CN108573932A - Silicon carbide substrate for epitaxy and semiconductor chip - Google Patents
Silicon carbide substrate for epitaxy and semiconductor chip Download PDFInfo
- Publication number
- CN108573932A CN108573932A CN201710812888.2A CN201710812888A CN108573932A CN 108573932 A CN108573932 A CN 108573932A CN 201710812888 A CN201710812888 A CN 201710812888A CN 108573932 A CN108573932 A CN 108573932A
- Authority
- CN
- China
- Prior art keywords
- silicon carbide
- carbide substrate
- epitaxial layer
- gallium nitride
- epitaxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 61
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 55
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 238000000407 epitaxy Methods 0.000 title claims abstract description 24
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 64
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 45
- 230000007547 defect Effects 0.000 claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 230000007423 decrease Effects 0.000 claims abstract description 4
- 230000003746 surface roughness Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000001312 dry etching Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000005530 etching Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明提供一种磊晶用碳化硅基板及半导体芯片,其中碳化硅基板具有一表面及自所述表面凸起形成的多个图案化结构,所述表面的晶面为(0001)面;所述图案化结构的宽度由下往上逐渐减小且形成倾斜的至少一侧面,侧面的晶面为(‑1,0,1,2)面。碳化硅基板的顶部设置有一氮化镓磊晶层以构成所述半导体芯片。因此,氮化镓磊晶层的底部形成侧向延伸的差排缺陷,不易形成往上延伸的穿透差排缺陷,让氮化镓磊晶层具有良好的磊晶品质。
The present invention provides a silicon carbide substrate and a semiconductor chip for epitaxy, wherein the silicon carbide substrate has a surface and a plurality of patterned structures protruding from the surface, and the crystal plane of the surface is the (0001) plane; The width of the patterned structure gradually decreases from bottom to top and forms at least one inclined side, and the crystal plane of the side is (-1,0,1,2) plane. A gallium nitride epitaxial layer is provided on the top of the silicon carbide substrate to form the semiconductor chip. Therefore, laterally extending dislocation defects are formed at the bottom of the gallium nitride epitaxial layer, which makes it difficult to form upwardly extending through dislocation defects, allowing the gallium nitride epitaxial layer to have good epitaxial quality.
Description
技术领域technical field
本发明涉及半导体磊晶,特别涉及一种磊晶用碳化硅基板及半导体芯片。The invention relates to semiconductor epitaxy, in particular to a silicon carbide substrate and a semiconductor chip for epitaxy.
背景技术Background technique
现有的半导体组件,例如,半导体发光组件、高速电子迁移率场效晶体管(High-electron-mobility transistor,HEMT)、雷射二极管、发光二极管等,大多是在一基板上设置氮化镓磊晶层,再在氮化镓磊晶层上制作组件的结构。Existing semiconductor components, such as semiconductor light-emitting components, high-electron-mobility field-effect transistors (High-electron-mobility transistor, HEMT), laser diodes, light-emitting diodes, etc., are mostly provided on a substrate with gallium nitride epitaxy layer, and then fabricate the structure of the component on the gallium nitride epitaxial layer.
目前的技术都是在蓝宝石基板上设置氮化镓磊晶层,但蓝宝石与氮化镓之间存在着晶格不匹配、热膨胀系数的差异,因此,所形成的氮化镓磊晶层的品质往往不佳。氮化镓磊晶层的品质关系到组件的效能。为提升氮化镓磊晶层的品质,目前的作法大多是是在蓝宝石基板与氮化镓磊晶层之间设置一缓冲层,再在缓冲层上成长磊晶层。缓冲层的目的即是用以减少晶格不匹配的情形、降低缺陷密度或减少基板与磊晶层之间热膨胀系数的差异,借此提升磊晶层的品质。The current technology is to set the gallium nitride epitaxial layer on the sapphire substrate, but there is a lattice mismatch and a difference in thermal expansion coefficient between sapphire and gallium nitride. Therefore, the quality of the formed gallium nitride epitaxial layer Often poor. The quality of the GaN epitaxial layer is related to the performance of the device. In order to improve the quality of the GaN epitaxial layer, most of the current methods are to set a buffer layer between the sapphire substrate and the GaN epitaxial layer, and then grow the epitaxial layer on the buffer layer. The purpose of the buffer layer is to reduce lattice mismatch, reduce defect density, or reduce the difference in thermal expansion coefficient between the substrate and the epitaxial layer, thereby improving the quality of the epitaxial layer.
