expression vector; operably linked to fingers, some parts of the linear DNA sequence can affect the activity of other parts of the same linear DNA sequence.

本发明中,步骤三含有生菜γ-生育酚甲基转移酶蛋白编码序列的转化细胞为真核细胞,常用的真核宿主细胞包括酵母细胞、拟南芥和其它植物的生殖细胞或愈伤组织细胞。In the present invention, the transformed cells containing lettuce gamma-tocopherol methyltransferase protein coding sequence in step 3 are eukaryotic cells, and commonly used eukaryotic host cells include yeast cells, germ cells or callus of Arabidopsis and other plants cell.

本发明具有如下的有益效果:本发明可提高蔬菜中维生素E的含量,改善食物的营养品质;同时本发明可使含γ-生育酚甲基转移酶蛋白编码序列的转基因植物成为生物反应器,实现维生素E的大规模生产;利用本发明的生菜γ-生育酚甲基转移酶蛋白,通过各种常规筛选方法,可筛选出与γ-生育酚甲基转移酶蛋白发生相互作用的物质,或者受体、抑制剂或拮抗剂等。The present invention has the following beneficial effects: the present invention can increase the content of vitamin E in vegetables and improve the nutritional quality of food; at the same time, the present invention can make transgenic plants containing γ-tocopherol methyltransferase protein coding sequence into bioreactors, Achieving large-scale production of vitamin E; using the lettuce γ-tocopherol methyltransferase protein of the present invention, through various conventional screening methods, substances that interact with the γ-tocopherol methyltransferase protein can be screened out, or receptors, inhibitors, or antagonists.

本发明中所涉及的农杆菌为根癌农杆菌菌株GV3101,该菌株已在《CsabaKoncz,Jeff Schell;The promoter of TL-DNA gene 5 controls the tissue-specificexpression of chimaeric genes carried by a novel type of Agrobacterium binaryvector,Mol Gen Genet,1986,204:383-396》文献中公开。根癌农杆菌GV3101可通过公开市售的商业渠道取得,如可以从澳大利亚CAMBIA公司购得,菌株编号为Gambar3。The Agrobacterium involved in the present invention is Agrobacterium tumefaciens strain GV3101, which has been published in "CsabaKoncz, Jeff Schell; The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector , Mol Gen Genet, 1986, 204: 383-396" disclosed in the literature. Agrobacterium tumefaciens GV3101 can be obtained through publicly available commercial channels, for example, it can be purchased from CAMBIA Company in Australia, and the strain number is Gambar3.

具体实施方式 Detailed ways

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等分子克隆:实验室手册(New York:ColdSpring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. The experimental method that does not indicate specific conditions in the following examples, usually according to conventional conditions, such as molecular cloning such as Sambrook: the conditions described in the laboratory manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer's suggestion conditions of.

实施例Example

步骤一,生菜γ-生育酚甲基转移酶基因的克隆Step 1, cloning of lettuce γ-tocopheryl methyltransferase gene

1、RNA的提取1. Extraction of RNA

取生菜叶片组织,置于液氮中研碎,加入盛有裂解液的1.5mL Eppendorf(EP)离心管中,充分振荡后,按照TIANGEN试剂盒的说明书抽提总RNA,用甲醛变性胶电泳鉴定总RNA质量,然后在分光光度计上测定RNA含量。Lettuce leaf tissue was taken, ground in liquid nitrogen, added to a 1.5mL Eppendorf (EP) centrifuge tube filled with lysate, and fully oscillated, the total RNA was extracted according to the instructions of the TIANGEN kit, and the total RNA was identified by formaldehyde denaturing gel electrophoresis. RNA quality was then measured on a spectrophotometer for RNA content.

2、基因的全长克隆2. Full-length cloning of genes

根据拟南芥中相关基因所编码的氨基酸保守序列,利用同源性基因克隆原理,采用RACE(Rapid Amplification of cDNA Ends)方法进行cDNA全长克隆,克隆使用Clontech试剂盒,克隆分三个阶段进行:According to the conserved sequence of amino acids encoded by related genes in Arabidopsis, using the principle of homologous gene cloning, the RACE (Rapid Amplification of cDNA Ends) method was used to clone the full-length cDNA. Cloning was carried out using Clontech kits, and the cloning was carried out in three stages. :

(1)首链cDNA的合成(1) Synthesis of first-strand cDNA

利用Clontech试剂盒所提供的5’-CDS primer A和SMART II A oligo引物,以所提取的总RNA为模板,在PowerScript反转录酶的作用下合成5’-RACE-Ready cDNA;利用Clontech试剂盒所提供的3’-CDS primer A为引物,以所提取的总RNA为模板,在PowerScript反转录酶的作用下合成3’-RACE-ReadycDNA。Use the 5'-CDS primer A and SMART II A oligo primers provided by the Clontech kit, and use the extracted total RNA as a template to synthesize 5'-RACE-Ready cDNA under the action of PowerScript reverse transcriptase; use the Clontech reagent The 3'-CDS primer A provided in the box was used as a primer, and the extracted total RNA was used as a template to synthesize 3'-RACE-Ready cDNA under the action of PowerScript reverse transcriptase.

