[go: up one dir, main page]

CN109193030A - 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用 - Google Patents

五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用 Download PDF

Info

Publication number
CN109193030A
CN109193030A CN201811004815.1A CN201811004815A CN109193030A CN 109193030 A CN109193030 A CN 109193030A CN 201811004815 A CN201811004815 A CN 201811004815A CN 109193030 A CN109193030 A CN 109193030A
Authority
CN
China
Prior art keywords
lithium
molybdenum pentachloride
electrolyte
oxygen battery
redox mediator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811004815.1A
Other languages
English (en)
Other versions
CN109193030B (zh
Inventor
周震
王新改
谢召军
魏进平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201811004815.1A priority Critical patent/CN109193030B/zh
Publication of CN109193030A publication Critical patent/CN109193030A/zh
Application granted granted Critical
Publication of CN109193030B publication Critical patent/CN109193030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用。该电解液包括可溶性锂盐为溶质、无质子溶剂和添加剂五氯化钼;其中,电解液中溶质浓度为0.1~1 mol/L;电解液中五氯化钼的浓度为0.01~0.1 mol/L。本发明将五氯化钼做电解液添加剂应用于锂氧气电池中,有助于放电过程环状过氧化锂的形成,同时也起到稳定碳电极的作用。在充电过程中可以有效地分解过氧化锂放电产物,降低充电电压提高电池循环寿命和良好的可逆性。同时五氯化钼在电池体系中稳定,无副反应产生。具有廉价易得,高效方便的优势。

