[go: up one dir, main page]

CN101097855A - Method for manufacturing nitride semiconductor substrate and composite material substrate - Google Patents

Method for manufacturing nitride semiconductor substrate and composite material substrate Download PDF

Info

Publication number
CN101097855A
CN101097855A CNA2006101001098A CN200610100109A CN101097855A CN 101097855 A CN101097855 A CN 101097855A CN A2006101001098 A CNA2006101001098 A CN A2006101001098A CN 200610100109 A CN200610100109 A CN 200610100109A CN 101097855 A CN101097855 A CN 101097855A
Authority
CN
China
Prior art keywords
substrate
nitride
based semiconductor
dielectric layer
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101001098A
Other languages
Chinese (zh)
Other versions
CN100505164C (en
Inventor
刘柏均
刘文岳
赖志铭
郭义德
蔡政达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CNB2006101001098A priority Critical patent/CN100505164C/en
Publication of CN101097855A publication Critical patent/CN101097855A/en
Application granted granted Critical
Publication of CN100505164C publication Critical patent/CN100505164C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

A method for manufacturing a nitride semiconductor substrate includes providing a first substrate including a first base, a nitride semiconductor template layer stacked on the first base, and a first dielectric layer stacked on the nitride semiconductor template layer. Then, the first dielectric layer and the nitride semiconductor template layer are patterned, and a second substrate is provided and comprises a second base material and a second dielectric layer stacked on the second base material. And then, transferring the nitride semiconductor template layer of the first substrate and the first dielectric layer to a second dielectric layer of a second substrate by a bonding transfer process, and then growing a layer of nitride semiconductor thick film from the nitride semiconductor template layer by utilizing an epitaxial process. Thereafter, the nitride semiconductor thick film is separated from the second substrate.

Description

氮化物半导体衬底的制造方法及复合材料衬底Manufacturing method of nitride semiconductor substrate and composite material substrate

技术领域technical field

本发明涉及一种氮化物半导体衬底(nitride semiconductor substrate)的制造方法,且特别是涉及一种能够形成低缺陷密度的氮化物半导体衬底的制造方法以及用上述方法制备的具有图案结构的复合材料衬底(compositematerial substrate)。The present invention relates to a method for manufacturing a nitride semiconductor substrate, and in particular to a method for manufacturing a nitride semiconductor substrate capable of forming a low defect density and a composite compound with a patterned structure prepared by the above method. Material substrate (composite material substrate).

背景技术Background technique

近几年来,氮化镓和相关的三元化合物半导体被广泛地应用在短波长光电元件与高功率高频元件中,但由于氮化镓衬底的制作不易,因此,其往往生长于其它种类的衬底上,例如,单晶氧化铝衬底以及碳化硅衬底上。虽然,氮化镓单晶已经能够成功的利用异质外延(Heteropeitaxy)技术生长于这两种衬底上,然而,由于晶格不匹配的缘故在外延过程中通常会造成高密度的缺陷,这些缺点将局限氮化镓材料在光电半导体元件的应用及发展。In recent years, gallium nitride and related ternary compound semiconductors have been widely used in short-wavelength optoelectronic components and high-power high-frequency components, but because gallium nitride substrates are not easy to manufacture, they are often grown on other types of on substrates, such as single crystal alumina substrates and silicon carbide substrates. Although GaN single crystals have been successfully grown on these two substrates using heteroepitaxial (Heteropeitaxy) technology, however, high-density defects are usually caused during the epitaxy process due to lattice mismatch. The disadvantages will limit the application and development of gallium nitride materials in optoelectronic semiconductor components.

一般而言,氮在液态镓中溶解度和扩散系数的限制,导致传统拉单晶技术很难完成氮化镓衬底的制作。故而近年来发展出氢化物气相外延法(Hydride Vapor Phase Epitaxy,HVPE),并利用此技术将蓝宝石(sapphire)衬底上的氮化镓厚度大幅提升以生长氮化镓厚膜,但是缺陷密度和宏观裂痕却无法有效的大幅降低,最主要的因素还是异质材料所存在的晶格常数和热膨胀系数差异所造成。Generally speaking, the limitation of the solubility and diffusion coefficient of nitrogen in liquid gallium makes it difficult to complete the fabrication of gallium nitride substrates by traditional single crystal pulling technology. Therefore, in recent years, the Hydride Vapor Phase Epitaxy (HVPE) method has been developed, and this technology is used to greatly increase the thickness of GaN on the sapphire substrate to grow GaN thick films, but the defect density and However, macro cracks cannot be effectively and greatly reduced. The most important factor is the difference in lattice constant and thermal expansion coefficient of heterogeneous materials.

目前已有制作低缺陷密度的氮化镓衬底的专利提出,如美国专利US6,964,914。这件专利主要是先将氮化镓或氮化铝的单晶基材执行氢离子(H+)注入,注入的深度即是将来转移后的厚度。然后,注入完毕后利用直接晶片键合(Direct-wafer-bonding)或媒介物晶片键合技术(Intermediate-wafer-bonding)将薄的氮化镓层转移到其它支撑衬底上,被转移的这层单晶层称为成核层(nucleation layer)。接着,利用氢化物气相外延法生长厚的氮化镓单晶层,最后,分离氮化镓厚膜与支撑衬底。At present, there have been patents for manufacturing gallium nitride substrates with low defect density, such as US Pat. No. 6,964,914. This patent is mainly to perform hydrogen ion (H + ) implantation on the single crystal substrate of gallium nitride or aluminum nitride first, and the depth of implantation is the thickness after transfer in the future. Then, after the implantation is completed, the thin gallium nitride layer is transferred to other supporting substrates using direct-wafer-bonding or intermediate-wafer-bonding technology. The single crystal layer is called the nucleation layer. Next, a thick gallium nitride single crystal layer is grown by hydride vapor phase epitaxy, and finally, the gallium nitride thick film and the supporting substrate are separated.