(2)3’-RACE(2) 3'-RACE

用Clontech试剂盒提供的通用引物序列(UPM)和利用拟南芥同源区设计的基因特异引物2(GSP2,见SEQ ID NO.1)进行3’-RACE PCR反应,用琼脂糖凝胶电泳进行检测并对产物进行胶回收,将胶回收的目的片段连接到pMD18-T载体上进行测序。Use the universal primer sequence (UPM) provided by the Clontech kit and the gene-specific primer 2 (GSP2, see SEQ ID NO.1) designed using the Arabidopsis homology region to carry out 3'-RACE PCR reaction, and use agarose gel electrophoresis Detection and gel recovery were performed on the product, and the target fragment recovered from the gel was connected to the pMD18-T vector for sequencing.

(3)5’-RACE(3) 5'-RACE

用Clontech试剂盒提供的通用引物序列(UPM)和利用拟南芥同源区设计的基因特异引物1(GSP1,见SEQ ID NO.2)进行5’-RACE PCR反应。用琼脂糖凝胶电泳进行检测并对产物进行胶回收,将胶回收的目的片段连接到pMD18-T载体上进行测序。将测序结果的重叠区拼接,得到该基因的完整编码区序列。BLAST分析结果证明从生菜中得到的基因确为一个γ-生育酚甲基转移酶的相关基因。Use the universal primer sequence (UPM) provided by the Clontech kit and the gene-specific primer 1 (GSP1, see SEQ ID NO.2) designed using the Arabidopsis homology region to carry out 5'-RACE PCR reaction. Detection was performed by agarose gel electrophoresis and gel recovery was performed on the product, and the target fragment recovered from the gel was connected to the pMD18-T vector for sequencing. The overlapping regions of the sequencing results were assembled to obtain the complete coding region sequence of the gene. The results of BLAST analysis proved that the gene obtained from lettuce was indeed a gene related to γ-tocopherol methyltransferase.

通过上述步骤,获得了生菜中参与维生素E合成的γ-生育酚甲基转移酶蛋白的全长编码序列(SEQ ID NO.3)。Through the above steps, the full-length coding sequence (SEQ ID NO.3) of the gamma-tocopheryl methyltransferase protein involved in vitamin E synthesis in lettuce was obtained.

步骤二,生菜γ-生育酚甲基转移酶相关基因的序列信息与同源性分析Step 2: Sequence information and homology analysis of genes related to lettuce γ-tocopherol methyltransferase

步骤一中得到的生菜γ-TMT的全长cDNA长度为1131bp(SEQ ID NO.3),其中开放阅读框位于112位-1008位核苷酸,根据所获得的cDNA推导出生菜γ-生育酚甲基转移酶的氨基酸序列(见SEQ ID NO.4),共298个氨基酸残基,分子量为33057.04,等电点为5.86。The full-length cDNA length of the lettuce γ-TMT obtained in step 1 is 1131bp (SEQ ID NO.3), wherein the open reading frame is located at 112-1008 nucleotides, and the lettuce γ-tocopherol is deduced according to the obtained cDNA The amino acid sequence of the methyltransferase (see SEQ ID NO.4) has a total of 298 amino acid residues, a molecular weight of 33057.04, and an isoelectric point of 5.86.

利用vectorNTI 9.0软件对来源于各种植物的γ-生育酚甲基转移酶的相关氨基酸序列进行同源比对,结果发现,克隆到的生菜γ-生育酚甲基转移酶基因与拟南芥(Arabidopsis thaliana)、油菜(Brassica napus)、大豆(Glycine max)、玉米(Zea mays)、棉花(Gossypium hirsutum)、小麦(Triticum aestivum)、马铃薯(Solanum tuberosum)、番茄(Solanum lycopersicum)以及向日葵(Helianthus annuus)中同源基因所编码的氨基酸序列相似性分别为:65%、64%、67%、64%、68%、62%、64%、66%、89%(表2)。由此可见,低等单细胞生物衣藻除外,生菜γ-TMT基因与其他高等植物中的γ-TMT相关基因在所编码的氨基酸水平上存在较高的同源性,可以认为它们的产物在功能上也有较高的相似性。Using the vectorNTI 9.0 software to perform homologous comparison of the relevant amino acid sequences of γ-tocopherol methyltransferases from various plants, it was found that the cloned lettuce γ-tocopherol methyltransferase gene was similar to that of Arabidopsis ( Arabidopsis thaliana), rapeseed (Brassica napus), soybean (Glycine max), corn (Zea mays), cotton (Gossypium hirsutum), wheat (Triticum aestivum), potato (Solanum tuberosum), tomato (Solanum lycopersicum ), and sunflower (Helianthus annuus The amino acid sequence similarities encoded by the homologous genes in ) were: 65%, 64%, 67%, 64%, 68%, 62%, 64%, 66%, 89% (Table 2). It can be seen that, except for the lower unicellular organism Chlamydomonas, the lettuce γ-TMT gene has high homology with the γ-TMT related genes in other higher plants at the level of encoded amino acids, and it can be considered that their products are in There is also a high similarity in function.

步骤三,生菜γ-生育酚甲基转移酶相关蛋白或多肽在拟南芥细胞中进行真核细胞表达及转基因植株的维生素E含量鉴定Step 3, eukaryotic expression of lettuce γ-tocopherol methyltransferase-related protein or polypeptide in Arabidopsis cells and identification of vitamin E content in transgenic plants

1、含目的基因(生菜γ-TMT)的表达载体的构建1. Construction of expression vector containing target gene (lettuce γ-TMT)

根据生菜γ-TMT的全长编码序列(SEQ ID NO.3),设计扩增出完整编码阅读框的引物,并在正反引物上分别引入BamHI和SacI限制性内切酶位点,以便构建表达载体。以实施例1中获得的5’-RACE-Ready cDNA为模板,经PCR扩增后,将生菜γ-TMT的编码区序列连接至中间载体pMD18-T中进行测序,再将测序正确的γ-TMT的编码区序列进一步克隆到表达载体pHB中,接着将其转入根癌农杆菌,并进行PCR验证。结果表明,含生菜γ-TMT基因的植物表达载体已成功构建到根癌农杆菌菌株中。According to the full-length coding sequence of lettuce γ-TMT (SEQ ID NO.3), primers were designed to amplify the complete coding reading frame, and BamHI and SacI restriction endonuclease sites were introduced on the forward and reverse primers respectively, so as to construct Expression vector. Using the 5'-RACE-Ready cDNA obtained in Example 1 as a template, after PCR amplification, the coding region sequence of lettuce γ-TMT was connected to the intermediate vector pMD18-T for sequencing, and then the sequenced correct γ-TMT The coding sequence of TMT was further cloned into the expression vector pHB, then transformed into Agrobacterium tumefaciens, and verified by PCR. The results showed that the plant expression vector containing lettuce γ-TMT gene had been successfully constructed into the Agrobacterium tumefaciens strain.

2、采用浸花法转化拟南芥2. Transformation of Arabidopsis thaliana by flower dipping method

(1)取生长一个月、生长状况良好的植株,转化前可以提前一个星期将植物去顶,使植物产生较多的花苞,提高转化效率,转化前一天浇水;(1) Take a plant that has grown for one month and is in good growth condition. Before the transformation, the plants can be decapped one week in advance to make the plants produce more flower buds, improve the transformation efficiency, and water the day before the transformation;

(2)将含有转基因载体的农杆菌于28℃培养过夜,至OD600≈2.0,4,500rpm离心10min;(2) Cultivate the Agrobacterium containing the transgene vector overnight at 28°C until the OD 600 ≈2.0, and centrifuge at 4,500rpm for 10min;

(3)菌体沉淀悬浮于新鲜配制的转化液中,至终浓度OD600≈0.8;(3) The cell pellet was suspended in the freshly prepared transformation solution to a final concentration of OD 600 ≈0.8;

(4)转化时小盆倒置,确保拟南芥地上部分全部花苞都被浸没入事先用转化Buffer悬浮好的菌液中约5sec;(4) When transforming, the small pot is turned upside down to ensure that all the flower buds of the aerial part of Arabidopsis are submerged in the bacterial solution suspended in the transformation buffer for about 5 sec;

(5)用吸水纸吸去多余的液体,将植物平放于一个密封的小盒内以保持湿度,避光过夜;(5) Absorb excess liquid with absorbent paper, place the plants flat in a small airtight box to maintain humidity, and keep away from light overnight;

(6)第二天将植物取出,竖直,转移到正常条件下生长。待植物长至一定程度后,将其依附竹签绑好,以便更好地结实;(6) The plants were taken out the next day, erected, and transferred to grow under normal conditions. After the plant grows to a certain extent, tie it up with bamboo sticks for better firmness;

(7)T0代种子成熟后将其整株剪下,过筛。种子铺于含50μg/mL潮霉素的筛选培养基上,4℃春化48h,移到人工气候室24h连续光照条件下生长一周;(7) After the T 0 generation seeds are mature, the whole plant is cut off and sieved. The seeds were spread on the screening medium containing 50 μg/mL hygromycin, vernalized at 4°C for 48 hours, and then moved to an artificial climate chamber for 24 hours of continuous light to grow for one week;

(8)待长出绿色的转基因抗性幼苗后移栽入土继续生长,转化子为绿色的幼苗且根较长;非转化子基本为黄化苗,或绿色无根幼苗;(8) After the green transgenic resistant seedlings are grown, they are transplanted into the soil to continue to grow, and the transformants are green seedlings with long roots; the non-transformants are basically etiolated seedlings, or green rootless seedlings;

(9)单株收获转基因植株(因转基因的插入位点不同,每个都是不同的)标成不同的株系;(9) Harvest the transgenic plants (because the insertion sites of the transgenes are different, each is different) from a single plant and mark them as different strains;