Description

五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和 应用
技术领域
本发明涉及一种五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用,属于电化学催化的技术领域。
背景技术
锂氧气电池由于直接使用氧气为活性物质,因而具有超高的比能量,不仅如此,它还具有放电平稳,放电平台高等等优点,被认为是最具有发展潜力的二次能源体系。
然而锂氧气电池体系仍然存在诸多问题亟需解决,例如在放电过程中,产生的超氧化物中间体及其不稳定,超氧根离子会攻击碳基材料或者有机电解液,生成副产物,另外,放电产物过氧化锂为绝缘体,因而在充电时会导致充电过电位增大,降低法拉第效率。
研究者为了有效地分解过氧化锂,提出了很多解决方法。例如贵金属(Nano Lett.2013, 13, 10, 4702–4707)、过渡金属(Chem Commun (Camb) 2014, 50, 776-778.)、过渡金属氧化物(J. Mater. Chem. A 2016, 4, 9390-9393)以及掺杂碳材料(AdvancedFunctional Materials 2014, 24, 6826-6833)等。然而这些催化剂的催化性能不能尽如人意。后续又有人提出将有机氧化还原介质(Nat Chem 2013, 5, 489-494.)应用于锂氧气电池体系,然而有机化合物不稳定易分解,更会导致电池性能衰退。因此,将机的氧化还原介质应用在锂氧气电池中,可以稳定电池体系,降低充电电压,提高能量效率。更为重要的是,这种无机氧化还原介质廉价易得,具有很高的应用潜力。
发明内容
本发明的目的是提供一种五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用。以五氯化钼做氧化还原介质的电解液及以此为电解液的锂氧气电池,由于五氯化钼的添加,锂氧气提供电池的循环寿命得到了提高,充电电压也得到了降低。
本发明提供的五氯化钼为氧化还原介质的锂氧气电池电解液包括可溶性锂盐为溶质、无质子溶剂和添加剂五氯化钼;其中,电解液中溶质浓度为0.1~1 mol/L;电解液中五氯化钼的浓度为0.01~0.1 mol/L;
所述的溶质选自双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂、三氟甲磺酸锂、三氟乙酸锂、硝酸锂和高氯酸锂中的至少一种。
所述的无质子溶剂选自乙二醇二甲醚、四乙二醇二甲醚、二甲基亚砜和1-丁基-1甲基-吡咯双(三氟甲基磺酰)亚胺中的至少一种。
本发明提供的五氯化钼为氧化还原介质的锂氧气电池电解液的制备方法包括以下步骤:
1)将五氯化钼在90~150℃下真空干燥12~24小时,干燥完成后将干燥器和样品一并带入手套箱。
2)按计量将五氯化钼与锂氧气电池电解液的溶质、无质子溶剂混合,在手套箱内充分搅拌24~48小时后,得到含五氯化钼的锂氧气电池电解液。
本发明还提供了以五氯化钼为氧化还原介质的电解液制备的锂氧气电池的应用,该锂氧气电池包括为锂负极、碳正极、隔膜、集流体以及电池壳;
所述的碳正极为科琴黑、碳纳米管、石墨烯和碳氮片的一种或几种。将上述材料涂在碳纸上作为正极。
所述的隔膜为聚四氟乙烯或玻璃纤维。
所述的锂氧气电池电池壳为斯维洛克(Swagelok)柱状电池壳或者扣式电池壳。
本发明提供了一种以五氯化钼为添加剂的锂氧气电池电解液。将其应用在锂氧气电池中,有助于放电过程环状过氧化锂的形成,同时也起到稳定碳电极的作用。在充电过程中可以有效地分解过氧化锂放电产物,降低充电电压提高电池循环寿命和良好的可逆性。同时五氯化钼在电池体系中稳定,无副反应产生。具有廉价易得,高效方便的优势。总之,能够降低充电电压,稳定电池体系,提高电池的循环寿命。在400 mA/g的电流密度下,锂氧气电池的充电电压降低到4.0 V。同时也稳定循环了45圈,在800 mA/g的电流密度下,电池循环了25圈。同时在400 mA/g下,首周放电比容量为27951 mA h/g,同时具有极高的库伦效率,第二圈放电比容量仍能够保持15461 mA h/g。
附图说明
图1为400 mA/g电流密度下添加五氯化钼的锂氧气电池充放电曲线。
图2为400 mA/g电流密度下添加五氯化钼的锂氧气电池循环曲线。
图3为800 mA/g电流密度下添加五氯化钼的锂氧气电池循环曲线。
图4为400 mA/g电流密度下未添加五氯化钼的锂氧气电池循环曲线。
图5为添加五氯化钼之后电池正极放电后的SEM图。
图6为添加五氯化钼之后电池正极充电后的SEM图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
将五氯化钼在120℃的真空干燥器中干燥24小时,之后在手套箱中将五氯化钼溶于双三氟甲基磺酰亚胺锂浓度为1 mol/L的四乙二醇二甲醚的电解液中,即可得到本发明所说的以五氯化钼为氧化还原介质的电解液,其中五氯化钼浓度为0.05 mol/L。
实施例2:
将五氯化钼在120℃的真空干燥器中干燥24小时,之后在手套箱中将五氯化钼溶于三氟甲磺酸锂浓度为1 mol/L的乙二醇二甲醚的电解液中,即可得到本发明所说的以五氯化钼为氧化还原介质的电解液,其中五氯化钼浓度为0.05 mol/L。
实施例3:
将五氯化钼在120℃的真空干燥器中干燥24小时,之后在手套箱中将五氯化钼溶于三氟乙酸锂浓度为0.5 mol/L的四乙二醇二甲醚的电解液中,即可得到本发明所说的以五氯化钼为氧化还原介质的电解液,其中五氯化钼浓度为0.05 mol/L。
图1为400 mA/g电流密度下添加五氯化钼的锂氧气电池充放电曲线。从图中可以看出含有五氯化钼氧化还原介质的锂氧气电池可以首周放电容量可达27951 mA h/g,充电电压可以降低到4.0 V,第二圈仍然可以容量可以达到15731 mA h/g,且法拉第效率达到80%以上,显示了良好的可逆性。
图2为400 mA/g电流密度下添加五氯化钼的锂氧气电池循环曲线。由图中可以看出含有五氯化钼氧化还原介质的锂氧气电池可以稳定循环45圈,首周充电电压降低到4.0V,并且最终充电电压都小于4.3 V。显示了良好的循环稳定性。
图3为800 mA/g电流密度下添加五氯化钼的锂氧气电池循环曲线。由图中可以看出含有五氯化钼氧化还原介质的锂氧气电池可以稳定循环25圈,首周充电电压降低到4.0V。显示了良好的倍率性能。
图4为400 mA/g电流密度下未添加五氯化钼的锂氧气电池循环曲线。由图中可以看出未添加五氯化钼氧化还原介质的锂氧气电池只能循环13周,并且首周充电电压升高到4.6 V。由此可见在锂氧气电池中添加五氯化钼可以降低充电电压,稳定电池体系提高循环性能。
图5为添加五氯化钼之后电池正极放电后的SEM图。由图中可以看出添加五氯化钼的锂氧气电池正极经过放电之后,有大块的环形过氧化锂产物形成,这说明经过添加之后锂氧气电池可以从各个方向生成产物,表明这个过程是一个液相转化过程,因而可以具有高的比能量。
图6为添加五氯化钼之后电池正极充电后的SEM图。由图中可以看出经过充电之后,放电产物已经完全分解,氧气正极已经完全恢复到最初状态,这再次证明经过添加五氯化钼之后,锂氧气电池具有良好的可逆性。

Claims (9)

1.一种五氯化钼为氧化还原介质的锂氧气电池电解液,其特征在于它包括可溶性锂盐为溶质、无质子溶剂和添加剂五氯化钼;其中,电解液中溶质浓度为0.1~1 mol/L;电解液中五氯化钼的浓度为0.01~0.1 mol/L。
2.根据权利要求1所述的五氯化钼为氧化还原介质的锂氧气电池电解液,其特征在于所述的溶质选自双三氟甲基磺酰亚胺锂、双氟磺酰亚胺锂、三氟甲磺酸锂、三氟乙酸锂、硝酸锂和高氯酸锂中的至少一种。
3.根据权利要求1所述的五氯化钼为氧化还原介质的电解液,其特征在于所述的无质子溶剂选自乙二醇二甲醚、四乙二醇二甲醚、二甲基亚砜和1-丁基-1甲基-吡咯双(三氟甲基磺酰)亚胺中的至少一种。
4.一种五氯化钼为氧化还原介质的锂氧气电池电解液,其特征在于它包括可溶性锂盐为溶质、无质子溶剂和添加剂五氯化钼;其中,电解液中溶质浓度为0.5~1 mol/L;电解液中五氯化钼的浓度为0.05 mol/L;所述的溶质为双三氟甲基磺酰亚胺锂、三氟甲磺酸锂或三氟乙酸锂;所述的无质子溶剂为乙二醇二甲醚或四乙二醇二甲醚。
5.权利要求1所述的五氯化钼为氧化还原介质的锂氧气电池电解液的制备方法,其特征在于包括以下步骤:
1)将五氯化钼在90~150℃下真空干燥12~24小时,干燥完成后将干燥器和样品一并带入手套箱;
2)按计量将五氯化钼与锂氧气电池电解液的溶质、无质子溶剂混合,在手套箱内充分搅拌24~48小时后,得到含五氯化钼的锂氧气电池电解液。
6.权利要求1-4任一所述的五氯化钼为氧化还原介质的电解液制备的锂氧气电池,其中包括为锂负极、碳正极、隔膜、集流体以及电池壳。
7.按照权利要求6所述的锂氧气电池,其特征在于所述的碳正极材料为科琴黑、碳纳米管、石墨烯和碳氮片的一种或几种,将上述材料涂在碳纸上作为正极。
8.按照权利要求6所述的锂氧气电池,其特征在于所述的隔膜为聚四氟乙烯或玻璃纤维。
9.按照权利要求6所述的锂氧气电池,其特征在于所述的锂氧气电池电池壳为斯维洛克(Swagelok)柱状电池壳或者扣式电池壳。
CN201811004815.1A 2018-08-30 2018-08-30 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用 Active CN109193030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811004815.1A CN109193030B (zh) 2018-08-30 2018-08-30 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811004815.1A CN109193030B (zh) 2018-08-30 2018-08-30 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用

Publications (2)

Publication Number Publication Date
CN109193030A true CN109193030A (zh) 2019-01-11
CN109193030B CN109193030B (zh) 2020-06-12