相较于蓝宝石基板而言,碳化硅基板与氮化镓之间的晶格匹配更佳,因此,在碳化硅基板上设置的氮化镓磊晶层的品质将优于在蓝宝石基板上设置的氮化镓磊晶层的品质。Compared with sapphire substrates, the lattice matching between SiC substrates and GaN is better, so the quality of GaN epitaxial layers disposed on SiC substrates will be better than those disposed on sapphire substrates. The quality of GaN epitaxial layers.
如何进一步提升碳化硅基板上的氮化镓磊晶层的品质,乃是相关的学者、厂商努力研发的方向。How to further improve the quality of the gallium nitride epitaxial layer on the silicon carbide substrate is the research and development direction of relevant scholars and manufacturers.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种磊晶用碳化硅基板及半导体芯片,可以获得品质更佳的氮化镓磊晶层。In view of this, the object of the present invention is to provide a silicon carbide substrate for epitaxy and a semiconductor chip, which can obtain a gallium nitride epitaxy layer with better quality.
为了达成上述目的,本发明提供的磊晶用碳化硅基板,具有一顶部,所述顶部用于设置氮化镓磊晶层,所述顶部具有一表面及自所述表面凸起形成的多个图案化结构,其中,所述表面的晶面为(0001)面;所述图案化结构的宽度由下往上逐渐减小且形成至少一倾斜的侧面,所述侧面的晶面为(-1,0,1,2)面。In order to achieve the above object, the silicon carbide substrate for epitaxy provided by the present invention has a top, and the top is used for setting a gallium nitride epitaxial layer, and the top has a surface and a plurality of protrusions formed from the surface. A patterned structure, wherein the crystal plane of the surface is a (0001) plane; the width of the patterned structure gradually decreases from bottom to top and at least one inclined side is formed, and the crystal plane of the side is (-1 ,0,1,2) surface.
为了达成上述目的,本发明还提供一种半导体芯片,包含上述的磊晶用碳化硅基板,以及一氮化镓磊晶层设置于所述磊晶用碳化硅基板的顶部。In order to achieve the above object, the present invention also provides a semiconductor chip, comprising the above-mentioned silicon carbide substrate for epitaxy, and a gallium nitride epitaxial layer disposed on the top of the silicon carbide substrate for epitaxy.
本发明的优点在于,由于形成在磊晶用碳化硅基板的图案化结构侧面的晶面为(-1,0,1,2)面可利于氮化镓磊晶层生长,因此,氮化镓磊晶层可由图案化结构的侧面先成长,而后才往侧向及往上累积。如此一来,在氮化镓磊晶层的底部形成侧向延伸的差排缺陷,便不易形成往上延伸的穿透差排缺陷,让氮化镓磊晶层具有良好的磊晶品质。The advantage of the present invention is that, since the crystal plane formed on the side of the patterned structure of the silicon carbide substrate for epitaxy is a (-1,0,1,2) plane, it is beneficial to the growth of the gallium nitride epitaxial layer, therefore, the gallium nitride The epitaxial layer can be grown from the side of the patterned structure first, and then accumulated laterally and upwardly. In this way, laterally extending dislocation defects are formed at the bottom of the GaN epitaxial layer, and it is difficult to form penetrating dislocation defects extending upward, so that the GaN epitaxial layer has good epitaxial quality.