(10)单株收获的T2代种子已经出现性状分离。将种子均匀地铺到9cm平板上,因要确定是否是单位点插入,所以不加抗生素。待长至6-7片真叶后,喷除草剂,筛选3∶1单位点插入的株系,单株收获,继续筛选直至获得纯合的转基因植株。(10) The T 2 generation seeds harvested from a single plant have segregated traits. Spread the seeds evenly on a 9cm plate, and do not add antibiotics because it is necessary to determine whether it is inserted at a single point. After growing to 6-7 true leaves, spray herbicides, screen the lines with 3:1 single-site insertion, harvest single plants, and continue to screen until homozygous transgenic plants are obtained.

3、转基因拟南芥植株的PCR检测3. PCR detection of transgenic Arabidopsis plants

根据CaMV 35S的序列设计正向引物,根据γ-TMT的序列设计反向引物对目的基因进行检测。结果表明,用CaMV 35S正向引物和γ-TMT反向引物能扩增出目的基因大小的特异DNA片段。而以非转化拟南芥基因组DNA为模板时,没有扩增出任何片段。The forward primer was designed according to the sequence of CaMV 35S, and the reverse primer was designed according to the sequence of γ-TMT to detect the target gene. The results showed that the specific DNA fragment of the size of the target gene could be amplified by CaMV 35S forward primer and γ-TMT reverse primer. However, when non-transformed Arabidopsis genomic DNA was used as a template, no fragment was amplified.

步骤四,利用HPLC-UVD测定转基因拟南芥中维生素E含量Step 4, using HPLC-UVD to measure vitamin E content in transgenic Arabidopsis

1、HPLC-UVD条件及系统适用性以及标准溶液的配制1. HPLC-UVD conditions and system applicability and preparation of standard solutions

HPLC:采用Waters 2695 separations module系统,色谱柱为C-18反相硅胶柱(Calesil ODS-100C18),具体规格为:4.6mm内径×250mm长度,流动相为甲醇与水,其中甲醇与水的体积比为98∶2,此时,生育酚的出峰时间为26.3min,峰型良好,柱温为30℃,流速1.0mL/min,进样量30μL。HPLC: Waters 2695 separations module system is adopted, the chromatographic column is a C-18 reversed-phase silica gel column (Calesil ODS-100C18), the specific specification is: 4.6mm inner diameter × 250mm length, the mobile phase is methanol and water, and the volume of methanol and water The ratio is 98:2. At this time, the peak elution time of tocopherol is 26.3 minutes, the peak shape is good, the column temperature is 30°C, the flow rate is 1.0mL/min, and the injection volume is 30μL.

UVD:采用Waters 2996 photodiode array detector系统,紫外光检测器检测波长292nm。精确称取Sigma公司的生育酚标准品2.0mg用1mL甲醇完全溶解,得到2mg/mL生育酚标准品溶液,保存于-20℃备用。UVD: Waters 2996 photodiode array detector system is adopted, and the detection wavelength of ultraviolet light detector is 292nm. Accurately weigh 2.0 mg of tocopherol standard product from Sigma Company and dissolve it completely in 1 mL of methanol to obtain a 2 mg/mL tocopherol standard product solution, which is stored at -20°C for later use.

2、标准曲线的制作2. Preparation of standard curve

将所述对照品溶液在相应色谱条件下分别进样5μl、10μl、15μl、20μl、30μl记录图谱及色谱参数,分别以峰面积(Y)对标准品含量(X,μg)进行回归分析。通过研究,本发明中生育酚在10μg-60μg范围内呈现良好的log-log线性关系。生育酚对照品的log-log线性回归方程为:Y=7.26e+002X+1.09e+004;R=0.999740。Inject 5 μl, 10 μl, 15 μl, 20 μl, and 30 μl of the reference substance solution under corresponding chromatographic conditions to record the spectrum and chromatographic parameters, and perform regression analysis on the standard substance content (X, μg) with the peak area (Y) respectively. Through research, the tocopherol in the present invention exhibits a good log-log linear relationship within the range of 10 μg-60 μg. The log-log linear regression equation of the tocopherol reference substance is: Y=7.26e+002X+1.09e+004; R=0.999740.

3、样品的制备和生育酚含量的测定3. Sample preparation and determination of tocopherol content

生育酚的提取过程如下:取新鲜的拟南芥叶片1g-2g(鲜重),液氮研磨,用4mL正己烷提取,超声30分钟。离心,收集上清液,用氮吹仪吹干,用适量甲醇溶解提取物,用于HPLC检测。The extraction process of tocopherol is as follows: 1g-2g (fresh weight) of fresh Arabidopsis leaves are taken, ground with liquid nitrogen, extracted with 4mL of n-hexane, and ultrasonicated for 30 minutes. Centrifuge, collect the supernatant, dry it with a nitrogen blower, dissolve the extract with an appropriate amount of methanol, and use it for HPLC detection.