Family

ID=64916942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811004815.1A Active CN109193030B (zh) 2018-08-30 2018-08-30 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用

Country Status (1)

Country Link
CN (1) CN109193030B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511855A (zh) * 2018-03-26 2018-09-07 南开大学 一种Li/Na复合金属负极的Li/Na-O2二次电池
WO2020213476A1 (ja) * 2019-04-16 2020-10-22 スタンレー電気株式会社 電気化学装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116474A (ja) * 1984-06-30 1986-01-24 Maruzen Sekiyu Kagaku Kk 二次電池
CN101304105A (zh) * 2007-05-08 2008-11-12 索尼株式会社 非水电解液二次电池及非水电解液
CN104600319A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 非碳基锂-空气电极

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116474A (ja) * 1984-06-30 1986-01-24 Maruzen Sekiyu Kagaku Kk 二次電池
CN101304105A (zh) * 2007-05-08 2008-11-12 索尼株式会社 非水电解液二次电池及非水电解液
CN104600319A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 非碳基锂-空气电极

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511855A (zh) * 2018-03-26 2018-09-07 南开大学 一种Li/Na复合金属负极的Li/Na-O2二次电池
WO2020213476A1 (ja) * 2019-04-16 2020-10-22 スタンレー電気株式会社 電気化学装置
JP2020177092A (ja) * 2019-04-16 2020-10-29 スタンレー電気株式会社 電気化学装置
CN114127627A (zh) * 2019-04-16 2022-03-01 斯坦雷电气株式会社 电化学装置
JP7232115B2 (ja) 2019-04-16 2023-03-02 スタンレー電気株式会社 電気化学装置

Also Published As

Publication number Publication date
CN109193030B (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
Xie et al. Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle
US11532832B2 (en) All-vanadium sulfate acid redox flow battery system
CN108780917B (zh) 用于高能量密度电池的可再充电钠电池单元
Chen et al. Base–acid hybrid water electrolysis
US10396349B2 (en) Semi-solid flow Li/O2 battery
CN107565138B (zh) 一种锂二氧化碳电池正极催化剂Mn2O3的制备方法
Mu et al. Toward Practical Li–CO2 Batteries: Mechanisms, Catalysts, and Perspectives
CN109088101A (zh) 一种电解液及其应用
CN110034340A (zh) 一种水系电解液及水系金属离子电池
CN108864104A (zh) 一种5,7,12,14-四氮-6,13-并五苯醌电极材料及其制备方法和应用
Andrade et al. Decreasing the charging voltage of a zinc-air battery using a bifunctional W: BiVO4/V2O5 photoelectrode and sulfite as a sacrificial agent
CN112510264A (zh) 具有超低浓度电解液的锂-氟化碳电池及制备方法
CN112678798A (zh) 一种硫、氮双掺杂的锂空气电池正极催化剂的制备方法
CN109193030A (zh) 五氯化钼为氧化还原介质的锂氧气电池电解液及其制备和应用
CN109428138A (zh) 锂空气电池的制备方法及锂空气电池
US20240343582A1 (en) Method for preparing porous microsphere carbon anode material and application thereof
Berling et al. A mediated vanadium flow battery: Lignin as redox-targeting active material in the vanadium catholyte
CN107293759A (zh) 一种燃料电池氧还原电催化剂的制备方法
CN109494400A (zh) 双氟磺酰亚胺锂/1,3-二氧五环锂电池凝胶电解液及其制备方法和电池
CN110034319A (zh) 一种锌-水燃料电池及其在发电产氢中的应用
CN105680061B (zh) 一种二氧化碳电化学还原催化剂及其制备及应用
CN117239234A (zh) 一种锂氧气电池电解液及其制备方法和锂氧气电池
CN104051748B (zh) 不含金属的硫掺杂碳材料过氧化氢电还原催化剂及制备方法
CN116937024A (zh) 一种基于多电子转换的高能量密度水系锌碘电池
KR20140026265A (ko) 이차전지용 전해액 제조방법과 그 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant