CN101097855A - Method for manufacturing nitride semiconductor substrate and composite material substrate - Google Patents
Method for manufacturing nitride semiconductor substrate and composite material substrate Download PDFInfo
- Publication number
- CN101097855A CN101097855A CNA2006101001098A CN200610100109A CN101097855A CN 101097855 A CN101097855 A CN 101097855A CN A2006101001098 A CNA2006101001098 A CN A2006101001098A CN 200610100109 A CN200610100109 A CN 200610100109A CN 101097855 A CN101097855 A CN 101097855A
- Authority
- CN
- China
- Prior art keywords
- substrate
- nitride
- based semiconductor
- dielectric layer
- nitride semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 129
- 239000004065 semiconductor Substances 0.000 title claims abstract description 120
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims abstract description 59
- 229910002601 GaN Inorganic materials 0.000 claims description 17
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 15
- 238000003486 chemical etching Methods 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 13
- 238000000059 patterning Methods 0.000 claims description 12
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 8
- 239000010453 quartz Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 229910010293 ceramic material Inorganic materials 0.000 claims description 6
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 4
- 229910005540 GaP Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000001020 plasma etching Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 7
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 229910017083 AlN Inorganic materials 0.000 claims 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims 1
- 239000002196 Pyroceram Substances 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N hydrofluoric acid Substances F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
Images
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种氮化物半导体衬底(nitride semiconductor substrate)的制造方法,且特别是涉及一种能够形成低缺陷密度的氮化物半导体衬底的制造方法以及用上述方法制备的具有图案结构的复合材料衬底(compositematerial substrate)。The present invention relates to a method for manufacturing a nitride semiconductor substrate, and in particular to a method for manufacturing a nitride semiconductor substrate capable of forming a low defect density and a composite compound with a patterned structure prepared by the above method. Material substrate (composite material substrate).
背景技术Background technique
近几年来,氮化镓和相关的三元化合物半导体被广泛地应用在短波长光电元件与高功率高频元件中,但由于氮化镓衬底的制作不易,因此,其往往生长于其它种类的衬底上,例如,单晶氧化铝衬底以及碳化硅衬底上。虽然,氮化镓单晶已经能够成功的利用异质外延(Heteropeitaxy)技术生长于这两种衬底上,然而,由于晶格不匹配的缘故在外延过程中通常会造成高密度的缺陷,这些缺点将局限氮化镓材料在光电半导体元件的应用及发展。In recent years, gallium nitride and related ternary compound semiconductors have been widely used in short-wavelength optoelectronic components and high-power high-frequency components, but because gallium nitride substrates are not easy to manufacture, they are often grown on other types of on substrates, such as single crystal alumina substrates and silicon carbide substrates. Although GaN single crystals have been successfully grown on these two substrates using heteroepitaxial (Heteropeitaxy) technology, however, high-density defects are usually caused during the epitaxy process due to lattice mismatch. The disadvantages will limit the application and development of gallium nitride materials in optoelectronic semiconductor components.
一般而言,氮在液态镓中溶解度和扩散系数的限制,导致传统拉单晶技术很难完成氮化镓衬底的制作。故而近年来发展出氢化物气相外延法(Hydride Vapor Phase Epitaxy,HVPE),并利用此技术将蓝宝石(sapphire)衬底上的氮化镓厚度大幅提升以生长氮化镓厚膜,但是缺陷密度和宏观裂痕却无法有效的大幅降低,最主要的因素还是异质材料所存在的晶格常数和热膨胀系数差异所造成。Generally speaking, the limitation of the solubility and diffusion coefficient of nitrogen in liquid gallium makes it difficult to complete the fabrication of gallium nitride substrates by traditional single crystal pulling technology. Therefore, in recent years, the Hydride Vapor Phase Epitaxy (HVPE) method has been developed, and this technology is used to greatly increase the thickness of GaN on the sapphire substrate to grow GaN thick films, but the defect density and However, macro cracks cannot be effectively and greatly reduced. The most important factor is the difference in lattice constant and thermal expansion coefficient of heterogeneous materials.