采用HPLC-UVD测定生育酚含量,样品进样体积为30μl,根据峰面积代入线形回归方程计算出样品中的生育酚含量(mg),折合成物质的量(pmol),再除以样品的拟南芥叶片鲜重(mg),从而计算出拟南芥植株中生育酚的含量。HPLC-UVD was used to measure the tocopherol content, the sample injection volume was 30 μl, and the tocopherol content (mg) in the sample was calculated according to the peak area into the linear regression equation, which was converted into the amount of substance (pmol), and then divided by the approximate amount of the sample The fresh weight (mg) of Arabidopsis leaves was used to calculate the content of tocopherol in Arabidopsis plants.

在本发明中编码γ-生育酚甲基转移酶的γ-TMT基因的转化显著提高了拟南芥叶片中维生素E含量,这使得转基因植株中维生素E的含量超过对照的50%以上。由此可见,γ-TMT基因可作为一种提高植物营养价值的候选基因,用于利用转基因技术提高作物维生素E含量的研究和产业化生产中。In the present invention, the transformation of the gamma-TMT gene encoding gamma-tocopherol methyltransferase significantly increases the vitamin E content in the leaves of Arabidopsis thaliana, which makes the vitamin E content in the transgenic plants exceed more than 50% of the control. It can be seen that the γ-TMT gene can be used as a candidate gene for improving the nutritional value of plants, and can be used in the research and industrial production of using transgenic technology to increase the vitamin E content of crops.

序列表sequence listing

<110>上海交通大学<110> Shanghai Jiaotong University

<120>生菜γ-生育酚甲基转移酶蛋白编码序列<120> lettuce γ-tocopheryl methyltransferase protein coding sequence

<160>4<160>4

<210>1<210>1

<211>25<211>25

<212>DNA<212>DNA

<213>生菜(Lactuca sativa)<213> Lettuce (Lactuca sativa)

<400>1<400>1

tacctcccga aaagtcccta cgccc 25tacctcccga aaagtcccta cgccc 25

<110>上海交通大学<110> Shanghai Jiaotong University

<120>生菜γ-生育酚甲基转移酶蛋白编码序列<120> lettuce γ-tocopheryl methyltransferase protein coding sequence

<160>4<160>4

<210>2<210>2

<211>25<211>25

<212>DNA<212>DNA

<213>生菜(Lactuca sativa)<213> Lettuce (Lactuca sativa)

<400>2<400>2

ctgggcgtag ggacttttcg ggagg 25ctgggcgtag ggacttttcg ggagg 25

<110>上海交通大学<110> Shanghai Jiao Tong University

<120>生菜γ-生育酚甲基转移酶蛋白编码序列<120> lettuce γ-tocopheryl methyltransferase protein coding sequence

<160>4<160>4

<210>3<210>3

<211>1131<211>1131

<212>DNA<212>DNA

<213>生菜(Lactuca sativa)<213> Lettuce (Lactuca sativa)

<400>3<400>3

gattgttgac gcaataccac caccaccacc acgaggcagc ttctgcagtc actcaacact  60gattgttgac gcaataccac caccaccacc acgaggcagc ttctgcagtc actcaacact 60

caaggagtta tgagtacggt ggttgctgat gcaacagttc ctccgatgac aatggcgact 120caaggagtta tgagtacggt ggttgctgat gcaacagttc ctccgatgac aatggcgact 120

gcagcggatg agcagcagca acaacagcta aaaaaaggaa tagcagaatt ctacgatgaa 180gcagcggatg agcagcagca acaacagcta aaaaaaggaa tagcagaatt ctacgatgaa 180

tcttcgggga tgtgggagaa tatatgggga gaacacatgc atcacggatt ctacgacacc 240tcttcgggga tgtggggagaa tatatgggga gaacacatgc atcacggatt ctacgacacc 240

gatgccgtcg tagaactctc cgaccaccgc gctgctcaga tccgtatgat cgaacaaagc 300gatgccgtcg tagaactctc cgaccaccgc gctgctcaga tccgtatgat cgaacaaagc 300

ctacttttcg cctctgttcc tgatgatcca gtaaagaagc cgaaaaccat agttgatgtt 360ctacttttcg cctctgttcc tgatgatcca gtaaagaagc cgaaaaccat agttgatgtt 360

gggtgtggta taggaggtag ctcaaggtac ctagcaagaa aatatggagc tgaatgccat 420gggtgtggta taggaggtag ctcaaggtac ctagcaagaa aatatggagc tgaatgccat 420

ggcatcaccc tcagccctgt tcaagctgaa agggctcaag ccctagctgc tacccaagga 480ggcatcaccc tcagccctgt tcaagctgaa agggctcaag ccctagctgc tacccaagga 480

ttagctgaca aggtttcatt tcaagttgcg gatgctttga accagccttt tcctgatgga 540ttagctgaca aggtttcatt tcaagttgcg gatgctttga accagccttt tcctgatgga 540

aagtttgacc tagtttggtc aatggagagt ggagaacaca tgcctgacaa actaaagttt 600aagtttgacc tagtttggtc aatggagagt ggagaacaca tgcctgacaa actaaagttt 600

gttagtgagt tggctcgagt ggctgctcca ggagccacaa ttatcatagt cacatggtgt 660gttagtgagt tggctcgagt ggctgctcca ggagccacaa ttatcatagt cacatggtgt 660

catagggacc ttttacctcc cgaaaagtcc ctacgcccag aggaagaaaa aatcttgaac 720catagggacc ttttacctcc cgaaaagtcc ctacgcccag aggaagaaaa aatcttgaac 720

aagatttgtt caggattttt tcttcctgct tggtgttcta ccgctgatta tgtaaaatta 780aagatttgtt caggattttt tcttcctgct tggtgttcta ccgctgatta tgtaaaatta 780

ctcgaatcca tttcccttca ggacatcaaa gcagaagact ggtcaggaaa tgtggcacca 840ctcgaatcca tttcccttca ggacatcaaa gcagaagact ggtcaggaaa tgtggcacca 840

ttttggccag ctgtgataaa aacagccttg tcttggaagg gcattacgtc attactaagg 900ttttggccag ctgtgataaa aacagccttg tcttggaagg gcattacgtc attackaagg 900

agtggatgga agactataag aggagcaatg gtaatgccat caatgattga aggatttaag 960agtggatgga agactataag aggagcaatg gtaatgccat caatgattga aggatttaag 960

aaagatgtaa taaaattctc catcattaca tgtaaaaagc ctgaataaaa ataggtgtgt 1020aaagatgtaa taaaattctc catcattaca tgtaaaaagc ctgaataaaa ataggtgtgt 1020

aatgtacttt tgattgttgt actttctttc atagactgct tcattttggg ttcttgtttt 1080aatgtacttt tgattgttgt actttctttc atagactgct tcattttggg ttcttgtttt 1080

aatgtctaat aactcttttt tcaaaaaaaa aaaaaaaaaa aaaaaaaaaa a          1131aatgtctaat aactcttttt tcaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1131

<110>上海交通大学<110> Shanghai Jiao Tong University

<120>生菜γ-生育酚甲基转移酶蛋白编码序列<120> lettuce γ-tocopheryl methyltransferase protein coding sequence

<160>4<160>4

<210>4<210>4

<211>298<211>298

<212>PRT<212>PRT

<213>生菜(Lactuca sativa)<213> Lettuce (Lactuca sativa)

<400>4<400>4

Met Ala Thr Ala Ala Asp Glu Gln Gln Gln Gln Gln Leu Lys Lys GlyMet Ala Thr Ala Ala Asp Glu Gln Gln Gln Gln Gln Leu Lys Lys Gly

  1               5                  10                  151 5 10 15

Ile Ala Glu Phe Tyr Asp Glu Ser Ser Gly Met Trp Glu Asn Ile TrpIle Ala Glu Phe Tyr Asp Glu Ser Ser Ser Gly Met Trp Glu Asn Ile Trp

             20                  25                  3020 25 30

Gly Glu His Met His His Gly Phe Tyr Asp Thr Asp Ala Val Val GluGly Glu His Met His His Gly Phe Tyr Asp Thr Asp Ala Val Val Glu

         35                  40                  4535 40 45

Leu Ser Asp His Arg Ala Ala Gln Ile Arg Met Ile Glu Gln Ser LeuLeu Ser Asp His Arg Ala Ala Gln Ile Arg Met Ile Glu Gln Ser Leu

     50                  55                  6050 55 60

Leu Phe Ala Ser Val Pro Asp Asp Pro Val Lys Lys Pro Lys Thr IleLeu Phe Ala Ser Val Pro Asp Asp Pro Val Lys Lys Pro Lys Thr Ile

65                   70                  75                  8065 70 75 80

Val Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Tyr Leu Ala ArgVal Asp Val Gly Cys Gly Ile Gly Gly Ser Ser Arg Tyr Leu Ala Arg

                 85                  90                  9585 90 95

Lys Tyr Gly Ala Glu Cys His Gly Ile Thr Leu Ser Pro Val Gln AlaLys Tyr Gly Ala Glu Cys His Gly Ile Thr Leu Ser Pro Val Gln Ala

           100                  105                 110100 105 110

Glu Arg Ala Gln Ala Leu Ala Ala Thr Gln Gly Leu Ala Asp Lys ValGlu Arg Ala Gln Ala Leu Ala Ala Thr Gln Gly Leu Ala Asp Lys Val

        115                 120                 125115 120 125

Ser Phe Gln Val Ala Asp Ala Leu Asn Gln Pro Phe Pro Asp Gly LysSer Phe Gln Val Ala Asp Ala Leu Asn Gln Pro Phe Pro Asp Gly Lys

   130                  135                 140130 135 140

Phe Asp Leu Val Trp Ser Met Glu Ser Gly Glu His Met Pro Asp LysPhe Asp Leu Val Trp Ser Met Glu Ser Gly Glu His Met Pro Asp Lys

145                 150                 155                 160145 150 155 160

Leu Lys Phe Val Ser Glu Leu Ala Arg Val Ala Ala Pro Gly Ala ThrLeu Lys Phe Val Ser Glu Leu Ala Arg Val Ala Ala Pro Gly Ala Thr

                165                 170                 175165 170 175

Ile Ile Ile Val Thr Trp Cys His Arg Asp Leu Leu Pro Pro Glu LysIle Ile Ile Val Thr Trp Cys His Arg Asp Leu Leu Pro Pro Glu Lys

            180                 185                 190180 185 190

Ser Leu Arg Pro Glu Glu Glu Lys Ile Leu Asn Lys Ile Cys Ser GlySer Leu Arg Pro Glu Glu Glu Lys Ile Leu Asn Lys Ile Cys Ser Gly

        195                 200                 205195 200 205

Phe Phe Leu Pro Ala Trp Cys Ser Thr Ala Asp Tyr Val Lys Leu LeuPhe Phe Leu Pro Ala Trp Cys Ser Thr Ala Asp Tyr Val Lys Leu Leu

    210                 215                 220210 215 220

Glu Ser Ile Ser Leu Gln Asp Ile Lys Ala Glu Asp Trp Ser Gly AsnGlu Ser Ile Ser Leu Gln Asp Ile Lys Ala Glu Asp Trp Ser Gly Asn

225                 230                 235                 240225 230 235 240

Val Ala Pro Phe Trp Pro Ala Val Ile Lys Thr Ala Leu Ser Trp LysVal Ala Pro Phe Trp Pro Ala Val Ile Lys Thr Ala Leu Ser Trp Lys

                245                 250                 255245 250 255

Gly Ile Thr Ser Leu Leu Arg Ser Gly Trp Lys Thr Ile Arg Gly AlaGly Ile Thr Ser Leu Leu Arg Ser Gly Trp Lys Thr Ile Arg Gly Ala

            260-                265                 270260- 265 270

Met Val Met Pro Ser Met Ile Glu Gly Phe Lys Lys Asp Val Ile LysMet Val Met Pro Ser Met Ile Glu Gly Phe Lys Lys Asp Val Ile Lys

        275                 280                 285275 280 285

Phe Ser Ile Ile Thr Cys Lys Lys Pro GluPhe Ser Ile Ile Thr Cys Lys Lys Pro Glu

    290                 295290 295

Claims (3)

1、一种生菜γ-生育酚甲基转移酶蛋白编码序列,其特征在于,具有SEQ IDNO.3中第112-1008位所示的核苷酸序列。1. A lettuce gamma-tocopherol methyltransferase protein coding sequence, characterized in that it has the nucleotide sequence shown in the 112th-1008th position in SEQ ID NO.3. 2、根据权利要求1所述的生菜γ-生育酚甲基转移酶蛋白编码序列编码的多肽,其特征在于,具有SEQ ID NO.4所示的氨基酸序列。2. The polypeptide encoded by the lettuce γ-tocopherol methyltransferase protein coding sequence according to claim 1, characterized in that it has the amino acid sequence shown in SEQ ID NO.4. 3、一种利用如权利要求1所述的生菜γ-生育酚甲基转移酶蛋白编码序列提高植物维生素E含量的方法,其特征在于,包括如下步骤:3. A method for improving vitamin E content in plants by using the lettuce gamma-tocopherol methyltransferase protein coding sequence as claimed in claim 1, comprising the steps of: 步骤一,将生菜γ-生育酚甲基转移酶蛋白编码序列连接于植物表达调控序列上,得到含生菜γ-生育酚甲基转移酶蛋白编码序列的植物表达载体;Step 1, linking the lettuce γ-tocopherol methyltransferase protein coding sequence to the plant expression control sequence to obtain a plant expression vector containing the lettuce γ-tocopherol methyltransferase protein coding sequence; 步骤二,将步骤一中的表达载体转入农杆菌,利用该农杆菌转化拟南芥;In step 2, the expression vector in step 1 is transformed into Agrobacterium, and the Agrobacterium is used to transform Arabidopsis; 步骤三,通过抗生素筛选,获得含有生菜γ-生育酚甲基转移酶蛋白编码序列的转化细胞,最终再生转基因植株及其后代。The third step is to obtain transformed cells containing lettuce gamma-tocopherol methyltransferase protein coding sequence through antibiotic screening, and finally regenerate transgenic plants and their progeny.
CN2009100463534A 2009-02-19 2009-02-19 Lettuce gamma-tocopherol methyltransferase protein coded sequence Expired - Fee Related CN101514346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100463534A CN101514346B (en) 2009-02-19 2009-02-19 Lettuce gamma-tocopherol methyltransferase protein coded sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100463534A CN101514346B (en) 2009-02-19 2009-02-19 Lettuce gamma-tocopherol methyltransferase protein coded sequence

Publications (2)

Publication Number Publication Date
CN101514346A true CN101514346A (en) 2009-08-26
CN101514346B CN101514346B (en) 2010-11-03

Family

ID=41038969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100463534A Expired - Fee Related CN101514346B (en) 2009-02-19 2009-02-19 Lettuce gamma-tocopherol methyltransferase protein coded sequence

Country Status (1)

Country Link
CN (1) CN101514346B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087999A (en) * 2011-11-03 2013-05-08 中国农业科学院北京畜牧兽医研究所 Medicago sativa gamma-tocopherol methyltransferase (MSTMT) gene and its coded protein and use
CN103756971A (en) * 2014-01-17 2014-04-30 江苏省中国科学院植物研究所 Method for preparing blackberry cell suspension culture solution
CN108239654A (en) * 2017-12-31 2018-07-03 青岛袁策生物科技有限公司 A kind of method for improving rice grain vitamin content
CN110423732A (en) * 2019-08-14 2019-11-08 浙江大学 A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method
CN113817705A (en) * 2021-10-27 2021-12-21 陕西海斯夫生物工程有限公司 Gamma-tocopherol methyltransferase mutant and application thereof in improving yields of alpha-tocopherol and alpha-tocotrienol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472324A (en) * 2002-08-01 2004-02-04 中国农业科学院生物技术研究所 DNA Sequence and Amino Acid Sequence Encoding Sunflower γ-tocopherol Methyltransferase and Its Application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087999A (en) * 2011-11-03 2013-05-08 中国农业科学院北京畜牧兽医研究所 Medicago sativa gamma-tocopherol methyltransferase (MSTMT) gene and its coded protein and use
CN103087999B (en) * 2011-11-03 2014-09-03 中国农业科学院北京畜牧兽医研究所 Medicago sativa gamma-tocopherol methyltransferase (MSTMT) gene and its coded protein and use
CN103756971A (en) * 2014-01-17 2014-04-30 江苏省中国科学院植物研究所 Method for preparing blackberry cell suspension culture solution
CN108239654A (en) * 2017-12-31 2018-07-03 青岛袁策生物科技有限公司 A kind of method for improving rice grain vitamin content
CN110423732A (en) * 2019-08-14 2019-11-08 浙江大学 A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method
CN113817705A (en) * 2021-10-27 2021-12-21 陕西海斯夫生物工程有限公司 Gamma-tocopherol methyltransferase mutant and application thereof in improving yields of alpha-tocopherol and alpha-tocotrienol

Also Published As

Publication number Publication date
CN101514346B (en) 2010-11-03

Similar Documents

Publication Publication Date Title
CN113957086B (en) Application of SlBIN2 gene in regulation and control of tomato fruit ripening and carotenoid synthesis
CN103387609B (en) A kind ofly improve gene of Genes For Plant Tolerance adverse circumstance ability and uses thereof
CN1807608B (en) γ-tocopheryl methyltransferase gene, its expression vector and application
CN101514346A (en) Lettuce gamma-tocopherol methyltransferase protein coded sequence
Zheng et al. Overexpression of the glucosyltransferase gene BoaUGT74B1 enhances the accumulation of indole glucosinolates in Chinese kale
CN101586108B (en) Lettuce HPPD protein coded sequence
CN108517324A (en) One NtIPMD gene for influencing tobacco axillary bud differentiation
CN114181949B (en) Application of tomato SlERF063 gene in promoting fruit ripening and reducing fruit toxicity
CN113846117B (en) A method for enhancing the fragrance of plants
CN101265295A (en) Tocopherol synthesis related protein and its coding gene and application
KR101987663B1 (en) Method for reducing ethylene production by LeMADS-RIN gene editing using CRISPR/Cas9 system in plant
CN113227383B (en) Role of HAK gene in regulating and controlling plant traits
KR102000465B1 (en) Method of improving resistance of Bakanae disease
CN101514345B (en) Lettuce phytol kinase protein coded sequence
ES2364932A1 (en) ALTERATION IN THE EXPRESSION OF THE PROTEIN DELLA OR ORTHOLOGIST TO ALTER THE GROWTH PATTERN OF THE PLANTS AND THE METABOLITES CONTENT OF THE FRUIT.
CN102203243B (en) Transgenic plants
KR20150045611A (en) OsGASD gene involved in gibellelin mechanism in plant and uses thereof
CN109422803A (en) Adjust gene and its application of plant particle shape, mass of 1000 kernel and grain number per spike
CN101565712A (en) Lettuce mpbq mt protein coding sequence
CN101586110B (en) Lettuce HPT protein coding sequence
CN116254291B (en) Method for inhibiting potato solanine and application
CN103333258B (en) A kind of signal peptide-histone h1 fusion rotein and encoding gene thereof and application
CN114891805B (en) MsHMG-Y gene and encoding protein and application thereof
CN115807028B (en) Application of transcription factor SlDOG1 in improving plant steroid alkaloid content
KR20190043394A (en) Novel proteins enhancing drought stress tolerance of plants, genes encoding the proteins and transgenic plants transformed with the genes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101103

Termination date: 20130219