然而,上述美国专利固然是能制作无支撑(free standing)氮化镓厚膜,但是这件专利有几点是比较不利的,以下列几点说明:晶片键合过程中键合温度高达了800~1000℃,在薄成核层分离转移的过程其温度也是高达900~950℃,高温会使氮化镓或者支撑衬底因热膨胀系数差而破裂。另外,以氮化镓衬底来当作成核种子材料似乎是不敷成本,原因在于此衬底目前的成本高达1万美元,成本之高可见一斑。However, although the above-mentioned U.S. patent can produce a thick film of gallium nitride without support (free standing), there are several disadvantages in this patent. The following points are explained: the bonding temperature is as high as 800 during the wafer bonding process. ~1000°C, during the separation and transfer process of the thin nucleation layer, the temperature is also as high as 900~950°C, high temperature will cause gallium nitride or supporting substrate to crack due to the difference in thermal expansion coefficient. In addition, using a GaN substrate as a nucleation seed material seems to be insufficient in cost, because the current cost of this substrate is as high as US$10,000, which is evident in the high cost.

发明内容Contents of the invention

本发明的目的在于提供一种氮化物半导体衬底的制造方法,以得到低缺陷密度的半导体衬底。The object of the present invention is to provide a method for manufacturing a nitride semiconductor substrate to obtain a semiconductor substrate with low defect density.

本发明的再一目的是提供一种具有图案结构的复合材料衬底,可适用于生长低缺陷密度的氮化物半导体衬底。Another object of the present invention is to provide a composite material substrate with a pattern structure, which is suitable for growing a nitride semiconductor substrate with low defect density.

本发明提出一种氮化物半导体衬底的制造方法,包括先提供一个第一衬底,这个第一衬底包括第一基材、堆叠于第一基材上的氮化物半导体模板层以及堆叠于氮化物半导体模板层上的第一介质层。接着,构图第一介质层和氮化物半导体模板层,再提供一个第二衬底,这个第二衬底包括第二基材以及堆叠于第二基材上的第二介质层。随后,以键合转移(bonding and transfer)工艺将第一衬底的氮化物半导体模板层以及第一介质层转移到第二衬底的第二介质层上,然后利用一道外延工艺自氮化物半导体模板层生长一层氮化物半导体厚膜。之后,将氮化物半导体厚膜与第二衬底分离。The present invention proposes a method for manufacturing a nitride semiconductor substrate, which includes providing a first substrate first, and the first substrate includes a first base material, a nitride semiconductor template layer stacked on the first base material, and a nitride semiconductor template layer stacked on the first base material. The first dielectric layer on the nitride semiconductor template layer. Next, the first dielectric layer and the nitride semiconductor template layer are patterned, and a second substrate is provided, and the second substrate includes a second substrate and a second dielectric layer stacked on the second substrate. Subsequently, the nitride semiconductor template layer and the first dielectric layer of the first substrate are transferred to the second dielectric layer of the second substrate by a bonding and transfer process, and then an epitaxial process is used from the nitride semiconductor A thick nitride semiconductor film is grown on the template layer. After that, the nitride semiconductor thick film is separated from the second substrate.

依照本发明的优选实施例所述的制造方法,其中构图第一介质层和氮化物半导体模板层的方法包括光刻技术。而且,构图第一介质层和氮化物半导体模板层的步骤包括先构图第一介质层,再以构图的第一介质层当作蚀刻掩模,蚀刻上述氮化物半导体模板层。According to the manufacturing method described in the preferred embodiment of the present invention, the method for patterning the first dielectric layer and the nitride semiconductor template layer includes photolithography. Moreover, the step of patterning the first dielectric layer and the nitride semiconductor template layer includes first patterning the first dielectric layer, and then using the patterned first dielectric layer as an etching mask to etch the nitride semiconductor template layer.

依照本发明的优选实施例所述的制造方法,其中构图第一介质层和氮化物半导体模板层的方法包括将第一介质层和氮化物半导体模板层制作成具有直线型、网状型或点状分布型的图案。According to the manufacturing method described in the preferred embodiment of the present invention, wherein the method for patterning the first dielectric layer and the nitride semiconductor template layer includes making the first dielectric layer and the nitride semiconductor template layer to have a linear, mesh or dot pattern. distribution pattern.

依照本发明的优选实施例所述的制造方法,其中第一介质层和第二介质层的材料各自独立地包括SiO2、Si3N4或旋转涂布玻璃(Spin on glass,SOG)。According to the manufacturing method described in the preferred embodiment of the present invention, the materials of the first dielectric layer and the second dielectric layer each independently include SiO 2 , Si 3 N 4 or spin on glass (SOG).

依照本发明的优选实施例所述的制造方法,其中第二基材的材料包括蓝宝石、硅(Si)、GaP、InP、石英(Quartz)、耐高温玻璃或陶瓷材料。According to the manufacturing method described in the preferred embodiment of the present invention, the material of the second substrate includes sapphire, silicon (Si), GaP, InP, quartz (Quartz), high temperature resistant glass or ceramic material.

依照本发明的优选实施例所述的制造方法,其中外延工艺包括氢化物气相外延法(HVPE)、有机金属气相外延法(Metal-Organic chemical vapordeposition,MOCVD)或分子束外延(Molecular Beam Epitaxy,MBE)。According to the manufacturing method described in the preferred embodiment of the present invention, wherein the epitaxy process includes hydride vapor phase epitaxy (HVPE), metal-organic vapor phase epitaxy (Metal-Organic chemical vapordeposition, MOCVD) or molecular beam epitaxy (Molecular Beam Epitaxy, MBE ).

依照本发明的优选实施例所述的制造方法,其中分离氮化物半导体厚膜与第二衬底的方法包括利用化学蚀刻或机械力分离。而化学蚀刻的溶液包括HF或缓冲氧化物蚀刻液(Buffered Oxide Etch,BOE)。此外,分离氮化物半导体厚膜与第二衬底的方法包括同时交互使用化学蚀刻以及机械力,以加速分离。According to the manufacturing method described in the preferred embodiment of the present invention, the method of separating the nitride semiconductor thick film from the second substrate includes chemical etching or mechanical force separation. The chemical etching solution includes HF or buffered oxide etching solution (Buffered Oxide Etch, BOE). In addition, the method of separating the nitride semiconductor thick film from the second substrate includes using chemical etching and mechanical force alternately at the same time to accelerate the separation.

依照本发明的优选实施例所述的制造方法,其中提供第二衬底之后还包括构图第二介质层表面,以帮助化学蚀刻的溶液入侵。According to the manufacturing method described in the preferred embodiment of the present invention, after providing the second substrate, it further includes patterning the surface of the second dielectric layer, so as to help the intrusion of the chemical etching solution.

依照本发明的优选实施例所述的制造方法,其中将第一衬底的氮化物半导体模板层以及第一介质层转移到第二衬底的第二介质层上之后,还包括对氮化物半导体模板层进行化学机械研磨或反应离子蚀刻,以得到外延级的表面。According to the manufacturing method described in the preferred embodiment of the present invention, after transferring the nitride semiconductor template layer and the first dielectric layer of the first substrate to the second dielectric layer of the second substrate, further comprising: The template layer is subjected to chemical mechanical polishing or reactive ion etching to obtain an epitaxial grade surface.

依照本发明的优选实施例所述的制造方法,其中分离氮化物半导体厚膜与第二衬底之后,还包括对氮化物半导体厚膜进行表面研磨工艺。According to the manufacturing method described in the preferred embodiment of the present invention, after separating the nitride semiconductor thick film and the second substrate, it further includes performing a surface grinding process on the nitride semiconductor thick film.

依照本发明的优选实施例所述的制造方法,其中氮化物半导体厚膜的材料包括氮化镓或氮化铝。According to the manufacturing method described in the preferred embodiment of the present invention, the material of the nitride semiconductor thick film includes gallium nitride or aluminum nitride.

本发明再提出一种具有图案结构的复合材料衬底,包括衬底、第一介质层、第二介质层以及氮化物半导体材料。其中,第一介质层堆叠于衬底的表面上、第二介质层堆叠于第一介质层的表面上,且氮化物半导体材料堆叠于第二介质表面上,其特征为在氮化物半导体材料的表面具有多个图案。The present invention further proposes a composite material substrate with a pattern structure, including a substrate, a first dielectric layer, a second dielectric layer and a nitride semiconductor material. Wherein, the first dielectric layer is stacked on the surface of the substrate, the second dielectric layer is stacked on the surface of the first dielectric layer, and the nitride semiconductor material is stacked on the surface of the second dielectric, which is characterized in that the nitride semiconductor material The surface has multiple patterns.

依照本发明的优选实施例所述的复合材料衬底,其中上述图案包括直线型、网状型或点状分布型的图案。According to the composite material substrate described in the preferred embodiment of the present invention, the above-mentioned pattern includes a linear pattern, a mesh pattern, or a dot pattern pattern.

依照本发明的优选实施例所述的复合材料衬底,其中衬底的材料包括蓝宝石、硅、GaP、InP、石英、玻璃或陶瓷材料等可耐高温的材料。According to the composite material substrate described in the preferred embodiment of the present invention, the material of the substrate includes high temperature resistant materials such as sapphire, silicon, GaP, InP, quartz, glass or ceramic materials.

依照本发明的优选实施例所述的复合材料衬底,其中第一介质层和第二介质层的材料各自独立地包括SiO2、,Si3N4或旋转涂布玻璃。According to the composite material substrate described in the preferred embodiment of the present invention, the materials of the first dielectric layer and the second dielectric layer each independently include SiO 2 , Si 3 N 4 or spin-on-coated glass.

依照本发明的优选实施例所述的复合材料衬底,其中氮化物半导体材料的材料包括含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料。According to the composite material substrate according to the preferred embodiment of the present invention, the material of the nitride semiconductor material includes a semiconductor material containing one of indium (In), aluminum (Al) and gallium (Ga).

依照本发明的优选实施例所述的复合材料衬底,适用于制作无支撑(freestanding)氮化物半导体衬底。The composite material substrate according to the preferred embodiment of the present invention is suitable for making a freestanding nitride semiconductor substrate.

本发明因为在制作氮化物半导体衬底时先构图氮化物半导体模板层(template layer),以大幅降低后续外延生长时的缺陷密度,再利用晶片键合转移上述氮化物半导体模板层至异质衬底上作为单晶种子层。此外最后还可利用机械力自我分离(Self-separation)或是化学蚀刻分离即能得到低缺陷密度的氮化物半导体衬底。In the present invention, the nitride semiconductor template layer (template layer) is first patterned when making the nitride semiconductor substrate to greatly reduce the defect density during subsequent epitaxial growth, and then the nitride semiconductor template layer is transferred to the heterogeneous substrate by wafer bonding. The bottom serves as a single crystal seed layer. In addition, finally, a nitride semiconductor substrate with low defect density can be obtained through mechanical self-separation or chemical etching separation.

为让本发明的上述和其它目的、特征和优点能更明显易懂,以下配合附图以及优选实施例,以更详细地说明本发明。In order to make the above and other objects, features and advantages of the present invention more comprehensible, the present invention will be described in more detail below with reference to the accompanying drawings and preferred embodiments.

附图说明Description of drawings

图1A至图1I是依照本发明的优选实施例的氮化物半导体衬底的制造流程剖面图。1A to 1I are cross-sectional views of a manufacturing process of a nitride semiconductor substrate according to a preferred embodiment of the present invention.

图2是依照本发明的另一优选实施例的具有图案结构的复合材料衬底的结构剖面图。Fig. 2 is a structural sectional view of a composite material substrate with a pattern structure according to another preferred embodiment of the present invention.

简单符号说明simple notation

100:第一衬底100: first substrate

104、104a:氮化物半导体模板层104, 104a: nitride semiconductor template layer

105:外延级的表面105: The surface of the epitaxial level

106、106a:第一介质层106, 106a: the first dielectric layer

108:氮化物半导体厚膜108: Nitride semiconductor thick film

110:第二衬底110: second substrate

112:第二基材112: Second substrate

114:第二介质层114: Second dielectric layer

116:尖刀片116: sharp blade

200:衬底200: Substrate

202:第一介质层202: The first dielectric layer

204:第二介质层204: Second dielectric layer

206:氮化物半导体材料206: Nitride semiconductor materials

208:图案208: pattern

具体实施方式Detailed ways

图1A至图1I是依照本发明的优选实施例的氮化物半导体衬底的制造流程剖面图。1A to 1I are cross-sectional views of a manufacturing process of a nitride semiconductor substrate according to a preferred embodiment of the present invention.

请参照图1A,提供一个第一衬底100,其中包括一个第一基材102、堆叠于第一基材102上的一层氮化物半导体模板层104以及堆叠于氮化物半导体模板层104上的一层第一介质层106。其中,氮化物半导体模板层104的材料譬如是含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料,如GaN、AlN、InN、AlGaN、InGaN或AlInN。而第一基材102则为一种外延衬底,如蓝宝石、SiC或者硅衬底。第一介质层106的材料可以是SiO2、Si3N4、旋转涂布玻璃或者其它适合的材料。1A, a first substrate 100 is provided, which includes a first substrate 102, a nitride semiconductor template layer 104 stacked on the first substrate 102, and a nitride semiconductor template layer 104 stacked on the A first dielectric layer 106. Wherein, the material of the nitride semiconductor template layer 104 is, for example, a semiconductor material containing one of indium (In), aluminum (Al) and gallium (Ga), such as GaN, AlN, InN, AlGaN, InGaN or AlInN. The first substrate 102 is an epitaxial substrate, such as sapphire, SiC or silicon substrate. The material of the first dielectric layer 106 may be SiO 2 , Si 3 N 4 , spin-on-glass or other suitable materials.

请继续参照图1A,其中所示的各层(亦即氮化物半导体模板层104与第一介质层106)均可利用本发明所属技术领域的普通技术人员所知悉的方式形成。举例来说,上述氮化物半导体模板层104的形成可利用如有机金属气相外延法、分子束外延等方法来达成。Please continue to refer to FIG. 1A , each layer shown therein (ie, the nitride semiconductor template layer 104 and the first dielectric layer 106 ) can be formed by methods known to those skilled in the art of the present invention. For example, the above-mentioned nitride semiconductor template layer 104 can be formed by methods such as metalorganic vapor phase epitaxy, molecular beam epitaxy, and the like.

然后,请参照图1B,构图图1A中的第一介质层106和氮化物半导体模板层104,其制造方法包括光刻技术,且流程如本图是先构图第一介质层106,而使构图后的第一介质层106a具有直线型、网状型或点状分布型的图案。Then, referring to FIG. 1B, patterning the first dielectric layer 106 and the nitride semiconductor template layer 104 in FIG. The last first dielectric layer 106a has a linear, mesh or point distribution pattern.

接着,请参照图1C,以构图的第一介质层106a当作蚀刻掩模(etchingmask),蚀刻氮化物半导体模板层104。此时,被蚀刻的氮化物半导体模板层104a会形成与第一介质层106a相同的图案。除此之外,上述构图的第一介质层106a和氮化物半导体模板层104a也可以用一层光致抗蚀剂层(未绘示)作为蚀刻掩模,来进行构图的步骤。Next, referring to FIG. 1C , the nitride semiconductor template layer 104 is etched using the patterned first dielectric layer 106 a as an etching mask. At this time, the etched nitride semiconductor template layer 104a will form the same pattern as the first dielectric layer 106a. In addition, the first dielectric layer 106 a and the nitride semiconductor template layer 104 a can also be patterned by using a photoresist layer (not shown) as an etching mask.

之后,请参照图1D,提供一个第二衬底110作为支撑衬底(supportingsubstrate)用,这个第二衬底110至少包括一个第二基材112以及堆叠于第二基材112上的一层第二介质层114。其中,第二基材112的材料例如是蓝宝石、硅、GaP、InP、石英、耐高温玻璃或陶瓷材料。而第二介质层114的材料例如是SiO2、Si3N4或旋转涂布玻璃。此外,提供第二衬底110之后如有需要,可再构图第二介质层114表面,以帮助后续工艺中的化学蚀刻的溶液入侵。Afterwards, referring to FIG. 1D, a second substrate 110 is provided as a supporting substrate. This second substrate 110 includes at least a second base material 112 and a layer of first base material stacked on the second base material 112. Two dielectric layers 114 . Wherein, the material of the second substrate 112 is, for example, sapphire, silicon, GaP, InP, quartz, high temperature resistant glass or ceramic material. The material of the second dielectric layer 114 is, for example, SiO 2 , Si 3 N 4 or spin-on-glass. In addition, after the second substrate 110 is provided, if necessary, the surface of the second dielectric layer 114 can be re-patterned to help the intrusion of the chemical etching solution in the subsequent process.

然后,请参照图1E,以键合转移工艺将第一衬底100的氮化物半导体模板层104a以及第一介质层106a转移到第二衬底110的第二介质层114上。其中,第一介质层106a与第二介质层114可选择利用亲水性(SC1=H2O-NH4OH-H2O2)晶片键合法(wafer bonding)先进行键合。接着,通过物理力来将氮化物半导体模板层104a转移到第二衬底110上。譬如:当第一基材102与第二基材112的材料为硅或蓝宝石,则可通过材料间的热膨胀系数差异而直接完成键合转移的步骤。Then, referring to FIG. 1E , the nitride semiconductor template layer 104 a and the first dielectric layer 106 a of the first substrate 100 are transferred to the second dielectric layer 114 of the second substrate 110 by a bonding transfer process. Wherein, the first dielectric layer 106 a and the second dielectric layer 114 may be bonded first by using a hydrophilic (SC1=H 2 O—NH 4 OH—H 2 O 2 ) wafer bonding method. Next, the nitride semiconductor template layer 104a is transferred onto the second substrate 110 by physical force. For example: when the material of the first substrate 102 and the second substrate 112 is silicon or sapphire, the step of bond transfer can be directly completed through the difference in thermal expansion coefficient between the materials.

接着,请参照图1F,可在上述键合转移工艺之后,选择对氮化物半导体模板层104a进行化学机械研磨(Chemical Mechnical Polishing,CMP)或反应离子蚀刻,以得到外延级的表面(epi-ready)105,并降低缺陷密度。Next, please refer to FIG. 1F, after the above-mentioned bonding transfer process, the nitride semiconductor template layer 104a can be optionally subjected to chemical mechanical polishing (CMP) or reactive ion etching to obtain an epitaxial-level surface (epi-ready) )105, and reduce the defect density.

接下来,请参照图1G,利用一道外延工艺自氮化物半导体模板层104a生长一层氮化物半导体厚膜108,其中氮化物半导体厚膜108的材料包括氮化镓、氮化铝或是晶格常数与氮化物半导体模板层104a相近的材料。上述外延工艺是以构图的氮化物半导体模板层104a为基础,接着执行氮化镓单晶横向接合与厚膜生长,生长方式包括外延工艺,包括氢化物气相外延法(HVPE)、有机金属气相外延法(MOCVD)或分子束外延(MBE)。Next, referring to FIG. 1G, a nitride semiconductor thick film 108 is grown from the nitride semiconductor template layer 104a by using an epitaxial process, wherein the material of the nitride semiconductor thick film 108 includes gallium nitride, aluminum nitride or lattice A material whose constant is close to that of the nitride semiconductor template layer 104a. The above-mentioned epitaxial process is based on the patterned nitride semiconductor template layer 104a, and then performs GaN single crystal lateral bonding and thick film growth. The growth method includes epitaxial processes, including hydride vapor phase epitaxy (HVPE), organic metal vapor phase epitaxy method (MOCVD) or molecular beam epitaxy (MBE).

然后,请参照图1H-1与图1H-2,这两个图分别表示将氮化物半导体厚膜108与第二衬底110分离的不同方法。Then, please refer to FIG. 1H-1 and FIG. 1H-2 , which respectively show different methods for separating the nitride semiconductor thick film 108 from the second substrate 110 .

在图1H-1中,利用化学蚀刻的方式去除键合的第一与第二介质层106a、114(请见图1G),其中化学蚀刻的溶液包括氢氟酸(HF)或缓冲氧化物蚀刻液(Buffered Oxide Etch,BOE);举例来说,BOE=49%、HF∶40%NH4F=1∶6。而且,如果在提供第二衬底(如图1D)之后构图第二介质层114表面,则此时将有助于化学蚀刻的溶液入侵。In FIG. 1H-1, chemical etching is used to remove the bonded first and second dielectric layers 106a, 114 (see FIG. 1G), wherein the chemical etching solution includes hydrofluoric acid (HF) or buffered oxide etching Liquid (Buffered Oxide Etch, BOE); for example, BOE=49%, HF:40% NH 4 F=1:6. Moreover, if the surface of the second dielectric layer 114 is patterned after the second substrate (as shown in FIG. 1D ) is provided, it will facilitate the intrusion of the chemical etching solution at this time.

在图1H-2中,利用机械力分离;举例来说,以一个尖刀片116将氮化物半导体厚膜108与第二衬底110分离。此外,分离氮化物半导体厚膜108与第二衬底110的方法还可以是同时交互使用图1H-1的化学蚀刻以及本图的机械力,以加速分离。而当第二基材112为石英或耐高温玻璃时,可直接利用研磨和化学蚀刻去除第二基材112。In FIG. 1H-2 , mechanical separation is used; for example, a sharp blade 116 is used to separate the nitride semiconductor thick film 108 from the second substrate 110 . In addition, the method of separating the nitride semiconductor thick film 108 and the second substrate 110 can also be to use the chemical etching in FIG. 1H-1 and the mechanical force in this figure alternately at the same time to accelerate the separation. And when the second substrate 112 is quartz or high temperature resistant glass, the second substrate 112 can be directly removed by grinding and chemical etching.

最后,请参照图1I,可对分离得到的氮化物半导体厚膜108进行表面研磨工艺,如化学机械研磨(CMP)。Finally, referring to FIG. 1I , a surface polishing process, such as chemical mechanical polishing (CMP), may be performed on the separated nitride semiconductor thick film 108 .

图2是依照本发明的另一优选实施例的具有图案结构的复合材料衬底的结构剖面图,其适用于制作无支撑(free standing)氮化物半导体衬底。Fig. 2 is a structural sectional view of a composite material substrate with a pattern structure according to another preferred embodiment of the present invention, which is suitable for making a free standing nitride semiconductor substrate.

请参照图2,此一实施例的结构包括一个衬底200、一层第一介质层202、一层第二介质层204以及一层氮化物半导体材料206,其中衬底200的材料例如硅、GaP、InP、石英、玻璃或陶瓷材料等可耐高温的材料。第一介质层202堆叠于衬底200的表面上、第二介质层204堆叠于第一介质层202的表面上,且第一和第二介质层202、204的材料各自独立地包括SiO2、,Si3N4、旋转涂布玻璃或其它适合的材料。而氮化物半导体材料206堆叠于第二介质层204表面上,其中氮化物半导体材料206的材料包括含有铟(In)、铝(Al)和镓(Ga)其中之一的半导体材料,如GaN、AlN、InN、AlGaN、InGaN或AlInN。而且,氮化物半导体材料206的表面具有图案208,且所述图案208例如是直线型、网状型、点状分布型或其它适合的图案。Please refer to FIG. 2 , the structure of this embodiment includes a substrate 200, a first dielectric layer 202, a second dielectric layer 204, and a layer of nitride semiconductor material 206, wherein the material of the substrate 200 is, for example, silicon, High temperature resistant materials such as GaP, InP, quartz, glass or ceramic materials. The first dielectric layer 202 is stacked on the surface of the substrate 200, the second dielectric layer 204 is stacked on the surface of the first dielectric layer 202, and the materials of the first and second dielectric layers 202, 204 each independently include SiO 2 , , Si 3 N 4 , spin-on glass or other suitable materials. The nitride semiconductor material 206 is stacked on the surface of the second dielectric layer 204, wherein the material of the nitride semiconductor material 206 includes a semiconductor material containing one of indium (In), aluminum (Al) and gallium (Ga), such as GaN, AlN, InN, AlGaN, InGaN, or AlInN. Moreover, the surface of the nitride semiconductor material 206 has a pattern 208, and the pattern 208 is, for example, a linear pattern, a mesh pattern, a dot pattern or other suitable pattern.

综上所述,本发明的特点在于利用构图的氮化物半导体模板层作为单晶种子层,以大幅降低后续外延生长时的缺陷密度。并且,利用晶片键合转移上述氮化物半导体模板层至异质衬底上。此外,在外延工艺后,还可利用机械力自我分离(self-separation)或是化学蚀刻分离得到低缺陷密度的氮化物半导体衬底,因此比现有技术简单且成本低。In summary, the present invention is characterized in that the patterned nitride semiconductor template layer is used as a single crystal seed layer to greatly reduce the defect density during subsequent epitaxial growth. In addition, the above-mentioned nitride semiconductor template layer is transferred to the heterogeneous substrate by wafer bonding. In addition, after the epitaxial process, a nitride semiconductor substrate with low defect density can be obtained by self-separation by mechanical force or chemical etching, which is simpler and lower in cost than the prior art.

虽然本发明以优选实施例披露如上,然而其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围应当以权利要求所界定者为准。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention What is defined in the claims shall prevail.

Claims (20)

1. the manufacture method of a nitride-based semiconductor substrate comprises:
First substrate is provided, and this first substrate comprises first base material, be stacked in the nitride-based semiconductor template layer on this first base material and be stacked in first dielectric layer on this nitride-based semiconductor template layer;
This first dielectric layer of composition and this nitride-based semiconductor template layer;
Second substrate is provided, and this second substrate comprises second base material and is stacked in second dielectric layer on this second base material;
On this second dielectric layer of this nitride-based semiconductor template layer and this first dielectric layer of this first substrate being transferred to this second substrate with the bonding shifting process;
Utilize epitaxy technique from this nitride-based semiconductor template layer growing nitride semiconductor thick film; And
Separate this nitride-based semiconductor thick film and this second substrate.
2. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein the method for this first dielectric layer of composition and this nitride-based semiconductor template layer comprises photoetching technique.
3. the manufacture method of nitride-based semiconductor substrate as claimed in claim 2, the step of this first dielectric layer of composition and this nitride-based semiconductor template layer wherein comprises:
This first dielectric layer of composition; And
This first dielectric layer with composition is used as etching mask, this nitride-based semiconductor template layer of etching.
4. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein the method for this first dielectric layer of composition and this nitride-based semiconductor template layer comprise this first dielectric layer and this nitride-based semiconductor template layer be made into have linear pattern, the pattern of reticular pattern or spot distribution type.
5. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein the material of this first dielectric layer and this second dielectric layer comprises SiO independently of one another 2, Si 3N 4Or rotary coating glass.
6. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein the material of this second base material comprises sapphire (sapphire), silicon (Si), GaP, InP, quartz, pyroceram or ceramic material.
7. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein this epitaxy technique comprises hydride vapour phase epitaxy method, organic metal vapour phase epitaxy method or molecular beam epitaxy.
8. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1 is wherein separated this nitride-based semiconductor thick film and is comprised with the method for this second substrate and utilize chemical etching or mechanical force to separate.
9. the manufacture method of nitride-based semiconductor substrate as claimed in claim 8, the method for wherein separating this nitride-based semiconductor thick film and this second substrate comprises mutual simultaneously use chemical etching and mechanical force, to quicken separation.
10. the manufacture method of nitride-based semiconductor substrate as claimed in claim 8, wherein the solution of this chemical etching comprises HF or buffer oxide etch liquid.
11. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1 wherein provides this second substrate also to comprise this second dielectric layer surface of composition afterwards.
12. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, after wherein on this second dielectric layer that this nitride-based semiconductor template layer and this first dielectric layer of this first substrate are transferred to this second substrate, also comprise this nitride-based semiconductor template layer is carried out cmp or reactive ion etching, to obtain the surface of extension level.
13. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1 is wherein separated after this nitride-based semiconductor thick film and this second substrate, also comprises this nitride-based semiconductor thick film is carried out surface grinding technology.
14. the manufacture method of nitride-based semiconductor substrate as claimed in claim 1, wherein the material of this nitride-based semiconductor thick film comprises gallium nitride or aluminium nitride.
15. the composite material substrate with patterning comprises:
Substrate;
First dielectric layer is stacked on the surface of this substrate;
Second dielectric layer is stacked on the surface of this first dielectric layer;
Nitride semi-conductor material is stacked on this second dielectric surface, it is characterized by: have a plurality of patterns on the surface of this nitride semi-conductor material.
16. the composite material substrate with patterning as claimed in claim 15, wherein those patterns comprise the pattern of linear pattern, reticular pattern or spot distribution type.
17. the composite material substrate with patterning as claimed in claim 15, wherein the material of this substrate comprises sapphire, silicon, GaP, InP, quartz, glass or ceramic material.
18. the composite material substrate with patterning as claimed in claim 15, wherein the material of this first dielectric layer and this second dielectric layer comprises SiO independently of one another 2, Si 3N 4Or rotary coating glass.
19. the composite material substrate with patterning as claimed in claim 15, wherein the material of this nitride semi-conductor material comprises and contains one of them semi-conducting material of indium, aluminium plus gallium.
20. the composite material substrate with patterning as claimed in claim 15, being applicable to make does not have the nitride-based semiconductor of support substrate.
CNB2006101001098A 2006-06-28 2006-06-28 Method for manufacturing nitride semiconductor substrate and composite material substrate Expired - Fee Related CN100505164C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101001098A CN100505164C (en) 2006-06-28 2006-06-28 Method for manufacturing nitride semiconductor substrate and composite material substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101001098A CN100505164C (en) 2006-06-28 2006-06-28 Method for manufacturing nitride semiconductor substrate and composite material substrate

Publications (2)

Publication Number Publication Date
CN101097855A true CN101097855A (en) 2008-01-02
CN100505164C CN100505164C (en) 2009-06-24

Family

ID=39011551

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101001098A Expired - Fee Related CN100505164C (en) 2006-06-28 2006-06-28 Method for manufacturing nitride semiconductor substrate and composite material substrate

Country Status (1)

Country Link
CN (1) CN100505164C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710567A (en) * 2009-11-27 2010-05-19 晶能光电(江西)有限公司 Gallium nitride-based semiconductor device with composite carbon-based substrate and manufacturing method thereof
CN101635250B (en) * 2008-07-25 2012-01-25 展晶科技(深圳)有限公司 Substrate structuring body removing method
CN101651092B (en) * 2008-08-11 2012-04-18 台湾积体电路制造股份有限公司 Fabrication method of circuit structure
CN101872815B (en) * 2009-04-21 2012-07-04 财团法人工业技术研究院 Light emitting diode element and its manufacturing method
CN102560676A (en) * 2012-01-18 2012-07-11 山东大学 Method for performing GaN single crystal growth by using thinned and bonded structure
CN101477943B (en) * 2008-01-04 2013-02-13 晶元光电股份有限公司 Method for separating two material systems
TWI393174B (en) * 2009-03-23 2013-04-11 Ind Tech Res Inst Nitride semiconductor substrate and method for manufacturing the same
CN103077779A (en) * 2013-01-11 2013-05-01 深圳顺络电子股份有限公司 Production method of thick-electrode device
CN103563099A (en) * 2011-06-01 2014-02-05 皇家飞利浦有限公司 Light emitting device bonded to a support substrate
US8647901B2 (en) 2006-08-31 2014-02-11 Industrial Technology Research Institute Method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate
CN107346725A (en) * 2016-05-05 2017-11-14 上海芯晨科技有限公司 A kind of stripping transfer method of group III-nitride film
CN109148652A (en) * 2018-08-23 2019-01-04 上海天马微电子有限公司 Inorganic light-emitting diode display panel, manufacturing method thereof and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW464953B (en) * 1999-04-14 2001-11-21 Matsushita Electronics Corp Method of manufacturing III nitride base compound semiconductor substrate
FR2835096B1 (en) * 2002-01-22 2005-02-18 PROCESS FOR MANUFACTURING SELF-CARRIER SUBSTRATE OF SINGLE-CRYSTALLINE SEMICONDUCTOR MATERIAL
KR100396469B1 (en) * 2001-06-29 2003-09-02 삼성전자주식회사 Method of forming the gate electrode in semiconductor device and Method of manufacturing the non-volatile memory device comprising the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647901B2 (en) 2006-08-31 2014-02-11 Industrial Technology Research Institute Method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate
CN101477943B (en) * 2008-01-04 2013-02-13 晶元光电股份有限公司 Method for separating two material systems
CN101635250B (en) * 2008-07-25 2012-01-25 展晶科技(深圳)有限公司 Substrate structuring body removing method
CN101651092B (en) * 2008-08-11 2012-04-18 台湾积体电路制造股份有限公司 Fabrication method of circuit structure
TWI393174B (en) * 2009-03-23 2013-04-11 Ind Tech Res Inst Nitride semiconductor substrate and method for manufacturing the same
CN101872815B (en) * 2009-04-21 2012-07-04 财团法人工业技术研究院 Light emitting diode element and its manufacturing method
CN101710567A (en) * 2009-11-27 2010-05-19 晶能光电(江西)有限公司 Gallium nitride-based semiconductor device with composite carbon-based substrate and manufacturing method thereof
CN103563099A (en) * 2011-06-01 2014-02-05 皇家飞利浦有限公司 Light emitting device bonded to a support substrate
CN111509103A (en) * 2011-06-01 2020-08-07 亮锐控股有限公司 Light emitting device bonded to support substrate
CN102560676A (en) * 2012-01-18 2012-07-11 山东大学 Method for performing GaN single crystal growth by using thinned and bonded structure
CN102560676B (en) * 2012-01-18 2014-08-06 山东大学 Method for performing GaN single crystal growth by using thinned and bonded structure
CN103077779A (en) * 2013-01-11 2013-05-01 深圳顺络电子股份有限公司 Production method of thick-electrode device
CN107346725A (en) * 2016-05-05 2017-11-14 上海芯晨科技有限公司 A kind of stripping transfer method of group III-nitride film
CN109148652A (en) * 2018-08-23 2019-01-04 上海天马微电子有限公司 Inorganic light-emitting diode display panel, manufacturing method thereof and display device

Also Published As

Publication number Publication date
CN100505164C (en) 2009-06-24

Similar Documents

Publication Publication Date Title
CN100505164C (en) Method for manufacturing nitride semiconductor substrate and composite material substrate
US7687378B2 (en) Fabricating method of nitride semiconductor substrate and composite material substrate
US8138003B2 (en) Method of manufacturing nitride semiconductor substrates having a base substrate with parallel trenches
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
US7435666B2 (en) Epitaxial growth method
CN101330002A (en) Fabrication method of patterned sapphire substrate for nitride epitaxial growth
CN101651092B (en) Fabrication method of circuit structure
US10262855B2 (en) Manufacture of Group IIIA-nitride layers on semiconductor on insulator structures
CN116249803A (en) Epitaxial wafer for ultraviolet light emitting element, method of manufacturing metal laminated substrate for ultraviolet light emitting element, method of manufacturing ultraviolet light emitting element, and method of manufacturing ultraviolet light emitting element array
US20070298592A1 (en) Method for manufacturing single crystalline gallium nitride material substrate
US8263984B2 (en) Process for making a GaN substrate
CN113707770A (en) Processing technology of silicon substrate GaN
KR100323710B1 (en) method for fabricating GaN semiconductor laser substate
JP4534356B2 (en) Nitride semiconductor layer manufacturing method, nitride semiconductor substrate manufacturing method, and nitride semiconductor substrate manufacturing base
KR100771227B1 (en) Nitride-based light emitting device having a dielectric DVR and its manufacturing method
KR20050029735A (en) Method for manufacturing thick gan layer capable of reducing defects and easily separating
WO2021026751A1 (en) Method for manufacturing nitride semiconductor substrate
JP7643250B2 (en) Nitride semiconductor substrate and method for producing same
CN113745107B (en) Manufacturing method of GaN device
KR100969159B1 (en) Method of manufacturing nitride semiconductor substrate
JP2000058454A (en) Forming method of mask for lateral direction epitaxial growth and lateral direction epitaxial growth method
KR100668649B1 (en) Silicon-based Group III nitride-based light emitting device and its manufacturing method
KR100844767B1 (en) Nitride substrate manufacturing method
CN108573932A (en) Silicon carbide substrate for epitaxy and semiconductor chip
CN108242420A (en) A preparation method of GaN layer transfer single crystal thin film based on silicon heterogeneous substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090624

Termination date: 20170628

CF01 Termination of patent right due to non-payment of annual fee