目前已有制作低缺陷密度的氮化镓衬底的专利提出,如美国专利US6,964,914。这件专利主要是先将氮化镓或氮化铝的单晶基材执行氢离子(H+)注入,注入的深度即是将来转移后的厚度。然后,注入完毕后利用直接晶片键合(Direct-wafer-bonding)或媒介物晶片键合技术(Intermediate-wafer-bonding)将薄的氮化镓层转移到其它支撑衬底上,被转移的这层单晶层称为成核层(nucleation layer)。接着,利用氢化物气相外延法生长厚的氮化镓单晶层,最后,分离氮化镓厚膜与支撑衬底。At present, there have been patents for manufacturing gallium nitride substrates with low defect density, such as US Pat. No. 6,964,914. This patent is mainly to perform hydrogen ion (H + ) implantation on the single crystal substrate of gallium nitride or aluminum nitride first, and the depth of implantation is the thickness after transfer in the future. Then, after the implantation is completed, the thin gallium nitride layer is transferred to other supporting substrates using direct-wafer-bonding or intermediate-wafer-bonding technology. The single crystal layer is called the nucleation layer. Next, a thick gallium nitride single crystal layer is grown by hydride vapor phase epitaxy, and finally, the gallium nitride thick film and the supporting substrate are separated.
然而,上述美国专利固然是能制作无支撑(free standing)氮化镓厚膜,但是这件专利有几点是比较不利的,以下列几点说明:晶片键合过程中键合温度高达了800~1000℃,在薄成核层分离转移的过程其温度也是高达900~950℃,高温会使氮化镓或者支撑衬底因热膨胀系数差而破裂。另外,以氮化镓衬底来当作成核种子材料似乎是不敷成本,原因在于此衬底目前的成本高达1万美元,成本之高可见一斑。However, although the above-mentioned U.S. patent can produce a thick film of gallium nitride without support (free standing), there are several disadvantages in this patent. The following points are explained: the bonding temperature is as high as 800 during the wafer bonding process. ~1000°C, during the separation and transfer process of the thin nucleation layer, the temperature is also as high as 900~950°C, high temperature will cause gallium nitride or supporting substrate to crack due to the difference in thermal expansion coefficient. In addition, using a GaN substrate as a nucleation seed material seems to be insufficient in cost, because the current cost of this substrate is as high as US$10,000, which is evident in the high cost.
发明内容Contents of the invention
本发明的目的在于提供一种氮化物半导体衬底的制造方法,以得到低缺陷密度的半导体衬底。The object of the present invention is to provide a method for manufacturing a nitride semiconductor substrate to obtain a semiconductor substrate with low defect density.
本发明的再一目的是提供一种具有图案结构的复合材料衬底,可适用于生长低缺陷密度的氮化物半导体衬底。Another object of the present invention is to provide a composite material substrate with a pattern structure, which is suitable for growing a nitride semiconductor substrate with low defect density.
本发明提出一种氮化物半导体衬底的制造方法,包括先提供一个第一衬底,这个第一衬底包括第一基材、堆叠于第一基材上的氮化物半导体模板层以及堆叠于氮化物半导体模板层上的第一介质层。接着,构图第一介质层和氮化物半导体模板层,再提供一个第二衬底,这个第二衬底包括第二基材以及堆叠于第二基材上的第二介质层。随后,以键合转移(bonding and transfer)工艺将第一衬底的氮化物半导体模板层以及第一介质层转移到第二衬底的第二介质层上,然后利用一道外延工艺自氮化物半导体模板层生长一层氮化物半导体厚膜。之后,将氮化物半导体厚膜与第二衬底分离。The present invention proposes a method for manufacturing a nitride semiconductor substrate, which includes providing a first substrate first, and the first substrate includes a first base material, a nitride semiconductor template layer stacked on the first base material, and a nitride semiconductor template layer stacked on the first base material. The first dielectric layer on the nitride semiconductor template layer. Next, the first dielectric layer and the nitride semiconductor template layer are patterned, and a second substrate is provided, and the second substrate includes a second substrate and a second dielectric layer stacked on the second substrate. Subsequently, the nitride semiconductor template layer and the first dielectric layer of the first substrate are transferred to the second dielectric layer of the second substrate by a bonding and transfer process, and then an epitaxial process is used from the nitride semiconductor A thick nitride semiconductor film is grown on the template layer. After that, the nitride semiconductor thick film is separated from the second substrate.
依照本发明的优选实施例所述的制造方法,其中构图第一介质层和氮化物半导体模板层的方法包括光刻技术。而且,构图第一介质层和氮化物半导体模板层的步骤包括先构图第一介质层,再以构图的第一介质层当作蚀刻掩模,蚀刻上述氮化物半导体模板层。According to the manufacturing method described in the preferred embodiment of the present invention, the method for patterning the first dielectric layer and the nitride semiconductor template layer includes photolithography. Moreover, the step of patterning the first dielectric layer and the nitride semiconductor template layer includes first patterning the first dielectric layer, and then using the patterned first dielectric layer as an etching mask to etch the nitride semiconductor template layer.
依照本发明的优选实施例所述的制造方法,其中构图第一介质层和氮化物半导体模板层的方法包括将第一介质层和氮化物半导体模板层制作成具有直线型、网状型或点状分布型的图案。According to the manufacturing method described in the preferred embodiment of the present invention, wherein the method for patterning the first dielectric layer and the nitride semiconductor template layer includes making the first dielectric layer and the nitride semiconductor template layer to have a linear, mesh or dot pattern. distribution pattern.
依照本发明的优选实施例所述的制造方法,其中第一介质层和第二介质层的材料各自独立地包括SiO2、Si3N4或旋转涂布玻璃(Spin on glass,SOG)。According to the manufacturing method described in the preferred embodiment of the present invention, the materials of the first dielectric layer and the second dielectric layer each independently include SiO 2 , Si 3 N 4 or spin on glass (SOG).
依照本发明的优选实施例所述的制造方法,其中第二基材的材料包括蓝宝石、硅(Si)、GaP、InP、石英(Quartz)、耐高温玻璃或陶瓷材料。According to the manufacturing method described in the preferred embodiment of the present invention, the material of the second substrate includes sapphire, silicon (Si), GaP, InP, quartz (Quartz), high temperature resistant glass or ceramic material.
依照本发明的优选实施例所述的制造方法,其中外延工艺包括氢化物气相外延法(HVPE)、有机金属气相外延法(Metal-Organic chemical vapordeposition,MOCVD)或分子束外延(Molecular Beam Epitaxy,MBE)。According to the manufacturing method described in the preferred embodiment of the present invention, wherein the epitaxy process includes hydride vapor phase epitaxy (HVPE), metal-organic vapor phase epitaxy (Metal-Organic chemical vapordeposition, MOCVD) or molecular beam epitaxy (Molecular Beam Epitaxy, MBE ).
依照本发明的优选实施例所述的制造方法,其中分离氮化物半导体厚膜与第二衬底的方法包括利用化学蚀刻或机械力分离。而化学蚀刻的溶液包括HF或缓冲氧化物蚀刻液(Buffered Oxide Etch,BOE)。此外,分离氮化物半导体厚膜与第二衬底的方法包括同时交互使用化学蚀刻以及机械力,以加速分离。According to the manufacturing method described in the preferred embodiment of the present invention, the method of separating the nitride semiconductor thick film from the second substrate includes chemical etching or mechanical force separation. The chemical etching solution includes HF or buffered oxide etching solution (Buffered Oxide Etch, BOE). In addition, the method of separating the nitride semiconductor thick film from the second substrate includes using chemical etching and mechanical force alternately at the same time to accelerate the separation.
依照本发明的优选实施例所述的制造方法,其中提供第二衬底之后还包括构图第二介质层表面,以帮助化学蚀刻的溶液入侵。According to the manufacturing method described in the preferred embodiment of the present invention, after providing the second substrate, it further includes patterning the surface of the second dielectric layer, so as to help the intrusion of the chemical etching solution.
依照本发明的优选实施例所述的制造方法,其中将第一衬底的氮化物半导体模板层以及第一介质层转移到第二衬底的第二介质层上之后,还包括对氮化物半导体模板层进行化学机械研磨或反应离子蚀刻,以得到外延级的表面。According to the manufacturing method described in the preferred embodiment of the present invention, after transferring the nitride semiconductor template layer and the first dielectric layer of the first substrate to the second dielectric layer of the second substrate, further comprising: The template layer is subjected to chemical mechanical polishing or reactive ion etching to obtain an epitaxial grade surface.
依照本发明的优选实施例所述的制造方法,其中分离氮化物半导体厚膜与第二衬底之后,还包括对氮化物半导体厚膜进行表面研磨工艺。According to the manufacturing method described in the preferred embodiment of the present invention, after separating the nitride semiconductor thick film and the second substrate, it further includes performing a surface grinding process on the nitride semiconductor thick film.
依照本发明的优选实施例所述的制造方法,其中氮化物半导体厚膜的材料包括氮化镓或氮化铝。According to the manufacturing method described in the preferred embodiment of the present invention, the material of the nitride semiconductor thick film includes gallium nitride or aluminum nitride.
本发明再提出一种具有图案结构的复合材料衬底,包括衬底、第一介质层、第二介质层以及氮化物半导体材料。其中,第一介质层堆叠于衬底的表面上、第二介质层堆叠于第一介质层的表面上,且氮化物半导体材料堆叠于第二介质表面上,其特征为在氮化物半导体材料的表面具有多个图案。The present invention further proposes a composite material substrate with a pattern structure, including a substrate, a first dielectric layer, a second dielectric layer and a nitride semiconductor material. Wherein, the first dielectric layer is stacked on the surface of the substrate, the second dielectric layer is stacked on the surface of the first dielectric layer, and the nitride semiconductor material is stacked on the surface of the second dielectric, which is characterized in that the nitride semiconductor material The surface has multiple patterns.
依照本发明的优选实施例所述的复合材料衬底,其中上述图案包括直线型、网状型或点状分布型的图案。According to the composite material substrate described in the preferred embodiment of the present invention, the above-mentioned pattern includes a linear pattern, a mesh pattern, or a dot pattern pattern.
依照本发明的优选实施例所述的复合材料衬底,其中衬底的材料包括蓝宝石、硅、GaP、InP、石英、玻璃或陶瓷材料等可耐高温的材料。According to the composite material substrate described in the preferred embodiment of the present invention, the material of the substrate includes high temperature resistant materials such as sapphire, silicon, GaP, InP, quartz, glass or ceramic materials.
依照本发明的优选实施例所述的复合材料衬底,其中第一介质层和第二介质层的材料各自独立地包括SiO2、,Si3N4或旋转涂布玻璃。According to the composite material substrate described in the preferred embodiment of the present invention, the materials of the first dielectric layer and the second dielectric layer each independently include SiO 2 , Si 3 N 4 or spin-on-coated glass.
依照本发明的优选实施例所述的复合材料衬底,其中氮化物半导体材料的材料包括含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料。According to the composite material substrate according to the preferred embodiment of the present invention, the material of the nitride semiconductor material includes a semiconductor material containing one of indium (In), aluminum (Al) and gallium (Ga).
依照本发明的优选实施例所述的复合材料衬底,适用于制作无支撑(freestanding)氮化物半导体衬底。The composite material substrate according to the preferred embodiment of the present invention is suitable for making a freestanding nitride semiconductor substrate.
本发明因为在制作氮化物半导体衬底时先构图氮化物半导体模板层(template layer),以大幅降低后续外延生长时的缺陷密度,再利用晶片键合转移上述氮化物半导体模板层至异质衬底上作为单晶种子层。此外最后还可利用机械力自我分离(Self-separation)或是化学蚀刻分离即能得到低缺陷密度的氮化物半导体衬底。In the present invention, the nitride semiconductor template layer (template layer) is first patterned when making the nitride semiconductor substrate to greatly reduce the defect density during subsequent epitaxial growth, and then the nitride semiconductor template layer is transferred to the heterogeneous substrate by wafer bonding. The bottom serves as a single crystal seed layer. In addition, finally, a nitride semiconductor substrate with low defect density can be obtained through mechanical self-separation or chemical etching separation.
为让本发明的上述和其它目的、特征和优点能更明显易懂,以下配合附图以及优选实施例,以更详细地说明本发明。In order to make the above and other objects, features and advantages of the present invention more comprehensible, the present invention will be described in more detail below with reference to the accompanying drawings and preferred embodiments.
附图说明Description of drawings
图1A至图1I是依照本发明的优选实施例的氮化物半导体衬底的制造流程剖面图。1A to 1I are cross-sectional views of a manufacturing process of a nitride semiconductor substrate according to a preferred embodiment of the present invention.
图2是依照本发明的另一优选实施例的具有图案结构的复合材料衬底的结构剖面图。Fig. 2 is a structural sectional view of a composite material substrate with a pattern structure according to another preferred embodiment of the present invention.
简单符号说明simple notation
100:第一衬底100: first substrate
104、104a:氮化物半导体模板层104, 104a: nitride semiconductor template layer
105:外延级的表面105: The surface of the epitaxial level
106、106a:第一介质层106, 106a: the first dielectric layer
108:氮化物半导体厚膜108: Nitride semiconductor thick film
110:第二衬底110: second substrate
112:第二基材112: Second substrate
114:第二介质层114: Second dielectric layer
116:尖刀片116: sharp blade
200:衬底200: Substrate
202:第一介质层202: The first dielectric layer
204:第二介质层204: Second dielectric layer
206:氮化物半导体材料206: Nitride semiconductor materials
208:图案208: pattern
具体实施方式Detailed ways
图1A至图1I是依照本发明的优选实施例的氮化物半导体衬底的制造流程剖面图。1A to 1I are cross-sectional views of a manufacturing process of a nitride semiconductor substrate according to a preferred embodiment of the present invention.
请参照图1A,提供一个第一衬底100,其中包括一个第一基材102、堆叠于第一基材102上的一层氮化物半导体模板层104以及堆叠于氮化物半导体模板层104上的一层第一介质层106。其中,氮化物半导体模板层104的材料譬如是含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料,如GaN、AlN、InN、AlGaN、InGaN或AlInN。而第一基材102则为一种外延衬底,如蓝宝石、SiC或者硅衬底。第一介质层106的材料可以是SiO2、Si3N4、旋转涂布玻璃或者其它适合的材料。1A, a
请继续参照图1A,其中所示的各层(亦即氮化物半导体模板层104与第一介质层106)均可利用本发明所属技术领域的普通技术人员所知悉的方式形成。举例来说,上述氮化物半导体模板层104的形成可利用如有机金属气相外延法、分子束外延等方法来达成。Please continue to refer to FIG. 1A , each layer shown therein (ie, the nitride
然后,请参照图1B,构图图1A中的第一介质层106和氮化物半导体模板层104,其制造方法包括光刻技术,且流程如本图是先构图第一介质层106,而使构图后的第一介质层106a具有直线型、网状型或点状分布型的图案。Then, referring to FIG. 1B, patterning the
接着,请参照图1C,以构图的第一介质层106a当作蚀刻掩模(etchingmask),蚀刻氮化物半导体模板层104。此时,被蚀刻的氮化物半导体模板层104a会形成与第一介质层106a相同的图案。除此之外,上述构图的第一介质层106a和氮化物半导体模板层104a也可以用一层光致抗蚀剂层(未绘示)作为蚀刻掩模,来进行构图的步骤。Next, referring to FIG. 1C , the nitride
之后,请参照图1D,提供一个第二衬底110作为支撑衬底(supportingsubstrate)用,这个第二衬底110至少包括一个第二基材112以及堆叠于第二基材112上的一层第二介质层114。其中,第二基材112的材料例如是蓝宝石、硅、GaP、InP、石英、耐高温玻璃或陶瓷材料。而第二介质层114的材料例如是SiO2、Si3N4或旋转涂布玻璃。此外,提供第二衬底110之后如有需要,可再构图第二介质层114表面,以帮助后续工艺中的化学蚀刻的溶液入侵。Afterwards, referring to FIG. 1D, a
然后,请参照图1E,以键合转移工艺将第一衬底100的氮化物半导体模板层104a以及第一介质层106a转移到第二衬底110的第二介质层114上。其中,第一介质层106a与第二介质层114可选择利用亲水性(SC1=H2O-NH4OH-H2O2)晶片键合法(wafer bonding)先进行键合。接着,通过物理力来将氮化物半导体模板层104a转移到第二衬底110上。譬如:当第一基材102与第二基材112的材料为硅或蓝宝石,则可通过材料间的热膨胀系数差异而直接完成键合转移的步骤。Then, referring to FIG. 1E , the nitride
接着,请参照图1F,可在上述键合转移工艺之后,选择对氮化物半导体模板层104a进行化学机械研磨(Chemical Mechnical Polishing,CMP)或反应离子蚀刻,以得到外延级的表面(epi-ready)105,并降低缺陷密度。Next, please refer to FIG. 1F, after the above-mentioned bonding transfer process, the nitride
接下来,请参照图1G,利用一道外延工艺自氮化物半导体模板层104a生长一层氮化物半导体厚膜108,其中氮化物半导体厚膜108的材料包括氮化镓、氮化铝或是晶格常数与氮化物半导体模板层104a相近的材料。上述外延工艺是以构图的氮化物半导体模板层104a为基础,接着执行氮化镓单晶横向接合与厚膜生长,生长方式包括外延工艺,包括氢化物气相外延法(HVPE)、有机金属气相外延法(MOCVD)或分子束外延(MBE)。Next, referring to FIG. 1G, a nitride semiconductor
然后,请参照图1H-1与图1H-2,这两个图分别表示将氮化物半导体厚膜108与第二衬底110分离的不同方法。Then, please refer to FIG. 1H-1 and FIG. 1H-2 , which respectively show different methods for separating the nitride semiconductor
在图1H-1中,利用化学蚀刻的方式去除键合的第一与第二介质层106a、114(请见图1G),其中化学蚀刻的溶液包括氢氟酸(HF)或缓冲氧化物蚀刻液(Buffered Oxide Etch,BOE);举例来说,BOE=49%、HF∶40%NH4F=1∶6。而且,如果在提供第二衬底(如图1D)之后构图第二介质层114表面,则此时将有助于化学蚀刻的溶液入侵。In FIG. 1H-1, chemical etching is used to remove the bonded first and second
在图1H-2中,利用机械力分离;举例来说,以一个尖刀片116将氮化物半导体厚膜108与第二衬底110分离。此外,分离氮化物半导体厚膜108与第二衬底110的方法还可以是同时交互使用图1H-1的化学蚀刻以及本图的机械力,以加速分离。而当第二基材112为石英或耐高温玻璃时,可直接利用研磨和化学蚀刻去除第二基材112。In FIG. 1H-2 , mechanical separation is used; for example, a sharp blade 116 is used to separate the nitride semiconductor
最后,请参照图1I,可对分离得到的氮化物半导体厚膜108进行表面研磨工艺,如化学机械研磨(CMP)。Finally, referring to FIG. 1I , a surface polishing process, such as chemical mechanical polishing (CMP), may be performed on the separated nitride semiconductor
图2是依照本发明的另一优选实施例的具有图案结构的复合材料衬底的结构剖面图,其适用于制作无支撑(free standing)氮化物半导体衬底。Fig. 2 is a structural sectional view of a composite material substrate with a pattern structure according to another preferred embodiment of the present invention, which is suitable for making a free standing nitride semiconductor substrate.
请参照图2,此一实施例的结构包括一个衬底200、一层第一介质层202、一层第二介质层204以及一层氮化物半导体材料206,其中衬底200的材料例如硅、GaP、InP、石英、玻璃或陶瓷材料等可耐高温的材料。第一介质层202堆叠于衬底200的表面上、第二介质层204堆叠于第一介质层202的表面上,且第一和第二介质层202、204的材料各自独立地包括SiO2、,Si3N4、旋转涂布玻璃或其它适合的材料。而氮化物半导体材料206堆叠于第二介质层204表面上,其中氮化物半导体材料206的材料包括含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料,如GaN、AlN、InN、AlGaN、InGaN或AlInN。而且,氮化物半导体材料206的表面具有图案208,且所述图案208例如是直线型、网状型、点状分布型或其它适合的图案。Please refer to FIG. 2 , the structure of this embodiment includes a
综上所述,本发明的特点在于利用构图的氮化物半导体模板层作为单晶种子层,以大幅降低后续外延生长时的缺陷密度。并且,利用晶片键合转移上述氮化物半导体模板层至异质衬底上。此外,在外延工艺后,还可利用机械力自我分离(self-separation)或是化学蚀刻分离得到低缺陷密度的氮化物半导体衬底,因此比现有技术简单且成本低。In summary, the present invention is characterized in that the patterned nitride semiconductor template layer is used as a single crystal seed layer to greatly reduce the defect density during subsequent epitaxial growth. In addition, the above-mentioned nitride semiconductor template layer is transferred to the heterogeneous substrate by wafer bonding. In addition, after the epitaxial process, a nitride semiconductor substrate with low defect density can be obtained by self-separation by mechanical force or chemical etching, which is simpler and lower in cost than the prior art.
虽然本发明以优选实施例披露如上,然而其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围应当以权利要求所界定者为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention What is defined in the claims shall prevail.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101001098A CN100505164C (en) | 2006-06-28 | 2006-06-28 | Method for manufacturing nitride semiconductor substrate and composite material substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101001098A CN100505164C (en) | 2006-06-28 | 2006-06-28 | Method for manufacturing nitride semiconductor substrate and composite material substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101097855A true CN101097855A (en) | 2008-01-02 |
CN100505164C CN100505164C (en) | 2009-06-24 |
Family
ID=39011551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101001098A Expired - Fee Related CN100505164C (en) | 2006-06-28 | 2006-06-28 | Method for manufacturing nitride semiconductor substrate and composite material substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100505164C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710567A (en) * | 2009-11-27 | 2010-05-19 | 晶能光电(江西)有限公司 | Gallium nitride-based semiconductor device with composite carbon-based substrate and manufacturing method thereof |
CN101635250B (en) * | 2008-07-25 | 2012-01-25 | 展晶科技(深圳)有限公司 | Substrate structuring body removing method |
CN101651092B (en) * | 2008-08-11 | 2012-04-18 | 台湾积体电路制造股份有限公司 | Fabrication method of circuit structure |
CN101872815B (en) * | 2009-04-21 | 2012-07-04 | 财团法人工业技术研究院 | Light emitting diode element and its manufacturing method |
CN102560676A (en) * | 2012-01-18 | 2012-07-11 | 山东大学 | Method for performing GaN single crystal growth by using thinned and bonded structure |
CN101477943B (en) * | 2008-01-04 | 2013-02-13 | 晶元光电股份有限公司 | Method for separating two material systems |
TWI393174B (en) * | 2009-03-23 | 2013-04-11 | Ind Tech Res Inst | Nitride semiconductor substrate and method for manufacturing the same |
CN103077779A (en) * | 2013-01-11 | 2013-05-01 | 深圳顺络电子股份有限公司 | Production method of thick-electrode device |
CN103563099A (en) * | 2011-06-01 | 2014-02-05 | 皇家飞利浦有限公司 | Light emitting device bonded to a support substrate |
US8647901B2 (en) | 2006-08-31 | 2014-02-11 | Industrial Technology Research Institute | Method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate |
CN107346725A (en) * | 2016-05-05 | 2017-11-14 | 上海芯晨科技有限公司 | A kind of stripping transfer method of group III-nitride film |
CN109148652A (en) * | 2018-08-23 | 2019-01-04 | 上海天马微电子有限公司 | Inorganic light-emitting diode display panel, manufacturing method thereof and display device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW464953B (en) * | 1999-04-14 | 2001-11-21 | Matsushita Electronics Corp | Method of manufacturing III nitride base compound semiconductor substrate |
FR2835096B1 (en) * | 2002-01-22 | 2005-02-18 | PROCESS FOR MANUFACTURING SELF-CARRIER SUBSTRATE OF SINGLE-CRYSTALLINE SEMICONDUCTOR MATERIAL | |
KR100396469B1 (en) * | 2001-06-29 | 2003-09-02 | 삼성전자주식회사 | Method of forming the gate electrode in semiconductor device and Method of manufacturing the non-volatile memory device comprising the same |
-
2006
- 2006-06-28 CN CNB2006101001098A patent/CN100505164C/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8647901B2 (en) | 2006-08-31 | 2014-02-11 | Industrial Technology Research Institute | Method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate |
CN101477943B (en) * | 2008-01-04 | 2013-02-13 | 晶元光电股份有限公司 | Method for separating two material systems |
CN101635250B (en) * | 2008-07-25 | 2012-01-25 | 展晶科技(深圳)有限公司 | Substrate structuring body removing method |
CN101651092B (en) * | 2008-08-11 | 2012-04-18 | 台湾积体电路制造股份有限公司 | Fabrication method of circuit structure |
TWI393174B (en) * | 2009-03-23 | 2013-04-11 | Ind Tech Res Inst | Nitride semiconductor substrate and method for manufacturing the same |
CN101872815B (en) * | 2009-04-21 | 2012-07-04 | 财团法人工业技术研究院 | Light emitting diode element and its manufacturing method |
CN101710567A (en) * | 2009-11-27 | 2010-05-19 | 晶能光电(江西)有限公司 | Gallium nitride-based semiconductor device with composite carbon-based substrate and manufacturing method thereof |
CN103563099A (en) * | 2011-06-01 | 2014-02-05 | 皇家飞利浦有限公司 | Light emitting device bonded to a support substrate |
CN111509103A (en) * | 2011-06-01 | 2020-08-07 | 亮锐控股有限公司 | Light emitting device bonded to support substrate |
CN102560676A (en) * | 2012-01-18 | 2012-07-11 | 山东大学 | Method for performing GaN single crystal growth by using thinned and bonded structure |
CN102560676B (en) * | 2012-01-18 | 2014-08-06 | 山东大学 | Method for performing GaN single crystal growth by using thinned and bonded structure |
CN103077779A (en) * | 2013-01-11 | 2013-05-01 | 深圳顺络电子股份有限公司 | Production method of thick-electrode device |
CN107346725A (en) * | 2016-05-05 | 2017-11-14 | 上海芯晨科技有限公司 | A kind of stripping transfer method of group III-nitride film |
CN109148652A (en) * | 2018-08-23 | 2019-01-04 | 上海天马微电子有限公司 | Inorganic light-emitting diode display panel, manufacturing method thereof and display device |
Also Published As
Publication number | Publication date |
---|---|
CN100505164C (en) | 2009-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100505164C (en) | Method for manufacturing nitride semiconductor substrate and composite material substrate | |
US7687378B2 (en) | Fabricating method of nitride semiconductor substrate and composite material substrate | |
US8138003B2 (en) | Method of manufacturing nitride semiconductor substrates having a base substrate with parallel trenches | |
JP5371430B2 (en) | Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor | |
US7435666B2 (en) | Epitaxial growth method | |
CN101330002A (en) | Fabrication method of patterned sapphire substrate for nitride epitaxial growth | |
CN101651092B (en) | Fabrication method of circuit structure | |
US10262855B2 (en) | Manufacture of Group IIIA-nitride layers on semiconductor on insulator structures | |
CN116249803A (en) | Epitaxial wafer for ultraviolet light emitting element, method of manufacturing metal laminated substrate for ultraviolet light emitting element, method of manufacturing ultraviolet light emitting element, and method of manufacturing ultraviolet light emitting element array | |
US20070298592A1 (en) | Method for manufacturing single crystalline gallium nitride material substrate | |
US8263984B2 (en) | Process for making a GaN substrate | |
CN113707770A (en) | Processing technology of silicon substrate GaN | |
KR100323710B1 (en) | method for fabricating GaN semiconductor laser substate | |
JP4534356B2 (en) | Nitride semiconductor layer manufacturing method, nitride semiconductor substrate manufacturing method, and nitride semiconductor substrate manufacturing base | |
KR100771227B1 (en) | Nitride-based light emitting device having a dielectric DVR and its manufacturing method | |
KR20050029735A (en) | Method for manufacturing thick gan layer capable of reducing defects and easily separating | |
WO2021026751A1 (en) | Method for manufacturing nitride semiconductor substrate | |
JP7643250B2 (en) | Nitride semiconductor substrate and method for producing same | |
CN113745107B (en) | Manufacturing method of GaN device | |
KR100969159B1 (en) | Method of manufacturing nitride semiconductor substrate | |
JP2000058454A (en) | Forming method of mask for lateral direction epitaxial growth and lateral direction epitaxial growth method | |
KR100668649B1 (en) | Silicon-based Group III nitride-based light emitting device and its manufacturing method | |
KR100844767B1 (en) | Nitride substrate manufacturing method | |
CN108573932A (en) | Silicon carbide substrate for epitaxy and semiconductor chip | |
CN108242420A (en) | A preparation method of GaN layer transfer single crystal thin film based on silicon heterogeneous substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090624 Termination date: 20170628 |
|
CF01 | Termination of patent right due to non-payment of annual fee |