[go: up one dir, main page]

TWI792462B - Composite substrate for epitaxial growth and method of manufacturing the same - Google Patents

Composite substrate for epitaxial growth and method of manufacturing the same Download PDF

Info

Publication number
TWI792462B
TWI792462B TW110128060A TW110128060A TWI792462B TW I792462 B TWI792462 B TW I792462B TW 110128060 A TW110128060 A TW 110128060A TW 110128060 A TW110128060 A TW 110128060A TW I792462 B TWI792462 B TW I792462B
Authority
TW
Taiwan
Prior art keywords
substrate
semiconductor layer
heavily doped
layer
composite substrate
Prior art date
Application number
TW110128060A
Other languages
Chinese (zh)
Other versions
TW202305880A (en
Inventor
曾頎堯
吳建毅
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW110128060A priority Critical patent/TWI792462B/en
Publication of TW202305880A publication Critical patent/TW202305880A/en
Application granted granted Critical
Publication of TWI792462B publication Critical patent/TWI792462B/en

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A composite substrate for epitaxial growth includes a heavily doped substrate, a dielectric buffer layer and a semiconductor layer. The dielectric buffer layer is disposed on the heavily doped substrate. The semiconductor layer is disposed on the dielectric buffer layer, and a micro pattern is formed on one side of the semiconductor layer, where an epitaxial structure is grown on the side of the semiconductor layer having the micro pattern. In addition, a method of manufacturing the composite substrate is also provided.

Description

供磊晶成長的複合基板及其製作方法 Composite substrate for epitaxy growth and manufacturing method thereof

本揭露係關於一種複合基板,特別是關於一種供磊晶成長的複合基板及其製作方法。 The present disclosure relates to a composite substrate, in particular to a composite substrate for epitaxial growth and a manufacturing method thereof.

氮化鎵材料因為具有寬能隙、高臨界電場、高導熱率、高飽和電子速度、高頻傳輸能力以及元件體積小等特性,使得氮化鎵在高功率及高速電晶體的應用上被視為是相當理想的材料,尤其是在高電子遷移率電晶體(high electron mobility transistor,HEMT)等高頻元件或是發光二極體(LED)元件的應用上相當廣泛。 Gallium nitride material is regarded as a high-power and high-speed transistor application because of its wide energy gap, high critical electric field, high thermal conductivity, high saturation electron velocity, high-frequency transmission capability, and small component size. As an ideal material, it is widely used in high-frequency components such as high electron mobility transistor (HEMT) or light-emitting diode (LED) components.

矽基板在價格成本上有其競爭優勢,因此將氮化鎵等III-V族半導體化合物成長在矽基板上的電路設計方案正在蓬勃地研究與發展。由於氮化鎵與矽基板在晶格常數與熱膨脹係數等性質差異過大,使得氮化鎵成長期間會產生很大的拉應力,進而使矽晶圓翹曲甚至產生裂紋,如此在電性方面會導致所形成的氮化鎵元件漏電流增加,並降低載子遷移率與運作效率。 Silicon substrates have competitive advantages in terms of price and cost. Therefore, the circuit design scheme of growing III-V semiconductor compounds such as gallium nitride on silicon substrates is being vigorously researched and developed. Due to the large difference in properties such as lattice constant and thermal expansion coefficient between GaN and silicon substrates, a large tensile stress will be generated during the growth of GaN, which will cause the silicon wafer to warp or even crack. As a result, the leakage current of the formed GaN device increases, and the carrier mobility and operating efficiency are reduced.

有鑑於此,本揭露提供了供磊晶成長的複合基板及其製作方法,此 複合基板可抗翹曲,其提供高電子遷移率電晶體的磊晶結構成長,可得到高磊晶品質且低翹曲的磊晶結構,以解決習知技術中存在的缺失。 In view of this, the present disclosure provides a composite substrate for epitaxial growth and a manufacturing method thereof. The composite substrate can resist warping, and it provides epitaxial structure growth of high electron mobility transistors, and an epitaxial structure with high epitaxial quality and low warpage can be obtained, so as to solve the deficiencies in the conventional technology.

根據本揭露一實施例,提供一種供磊晶成長的複合基板,包括重摻雜基底、介電緩衝層、以及半導體層。介電緩衝層設置於重摻雜基底上,半導體層設置於介電緩衝層上,且半導體層的一側上形成有微圖案,其中磊晶結構係成長於半導體層的具有微圖案的一側上。 According to an embodiment of the present disclosure, a composite substrate for epitaxial growth is provided, including a heavily doped substrate, a dielectric buffer layer, and a semiconductor layer. The dielectric buffer layer is arranged on the heavily doped substrate, the semiconductor layer is arranged on the dielectric buffer layer, and a micropattern is formed on one side of the semiconductor layer, wherein the epitaxial structure is grown on the side of the semiconductor layer with the micropattern superior.

根據本揭露一實施例,提供一種供磊晶成長的複合基板的製作方法,包括:提供第一基板和第二基板;對第一基板進行重摻雜製程,形成重摻雜基底;對重摻雜基底、或第二基板、或前述兩者進行氧化處理,至少形成介電緩衝層包裹重摻雜基底、或第二基板;形成介電緩衝層後,將第二基板與重摻雜基底貼合;將第二基板與重摻雜基底貼合後,進行熱處理;將第二基板減薄,形成半導體層於介電緩衝層上;以及進行光微影和蝕刻製程,在半導體層的表面上形成微圖案,其中磊晶結構係成長於半導體層的具有微圖案的表面上。 According to an embodiment of the present disclosure, a method for manufacturing a composite substrate for epitaxial growth is provided, including: providing a first substrate and a second substrate; performing a heavily doped process on the first substrate to form a heavily doped base; The heterogeneous substrate, or the second substrate, or both of the above are oxidized to at least form a dielectric buffer layer to wrap the heavily doped substrate or the second substrate; after forming the dielectric buffer layer, attach the second substrate to the heavily doped substrate bonding; bonding the second substrate to the heavily doped substrate, then performing heat treatment; thinning the second substrate to form a semiconductor layer on the dielectric buffer layer; and performing photolithography and etching processes on the surface of the semiconductor layer A micropattern is formed, wherein epitaxial structures are grown on the micropatterned surface of the semiconductor layer.

100:複合基板 100: composite substrate

102:重摻雜基底 102:Heavily doped substrate

104:介電緩衝層 104: Dielectric buffer layer

106:半導體層 106: Semiconductor layer

106P:微圖案 106P: micro pattern

108:硬遮罩層 108: Hard mask layer

110:應力補償層 110: Stress compensation layer

114:介電緩衝層 114: Dielectric buffer layer

116:半導體層 116: semiconductor layer

200:磊晶結構 200: epitaxial structure

202:成核層 202: nucleation layer

204:緩衝層 204: buffer layer

206:高阻值層 206: High resistance layer

208:通道層 208: Channel layer

210:阻障層 210: barrier layer

212:蓋層 212: cover layer

300:製作方法 300: Production method

302:步驟 302: Step

304:步驟 304: step

306:步驟 306: Step

308:步驟 308: Step

310:步驟 310: step

312:步驟 312: Step

為讓本揭露的上述與其他目的、特徵及實施例能更明顯易懂,所附圖式之說明如下,此外,為了清楚起見,圖式中的各特徵可能未必按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the above and other objects, features and embodiments of the present disclosure more comprehensible, the attached drawings are described as follows. In addition, for the sake of clarity, each feature in the drawings may not necessarily be drawn according to the actual scale, so The dimensions of some features in some drawings may be intentionally enlarged or reduced.

第1圖是根據本揭露一實施例所繪示的複合基板的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a composite substrate according to an embodiment of the present disclosure.

第2圖是根據本揭露一實施例所繪示的磊晶結構成長於複合基板上的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of an epitaxial structure grown on a composite substrate according to an embodiment of the present disclosure.

第3圖、第4圖、第5圖和第6圖是根據本揭露一些實施例所繪示的複合基板的剖面示意圖,其中半導體層的表面上有不同型態的微圖案。 FIG. 3 , FIG. 4 , FIG. 5 and FIG. 6 are schematic cross-sectional views of composite substrates according to some embodiments of the present disclosure, wherein there are different types of micropatterns on the surface of the semiconductor layer.

第7圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,其中介電緩衝層包裹半導體層。 FIG. 7 is a schematic cross-sectional view of a composite substrate according to another embodiment of the disclosure, wherein a dielectric buffer layer wraps a semiconductor layer.

第8圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,其中介電緩衝層包裹半導體層,且重摻雜基底背面設置有應力補償層。 FIG. 8 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure, wherein a dielectric buffer layer wraps the semiconductor layer, and a stress compensation layer is disposed on the back of the heavily doped substrate.

第9圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,其包含兩層半導體層堆疊。 FIG. 9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the disclosure, which includes two stacked semiconductor layers.

第10圖是根據本揭露一實施例所繪示的複合基板的製作方法之流程圖。 FIG. 10 is a flowchart of a method for manufacturing a composite substrate according to an embodiment of the present disclosure.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本揭露的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。 In order to make the description of the present disclosure more detailed and complete, the following provides illustrative descriptions of the implementations and specific embodiments of the present disclosure; but this is not the only way to implement or use the specific embodiments of the present invention. The description covers features of various embodiments as well as method steps and their sequences for constructing and operating those embodiments. However, other embodiments can also be used to achieve the same or equivalent functions and step sequences.

以下描述的數值範圍與參數皆是約略的數值,在此處,「約」通常係指實際數值在一特定數值或範圍的正負10%、5%、1%或0.5%之內。當可理解此處所用的所有範圍、數量、數值、比例與百分比均經過「約」的修飾。因此,除非另有相反的說明,本說明書與附隨申請專利範圍所揭示的數值參數皆為約略的數值,且可視需求而更動。 The numerical ranges and parameters described below are approximate numerical values. Here, "about" usually means that the actual numerical value is within plus or minus 10%, 5%, 1% or 0.5% of a specific numerical value or range. It should be understood that all ranges, amounts, values, ratios and percentages used herein are modified by "about". Therefore, unless otherwise stated to the contrary, the numerical parameters disclosed in this specification and the appended patent claims are approximate values and may be changed as required.

第1圖是根據本揭露一實施例所繪示的複合基板100的剖面示意圖,複合基板100包含重摻雜基底102,例如n型或p型重摻雜基底,但不限於此。重摻雜基底102可以是單晶矽、多晶矽、非晶矽等矽基基底,或其他具有高熱傳導之材料,其中的摻雜原子可以是硼(B)、磷(P)、砷(As)、鋱(Tb)或前述之組合,且摻雜濃度高於1018原子數/立方公分(atom/cm3),更佳為高於1019atom/cm3。此外,複 合基板100還包含介電緩衝層104設置於重摻雜基底102上,以及半導體層106設置於介電緩衝層104上。介電緩衝層104可以是具有高介電常數的氧化層,在一實施例中,介電緩衝層104例如是氧化矽,並且可以使用熱氧化製程或沉積方式形成。在另一實施例中,介電緩衝層104可以是其他材質的介電層,例如是氮化矽(Si3N4)、氮氧化矽(SiON)、或是介電常數高於4的高介電常數的材料,並且可以利用沉積方式形成。根據本揭露一實施例,介電緩衝層104可以包裹重摻雜基底102的正面、背面和側面。根據本揭露另一實施例,介電緩衝層104可以包裹半導體層106的底面和側面。根據本揭露又另一實施例,介電緩衝層104和另一介電緩衝層可以分別包裹重摻雜基底102和半導體層106。 FIG. 1 is a schematic cross-sectional view of a composite substrate 100 according to an embodiment of the present disclosure. The composite substrate 100 includes a heavily doped substrate 102 , such as an n-type or p-type heavily doped substrate, but not limited thereto. The heavily doped substrate 102 can be a silicon-based substrate such as monocrystalline silicon, polycrystalline silicon, or amorphous silicon, or other materials with high thermal conductivity, and the dopant atoms therein can be boron (B), phosphorus (P), or arsenic (As). , tungsten (Tb) or a combination thereof, and the doping concentration is higher than 10 18 atoms/cubic centimeter (atom/cm 3 ), more preferably higher than 10 19 atom/cm 3 . In addition, the composite substrate 100 further includes a dielectric buffer layer 104 disposed on the heavily doped substrate 102 , and a semiconductor layer 106 disposed on the dielectric buffer layer 104 . The dielectric buffer layer 104 may be an oxide layer with a high dielectric constant. In one embodiment, the dielectric buffer layer 104 is, for example, silicon oxide, and may be formed by a thermal oxidation process or a deposition method. In another embodiment, the dielectric buffer layer 104 may be a dielectric layer made of other materials, such as silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), or a high dielectric material with a dielectric constant higher than 4. dielectric constant, and can be formed by deposition. According to an embodiment of the present disclosure, the dielectric buffer layer 104 may wrap the front, back and sides of the heavily doped substrate 102 . According to another embodiment of the present disclosure, the dielectric buffer layer 104 may wrap the bottom surface and the side surface of the semiconductor layer 106 . According to yet another embodiment of the present disclosure, the dielectric buffer layer 104 and another dielectric buffer layer may respectively wrap the heavily doped substrate 102 and the semiconductor layer 106 .

根據一實施例,半導體層106可以是單晶的矽或藍寶石(sapphire),並且半導體層106包括微圖案,例如是位於半導體層106的一側或表面上的微圖案106P。微圖案106P可以由複數個線形立體圖案構成,或者是由複數個立體圖案構成的陣列,這些個別的立體圖案的剖面形狀可以是梯形、倒梯形、三角形或方形,並且這些個別的立體圖案的平面形狀可以是圓形、三角形或多邊形,例如這些個別的立體圖案可以是圓形柱狀、圓形錐狀、三角形柱狀、多邊形柱狀、三角形錐狀、多邊形錐狀等。此外,這些個別的立體圖案可以利用半導體層106的底部互相連接,或者也可以互相分開而露出下方的介電緩衝層104。根據本揭露一實施例,微圖案106P的這些立體圖案的間距可以是0.5微米(μm)至10μm;個別的立體圖案的平面尺寸(例如寬度/長度/直徑等)可以是0.5μm至5μm;立體圖案的高度可以是0.2μm至5μm。重摻雜基底102的厚度遠大於半導體層106的厚度,根據本揭露一實施例,重摻雜基底102的厚度為小於1000μm,半導體層106的厚度為0.5μm至3μm,介電緩衝層104的厚度為0.5μm至2μm。 According to an embodiment, the semiconductor layer 106 may be single crystal silicon or sapphire, and the semiconductor layer 106 includes micropatterns, such as micropatterns 106P on one side or surface of the semiconductor layer 106 . The micropattern 106P can be made of a plurality of linear three-dimensional patterns, or an array of a plurality of three-dimensional patterns, the cross-sectional shape of these individual three-dimensional patterns can be trapezoidal, inverted trapezoidal, triangle or square, and the plane of these individual three-dimensional patterns The shape may be circular, triangular or polygonal, for example, these individual three-dimensional patterns may be circular pillars, circular cones, triangular pillars, polygonal pillars, triangular cones, polygonal cones, and the like. In addition, these individual three-dimensional patterns can be connected to each other by using the bottom of the semiconductor layer 106 , or can be separated from each other to expose the underlying dielectric buffer layer 104 . According to an embodiment of the present disclosure, the pitch of these three-dimensional patterns of the micropattern 106P may be 0.5 micrometers (μm) to 10 μm; the planar dimensions (such as width/length/diameter, etc.) of individual three-dimensional patterns may be 0.5 μm to 5 μm; three-dimensional The height of the pattern may be 0.2 μm to 5 μm. The thickness of the heavily doped substrate 102 is much greater than the thickness of the semiconductor layer 106. According to an embodiment of the present disclosure, the thickness of the heavily doped substrate 102 is less than 1000 μm, the thickness of the semiconductor layer 106 is 0.5 μm to 3 μm, and the thickness of the dielectric buffer layer 104 The thickness is 0.5 μm to 2 μm.

第2圖是根據本揭露一實施例所繪示的磊晶結構200成長於複合基板100上的剖面示意圖,磊晶結構200成長於複合基板100的半導體層106之具有微圖 案106P的表面上,在一實施例中,磊晶結構200可以是HEMT的III-V族化合物半導體元件磊晶結構(例如是氮化鎵元件磊晶結構),磊晶結構200可包含成核層202、緩衝層204、高阻值層206、通道層208、阻障層210及蓋層212,由下到上依序堆疊於複合基板100上,其中成核層202例如是氮化鋁(AlN)層;緩衝層204例如是組成漸變的氮化鋁鎵(AlGaN)層,或者是由氮化鋁鎵(AlGaN)層和氮化鎵(GaN)交錯堆疊而成的超晶格層(superlattice structure);高阻值層206例如是摻雜碳或鐵的氮化鋁鎵(AlGaN)、或氮化鎵(GaN)層,其電阻率高於緩衝層204的電阻率;通道層208例如是未摻雜或n型的氮化鎵(GaN)層;阻障層210例如是氮化鋁鎵(AlGaN)層、或氮化鋁(AlN)層;蓋層212例如是p型的氮化鋁鎵(AlGaN)層、或氮化鎵(GaN)層,但本揭露不限於上述材料。 FIG. 2 is a schematic cross-sectional view of an epitaxial structure 200 grown on a composite substrate 100 according to an embodiment of the present disclosure. The epitaxial structure 200 is grown on the semiconductor layer 106 of the composite substrate 100 with micro-patterns. On the surface of case 106P, in one embodiment, the epitaxial structure 200 may be a HEMT III-V compound semiconductor element epitaxial structure (such as a gallium nitride element epitaxial structure), and the epitaxial structure 200 may include nucleation Layer 202, buffer layer 204, high resistance layer 206, channel layer 208, barrier layer 210 and cover layer 212 are sequentially stacked on the composite substrate 100 from bottom to top, wherein the nucleation layer 202 is, for example, aluminum nitride ( AlN) layer; the buffer layer 204 is, for example, a graded aluminum gallium nitride (AlGaN) layer, or a superlattice layer (superlattice) formed by alternating stacking of aluminum gallium nitride (AlGaN) layers and gallium nitride (GaN) structure); the high-resistance layer 206 is, for example, aluminum gallium nitride (AlGaN) or gallium nitride (GaN) layer doped with carbon or iron, and its resistivity is higher than that of the buffer layer 204; the channel layer 208 is, for example, An undoped or n-type gallium nitride (GaN) layer; the barrier layer 210 is, for example, an aluminum gallium nitride (AlGaN) layer, or an aluminum nitride (AlN) layer; the capping layer 212 is, for example, a p-type aluminum nitride gallium (AlGaN) layer, or gallium nitride (GaN) layer, but the present disclosure is not limited to the above materials.

根據本揭露之實施例,由於在複合基板100的製作過程中包括施行高溫熱處理,且經過高溫熱處理後,重摻雜基底102中會析出(precipitation)氧化物,並且當摻雜濃度較高時,氧化物析出的密度也較高,使得重摻雜基底102的機械強度增加,進而在磊晶結構200成長於複合基板100上時,可以抵抗或減緩磊晶成長時的應力所造成的翹曲形變,並且降低磊晶過程中的升降溫所造成的熱衝擊,讓磊晶結構200的表面曲率變化小。舉例來說,當重摻雜基底102是矽基基底(silicon-based substrate)時,析出的氧化物可以包括摻質的氧化物,例如硼(B)、磷(P)、砷(As)、鋱(Tb)或前述之組合之氧化物。此外,增加重摻雜基底102的厚度有助於提昇複合基板100的抗翹曲能力,並且厚度較薄的半導體層106在高溫磊晶時會產生自體排列而降低應力,因此本揭露之複合基板100對於磊晶結構200之磊晶成長,可以達到高磊晶品質且抗翹曲的效果,例如磊晶結構200和複合基板100整體的翹曲度可以小於50μm。 According to the embodiment of the present disclosure, because high-temperature heat treatment is included in the manufacturing process of the composite substrate 100, and after high-temperature heat treatment, oxides will be precipitated in the heavily doped substrate 102, and when the doping concentration is high, The density of oxide precipitation is also higher, which increases the mechanical strength of the heavily doped substrate 102, and then when the epitaxial structure 200 is grown on the composite substrate 100, it can resist or slow down the warping deformation caused by the stress during epitaxial growth. , and reduce the thermal shock caused by the temperature rise and fall during the epitaxy process, so that the surface curvature of the epitaxy structure 200 changes little. For example, when the heavily doped substrate 102 is a silicon-based substrate, the precipitated oxides may include doped oxides, such as boron (B), phosphorus (P), arsenic (As), Oxides of tungsten (Tb) or combinations thereof. In addition, increasing the thickness of the heavily doped substrate 102 helps to improve the warpage resistance of the composite substrate 100, and the thinner semiconductor layer 106 will generate self-alignment during high-temperature epitaxy to reduce stress. For the epitaxial growth of the epitaxial structure 200 , the substrate 100 can achieve high epitaxial quality and anti-warping effect. For example, the overall warpage of the epitaxial structure 200 and the composite substrate 100 can be less than 50 μm.

又,還可以藉由調整介電緩衝層104的組成和厚度,用以增強複合基板100整體的抗彎曲性或楊氏係數(young’s modulus),因而改善複合基板100的翹 曲程度。 In addition, the composition and thickness of the dielectric buffer layer 104 can also be adjusted to enhance the overall bending resistance or Young's modulus of the composite substrate 100, thus improving the warpage of the composite substrate 100. degree of curvature.

此外,在複合基板100上磊晶成長磊晶結構200時,重摻雜基底102和半導體層106之間的鍵合界面可以釋放磊晶成長時所造成的應力,進一步防止翹曲及裂紋產生。再者,根據本揭露之實施例,半導體層106的表面上的微圖案106P可以讓磊晶結構200以側向磊晶成長(epitaxial lateral overgrowth,ELOG)方式成長,此磊晶方式可以在磊晶過程中將所產生的缺陷彎曲,避免缺陷擴散增加。同時,微圖案106P也可以增加磊晶成長的介面(boundary),吸收晶格不匹配所產生的應力,配合本揭露之複合基板100的抗翹曲特性,可以得到低缺陷密度、高磊晶品質、低翹曲度、低應力的氮化鎵磊晶結構,進而在後續應用於HEMT時,提昇HEMT的電性特性與效率,例如崩潰電壓、熱傳導及良率的提昇。 In addition, when the epitaxial structure 200 is epitaxially grown on the composite substrate 100 , the bonding interface between the heavily doped substrate 102 and the semiconductor layer 106 can release the stress caused by the epitaxial growth, further preventing warping and cracks. Moreover, according to an embodiment of the present disclosure, the micropattern 106P on the surface of the semiconductor layer 106 can allow the epitaxial structure 200 to grow in the manner of epitaxial lateral overgrowth (ELOG). The resulting defects are bent during the process to avoid increased defect diffusion. At the same time, the micropattern 106P can also increase the epitaxial growth interface (boundary), absorb the stress generated by lattice mismatch, and cooperate with the anti-warping characteristics of the composite substrate 100 disclosed in the present disclosure to obtain low defect density and high epitaxial quality. , low warpage, and low stress GaN epitaxial structure, and then when it is applied to HEMT in the future, it will improve the electrical characteristics and efficiency of HEMT, such as the breakdown voltage, heat conduction and yield improvement.

第3圖是根據本揭露一實施例所繪示的複合基板的剖面示意圖,第3圖與第1圖的差異在於第3圖的複合基板100之微圖案106P是由多個錐狀立體圖案構成的陣列,這些錐狀立體圖案的剖面形狀為三角形,並且這些錐狀立體圖案底部之間的位置可作為磊晶時的成核點。在一實施例中,這些錐狀立體圖案可利用半導體層106的底部互相連接;在另一實施例中,這些錐狀立體圖案也可以互相分開,而露出下方的介電緩衝層104。此外,根據本揭露一實施例,該些剖面形狀為三角形的立體圖案亦可以是彼此互相平行的條狀圖案。其他關於立體圖案的平面形狀、尺寸、間距等可參照前述第1圖的說明。 FIG. 3 is a schematic cross-sectional view of a composite substrate according to an embodiment of the present disclosure. The difference between FIG. 3 and FIG. 1 is that the micropattern 106P of the composite substrate 100 in FIG. 3 is composed of multiple pyramidal three-dimensional patterns. The cross-sectional shape of these pyramidal three-dimensional patterns is triangular, and the positions between the bottoms of these pyramidal three-dimensional patterns can be used as nucleation points during epitaxy. In one embodiment, these pyramidal three-dimensional patterns can be connected to each other by using the bottom of the semiconductor layer 106 ; in another embodiment, these pyramidal three-dimensional patterns can also be separated from each other to expose the underlying dielectric buffer layer 104 . In addition, according to an embodiment of the present disclosure, the three-dimensional patterns whose cross-sectional shapes are triangular may also be striped patterns parallel to each other. For other plane shapes, dimensions, pitches, etc. of the three-dimensional patterns, reference can be made to the description of the first FIG. 1 above.

第4圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第4圖與第3圖的差異在於第4圖的複合基板100之微圖案106P的這些柱狀立體圖案的剖面形狀為梯形,這些柱狀立體圖案的頂面可作為磊晶時的成核點。在一實施例中,這些柱狀立體圖案可利用半導體層106的底部互相連接。其他關於立體圖案的平面形狀、尺寸、間距等可參照前述第1圖的說明。 FIG. 4 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure. The difference between FIG. 4 and FIG. 3 lies in the cross-sections of the columnar three-dimensional patterns of the micropattern 106P of the composite substrate 100 in FIG. 4 The shape is trapezoidal, and the top surfaces of these columnar three-dimensional patterns can be used as nucleation points during epitaxy. In an embodiment, the columnar three-dimensional patterns can be connected to each other by using the bottom of the semiconductor layer 106 . For other plane shapes, dimensions, pitches, etc. of the three-dimensional patterns, reference can be made to the description of the first FIG. 1 above.

第5圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第 5圖與第4圖的差異在於第5圖的複合基板100之微圖案106P的這些柱狀立體圖案的剖面形狀為倒梯形,並且在這些柱狀立體圖案的頂面還設置有硬遮罩層108。硬遮罩層108可以是氮化矽、氧化矽、或前述之組合,或是其他耐高溫之材料,可以經由氧化反應、氮化反應或沉積方式形成硬遮罩層108的材料層,並經由光微影及蝕刻製程,形成硬遮罩層108的圖案。硬遮罩層108可以作為蝕刻出微圖案106P時的圖案化遮罩,並且可以保護微圖案106P的頂面。這些柱狀立體圖案的頂面、以及柱狀立體圖案底部之間的位置可作為磊晶時的成核點,在一實施例中,這些柱狀立體圖案可利用半導體層106的底部互相連接。其他關於立體圖案的平面形狀、尺寸、間距等可參照前述第1圖的說明。 FIG. 5 is a schematic cross-sectional view of a composite substrate according to another embodiment of the disclosure, and FIG. The difference between Figure 5 and Figure 4 is that the cross-sectional shape of these columnar three-dimensional patterns of the micropattern 106P of the composite substrate 100 in Figure 5 is an inverted trapezoid, and a hard mask layer is also provided on the top surface of these columnar three-dimensional patterns 108. The hard mask layer 108 can be made of silicon nitride, silicon oxide, or a combination of the foregoing, or other high-temperature-resistant materials. The material layer of the hard mask layer 108 can be formed through an oxidation reaction, a nitriding reaction, or a deposition method. Photolithography and etching process to form the pattern of the hard mask layer 108 . The hard mask layer 108 can serve as a patterned mask when the micropattern 106P is etched, and can protect the top surface of the micropattern 106P. The positions between the top surfaces of the columnar three-dimensional patterns and the bottoms of the columnar three-dimensional patterns can be used as nucleation points during epitaxy. In one embodiment, these columnar three-dimensional patterns can be connected to each other by using the bottom of the semiconductor layer 106 . For other plane shapes, dimensions, pitches, etc. of the three-dimensional patterns, reference can be made to the description of the first FIG. 1 above.

第6圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第6圖與第5圖的差異在於第6圖的複合基板100之微圖案106P的這些柱狀立體圖案的剖面形狀為梯形,這些梯形柱狀立體圖案的側面可作為磊晶時的成核點。在一實施例中,這些柱狀立體圖案互相分開而露出下方的介電緩衝層104,其他關於立體圖案的平面形狀、尺寸、間距等可參照前述第1圖的說明。 FIG. 6 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure. The difference between FIG. 6 and FIG. 5 lies in the cross-sections of the columnar three-dimensional patterns of the micropattern 106P of the composite substrate 100 in FIG. 6 The shape is trapezoidal, and the sides of these trapezoidal columnar three-dimensional patterns can be used as nucleation points during epitaxy. In one embodiment, these columnar three-dimensional patterns are separated from each other to expose the underlying dielectric buffer layer 104 . For other details about the planar shape, size, and spacing of the three-dimensional patterns, please refer to the description in FIG. 1 above.

第7圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第7圖與第1圖的差異在於第7圖的複合基板100之介電緩衝層104是包裹半導體層106的底面和側面。 FIG. 7 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure. The difference between FIG. 7 and FIG. 1 is that the dielectric buffer layer 104 of the composite substrate 100 in FIG. 7 is wrapped around the semiconductor layer 106. Bottom and sides.

第8圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第8圖與第7圖的差異在於第8圖的複合基板100之重摻雜基底102背面還另設置有應力補償層110。應力補償層110可以是介電層,例如是氧化矽、氮化矽或前述之組合,其厚度可以是0.1μm至10μm,可以經由熱氧化或沉積方式形成。根據本揭露一實施例,可以藉由應力補償層110的厚度來補償磊晶時複合基板100整體的翹曲度,並且也可以藉由應力補償層110的厚度來調整複合基板100的機械強度,例如楊氏係數。 FIG. 8 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure. The difference between FIG. 8 and FIG. compensation layer 110 . The stress compensation layer 110 can be a dielectric layer, such as silicon oxide, silicon nitride or a combination of the foregoing, with a thickness of 0.1 μm to 10 μm, and can be formed by thermal oxidation or deposition. According to an embodiment of the present disclosure, the overall warpage of the composite substrate 100 during epitaxy can be compensated by the thickness of the stress compensation layer 110 , and the mechanical strength of the composite substrate 100 can also be adjusted by the thickness of the stress compensation layer 110 , For example Young's coefficient.

第9圖是根據本揭露另一實施例所繪示的複合基板的剖面示意圖,第9圖與第1圖的差異在於第9圖的複合基板100還包含另一半導體層116和另一介電緩衝層114,設置於半導體層106和介電緩衝層104之間,使得第9圖的複合基板100具有兩層半導體層堆疊。在其他實施例中,於半導體層106和介電緩衝層104之間可以設置三層或更多層半導體層堆疊,並且在這些堆疊的半導體層之間設置其他介電緩衝層。根據本揭露一實施例,最上層的半導體層106為Si(111),其他半導體層可以是Si(111)、Si(100)、Si(110)之堆疊組合。這些堆疊的半導體層和介電緩衝層的介面並未完全鍵結,因此可以在高溫磊晶時局部移動至應力最小的位置,以釋放磊晶成長時所造成的應力,有效防止翹曲及裂紋的產生。 FIG. 9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present disclosure. The difference between FIG. 9 and FIG. 1 is that the composite substrate 100 in FIG. 9 further includes another semiconductor layer 116 and another dielectric. The buffer layer 114 is disposed between the semiconductor layer 106 and the dielectric buffer layer 104, so that the composite substrate 100 of FIG. 9 has a two-layer semiconductor layer stack. In other embodiments, a stack of three or more semiconductor layers may be disposed between the semiconductor layer 106 and the dielectric buffer layer 104 , and further dielectric buffer layers may be disposed between these stacked semiconductor layers. According to an embodiment of the present disclosure, the uppermost semiconductor layer 106 is Si(111), and other semiconductor layers may be a stacked combination of Si(111), Si(100), and Si(110). The interface between these stacked semiconductor layers and the dielectric buffer layer is not fully bonded, so it can be partially moved to the position with the least stress during high-temperature epitaxy to release the stress caused by epitaxy growth and effectively prevent warpage and cracks generation.

第10圖是根據本揭露一實施例所繪示的複合基板100的製作方法300之流程圖,首先施行步驟302,提供第一基板和第二基板。根據本揭露一實施例,第一基板可以是支撐晶圓(handle wafer),其材料可以是單晶矽、多晶矽或非晶矽等矽基基板。第二基板可以是元件晶圓(device wafer),其材料可以是單晶的矽、碳化矽、砷化鎵、藍寶石、磷化銦或氮化鎵。接著,施行步驟304,對第一基板進行重摻雜製程,以形成重摻雜基底,例如第1至9圖所示的重摻雜基底102。根據本揭露之實施例,重摻雜製程使用的摻雜原子可以是硼(B)、磷(P)、砷(As)、鋱(Tb)或前述之組合,且摻雜濃度高於1018atom/cm3,更佳為高於1019atom/cm3FIG. 10 is a flowchart of a manufacturing method 300 of the composite substrate 100 according to an embodiment of the present disclosure. Firstly, step 302 is performed to provide a first substrate and a second substrate. According to an embodiment of the present disclosure, the first substrate may be a handle wafer, and its material may be a silicon-based substrate such as monocrystalline silicon, polycrystalline silicon, or amorphous silicon. The second substrate may be a device wafer, and its material may be single crystal silicon, silicon carbide, gallium arsenide, sapphire, indium phosphide or gallium nitride. Next, step 304 is performed to perform a heavily doped process on the first substrate to form a heavily doped substrate, such as the heavily doped substrate 102 shown in FIGS. 1 to 9 . According to an embodiment of the present disclosure, the dopant atoms used in the heavy doping process may be boron (B), phosphorus (P), arsenic (As), uranium (Tb) or a combination thereof, and the doping concentration is higher than 10 18 atom/cm 3 , more preferably higher than 10 19 atom/cm 3 .

然後,施行步驟306,對重摻雜基底、或第二基板、或前述兩者進行氧化處理,至少形成一介電緩衝層包裹重摻雜基底、或第二基板,或者形成兩個介電緩衝層分別包裹前述兩者。例如,在一實施例中,如第1圖所示的介電緩衝層104包裹重摻雜基底102。在另一實施例中,介電緩衝層可包裹第二基板。在又另一實施例中,重摻雜基底和第二基板皆可各自被介電緩衝層包裹。在一實施例中,可在950℃至1250℃,例如1050℃,含氧的環境下進行熱氧化製程,以形成介電緩衝層。熱氧化製程的時間為1至6小時,介電緩衝層例如為厚度0.5μm 至2μm的氧化矽層。 Then, step 306 is performed to oxidize the heavily doped base or the second substrate, or both, to form at least one dielectric buffer layer surrounding the heavily doped base or the second substrate, or to form two dielectric buffer layers. The layers wrap the aforementioned two separately. For example, in one embodiment, the dielectric buffer layer 104 wraps around the heavily doped substrate 102 as shown in FIG. 1 . In another embodiment, a dielectric buffer layer may wrap the second substrate. In yet another embodiment, both the heavily doped base and the second substrate may each be wrapped by a dielectric buffer layer. In one embodiment, the thermal oxidation process may be performed at 950° C. to 1250° C., such as 1050° C., in an oxygen-containing environment to form the dielectric buffer layer. The time of the thermal oxidation process is 1 to 6 hours, and the thickness of the dielectric buffer layer is, for example, 0.5 μm to 2μm silicon oxide layer.

之後,將第二基板與重摻雜基底貼合。可在常壓或真空環境下,將第二基板與重摻雜基底對準貼合,此時形成在第二基板、或重摻雜基底、或前述兩者上的介電緩衝層有利於兩者的緊密貼合。 After that, attach the second substrate to the heavily doped base. The second substrate and the heavily doped substrate can be aligned and bonded under normal pressure or in a vacuum environment. At this time, the dielectric buffer layer formed on the second substrate, or the heavily doped substrate, or both of them is beneficial to the two substrates. tight fit.

之後,施行步驟308,將第二基板與重摻雜基底貼合後,進行熱處理。根據本揭露一實施例,第二基板與重摻雜基底貼合後的熱處理可在溫度950℃至1250℃、或1050℃至1250℃,含氧的環境下進行,熱處理時間為小於2小時。此熱處理可以幫助第二基板與重摻雜基底的鍵合(bonding),並且使得重摻雜基底發生氧析出行為,此析出行為是以摻雜原子的氧化物析出,隨著熱處理時間越長,摻雜濃度越高,析出的氧化物密度越高,且析出的氧化物尺寸也越大,這將有助於提昇重摻雜基底的機械強度,在一實施例中,相較於未摻雜的第一基板,重摻雜基底的楊氏係數可提高約10至15%。 Afterwards, step 308 is performed, and heat treatment is performed after bonding the second substrate and the heavily doped base. According to an embodiment of the present disclosure, the heat treatment after bonding the second substrate and the heavily doped base can be performed at a temperature of 950° C. to 1250° C. or 1050° C. to 1250° C. in an oxygen-containing environment, and the heat treatment time is less than 2 hours. This heat treatment can help the bonding (bonding) of the second substrate and the heavily doped substrate, and make the oxygen precipitation behavior of the heavily doped substrate occur. This precipitation behavior is the oxide precipitation of doping atoms. As the heat treatment time increases, The higher the doping concentration, the higher the density of the precipitated oxide, and the larger the size of the precipitated oxide, which will help to improve the mechanical strength of the heavily doped substrate. In one embodiment, compared with the undoped For the first substrate, the Young's modulus of the heavily doped substrate can be increased by about 10 to 15%.

然後,施行步驟310,將第二基板減薄,形成半導體層於介電緩衝層上,例如第1至9圖所示的半導體層106。根據本揭露一實施例,可藉由研磨、拋光等製程,將第二基板的厚度減薄為0.5μm至3μm。 Then, step 310 is performed to thin the second substrate to form a semiconductor layer on the dielectric buffer layer, such as the semiconductor layer 106 shown in FIGS. 1 to 9 . According to an embodiment of the present disclosure, the thickness of the second substrate can be reduced to 0.5 μm to 3 μm by grinding, polishing and other processes.

接著,施行步驟312,進行光微影及蝕刻製程,在半導體層的表面上形成微圖案,得到複合基板,其中磊晶結構係成長於半導體層的具有微圖案的表面上,例如第1至9圖所示的半導體層106的微圖案106P。可在半導體層106上塗布光阻層,進行曝光顯影(又稱光微影)製程,得到圖案化的光阻,或者利用雷射雕刻等方式得到圖案化的光阻。利用圖案化的光阻作為遮罩,對半導體層106進行蝕刻製程,在半導體層106的表面上形成微圖案106P。可以藉由光阻的圖案、半導體層106的材料、以及蝕刻製程所使用的蝕刻劑和蝕刻參數,來得到各種型態的微圖案106P。光阻的圖案可對應於欲形成的微圖案106P,並且可選用不同結晶面的半導體層106,在蝕刻後可得到不同型態的微圖案106P。蝕刻製程可以是 乾蝕刻或濕蝕刻製程,乾蝕刻例如是電漿蝕刻製程,可以使用含F、Cl、Br之蝕刻氣體的組合,或是其他蝕刻劑蒸氣,例如KOH、NaOH、HCl、HNO3等,並藉由控制蝕刻參數,例如蝕刻時間為0.5分鐘至3小時,蝕刻溫度為60℃至150℃,得到不同型態的微圖案106P。此外,根據本揭露一實施例,還可以在半導體層106上形成硬遮罩層,並經由光微影及蝕刻製程將硬遮罩層圖案化,利用圖案化的硬遮罩層作為蝕刻遮罩,對半導體層106進行蝕刻,形成微圖案106P,並且圖案化的硬遮罩層108留在微圖案106P的頂面上,如第5圖和第6圖所示。 Next, perform step 312, perform photolithography and etching processes, and form micropatterns on the surface of the semiconductor layer to obtain a composite substrate, wherein the epitaxial structure is grown on the surface of the semiconductor layer with micropatterns, such as the first to ninth A micropattern 106P of the semiconductor layer 106 is shown. A photoresist layer can be coated on the semiconductor layer 106 , and a patterned photoresist can be obtained by exposing and developing (also known as photolithography) process, or a patterned photoresist can be obtained by laser engraving or other methods. Using the patterned photoresist as a mask, an etching process is performed on the semiconductor layer 106 to form a micro pattern 106P on the surface of the semiconductor layer 106 . Various types of micropatterns 106P can be obtained according to the pattern of the photoresist, the material of the semiconductor layer 106 , and the etchant and etching parameters used in the etching process. The pattern of the photoresist can correspond to the micropattern 106P to be formed, and the semiconductor layer 106 with different crystal planes can be selected, and different types of micropattern 106P can be obtained after etching. The etching process can be a dry etching or a wet etching process. The dry etching is a plasma etching process, which can use a combination of etching gases containing F, Cl, Br, or other etchant vapors, such as KOH, NaOH, HCl, HNO 3 etc., and by controlling the etching parameters, for example, the etching time is 0.5 minutes to 3 hours, and the etching temperature is 60° C. to 150° C., to obtain different types of micropatterns 106P. In addition, according to an embodiment of the present disclosure, a hard mask layer can also be formed on the semiconductor layer 106, and the hard mask layer can be patterned through photolithography and etching processes, and the patterned hard mask layer can be used as an etching mask. , the semiconductor layer 106 is etched to form a micropattern 106P, and the patterned hard mask layer 108 is left on the top surface of the micropattern 106P, as shown in FIGS. 5 and 6 .

根據本揭露之實施例,磊晶結構200係成長於複合基板100之半導體層106的具有微圖案106P的表面上。半導體層106的表面上的微圖案106P可以讓磊晶結構200以側向磊晶成長(ELOG)方式成長,在磊晶過程中將所產生的缺陷彎曲,避免缺陷擴散增加,同時微圖案106P也可以增加磊晶成長的介面(boundary),吸收晶格不匹配所產生的應力。此外,複合基板100的重摻雜基底102於高溫熱處理後會有氧化物析出,其增加了重摻雜基底102的機械強度,進而在磊晶結構200成長於複合基板100上時,可以抵抗或減緩磊晶成長時的應力所造成的翹曲形變,並且降低磊晶過程中的升降溫所造成的熱衝擊,讓磊晶結構200的表面曲率變化小。因此,本揭露之複合基板100對於磊晶結構200之磊晶成長,可以達到高磊晶品質且抗翹曲的效果,進而在後續應用於HEMT時,可以提昇HEMT的電性特性與效率。 According to an embodiment of the present disclosure, the epitaxial structure 200 is grown on the surface of the semiconductor layer 106 of the composite substrate 100 having the micropattern 106P. The micropattern 106P on the surface of the semiconductor layer 106 can allow the epitaxial structure 200 to grow in a lateral epitaxy growth (ELOG) manner, and bend the generated defects during the epitaxy process to avoid increased defect diffusion. At the same time, the micropattern 106P also The interface (boundary) for epitaxial growth can be increased to absorb the stress generated by lattice mismatch. In addition, the heavily doped substrate 102 of the composite substrate 100 will have oxides precipitated after high temperature heat treatment, which increases the mechanical strength of the heavily doped substrate 102, and then when the epitaxial structure 200 grows on the composite substrate 100, it can resist or The warping deformation caused by the stress during the epitaxy growth is slowed down, and the thermal shock caused by the temperature rise and fall during the epitaxy process is reduced, so that the surface curvature of the epitaxy structure 200 changes little. Therefore, the composite substrate 100 of the present disclosure can achieve high epitaxial quality and anti-warping effects for the epitaxial growth of the epitaxial structure 200 , and further, when applied to HEMTs, can improve the electrical properties and efficiency of HEMTs.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:複合基板 100: composite substrate

102:重摻雜基底 102:Heavily doped substrate

104:介電緩衝層 104: Dielectric buffer layer

106:半導體層 106: Semiconductor layer

106P:微圖案 106P: micro pattern

200:磊晶結構 200: epitaxial structure

202:成核層 202: nucleation layer

204:緩衝層 204: buffer layer

206:高阻值層 206: High resistance layer

208:通道層 208: Channel layer

210:阻障層 210: barrier layer

212:蓋層 212: cover layer

Claims (7)

一種供磊晶成長的複合基板,包括:一重摻雜基底;一第一介電緩衝層,設置於該重摻雜基底上;一第二半導體層,設置於該第一介電緩衝層上;一第二介電緩衝層,設置於該第二半導體層上;以及一第一半導體層,設置於該第二介電緩衝層上,形成有一微圖案,並成長有一磊晶結構於該微圖案上。 A composite substrate for epitaxial growth, comprising: a heavily doped substrate; a first dielectric buffer layer disposed on the heavily doped substrate; a second semiconductor layer disposed on the first dielectric buffer layer; a second dielectric buffer layer, disposed on the second semiconductor layer; and a first semiconductor layer, disposed on the second dielectric buffer layer, forming a micropattern, and growing an epitaxial structure on the micropattern superior. 如請求項1所述的供磊晶成長的複合基板,其中該重摻雜基底的摻雜原子包括硼(B)、磷(P)、砷(As)或鋱(Tb),且摻雜濃度高於1018原子數/立方公分(atom/cm3)。 The composite substrate for epitaxial growth as described in Claim 1, wherein the doping atoms of the heavily doped substrate include boron (B), phosphorus (P), arsenic (As) or uranium (Tb), and the doping concentration Higher than 10 18 atoms/cubic centimeter (atom/cm 3 ). 如請求項1所述的供磊晶成長的複合基板,其中該重摻雜基底包括單晶矽、多晶矽或非晶矽,且該第一半導體層包括單晶的矽或藍寶石。 The composite substrate for epitaxial growth according to claim 1, wherein the heavily doped substrate includes single crystal silicon, polycrystalline silicon or amorphous silicon, and the first semiconductor layer includes single crystal silicon or sapphire. 如請求項1所述的供磊晶成長的複合基板,其中該第一介電緩衝層包括氧化矽,並包裹該重摻雜基底的正面、背面和側面、或包裹該第一半導體層的底面和側面、或包裹該重摻雜基底和該第一半導體層。 The composite substrate for epitaxial growth as described in claim 1, wherein the first dielectric buffer layer includes silicon oxide, and wraps the front, back, and side surfaces of the heavily doped substrate, or wraps the bottom surface of the first semiconductor layer and sides, or wrap the heavily doped substrate and the first semiconductor layer. 如請求項1所述的供磊晶成長的複合基板,更包括一應力補償層設置於該重摻雜基底的背面,其中該應力補償層包括氧化矽。 The composite substrate for epitaxial growth as claimed in claim 1 further includes a stress compensation layer disposed on the back side of the heavily doped substrate, wherein the stress compensation layer includes silicon oxide. 如請求項1所述的供磊晶成長的複合基板,其中該第一半導體層的 該微圖案包括複數個線形立體圖案、或複數個立體圖案構成的陣列,且該些立體圖案的剖面形狀包括梯形、倒梯形、三角形或方形,該些立體圖案的平面形狀包括圓形、三角形或多邊形。 The composite substrate for epitaxial growth as described in Claim 1, wherein the first semiconductor layer The micropattern includes a plurality of linear three-dimensional patterns, or an array of multiple three-dimensional patterns, and the cross-sectional shape of these three-dimensional patterns includes trapezoid, inverted trapezoid, triangle or square, and the planar shape of these three-dimensional patterns includes circle, triangle or polygon. 如請求項1所述的供磊晶成長的複合基板,其中該磊晶結構包括高電子遷移率電晶體的III-V族半導體元件磊晶結構。 The composite substrate for epitaxial growth as claimed in claim 1, wherein the epitaxial structure includes an epitaxial structure of a III-V group semiconductor element of a high electron mobility transistor.
TW110128060A 2021-07-30 2021-07-30 Composite substrate for epitaxial growth and method of manufacturing the same TWI792462B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110128060A TWI792462B (en) 2021-07-30 2021-07-30 Composite substrate for epitaxial growth and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110128060A TWI792462B (en) 2021-07-30 2021-07-30 Composite substrate for epitaxial growth and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202305880A TW202305880A (en) 2023-02-01
TWI792462B true TWI792462B (en) 2023-02-11

Family

ID=86661391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128060A TWI792462B (en) 2021-07-30 2021-07-30 Composite substrate for epitaxial growth and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI792462B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120119218A1 (en) * 2010-11-15 2012-05-17 Applied Materials, Inc. Method for forming a semiconductor device using selective epitaxy of group iii-nitride
TWI605494B (en) * 2015-07-28 2017-11-11 Sumco Corp Epitaxial wafer
US20200058746A1 (en) * 2018-08-14 2020-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming thin semiconductor-on-insulator (soi) substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120119218A1 (en) * 2010-11-15 2012-05-17 Applied Materials, Inc. Method for forming a semiconductor device using selective epitaxy of group iii-nitride
TWI605494B (en) * 2015-07-28 2017-11-11 Sumco Corp Epitaxial wafer
US20200058746A1 (en) * 2018-08-14 2020-02-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming thin semiconductor-on-insulator (soi) substrates

Also Published As

Publication number Publication date
TW202305880A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
TWI447959B (en) Method of manufacturing a nitride semiconductor crystal layer
KR100902512B1 (en) Method for growing BaN single crystals on silicon substrate, manufacturing method of BaN-based light emitting devices and BaN-based light emitting devices
JP5627649B2 (en) Method for manufacturing nitride semiconductor crystal layer
CN110783167B (en) Preparation method of semiconductor material patterned substrate, material film and device
JP5618655B2 (en) Light emitting device and manufacturing method thereof
KR20120032329A (en) Semiconductor device
CN103531612A (en) Semiconductor device
JP2007326771A (en) Formation method and compound semiconductor wafer
WO2013125185A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
CN102017193A (en) Semiconductor light-emitting device with double-sided passivation
KR101178505B1 (en) Substrate for semiconductor device and method for manufacturing the same
CN101542759A (en) Semiconductor wafer and semiconductor device and manufacturing method thereof
JP6239017B2 (en) Nitride semiconductor substrate
JP5460751B2 (en) Semiconductor device
KR101762177B1 (en) Semiconductor device and method of manufacturing the same
CN113451467A (en) Nitrogen-containing semiconductor element
TWI792462B (en) Composite substrate for epitaxial growth and method of manufacturing the same
KR20080114049A (en) Manufacturing Method of Semiconductor Device
CN111509095A (en) Composite substrate and method of making the same
US20150079769A1 (en) Semiconductor device and method of manufacturing the same
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
CN210378970U (en) Semiconductor structure and device
JP5059205B2 (en) Wafer and crystal growth method
CN106887495A (en) Epitaxial wafer of light emitting diode and preparation method thereof
KR101173985B1 (en) Method of manufacturing a substrate