附图说明Description of drawings
图1为本发明第一实施例的碳化硅基板的示意图;1 is a schematic diagram of a silicon carbide substrate according to a first embodiment of the present invention;
图2A~图2E为本发明第一实施例的碳化硅基板的制造流程示意图;2A to 2E are schematic diagrams of the manufacturing process of the silicon carbide substrate according to the first embodiment of the present invention;
图3为本发明第一实施例的碳化硅基板成长氮化镓磊晶层初期的示意图;3 is a schematic diagram of the initial stage of growing a gallium nitride epitaxial layer on a silicon carbide substrate according to the first embodiment of the present invention;
图4为本发明第一实施例的半导体芯片的示意图;4 is a schematic diagram of a semiconductor chip according to a first embodiment of the present invention;
图5为本发明第一实施例的半导体芯片以透射电子显微镜观测的影像;5 is an image of the semiconductor chip of the first embodiment of the present invention observed by a transmission electron microscope;
图6为本发明第二实施例的碳化硅基板的示意图;6 is a schematic diagram of a silicon carbide substrate according to a second embodiment of the present invention;
图7为本发明第二实施例的碳化硅基板成长氮化镓磊晶层初期的示意图;7 is a schematic diagram of the initial stage of growing a gallium nitride epitaxial layer on a silicon carbide substrate according to the second embodiment of the present invention;
图8为本发明第二实施例的半导体芯片的示意图;8 is a schematic diagram of a semiconductor chip according to a second embodiment of the present invention;
图9为本发明第二实施例的半导体芯片以透射电子显微镜观测的影像。FIG. 9 is an image of the semiconductor chip according to the second embodiment of the present invention observed by a transmission electron microscope.
符号说明:Symbol Description:
1、半导体芯片;1. Semiconductor chips;
10、碳化硅基板;10. Silicon carbide substrate;
12、顶部;12. Top;
122、表面;122. surface;
124、图案化结构;124. Patterned structure;
124a、侧面;124a, side;
16、氮化镓磊晶层;16. GaN epitaxial layer;
16a、氮化镓;16a, gallium nitride;
162、连结面;162. Connection surface;
164、差排缺陷;164. Disparity defects;
2、半导体芯片;2. Semiconductor chips;
20、碳化硅基板;20. Silicon carbide substrate;
202、图案化结构;202. Patterned structure;
202a、顶面;202a, top surface;
202b、侧面;202b, side;
204、表面;204. surface;
22、氮化镓磊晶层;22. GaN epitaxial layer;
22a、氮化镓;22a, gallium nitride;
222、连结面;222. Connection surface;
224、差排缺陷;224. Disparity defects;
100、碳化硅基材;100. Silicon carbide substrate;
102、上表面;102. Upper surface;
104、硬屏蔽;104. Hard shielding;
106、图案化光阻层;106. Patterned photoresist layer;
θ、夹角;θ, included angle;
W、宽度;W, width;
H、高度;H, height;
D、D’、间距。D, D', spacing.
具体实施方式Detailed ways
下面结合附图对本发明提供的磊晶用碳化硅基板及半导体芯片的具体实施方式做详细说明。Specific implementations of the silicon carbide substrate for epitaxy and the semiconductor chip provided by the present invention will be described in detail below in conjunction with the accompanying drawings.
请参阅图1所示,其为本发明第一实施例的碳化硅基板10,所述碳化硅基板10具有一顶部12,所述顶部12具有一表面122及自所述表面122凸起形成的多个图案化结构124。Please refer to FIG. 1 , which is a silicon carbide substrate 10 according to a first embodiment of the present invention. The silicon carbide substrate 10 has a top 12, and the top 12 has a surface 122 and protrudes from the surface 122. A plurality of patterned structures 124 .
其中,所述表面122的晶面为(0001)面。所述图案化结构124在本实施例中呈角锥状,其宽度由下往上逐渐减小而形成倾斜的至少一侧面124a,所述侧面124a的晶面为(-1,0,1,2)面,本实施例中,所述至少一侧面124a的数量为六面。各所述侧面124a与所述表面122之间形成有一夹角θ(即(0001)面与(-1,0,1,2)面之间的夹角),本实施例中,所述夹角θ为110~130度,优选地为121.5度。各所述图案化结构124的底部的最大宽度W为1~5微米,优选地为1~3微米;由所述表面122起算至各所述图案化结构124的最高处的高度H为0.3~2微米。相邻两个图案化结构124的底部之间的间距D为2~3微米,优选地为2.5微米。各所述侧面124a的表面粗糙度小于所述表面122的表面粗糙度。Wherein, the crystal plane of the surface 122 is a (0001) plane. The patterned structure 124 is in the shape of a pyramid in this embodiment, and its width gradually decreases from bottom to top to form at least one inclined side 124a. The crystal plane of the side 124a is (-1,0,1, 2) Faces, in this embodiment, the number of the at least one side 124a is six faces. An angle θ is formed between each of the side surfaces 124a and the surface 122 (that is, the angle between the (0001) plane and the (-1,0,1,2) plane). The angle θ is 110-130 degrees, preferably 121.5 degrees. The maximum width W of the bottom of each patterned structure 124 is 1-5 microns, preferably 1-3 microns; the height H from the surface 122 to the highest point of each patterned structure 124 is 0.3-5 microns. 2 microns. The distance D between the bottoms of two adjacent patterned structures 124 is 2-3 microns, preferably 2.5 microns. The surface roughness of each side 124 a is smaller than the surface roughness of the surface 122 .
请参阅图2A~图2E,其为本发明第一实施例的碳化硅基板的制造流程示意图。所述碳化硅基板10的制造流程包括如下步骤:Please refer to FIG. 2A to FIG. 2E , which are schematic diagrams of the manufacturing process of the silicon carbide substrate according to the first embodiment of the present invention. The manufacturing process of the silicon carbide substrate 10 includes the following steps:
(a)请参阅图2A,取一碳化硅基材100,其具有一上表面102。(a) Referring to FIG. 2A , take a silicon carbide substrate 100 having an upper surface 102 .
(b)请参阅图2B,在所述碳化硅基材的上表面102上设置一硬屏蔽(hard mask)104,在本实施例中,利用PECVD沉积500nm的SiO2作为所述硬屏蔽104。(b) Referring to FIG. 2B , a hard mask 104 is disposed on the upper surface 102 of the silicon carbide substrate. In this embodiment, 500 nm of SiO 2 is deposited by PECVD as the hard mask 104 .
(c)请参阅图2C,在所述硬屏蔽104上以黄光微影技术制作图案化光阻层106,在本实施例中,光阻层106为直径2μm、间距1μm的点状数组光阻。(c) Referring to FIG. 2C , a patterned photoresist layer 106 is fabricated on the hard mask 104 by lithography technology. In this embodiment, the photoresist layer 106 is a dot array photoresist with a diameter of 2 μm and a pitch of 1 μm.
(d)请参阅图2D,以刻蚀工艺去除硬屏蔽104中未被图案化光阻层106覆盖的区域,在本实施例中,以多腔体等离子体刻蚀系统(Multi-chamber Plasma Etching System)进行第一阶段的干刻蚀工艺170秒,以将光阻图转印到硬屏蔽104上。(d) Please refer to FIG. 2D, remove the area not covered by the patterned photoresist layer 106 in the hard mask 104 by an etching process, in this embodiment, use a multi-chamber plasma etching system (Multi-chamber Plasma Etching System) performs a first-stage dry etching process for 170 seconds to transfer the photoresist pattern onto the hard mask 104 .
(e)请参阅图2E,以干刻蚀制程去除碳化硅基材100未被硬屏蔽104覆盖的区域同时伴随侧向刻蚀。在本实施例中,以多腔体等离子体刻蚀系统(Multi-chamber PlasmaEtching System)进行第二阶段的干刻蚀工艺,以在所述碳化硅基材100上形成所述表面122及所述图案化结构124。最后浸泡在BOE(Buffered Oxide Etecher)中以刻蚀去除光阻层106和硬屏蔽10 4,如此即完成本实施例的碳化硅基板10的制作。干刻蚀制程可采用物理性刻蚀、化学性刻蚀或物理性加化学性复合刻蚀。(e) Referring to FIG. 2E , a dry etching process is used to remove the area of the silicon carbide substrate 100 not covered by the hard mask 104 with lateral etching. In this embodiment, a second-stage dry etching process is performed with a multi-chamber plasma etching system (Multi-chamber PlasmaEtching System) to form the surface 122 and the Patterned structure 124 . Finally, soak in BOE (Buffered Oxide Etecher) to etch and remove the photoresist layer 106 and the hard mask 104 , thus completing the fabrication of the silicon carbide substrate 10 of this embodiment. The dry etching process can adopt physical etching, chemical etching or physical and chemical combined etching.
由于使用干刻蚀制程,相较于图案化结构124的侧面124a,所述表面122受到较大的损伤,因此所述表面122形成具有微裂纹、应力较大等缺陷的一损伤区,因而所述表面122的表面粗糙度大于图案化结构124的侧面124a的表面粗糙度。当然亦可用雷射、离子布值或轰击、电子述轰击所述表面122以形成损伤区。Due to the dry etching process, compared with the side surface 124a of the patterned structure 124, the surface 122 is more damaged, so the surface 122 forms a damaged area with defects such as microcracks and greater stress, so the The surface roughness of the surface 122 is greater than the surface roughness of the side surface 124 a of the patterned structure 124 . Of course, laser, ion distribution or bombardment, electron bombardment of the surface 122 can also be used to form the damaged area.
请参阅图3及图4,制作本实施例是半导体芯片1的过程为:以MOCVD在所述碳化硅基板10上成长一氮化镓磊晶层16,在所述氮化镓磊晶层16成长的初期,氮化镓16a先在图案化结构124的侧面124a成长(请参阅图3),而后往侧向逐渐延伸累积覆盖于所述表面122,同时往上累积形成直接设置于所述碳化硅基板10顶部的所述氮化镓磊晶层16。由于氮化镓16a先由图案化结构124的侧面124a成长并伸累积覆盖于所述表面122,因此,所述氮化镓磊晶层16直接连接于所述图案化结构124的侧面124a并直接接触所述表面122。进而形成本实施例的半导体芯片1(请参阅图4)。所述氮化镓磊晶层16具有多个连接面162,各所述连接面162分别连接于晶面为(-1,0,1,2)面的所述侧面124a,各所述连接面162的晶面为(-1,1,0,1)面。Please refer to Fig. 3 and Fig. 4, the process of making the semiconductor chip 1 of this embodiment is: grow a gallium nitride epitaxial layer 16 on the described silicon carbide substrate 10 by MOCVD, on the described gallium nitride epitaxial layer 16 In the initial stage of growth, gallium nitride 16a first grows on the side surface 124a of the patterned structure 124 (see FIG. 3 ), and then gradually extends laterally and accumulates to cover the surface 122, and at the same time accumulates upward to form a carbon layer directly disposed on the surface 122. The gallium nitride epitaxial layer 16 on top of the silicon substrate 10 . Since the gallium nitride 16a is first grown from the side surface 124a of the patterned structure 124 and extended to cover the surface 122, the gallium nitride epitaxial layer 16 is directly connected to the side surface 124a of the patterned structure 124 and directly Contact the surface 122 . Then the semiconductor chip 1 of this embodiment is formed (see FIG. 4 ). The gallium nitride epitaxial layer 16 has a plurality of connection surfaces 162, each of the connection surfaces 162 is respectively connected to the side 124a whose crystal plane is a (-1, 0, 1, 2) plane, and each of the connection surfaces The crystal plane of 162 is (-1,1,0,1) plane.
所述氮化镓磊晶层16在连接各所述侧面124a的部位具有往侧向延伸的差排缺陷(dislocation)164,且所述氮化镓磊晶层16在直接接触所述表面122的部位不具有往上延伸的差排缺陷。因此,侧向延伸的差排缺陷164将不易往上延伸而形成穿透差排,使得所述图案化结构124上方的氮化镓磊晶层16的品质较高,有利于后续的制程。The gallium nitride epitaxial layer 16 has a dislocation defect (dislocation) 164 extending laterally at the position connecting each of the side surfaces 124a, and the gallium nitride epitaxial layer 16 directly contacts the surface 122 The site does not have upwardly extending dislocations. Therefore, the laterally extending dislocation defects 164 are not easy to extend upward to form penetrating dislocations, so that the quality of the GaN epitaxial layer 16 above the patterned structure 124 is higher, which is beneficial to subsequent manufacturing processes.
请参阅图5,其为本实施例的半导体芯片1的氮化镓磊晶层16与碳化硅基板10的界面以透射电子显微镜(TEM)观测的影像,其中(b)为(a)的放大影像。由图5中可得知,氮化镓磊晶层16在邻近图案化结构124侧面124a的区域可明显观察到侧向延伸的差排缺陷,而氮化镓磊晶层16在邻近碳化硅基板10的所述表面122的区域则没有向上延伸的差排缺陷,由此可知,所述氮化镓磊晶层16在成长时是先由图案化结构124的侧面124a成长,而不易于在所述表面122成长,因此,不易形成向上延伸的穿透差排缺陷。Please refer to FIG. 5 , which is an image of the interface between the gallium nitride epitaxial layer 16 and the silicon carbide substrate 10 of the semiconductor chip 1 of the present embodiment observed with a transmission electron microscope (TEM), wherein (b) is an enlarged view of (a) image. It can be seen from FIG. 5 that laterally extending dislocation defects can be clearly observed in the region of the GaN epitaxial layer 16 adjacent to the side surface 124a of the patterned structure 124, while the GaN epitaxial layer 16 is adjacent to the silicon carbide substrate. The region of the surface 122 of 10 has no dislocation defects extending upwards, so it can be seen that the gallium nitride epitaxial layer 16 is first grown from the side surface 124a of the patterned structure 124 when growing, and it is not easy to grow on the side surface 124a of the patterned structure 124. The above-mentioned surface 122 grows, therefore, it is difficult to form upwardly extending threading dislocation defects.
图6为本发明第二实施例的碳化硅基板20的示意图,其具有大致相同于第一实施例的结构,不同的是,本实施例的图案化结构202呈梯形,图案化结构202具有一顶面202a,顶面202a的表面粗糙度大于其侧面202b的表面粗糙度,相邻两个图案化结构202的顶面202a之间的间距D’为2~5微米,优选为为3微米。所述碳化硅基板20的制造流程与第一实施例大致相同,不同之处在于本实施例中对碳化硅基材进行干刻蚀的步骤中,侧向刻蚀的程度较少,因而形成所述顶面。由于对碳化硅基材进行干刻蚀的步骤,干刻蚀的介质部分会穿透硬屏蔽,而损伤图案化结构202的顶面202a,因此,图案化结构202的顶面202a亦会形成损伤区。6 is a schematic diagram of a silicon carbide substrate 20 according to a second embodiment of the present invention, which has substantially the same structure as that of the first embodiment. The difference is that the patterned structure 202 of this embodiment is trapezoidal, and the patterned structure 202 has a The top surface 202a, the surface roughness of the top surface 202a is greater than the surface roughness of the side surface 202b, and the distance D' between the top surfaces 202a of two adjacent patterned structures 202 is 2-5 microns, preferably 3 microns. The manufacturing process of the silicon carbide substrate 20 is substantially the same as that of the first embodiment, the difference is that in the step of dry etching the silicon carbide substrate in this embodiment, the degree of lateral etching is less, thus forming the silicon carbide substrate. the top surface. Due to the step of performing dry etching on the silicon carbide substrate, the dielectric part of the dry etching will penetrate the hard mask and damage the top surface 202a of the patterned structure 202, therefore, the top surface 202a of the patterned structure 202 will also form damage. Area.
请参阅图7及图8,制作本实施例的半导体芯片2的过程与第一实施例大致相同,其在氮化镓磊晶层22成长的初期,氮化镓22a先在图案化结构202的侧面202b成长(请参阅图7),而后往侧向逐渐延伸累积覆盖在所述表面204,同时往上累积,形成本实施例的半导体芯片2(请参阅图8)。所述氮化镓磊晶层22具有多个连接面222,所述连接面222分别连接在晶面为(-1,0,1,2)面的所述侧面202b,各所述连接面222的晶面为(-1,1,0,1)面。Please refer to FIG. 7 and FIG. 8 , the process of manufacturing the semiconductor chip 2 of this embodiment is roughly the same as that of the first embodiment. In the initial stage of the growth of the gallium nitride epitaxial layer 22, the gallium nitride 22a is first formed on the patterned structure 202. The side 202b grows (see FIG. 7 ), and then gradually extends laterally to cover the surface 204 and accumulates upwards to form the semiconductor chip 2 of this embodiment (see FIG. 8 ). The gallium nitride epitaxial layer 22 has a plurality of connection surfaces 222, the connection surfaces 222 are respectively connected to the side surfaces 202b whose crystal planes are (-1, 0, 1, 2) planes, each of the connection surfaces 222 The crystal plane of is (-1,1,0,1).
所述氮化镓磊晶层22在连接各所述侧面202b的部位具有往侧向延伸的差排缺陷224,且所述氮化镓磊晶层22在直接接触所述表面204的部位不具有往上延伸的差排缺陷。侧向延伸的差排缺陷224将不易往上延伸而形成穿透差排,使得所述图案化结构202上方的氮化镓磊晶层22的品质较高。The gallium nitride epitaxial layer 22 has dislocation defects 224 extending laterally at the parts connecting the side faces 202 b, and the gallium nitride epitaxial layer 22 does not have dislocation defects at the parts directly contacting the surface 204 A dislocation defect extending upwards. The laterally extending dislocation defects 224 are less likely to extend upward to form penetrating dislocations, so that the quality of the GaN epitaxial layer 22 above the patterned structure 202 is higher.
请参图9,为本实施例的半导体芯片2的氮化镓磊晶层22与碳化硅基板20的界面以透射电子显微镜(TEM)观测的影像,其中(b)为(a)的放大影像。由图9中可得知,氮化镓磊晶层22在邻近图案化结构202侧面202b的区域可明显观察到侧向延伸的差排缺陷,而氮化镓磊晶层22在邻近碳化硅基板20的所述表面204及所述顶面202a的区域则没有向上延伸的差排缺陷,由此可知,所述氮化镓磊晶层22在成长时是先由图案化结构202的侧面202b成长,而不易于在所述表面204及所述顶面202a成长,因此,不易形成向上延伸的穿透差排缺陷。Please refer to FIG. 9, which is an image observed by a transmission electron microscope (TEM) at the interface between the gallium nitride epitaxial layer 22 and the silicon carbide substrate 20 of the semiconductor chip 2 of this embodiment, wherein (b) is an enlarged image of (a) . It can be seen from FIG. 9 that laterally extending dislocation defects can be clearly observed in the region of the GaN epitaxial layer 22 adjacent to the side surface 202b of the patterned structure 202, while the GaN epitaxial layer 22 is adjacent to the silicon carbide substrate. The regions of the surface 204 and the top surface 202a of 20 do not have dislocation defects extending upward, so it can be seen that the GaN epitaxial layer 22 is first grown from the side surface 202b of the patterned structure 202 , it is not easy to grow on the surface 204 and the top surface 202a, therefore, it is not easy to form penetrating dislocation defects extending upward.
前述各实施例中氮化镓磊晶层直接设置于碳化硅基板顶部,且碳化硅基板与氮化镓磊晶层之间未设置碳化硅与氮化镓以外的其它材质的中介层(例如碳化铝缓冲层)。In the foregoing embodiments, the gallium nitride epitaxial layer is directly disposed on the top of the silicon carbide substrate, and no intermediary layer (such as carbon carbide) other than silicon carbide and gallium nitride is disposed between the silicon carbide substrate and the gallium nitride epitaxial layer aluminum buffer layer).
据上所述,由于形成在磊晶用碳化硅基板的图案化结构侧面的晶面为(-1,0,1,2)面可利于氮化镓磊晶层生长,因此,氮化镓磊晶层可由图案化结构的侧面先成长,而后才往侧向及往上累积。如此一来,在氮化镓磊晶层的底部形成侧向延伸的差排缺陷,便不易形成往上延伸的穿透差排缺陷,让氮化镓磊晶层具有良好的磊晶品质。According to the above, since the crystal plane formed on the side of the patterned structure of the silicon carbide substrate for epitaxy is the (-1,0,1,2) plane, it is beneficial to the growth of the gallium nitride epitaxial layer. Therefore, gallium nitride epitaxy The crystal layer can grow from the side of the patterned structure first, and then accumulate laterally and upwardly. In this way, laterally extending dislocation defects are formed at the bottom of the GaN epitaxial layer, and it is difficult to form penetrating dislocation defects extending upward, so that the GaN epitaxial layer has good epitaxial quality.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be considered Be the protection scope of the present invention.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106107342A TWI621219B (en) | 2017-03-07 | 2017-03-07 | Silicon carbide substrate for epitaxy and semiconductor wafer |
TW106107342 | 2017-03-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108573932A true CN108573932A (en) | 2018-09-25 |
CN108573932B CN108573932B (en) | 2020-06-16 |
Family
ID=62639896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710812888.2A Active CN108573932B (en) | 2017-03-07 | 2017-09-11 | Silicon carbide substrate for epitaxy and semiconductor chip |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108573932B (en) |
TW (1) | TWI621219B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI772950B (en) * | 2020-11-04 | 2022-08-01 | 長河企業有限公司 | Meta-structure for semiconductor substrate and method for manufacturing thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350388A (en) * | 2007-07-20 | 2009-01-21 | 广镓光电股份有限公司 | Semiconductor structure combination for semiconductor actinoelectricity component great crystal and production thereof |
CN102347352A (en) * | 2010-07-30 | 2012-02-08 | 台湾积体电路制造股份有限公司 | Semiconductor device and manufacturing method thereof |
CN104218131A (en) * | 2013-05-31 | 2014-12-17 | 丰田合成株式会社 | Method for producing group iii nitride semiconductor and group iii nitride semiconductor |
CN105355739A (en) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | Patterned substrate, preparation method and light-emitting diode |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201642306A (en) * | 2015-05-28 | 2016-12-01 | 固美實國際股份有限公司 | Substrate for epitaxial growth of group III-V compound semiconductor |
-
2017
- 2017-03-07 TW TW106107342A patent/TWI621219B/en active
- 2017-09-11 CN CN201710812888.2A patent/CN108573932B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350388A (en) * | 2007-07-20 | 2009-01-21 | 广镓光电股份有限公司 | Semiconductor structure combination for semiconductor actinoelectricity component great crystal and production thereof |
CN102347352A (en) * | 2010-07-30 | 2012-02-08 | 台湾积体电路制造股份有限公司 | Semiconductor device and manufacturing method thereof |
US20160064271A1 (en) * | 2010-07-30 | 2016-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Inverted Trapezoidal Recess for Epitaxial Growth |
CN104218131A (en) * | 2013-05-31 | 2014-12-17 | 丰田合成株式会社 | Method for producing group iii nitride semiconductor and group iii nitride semiconductor |
CN105355739A (en) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | Patterned substrate, preparation method and light-emitting diode |
Also Published As
Publication number | Publication date |
---|---|
TWI621219B (en) | 2018-04-11 |
TW201834153A (en) | 2018-09-16 |
CN108573932B (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5571503B2 (en) | Substrate structure and manufacturing method thereof | |
US10879065B2 (en) | III-V compound semiconductors in isolation regions and method forming same | |
KR102071034B1 (en) | Method of fabricating nitride substrate | |
JP2013251304A (en) | Laminate and laminate manufacturing method | |
JP2022104771A (en) | Semiconductor substrate, semiconductor device and electronic equipment | |
CN101097855A (en) | Method for manufacturing nitride semiconductor substrate and composite material substrate | |
JP2016072631A (en) | High-grade nitride semiconductor growth method | |
US20070298592A1 (en) | Method for manufacturing single crystalline gallium nitride material substrate | |
US8698284B2 (en) | Nitride-based semiconductor substrates having hollow member pattern and methods of fabricating the same | |
JP2009224758A (en) | Composite semiconductor substrate and method of manufacturing the same | |
CN108573932B (en) | Silicon carbide substrate for epitaxy and semiconductor chip | |
KR100357116B1 (en) | Growing Method for Nitride Semiconductor Film | |
US20150115277A1 (en) | Episubstrates for Selective Area Growth of Group III-V Material and a Method for Fabricating a Group III-V Material on a Silicon Substrate | |
US20150079769A1 (en) | Semiconductor device and method of manufacturing the same | |
CN111509095A (en) | Composite substrate and method of making the same | |
JP2015095585A (en) | Semiconductor device manufacturing method | |
CN111834206B (en) | Method for extending GeSi quantum dots | |
CN116745889A (en) | Semiconductor devices and manufacturing methods and terminal equipment | |
CN111312800A (en) | Semiconductor structure with epitaxial layer and manufacturing method thereof | |
KR101173985B1 (en) | Method of manufacturing a substrate | |
TWI792462B (en) | Composite substrate for epitaxial growth and method of manufacturing the same | |
WO2019127422A1 (en) | Led structure and preparation method therefor | |
CN106611810B (en) | Compound Semiconductor Thin Film Structure | |
KR100844767B1 (en) | Nitride substrate manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |