[go: up one dir, main page]

CN108538724A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN108538724A
CN108538724A CN201710117757.2A CN201710117757A CN108538724A CN 108538724 A CN108538724 A CN 108538724A CN 201710117757 A CN201710117757 A CN 201710117757A CN 108538724 A CN108538724 A CN 108538724A
Authority
CN
China
Prior art keywords
layer
forming
region
fin
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710117757.2A
Other languages
Chinese (zh)
Other versions
CN108538724B (en
Inventor
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201710117757.2A priority Critical patent/CN108538724B/en
Publication of CN108538724A publication Critical patent/CN108538724A/en
Application granted granted Critical
Publication of CN108538724B publication Critical patent/CN108538724B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0193Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • H10D84/853Complementary IGFETs, e.g. CMOS comprising FinFETs

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体结构及其形成方法,方法包括:提供衬底以及位于衬底上分立的鳍部;在衬底上形成覆盖鳍部部分侧壁的隔离结构;形成隔离结构后,形成横跨鳍部且覆盖鳍部部分顶部和侧壁表面的伪栅结构;在伪栅结构的侧壁上形成侧墙;形成侧墙后,在伪栅结构两侧的鳍部内形成凹槽;在凹槽内形成掺杂外延层;形成掺杂外延层后,在伪栅结构露出的隔离结构上形成层间介质层,层间介质层露出伪栅结构顶部;去除伪栅结构,在层间介质层内形成开口;在开口底部形成阻挡层;去除开口中的阻挡层;去除阻挡层后,在开口内填充金属层,形成金属栅极结构。本发明通过所述阻挡层,以隔绝掺杂外延层与金属层,从而降低金属栅极结构与掺杂外延层发生桥接的概率。

A semiconductor structure and a method for forming the same, the method comprising: providing a substrate and discrete fins located on the substrate; forming an isolation structure covering part of the sidewall of the fin on the substrate; after forming the isolation structure, forming a cross-fin and a dummy gate structure covering the top and sidewall surfaces of the fin part; forming sidewalls on the sidewalls of the dummy gate structure; after forming the sidewalls, forming grooves in the fins on both sides of the dummy gate structure; forming in the grooves Doped epitaxial layer; after the doped epitaxial layer is formed, an interlayer dielectric layer is formed on the isolation structure exposed by the dummy gate structure, and the interlayer dielectric layer exposes the top of the dummy gate structure; the dummy gate structure is removed to form an opening in the interlayer dielectric layer ; forming a barrier layer at the bottom of the opening; removing the barrier layer in the opening; after removing the barrier layer, filling the opening with a metal layer to form a metal gate structure. The present invention uses the blocking layer to isolate the doped epitaxial layer and the metal layer, thereby reducing the probability of bridging between the metal gate structure and the doped epitaxial layer.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductors, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

在半导体制造中,随着超大规模集成电路的发展趋势,集成电路特征尺寸持续减小。为了适应特征尺寸的减小,MOSFET的沟道长度也相应不断缩短。然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,因此栅极对沟道的控制能力随之变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthresholdleakage)现象,即所谓的短沟道效应(SCE:short-channel effects)更容易发生。In semiconductor manufacturing, with the development trend of VLSI, the feature size of integrated circuits continues to decrease. In order to accommodate the reduction in feature size, the channel length of MOSFETs has also been shortened accordingly. However, as the channel length of the device is shortened, the distance between the source and the drain of the device is also shortened, so the control ability of the gate to the channel becomes worse, and the gate voltage pinches off the channel. The difficulty is also increasing, making the phenomenon of subthreshold leakage (subthreshold leakage), the so-called short-channel effect (SCE: short-channel effects) more likely to occur.

因此,为了更好的适应特征尺寸的减小,半导体工艺逐渐开始从平面MOSFET向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET中,栅至少可以从两侧对超薄体(鳍部)进行控制,与平面MOSFET相比,栅极对沟道的控制能力更强,能够很好的抑制短沟道效应;且FinFET相对于其他器件,与现有集成电路制造具有更好的兼容性。Therefore, in order to better adapt to the reduction of the feature size, the semiconductor process gradually begins to transition from planar MOSFETs to three-dimensional transistors with higher efficiency, such as Fin Field Effect Transistors (FinFETs). In FinFET, the gate can control the ultra-thin body (fin) from at least two sides. Compared with the planar MOSFET, the gate has stronger control ability on the channel, which can well suppress the short channel effect; and the FinFET is relatively For other devices, it has better compatibility with existing integrated circuit manufacturing.

但是,现有技术形成的半导体器件的电学性能和良率仍有待提高。However, the electrical performance and yield of semiconductor devices formed in the prior art still need to be improved.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体结构及其形成方法,优化半导体器件的电学性能和良率。The problem to be solved by the present invention is to provide a semiconductor structure and its forming method to optimize the electrical performance and yield of semiconductor devices.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;在所述鳍部露出的衬底上形成隔离结构,所述隔离结构覆盖所述鳍部的部分侧壁,且所述隔离结构顶部低于所述鳍部顶部;形成所述隔离结构后,形成横跨所述鳍部的伪栅结构,所述伪栅结构覆盖所述鳍部的部分顶部表面和侧壁表面;在所述伪栅结构的侧壁上形成侧墙;形成所述侧墙后,在所述伪栅结构两侧的鳍部内形成凹槽;在所述凹槽内形成掺杂外延层;形成所述掺杂外延层后,在所述伪栅结构露出的隔离结构上形成层间介质层,所述层间介质层露出所述伪栅结构顶部;去除所述伪栅结构,在所述层间介质层内形成开口;在所述开口的底部形成阻挡层;去除所述开口中的所述阻挡层;去除所述开口中的所述阻挡层后,在所述开口内填充金属层,形成金属栅极结构。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, including: providing a base, the base includes a substrate and discrete fins located on the substrate; forming a fin on the substrate where the fins are exposed an isolation structure, the isolation structure covers part of the sidewall of the fin, and the top of the isolation structure is lower than the top of the fin; after the isolation structure is formed, a dummy gate structure across the fin is formed, The dummy gate structure covers part of the top surface and the sidewall surface of the fin; sidewalls are formed on the sidewalls of the dummy gate structure; after the sidewalls are formed, the fins on both sides of the dummy gate structure A groove is formed in the groove; a doped epitaxial layer is formed in the groove; after the doped epitaxial layer is formed, an interlayer dielectric layer is formed on the isolation structure exposed by the dummy gate structure, and the interlayer dielectric layer is exposed The top of the dummy gate structure; removing the dummy gate structure, forming an opening in the interlayer dielectric layer; forming a barrier layer at the bottom of the opening; removing the barrier layer in the opening; removing the opening After the barrier layer is formed, a metal layer is filled in the opening to form a metal gate structure.

相应的,本发明还提供一种半导体结构,包括:基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;隔离结构,位于所述鳍部露出的衬底上,所述隔离结构覆盖所述鳍部的部分侧壁,且所述隔离结构顶部低于所述鳍部顶部;位于所述隔离结构上的层间介质层,所述层间介质层内具有露出所述鳍部和隔离结构的开口;掺杂外延层,位于所述开口两侧的鳍部内;侧墙,位于所述开口的侧壁上;阻挡层,位于所述开口的底部。Correspondingly, the present invention also provides a semiconductor structure, comprising: a base, the base includes a substrate and discrete fins located on the substrate; an isolation structure is located on the substrate where the fins are exposed, the The isolation structure covers part of the sidewall of the fin, and the top of the isolation structure is lower than the top of the fin; the interlayer dielectric layer on the isolation structure has a structure in the interlayer dielectric layer that exposes the fin and the opening of the isolation structure; the doped epitaxial layer is located in the fins on both sides of the opening; the sidewall is located on the side wall of the opening; the barrier layer is located at the bottom of the opening.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;在所述鳍部露出的衬底上形成隔离结构;形成横跨所述鳍部的伪栅结构;在所述伪栅结构的侧壁上形成侧墙;形成所述侧墙后,在所述伪栅结构两侧的鳍部内形成凹槽;在所述凹槽内形成掺杂外延层;形成所述掺杂外延层后,在所述伪栅结构露出的隔离结构上形成层间介质层,所述层间介质层露出所述伪栅结构顶部;去除所述伪栅结构,在所述层间介质层内形成开口;在所述开口的底部形成阻挡层;去除所述开口中的所述阻挡层;去除所述开口中的所述阻挡层后,在所述开口内填充金属层,形成金属栅极结构。在所述伪栅结构两侧鳍部内形成凹槽的工艺过程中,由于所述隔离结构暴露在刻蚀所述鳍部的刻蚀工艺环境中,因此所述刻蚀工艺容易对所述伪栅结构和鳍部所露出的隔离结构、以及所述侧墙下方的隔离结构造成刻蚀损耗,从而导致所述侧墙下方出现由隔离结构损耗所产生的缝隙;本发明在形成阻挡层的过程中,所述阻挡层还填充所述缝隙,且在所述侧墙的保护作用下,在去除所述开口中的所述阻挡层后,所述缝隙中的阻挡层被保留;因此,在所述开口内填充金属层时,所述缝隙中的阻挡层可以起到隔绝所述掺杂外延层与所述金属层的作用,所述金属栅极结构与所述掺杂外延层发生桥接(bridge)的概率较低,即通过本发明所述方案,可以改善掺杂外延层与金属栅极结构发生桥接的问题,从而使半导体器件的电学性能和良率得到改善。The present invention provides a method for forming a semiconductor structure, including: providing a base, the base including a substrate and discrete fins located on the substrate; forming an isolation structure on the substrate where the fins are exposed; forming lateral A dummy gate structure spanning the fin; sidewalls are formed on the sidewalls of the dummy gate structure; after the sidewalls are formed, grooves are formed in the fins on both sides of the dummy gate structure; A doped epitaxial layer is formed in the groove; after the doped epitaxial layer is formed, an interlayer dielectric layer is formed on the isolation structure exposed by the dummy gate structure, and the interlayer dielectric layer exposes the top of the dummy gate structure; The dummy gate structure, forming an opening in the interlayer dielectric layer; forming a barrier layer at the bottom of the opening; removing the barrier layer in the opening; after removing the barrier layer in the opening, The opening is filled with a metal layer to form a metal gate structure. During the process of forming grooves in the fins on both sides of the dummy gate structure, since the isolation structure is exposed to the etching process environment for etching the fins, the etching process is easy to damage the dummy gate. The isolation structure exposed by the structure and the fins, and the isolation structure below the sidewall cause etching loss, resulting in the occurrence of gaps under the sidewall caused by the loss of the isolation structure; in the process of forming the barrier layer, the present invention , the barrier layer also fills the gap, and under the protection of the sidewall, after removing the barrier layer in the opening, the barrier layer in the gap is retained; therefore, in the When the opening is filled with a metal layer, the barrier layer in the gap can function to isolate the doped epitaxial layer from the metal layer, and the metal gate structure and the doped epitaxial layer are bridged. The probability is low, that is, through the solution of the present invention, the problem of bridging between the doped epitaxial layer and the metal gate structure can be improved, thereby improving the electrical performance and yield of the semiconductor device.

可选方案中,所述阻挡层的材料为氧化硅、氮化硅或氮氧化硅,所述阻挡层的材料为介质材料,因此具有较高的工艺兼容性,因此可以避免对半导体器件的电学性能和良率造成不良影响。In an optional solution, the material of the barrier layer is silicon oxide, silicon nitride or silicon oxynitride, and the material of the barrier layer is a dielectric material, so it has high process compatibility, so it can avoid electrical damage to the semiconductor device. performance and yield are adversely affected.

本发明提供一种半导体结构,所述半导体结构包括:基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;位于所述鳍部露出的衬底上的隔离结构,所述隔离结构覆盖所述鳍部的部分侧壁,且所述隔离结构顶部低于所述鳍部顶部;位于所述隔离结构上的层间介质层,所述层间介质层内具有所述鳍部和隔离结构的开口;掺杂外延层,位于所述开口两侧的鳍部内;侧墙,位于所述开口的侧壁上;阻挡层,位于所述开口的底部。在半导体制造工艺过程中,形成所述掺杂外延层的工艺容易对所述隔离结构造成刻蚀损耗,还容易对所述侧墙下方的隔离结构造成刻蚀损耗,从而导致所述侧墙下方出现由隔离结构损耗所产生的缝隙;在所述阻挡层的形成过程中,所述阻挡层还填充所述缝隙,且在所述侧墙的保护作用下,当去除所述开口中的所述阻挡层时,所述缝隙中的阻挡层可以被保留;而半导体的制造工艺还包括在所述开口内填充金属层以形成金属栅极结构,因此在所述开口内填充金属层时,所述缝隙中的阻挡层可以起到隔绝所述掺杂外延层与所述金属层的作用,所述金属栅极结构与所述掺杂外延层发生桥接(bridge)的概率较低,即通过本发明所述半导体结构,可以改善掺杂外延层与金属栅极结构发生桥接的问题,从而使半导体器件的电学性能和良率得到改善。The present invention provides a semiconductor structure, which includes: a base, the base includes a substrate and discrete fins on the substrate; an isolation structure on the substrate exposed by the fins, the The isolation structure covers part of the sidewall of the fin, and the top of the isolation structure is lower than the top of the fin; an interlayer dielectric layer on the isolation structure, the interlayer dielectric layer has the fin and the opening of the isolation structure; the doped epitaxial layer is located in the fins on both sides of the opening; the side wall is located on the side wall of the opening; the barrier layer is located at the bottom of the opening. During the semiconductor manufacturing process, the process of forming the doped epitaxial layer easily causes etching loss to the isolation structure, and also easily causes etching loss to the isolation structure below the sidewall, resulting in A gap generated by the loss of the isolation structure occurs; during the formation of the barrier layer, the barrier layer also fills the gap, and under the protection of the sidewall, when the When the barrier layer is used, the barrier layer in the gap can be retained; and the semiconductor manufacturing process also includes filling the metal layer in the opening to form a metal gate structure, so when filling the metal layer in the opening, the The barrier layer in the gap can function to isolate the doped epitaxial layer from the metal layer, and the probability of bridging between the metal gate structure and the doped epitaxial layer is low, that is, through the present invention The semiconductor structure can improve the problem of bridging between the doped epitaxial layer and the metal gate structure, thereby improving the electrical performance and yield of the semiconductor device.

附图说明Description of drawings

图1和图2是一种半导体结构的形成方法中各步骤对应的结构示意图;FIG. 1 and FIG. 2 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;

图3至图33是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 33 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

具体实施方式Detailed ways

由背景技术可知,半导体器件的电学性能和良率仍有待提高。分析其原因在于:It can be seen from the background art that the electrical performance and yield of semiconductor devices still need to be improved. Analyze the reasons for this:

结合参考图1和图2,示出了一种半导体结构的形成方法中各步骤对应的结构示意图,图1是立体图,图2是基于图1在隔离结构位置处沿鳍部延伸方向割线(如图1中的X1X2割线所示)的剖面结构示意图。Referring to FIG. 1 and FIG. 2 together, it shows a structural schematic diagram corresponding to each step in a method for forming a semiconductor structure. FIG. 1 is a perspective view, and FIG. 2 is based on FIG. A schematic diagram of the cross-sectional structure as shown by the X1X2 secant line in FIG. 1 .

参考图1,提供基底,所述基底包括衬底10以及位于所述衬底10上分立的鳍部11;在所述鳍部11露出的衬底10上形成隔离结构12,所述隔离结构12覆盖所述鳍部11的部分侧壁,且所述隔离结构12顶部低于所述鳍部11顶部;形成所述隔离结构12后,形成横跨所述鳍部11的伪栅结构13,所述伪栅结构13覆盖所述鳍部11的部分顶部表面和侧壁表面;在所述伪栅结构13的侧壁上形成侧墙14。Referring to FIG. 1 , a base is provided, the base includes a substrate 10 and discrete fins 11 located on the substrate 10; an isolation structure 12 is formed on the substrate 10 exposed by the fins 11, and the isolation structure 12 Part of the sidewall of the fin 11 is covered, and the top of the isolation structure 12 is lower than the top of the fin 11; after the isolation structure 12 is formed, a dummy gate structure 13 across the fin 11 is formed, so The dummy gate structure 13 covers part of the top surface and the sidewall surface of the fin portion 11 ; sidewalls 14 are formed on the sidewall of the dummy gate structure 13 .

结合参考图2,形成所述侧墙14后,刻蚀所述伪栅结构13两侧的鳍部11(如图1所示),在所述鳍部11内形成凹槽(图未示);在所述凹槽内形成掺杂外延层15。Referring to FIG. 2 , after forming the sidewalls 14, the fins 11 on both sides of the dummy gate structure 13 (as shown in FIG. 1 ) are etched to form grooves (not shown) in the fins 11. ; forming a doped epitaxial layer 15 in the groove.

形成所述掺杂外延层15后,后续步骤还包括:在所述伪栅结构13露出的隔离结构12上形成层间介质层(图未示);去除所述伪栅结构13,在所述层间介质层内形成开口(图未示);在所述开口内填充金属层,形成金属栅极结构。After forming the doped epitaxial layer 15, the subsequent steps further include: forming an interlayer dielectric layer (not shown) on the isolation structure 12 exposed by the dummy gate structure 13; removing the dummy gate structure 13, An opening (not shown) is formed in the interlayer dielectric layer; a metal layer is filled in the opening to form a metal gate structure.

在刻蚀所述伪栅结构13两侧的鳍部11时,所述隔离结构12暴露在刻蚀所述鳍部11的刻蚀环境中,因此所述刻蚀工艺容易对所述伪栅结构13和鳍部11所露出的隔离结构12、以及所述侧墙14下方(如图1中虚线圈50所示)的隔离结构12造成刻蚀损耗,从而导致在所述侧墙14下方形成缝隙(如图2中虚线圈51所示)。因此,在所述开口内填充金属层时,所述金属层除了填充所述开口之外,还填充所述缝隙;从而容易导致所述金属层通过所述缝隙与所述掺杂外延层15发生桥接(bridge),即容易导致所述掺杂外延层15与所形成金属栅极结构发生桥接,进而导致半导体器件的电学性能和良率下降。When etching the fins 11 on both sides of the dummy gate structure 13, the isolation structure 12 is exposed to the etching environment for etching the fins 11, so the etching process is easy for the dummy gate structure. 13 and the isolation structure 12 exposed by the fins 11, and the isolation structure 12 below the sidewall 14 (as shown by the dotted circle 50 in FIG. (As shown by the dashed circle 51 in FIG. 2 ). Therefore, when the metal layer is filled in the opening, the metal layer not only fills the opening, but also fills the gap; thus it is easy to cause the metal layer to pass through the gap and the doped epitaxial layer 15. Bridging means that the doped epitaxial layer 15 is likely to be bridged with the formed metal gate structure, thereby resulting in a decrease in the electrical performance and yield of the semiconductor device.

且当所形成的掺杂外延层15为P型时,刻蚀所述伪栅结构13两侧鳍部11的刻蚀量较大,相应刻蚀后剩余所述鳍部11凸出于所述隔离结构12的高度较低,所述掺杂外延层15在沿所述衬底10表面法线方向上更靠近所述隔离结构12;因此当所述衬底10用于形成P型器件时,掺杂外延层15与金属栅极结构发生桥接的问题更严重。And when the formed doped epitaxial layer 15 is P-type, the amount of etching the fins 11 on both sides of the dummy gate structure 13 is relatively large, and the remaining fins 11 protrude from the isolation after corresponding etching. The height of the structure 12 is relatively low, and the doped epitaxial layer 15 is closer to the isolation structure 12 along the direction normal to the surface of the substrate 10; therefore, when the substrate 10 is used to form a P-type device, the doped epitaxial layer 15 The problem of bridging between the hetero-epitaxial layer 15 and the metal gate structure is even more serious.

为了解决所述技术问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;在所述鳍部露出的衬底上形成隔离结构;形成横跨所述鳍部的伪栅结构;在所述伪栅结构的侧壁上形成侧墙;形成所述侧墙后,在所述伪栅结构两侧的鳍部内形成凹槽;在所述凹槽内形成掺杂外延层;形成所述掺杂外延层后,在所述伪栅结构露出的隔离结构上形成层间介质层,所述层间介质层露出所述伪栅结构顶部;去除所述伪栅结构,在所述层间介质层内形成开口;在所述开口的底部形成阻挡层;去除所述开口中的所述阻挡层;去除所述开口中的所述阻挡层后,在所述开口内填充金属层,形成金属栅极结构。在所述伪栅结构两侧鳍部内形成凹槽的工艺过程中,由于所述隔离结构暴露在刻蚀所述鳍部的刻蚀工艺环境中,因此所述刻蚀工艺容易对所述伪栅结构和鳍部所露出的隔离结构、以及所述侧墙下方的隔离结构造成刻蚀损耗,从而导致所述侧墙下方出现由隔离结构损耗所产生的缝隙;本发明在形成阻挡层的过程中,所述阻挡层还填充所述缝隙,且在所述侧墙的保护作用下,在去除所述开口中的所述阻挡层后,所述缝隙中的阻挡层被保留;因此,在所述开口内填充金属层时,所述缝隙中的阻挡层可以起到隔绝所述掺杂外延层与所述金属层的作用,所述金属栅极结构与所述掺杂外延层发生桥接(bridge)的概率较低,即通过本发明所述方案,可以改善掺杂外延层与金属栅极结构发生桥接的问题,从而使半导体器件的电学性能和良率得到改善。In order to solve the technical problem, the present invention provides a method for forming a semiconductor structure, including: providing a base, the base includes a substrate and discrete fins located on the substrate; the substrate exposed at the fins forming an isolation structure on the top; forming a dummy gate structure across the fin; forming sidewalls on the sidewalls of the dummy gate structure; after forming the sidewalls, forming A groove; a doped epitaxial layer is formed in the groove; after the doped epitaxial layer is formed, an interlayer dielectric layer is formed on the isolation structure exposed by the dummy gate structure, and the interlayer dielectric layer exposes the top of the dummy gate structure; removing the dummy gate structure, forming an opening in the interlayer dielectric layer; forming a barrier layer at the bottom of the opening; removing the barrier layer in the opening; removing the barrier layer in the opening After the blocking layer, a metal layer is filled in the opening to form a metal gate structure. During the process of forming grooves in the fins on both sides of the dummy gate structure, since the isolation structure is exposed to the etching process environment for etching the fins, the etching process is easy to damage the dummy gate. The isolation structure exposed by the structure and the fins, and the isolation structure below the sidewall cause etching loss, resulting in the occurrence of gaps under the sidewall caused by the loss of the isolation structure; in the process of forming the barrier layer, the present invention , the barrier layer also fills the gap, and under the protection of the sidewall, after removing the barrier layer in the opening, the barrier layer in the gap is retained; therefore, in the When the opening is filled with a metal layer, the barrier layer in the gap can function to isolate the doped epitaxial layer from the metal layer, and the metal gate structure and the doped epitaxial layer are bridged. The probability is low, that is, through the solution of the present invention, the problem of bridging between the doped epitaxial layer and the metal gate structure can be improved, thereby improving the electrical performance and yield of the semiconductor device.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图3至图33是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 33 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

参考图3,图3是立体图(仅示出两个鳍部),提供基底(未标示),所述基底包括衬底100以及位于所述衬底100上分立的鳍部(未标示)。Referring to FIG. 3 , which is a perspective view (only two fins are shown), a base (not labeled) is provided, and the base includes a substrate 100 and discrete fins (not labeled) on the substrate 100 .

所述基底用于形成鳍式场效应管,所述衬底100为后续形成鳍式场效应管提供工艺平台,所述鳍部用于提供所形成鳍式场效应晶体管的沟道。The base is used to form the FinFET, the substrate 100 provides a process platform for the subsequent formation of the FinFET, and the fin portion is used to provide a channel for the formed FinFET.

本实施例中,以所形成的鳍式场效应管为CMOS器件为例,所述衬底100包括用于形成P型器件的PMOS区域I、以及用于形成N型器件的NMOS区域II。在其他实施例中,所述衬底可以仅包括用于形成P型器件的PMOS区域,或者,仅包括用于形成N型器件的NMOS区域。In this embodiment, taking the formed fin field effect transistor as a CMOS device as an example, the substrate 100 includes a PMOS region I for forming a P-type device and an NMOS region II for forming an N-type device. In other embodiments, the substrate may only include a PMOS region for forming a P-type device, or only include an NMOS region for forming an N-type device.

相应的,位于所述PMOS区域I衬底100上的鳍部为第一鳍部110,位于所述NMOS区域II衬底100上的鳍部为第二鳍部120。Correspondingly, the fin located on the substrate 100 in the PMOS region I is the first fin 110 , and the fin located on the substrate 100 in the NMOS region II is the second fin 120 .

本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底、绝缘体上的锗衬底或玻璃衬底。所述衬底100的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate, a germanium-on-insulator substrate, or a silicon-on-insulator substrate. substrate or glass substrate. The material of the substrate 100 can be selected suitable for process requirements or easily integrated.

所述鳍部的材料与所述衬底100的材料相同。本实施例中,所述鳍部的材料为硅,即所述第一鳍部110和第二鳍部120的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin is the same as that of the substrate 100 . In this embodiment, the material of the fin is silicon, that is, the material of the first fin 110 and the second fin 120 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

具体地,形成所述衬底100和鳍部的步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的鳍部掩膜层200;以所述鳍部掩膜层200为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底100,位于所述衬底100表面的凸起作为鳍部。Specifically, the steps of forming the substrate 100 and the fins include: providing an initial substrate; forming a patterned fin mask layer 200 on the surface of the initial substrate; using the fin mask layer 200 as a mask The initial substrate is etched, the etched initial substrate is used as the substrate 100 , and the protrusions on the surface of the substrate 100 are used as fins.

本实施例中,形成所述衬底100和鳍部后,保留位于所述鳍部顶部的鳍部掩膜层200。所述鳍部掩膜层200的材料为氮化硅,后续在进行平坦化处理工艺时,所述鳍部掩膜层200顶部表面用于定义平坦化处理工艺的停止位置,并起到保护所述鳍部顶部的作用。In this embodiment, after the substrate 100 and the fins are formed, the fin mask layer 200 on the top of the fins remains. The material of the fin mask layer 200 is silicon nitride. When the subsequent planarization process is performed, the top surface of the fin mask layer 200 is used to define the stop position of the planarization process, and to protect the Describe the function of the top of the fin.

参考图4,在所述鳍部(未标示)露出的衬底100上形成隔离结构101,所述隔离结构101覆盖所述鳍部的部分侧壁,且所述隔离结构101顶部低于所述鳍部顶部。Referring to FIG. 4 , an isolation structure 101 is formed on the substrate 100 where the fin (not marked) is exposed, the isolation structure 101 covers part of the sidewall of the fin, and the top of the isolation structure 101 is lower than the the top of the fin.

所述隔离结构101作为半导体器件的隔离结构,用于对相邻器件起到隔离作用,还用于对相邻鳍部起到隔离作用。本实施例中,所述隔离结构101的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 101 is used as an isolation structure of a semiconductor device, and is used for isolating adjacent devices, and is also used for isolating adjacent fins. In this embodiment, the material of the isolation structure 101 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.

具体地,形成所述隔离结构101的步骤包括:在所述第一鳍部110和第二鳍部120露出的衬底100上填充隔离膜,所述隔离膜顶部高于所述鳍部掩膜层200(如图3所示)顶部;研磨去除高于所述鳍部掩膜层200顶部的隔离膜;回刻部分厚度的剩余隔离膜,露出所述第一鳍部110和第二鳍部120的顶部以及部分侧壁,形成所述隔离结构101;去除所述鳍部掩膜层200。Specifically, the step of forming the isolation structure 101 includes: filling an isolation film on the substrate 100 exposed by the first fin 110 and the second fin 120, the top of the isolation film is higher than the fin mask layer 200 (as shown in FIG. 3 ); grinding and removing the isolation film higher than the top of the fin mask layer 200; etching back the remaining isolation film of partial thickness to expose the first fin 110 and the second fin 120 to form the isolation structure 101 ; and remove the fin mask layer 200 .

结合参考图5至图7,图5是基于图4的立体图,图6是图5沿B1B2割线的剖面结构示意图,图7是图5分别沿A1A2和D1D2割线的剖面结构示意图,形成所述隔离结构101后,形成横跨所述鳍部(未标示)的伪栅结构(dummy gate)130,所述伪栅结构130覆盖所述鳍部的部分顶部表面和侧壁表面。Referring to Figures 5 to 7, Figure 5 is a perspective view based on Figure 4, Figure 6 is a schematic cross-sectional view of Figure 5 along the secant line B1B2, and Figure 7 is a schematic cross-sectional view of Figure 5 along the secant line A1A2 and D1D2, forming the After the isolation structure 101 is formed, a dummy gate structure (dummy gate) 130 is formed across the fin portion (not shown), and the dummy gate structure 130 covers part of the top surface and the sidewall surface of the fin portion.

本实施例中,采用后形成高k栅介质层后形成栅电极层(high k last metal gatelast)的工艺形成金属栅极结构,所述伪栅结构130为后续形成金属栅极结构占据空间位置。In this embodiment, the metal gate structure is formed by forming a high k last metal gate layer after forming a high k gate dielectric layer, and the dummy gate structure 130 occupies a spatial position for subsequent formation of a metal gate structure.

本实施例中,所述伪栅结构130为叠层结构。所述伪栅结构130包括伪氧化层131以及位于所述伪氧化层131上的伪栅层132。其中,所述伪栅层132的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述伪氧化层131的材料为氧化硅或氮氧化硅。具体到本实施例中,所述伪氧化层131的材料为氧化硅,所述伪栅层132的材料为多晶硅。In this embodiment, the dummy gate structure 130 is a stacked structure. The dummy gate structure 130 includes a dummy oxide layer 131 and a dummy gate layer 132 on the dummy oxide layer 131 . Wherein, the material of the dummy gate layer 132 is polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride or amorphous carbon, and the material of the dummy oxide layer 131 is Silicon oxide or silicon oxynitride. Specifically in this embodiment, the material of the dummy oxide layer 131 is silicon oxide, and the material of the dummy gate layer 132 is polysilicon.

在其他实施例中,所述伪栅结构还可以为单层结构,相应的,所述伪栅结构包括伪栅层。In other embodiments, the dummy gate structure may also be a single-layer structure, and correspondingly, the dummy gate structure includes a dummy gate layer.

具体地,形成所述伪栅结构130的步骤包括:在所述隔离结构101上形成伪氧化层131,所述伪氧化层131横跨所述鳍部,且覆盖所述鳍部的顶部表面和侧壁表面;在所述伪氧化层131上形成伪栅膜;在所述伪栅膜表面形成栅极掩膜210,所述栅极掩膜210定义出待形成的伪栅层132的图形;以所述栅极掩膜210为掩膜,图形化所述伪栅膜,在所述隔离结构101上形成伪栅结构130。Specifically, the step of forming the dummy gate structure 130 includes: forming a dummy oxide layer 131 on the isolation structure 101, the dummy oxide layer 131 spans the fin, and covers the top surface of the fin and sidewall surface; forming a dummy gate film on the dummy oxide layer 131; forming a gate mask 210 on the surface of the dummy gate film, and the gate mask 210 defines the pattern of the dummy gate layer 132 to be formed; Using the gate mask 210 as a mask, the dummy gate film is patterned to form a dummy gate structure 130 on the isolation structure 101 .

本实施例中,所述PMOS区域I的伪栅结构130横跨所述第一鳍部110,且覆盖所述第一鳍部110的部分顶部表面和部分侧壁表面;所述NMOS区域II的伪栅结构130横跨所述第二鳍部120,且覆盖所述第二鳍部120的部分顶部表面和部分侧壁表面。In this embodiment, the dummy gate structure 130 of the PMOS region I spans the first fin 110 and covers part of the top surface and part of the sidewall surface of the first fin 110; the dummy gate structure 130 of the NMOS region II The dummy gate structure 130 spans the second fin 120 and covers part of the top surface and part of the sidewall surface of the second fin 120 .

需要说明的是,形成所述伪栅结构130后,保留位于所述伪栅结构130顶部上的栅极掩膜210。所述栅极掩膜210的材料为氮化硅,所述栅极掩膜210在后续工艺过程中用于对所述伪栅结构130顶部起到保护作用。在其他实施例中,所述栅极掩膜的材料还可以为氮氧化硅、碳化硅或氮化硼。It should be noted that after the dummy gate structure 130 is formed, the gate mask 210 on the top of the dummy gate structure 130 remains. The material of the gate mask 210 is silicon nitride, and the gate mask 210 is used to protect the top of the dummy gate structure 130 in the subsequent process. In other embodiments, the material of the gate mask may also be silicon oxynitride, silicon carbide or boron nitride.

结合参考图8至图12,图8是基于图6的剖面结构示意图,图9是基于图7的剖面结构示意图,图10是基于图8的剖面结构示意图,图11是基于图9的剖面结构示意图,图12是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,在所述伪栅结构130的侧壁上形成侧墙300(如图11所示)。With reference to Figures 8 to 12, Figure 8 is a schematic cross-sectional structure based on Figure 6, Figure 9 is a schematic cross-sectional structure based on Figure 7, Figure 10 is a schematic cross-sectional structure based on Figure 8, and Figure 11 is a schematic cross-sectional structure based on Figure 9 Schematic diagram, FIG. 12 is a schematic cross-sectional structure diagram at the position of the sidewall along the secant line perpendicular to the extending direction of the fin (as shown by the C1C2 secant line in FIG. 5 ), and a sidewall 300 is formed on the sidewall of the dummy gate structure 130 (as shown in Figure 11).

所述侧墙300用于在后续工艺中定义掺杂外延层的位置,还用于保护所述伪栅结构130。The spacer 300 is used to define the position of the doped epitaxial layer in subsequent processes, and is also used to protect the dummy gate structure 130 .

所述侧墙300的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙300可以为单层结构或叠层结构。本实施例中,所述侧墙300为单层结构,所述侧墙300的材料为氮化硅。The material of the sidewall 300 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 300 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 300 is a single-layer structure, and the material of the sidewall 300 is silicon nitride.

具体地,形成所述侧墙300的步骤包括:形成保形覆盖所述PMOS区域I和NMOS区域II伪栅结构130的侧墙膜125(如图9所示);去除所述伪栅结构130顶部以及所述伪氧化层131上的所述侧墙膜125,保留位于所述伪栅结构130侧壁上的侧墙膜125,且剩余所述侧墙膜125作为所述侧墙300。Specifically, the step of forming the spacer 300 includes: forming a spacer film 125 conformally covering the dummy gate structure 130 in the PMOS region I and NMOS region II (as shown in FIG. 9 ); removing the dummy gate structure 130 The sidewall film 125 on the top and the dummy oxide layer 131 remains the sidewall film 125 on the sidewall of the dummy gate structure 130 , and the remaining sidewall film 125 is used as the spacer 300 .

如图10和图11所示,本实施例中,形成所述侧墙300后,还去除所述侧墙300露出的伪氧化层131,保留所述侧墙300和所述伪栅层132所覆盖的伪氧化层131。As shown in FIG. 10 and FIG. 11 , in this embodiment, after the spacer 300 is formed, the dummy oxide layer 131 exposed by the sidewall 300 is removed, and the dummy oxide layer 131 exposed by the sidewall 300 and the dummy gate layer 132 remains. covered dummy oxide layer 131 .

需要说明的是,形成所述侧墙300后,所述形成方法还包括:以所述PMOS区域I的侧墙300为掩膜,在所述PMOS区域I伪栅结构130两侧的第一鳍部110内形成P型源漏轻掺杂区(PLDD)(图未示),所述P型源漏轻掺杂区的掺杂离子为P型离子;以所述NMOS区域II的侧墙300为掩膜,在所述NMOS区域II伪栅结构130两侧的第二鳍部120内形成N型源漏轻掺杂区(PLDD)(图未示),所述N型源漏轻掺杂区的掺杂离子为N型离子;。It should be noted that, after forming the spacer 300, the forming method further includes: using the sidewall 300 of the PMOS region 1 as a mask, the first fins on both sides of the dummy gate structure 130 in the PMOS region 1 A P-type source-drain lightly doped region (PLDD) (not shown) is formed in the portion 110, and the dopant ions in the P-type source-drain lightly doped region are P-type ions; the sidewall 300 of the NMOS region II As a mask, an N-type source-drain lightly doped region (PLDD) (not shown) is formed in the second fin portion 120 on both sides of the NMOS region II dummy gate structure 130, and the N-type source-drain lightly doped The doping ions in the region are N-type ions;

结合参考图13至图24,形成所述侧墙300后,在所述伪栅结构130两侧的鳍部(未标示)内形成凹槽(未标示);在所述凹槽内形成掺杂外延层(未标示)。Referring to FIGS. 13 to 24, after forming the spacer 300, grooves (not shown) are formed in the fins (not shown) on both sides of the dummy gate structure 130; doping is formed in the grooves. epitaxial layer (not labeled).

所述凹槽为后续形成掺杂外延层提供空间位置,所述掺杂外延层作为半导体器件的源区(source)或漏区(drain)。The groove provides a space position for subsequent formation of a doped epitaxial layer, and the doped epitaxial layer is used as a source region (source) or a drain region (drain) of a semiconductor device.

本实施例中,所述衬底100包括PMOS区域I和NMOS区域II,因此形成所述凹槽和掺杂外延层的步骤包括:在所述PMOS区域I伪栅结构130两侧的第一鳍部110内形成P区凹槽111(如图16所示);在所述P区凹槽111内形成P型掺杂外延层112(如图19所示);在所述NMOS区域II伪栅结构130两侧的第二鳍部120内形成N区凹槽121(如图21所示);在所述N区凹槽121内形成N型掺杂外延层122(如图24所示)。In this embodiment, the substrate 100 includes a PMOS region I and an NMOS region II, so the step of forming the groove and the doped epitaxial layer includes: first fins on both sides of the dummy gate structure 130 in the PMOS region I Form a P-region groove 111 in the portion 110 (as shown in FIG. 16 ); form a P-type doped epitaxial layer 112 in the P-region groove 111 (as shown in FIG. 19 ); form a dummy gate in the NMOS region II N-region grooves 121 are formed in the second fins 120 on both sides of the structure 130 (as shown in FIG. 21 ); N-type doped epitaxial layers 122 are formed in the N-region grooves 121 (as shown in FIG. 24 ).

本实施例中,以先形成所述P型掺杂外延层112,后形成所述N型掺杂外延层122为例,对形成所述P型掺杂外延层112和N型掺杂外延层122的步骤做详细说明。In this embodiment, taking the formation of the P-type doped epitaxial layer 112 first and then forming the N-type doped epitaxial layer 122 as an example, the formation of the P-type doped epitaxial layer 112 and the N-type doped epitaxial layer Step 122 is described in detail.

结合参考图13和图14,图13是基于图10的剖面结构示意图,图14是基于图11的剖面结构示意图,在所述PMOS区域I的鳍部(未标示)顶部和侧壁上形成P区掩膜层310,所述P区掩膜层310还位于所述NMOS区域II的鳍部顶部和侧壁上。Referring to FIG. 13 and FIG. 14 together, FIG. 13 is a schematic cross-sectional structure based on FIG. 10, and FIG. 14 is a schematic cross-sectional structure based on FIG. A region mask layer 310, the P region mask layer 310 is also located on the top and sidewalls of the fins of the NMOS region II.

具体地,所述P区掩膜层310位于所述第一鳍部110的顶部和侧壁上、以及所述第二鳍部120的顶部和侧壁上。Specifically, the P-region mask layer 310 is located on the top and sidewalls of the first fin 110 and on the top and sidewalls of the second fin 120 .

形成所述P区掩膜层310的工艺可以为化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺。本实施例中,采用原子层沉积工艺形成所述P区掩膜层310。因此,所述P区掩膜层310还位于所述PMOS区域I的伪栅结构130顶部和侧壁、NMOS区域II的伪栅结构130顶部和侧壁上,且还位于所述隔离结构101上。The process for forming the P-region mask layer 310 may be a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. In this embodiment, the P-region mask layer 310 is formed by an atomic layer deposition process. Therefore, the P-region mask layer 310 is also located on the top and sidewalls of the dummy gate structure 130 in the PMOS region I, on the top and sidewalls of the dummy gate structure 130 in the NMOS region II, and also on the isolation structure 101 .

所述P区掩膜层310的作用包括:后续刻蚀所述PMOS区域I部分厚度的第一鳍部110时,以位于所述第一鳍部110侧壁上的所述P区掩膜层310作为掩膜,使得后续所形成的P区凹槽111(如图16所示)与前述形成的P型源漏轻掺杂区之间具有一定距离,避免所述P型源漏轻掺杂区被完全刻蚀去除;并且,位于鳍部侧壁上的所述P区掩膜层310能够起到保护鳍部侧壁的作用,避免后续在所述第一鳍部110和第二鳍部120的侧壁上进行外延生长工艺;此外,位于所述NMOS区域II的P区掩膜层310后续还将作为所述NMOS区域II的N区掩膜层的一部分。The function of the P-region mask layer 310 includes: when etching the first fin 110 with a partial thickness of the PMOS region 1 subsequently, the P-region mask layer located on the sidewall of the first fin 110 310 as a mask, so that there is a certain distance between the subsequently formed P-region groove 111 (as shown in FIG. region is completely etched away; and, the P-region mask layer 310 located on the sidewall of the fin can play a role in protecting the sidewall of the fin, avoiding subsequent steps in the first fin 110 and the second fin The epitaxial growth process is performed on the sidewall of 120; in addition, the P-region mask layer 310 located in the NMOS region II will subsequently serve as a part of the N-region mask layer of the NMOS region II.

所述P区掩膜层310的材料可以为氮化硅(SiN)、氮碳化硅(SiCN)、氮硼化硅(SiBN)、氮碳氧化硅(SiOCN)或氮氧化硅(SiON)。所述P区掩膜层310的材料与所述鳍部的材料不同,所述P区掩膜层310的材料与所述隔离结构101的材料也不相同。本实施例中,所述P区掩膜层310的材料为氮化硅。The material of the P-region mask layer 310 may be silicon nitride (SiN), silicon carbide nitride (SiCN), silicon boride nitride (SiBN), silicon oxycarbide oxynitride (SiOCN) or silicon oxynitride (SiON). The material of the P-region mask layer 310 is different from that of the fin portion, and the material of the P-region mask layer 310 is also different from that of the isolation structure 101 . In this embodiment, the material of the P-region mask layer 310 is silicon nitride.

结合参考图15至图17,图15是基于图13的剖面结构示意图,图16是基于图14沿第一鳍部延伸方向割线(如图5中A1A2割线所示)的剖面结构示意,图17是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,刻蚀位于所述PMOS区域I伪栅结构130两侧鳍部(未标示)顶部上的P区掩膜层310,暴露出所述PMOS区域I伪栅结构130两侧鳍部的顶部表面,且还刻蚀部分厚度的PMOS区域I鳍部,在刻蚀后的鳍部内形成P区凹槽111。Referring to FIGS. 15 to 17 in conjunction, FIG. 15 is a schematic cross-sectional structure based on FIG. 13 , and FIG. 16 is a schematic cross-sectional structure based on a secant line along the extending direction of the first fin in FIG. 14 (as shown by the A1A2 secant line in FIG. 5 ), FIG. 17 is a schematic diagram of a cross-sectional structure at the position of the sidewall along the secant line perpendicular to the extending direction of the fin (as shown by the C1C2 secant line in FIG. 5 ), etching the fins on both sides of the dummy gate structure 130 in the PMOS region I ( The P-region mask layer 310 on the top, which exposes the top surfaces of the fins on both sides of the dummy gate structure 130 in the PMOS region I, and also etches the fins in the PMOS region I with a partial thickness, after etching A p-region groove 111 is formed in the fin.

所述P区凹槽111为后续形成P型掺杂外延层112(如图19所示)提供空间位置。The P-region groove 111 provides a spatial location for the subsequent formation of a P-type doped epitaxial layer 112 (as shown in FIG. 19 ).

需要说明的是,在刻蚀位于所述PMOS区域I伪栅结构130两侧鳍部(未标示)顶部上的P区掩膜层310之前,所述形成方法还包括:在所述NMOS区域II上形成第一图形层220,所述第一图形层220覆盖所述NMOS区域II的P区掩膜层310。所述第一图形层220起到保护NMOS区域II的P区掩膜层310的作用,所述第一图形层220还可以覆盖所述PMOS区域I中不期望被刻蚀的区域。It should be noted that, before etching the P-region mask layer 310 on the top of the fins (not marked) on both sides of the dummy gate structure 130 in the PMOS region I, the forming method further includes: A first pattern layer 220 is formed on it, and the first pattern layer 220 covers the P-region mask layer 310 of the NMOS region II. The first pattern layer 220 serves to protect the P-region mask layer 310 of the NMOS region II, and the first pattern layer 220 can also cover the undesired etched region in the PMOS region I.

本实施例中,所述第一图形层220的材料为光刻胶材料。在形成所述P区凹槽111之后,采用湿法去胶或灰化工艺去除所述第一图形层220。In this embodiment, the material of the first pattern layer 220 is a photoresist material. After the P-region groove 111 is formed, the first pattern layer 220 is removed by a wet degumming or ashing process.

具体地,采用干法刻蚀工艺,刻蚀去除位于所述PMOS区域I伪栅结构130两侧第一鳍部110顶部上的P区掩膜层310;其中,在刻蚀所述P区掩膜层310的工艺过程中,还刻蚀位于所述PMOS区域I伪栅结构130顶部上以及所述隔离结构101上的P区掩膜层310;在所述PMOS区域I伪栅结构130两侧的第一鳍部110顶部被暴露出来后,继续刻蚀部分厚度的所述第一鳍部110,在所述第一鳍部110内形成所述P区凹槽111。Specifically, a dry etching process is used to etch and remove the P-region mask layer 310 on the top of the first fin 110 on both sides of the dummy gate structure 130 in the PMOS region I; During the process of the film layer 310, the P-region mask layer 310 located on the top of the dummy gate structure 130 in the PMOS region 1 and on the isolation structure 101 is also etched; on both sides of the dummy gate structure 130 in the PMOS region 1 After the top of the first fin 110 is exposed, continue to etch part of the thickness of the first fin 110 to form the P-region groove 111 in the first fin 110 .

本实施例中,采用各向异性刻蚀工艺刻蚀部分厚度的所述第一鳍部110,所述各向异性刻蚀工艺为反应离子刻蚀工艺,所述反应离子刻蚀工艺的参数包括:反应气体包括CF4、SF6和Ar,CF4流量为50sccm至100sccm,SF6流量为10sccm至100sccm,Ar流量为100sccm至300sccm,源功率为50W至1000W,偏置功率为50W至250W,工艺压强为50mTorr至200mTorr,工艺温度为20℃至90℃。In this embodiment, the partial thickness of the first fin 110 is etched by using an anisotropic etching process, the anisotropic etching process is a reactive ion etching process, and the parameters of the reactive ion etching process include : The reaction gas includes CF 4 , SF 6 and Ar, the flow rate of CF 4 is 50 sccm to 100 sccm, the flow rate of SF 6 is 10 sccm to 100 sccm, the flow rate of Ar is 100 sccm to 300 sccm, the source power is 50W to 1000W, and the bias power is 50W to 250W, The process pressure is 50mTorr to 200mTorr, and the process temperature is 20°C to 90°C.

需要说明的是,如图15所示,本实施例中,为了增加后续在所述P区凹槽111内所形成P型掺杂外延层112的体积,在刻蚀所述第一鳍部110的同时,还刻蚀位于所述第一鳍部110侧壁上的所述P区掩膜层310,使得形成所述P区凹槽111后,位于所述第一鳍部110侧壁上的剩余P区掩膜层310与所述第一鳍部110顶部齐平。It should be noted that, as shown in FIG. 15, in this embodiment, in order to increase the volume of the P-type doped epitaxial layer 112 subsequently formed in the P-region groove 111, the first fin portion 110 is etched. At the same time, the P-region mask layer 310 located on the sidewall of the first fin 110 is also etched, so that after the P-region groove 111 is formed, the P-region mask layer 310 located on the sidewall of the first fin 110 The remaining P-region mask layer 310 is flush with the top of the first fin portion 110 .

还需要说明的是,如图17所示,刻蚀所述伪栅结构130两侧部分厚度的第一鳍部110的步骤中,由于所述PMOS区域I的隔离结构101暴露在刻蚀工艺环境中,因此所述刻蚀工艺还容易刻蚀所述PMOS区域I的伪栅结构130和第一鳍部110所露出的隔离结构101、以及位于所述PMOS区域I侧墙300底部的隔离结构101,从而容易导致所述PMOS区域I侧墙300下方出现由隔离结构101损耗所产生的缝隙(如图17中虚线圈所示)。It should also be noted that, as shown in FIG. 17 , in the step of etching the first fin portion 110 of the partial thickness on both sides of the dummy gate structure 130 , since the isolation structure 101 of the PMOS region I is exposed to the etching process environment Therefore, the etching process can also easily etch the isolation structure 101 exposed by the dummy gate structure 130 and the first fin 110 of the PMOS region I, and the isolation structure 101 located at the bottom of the sidewall 300 of the PMOS region I. , thus easily causing a gap (as shown by the dotted circle in FIG. 17 ) to appear under the sidewall 300 of the PMOS region I caused by the loss of the isolation structure 101 .

此外,为了向后续形成P型掺杂外延层112的工艺提供良好的界面基础,以提高所述P型掺杂外延层112的形成质量,形成所述P区凹槽111后,形成所述P型掺杂外延层112之前,所述形成方法还包括:对所述P区凹槽111进行清洗工艺。In addition, in order to provide a good interface basis for the subsequent process of forming the P-type doped epitaxial layer 112, so as to improve the formation quality of the P-type doped epitaxial layer 112, after the P-region groove 111 is formed, the P-type doped epitaxial layer is formed. Before the type doped epitaxial layer 112 , the forming method further includes: performing a cleaning process on the P-region groove 111 .

所述清洗工艺既用于去除所述P区凹槽111内的杂质,还用于去除位于所述鳍部表面的自然氧化层(图未示)。The cleaning process is not only used to remove impurities in the groove 111 of the P region, but also used to remove the natural oxide layer (not shown) on the surface of the fin.

需要说明的是,所述隔离结构101暴露在所述清洗工艺的环境中,因此为了减小所述清洗工艺对所述隔离结构101的损耗,以免恶化所述PMOS区域I侧墙300下方的缝隙问题,本实施例中,所述清洗工艺为SiCoNi工艺,所述SiCoNi工艺所采用的主刻蚀气体为气态氢氟酸。It should be noted that the isolation structure 101 is exposed to the environment of the cleaning process, so in order to reduce the loss of the isolation structure 101 in the cleaning process, so as not to deteriorate the gap under the sidewall 300 of the PMOS region I Problem, in this embodiment, the cleaning process is a SiCoNi process, and the main etching gas used in the SiCoNi process is gaseous hydrofluoric acid.

参考图18和图19,图18是基于图15的剖面结构示意图,图19是基于图16的剖面结构示意图,在所述P区凹槽111(如图16所示)内形成P型掺杂外延层112。18 and FIG. 19, FIG. 18 is a schematic cross-sectional structure based on FIG. 15, and FIG. 19 is a schematic cross-sectional structure based on FIG. epitaxial layer 112 .

本实施例中,采用选择性外延工艺,在所述P区凹槽111内形成P区应力层,且在形成所述P区应力层的工艺过程中,原位自掺杂P型离子以形成所述P型掺杂外延层112。在其他实施例中,还可以在所述P区凹槽内形成P区应力层后,对所述P区应力层进行P型离子掺杂以形成所述P型掺杂外延层。In this embodiment, a P-region stress layer is formed in the P-region groove 111 by using a selective epitaxial process, and during the process of forming the P-region stress layer, P-type ions are self-doped in situ to form The P-type doped epitaxial layer 112 . In other embodiments, after the P-region stress layer is formed in the P-region groove, the P-region stress layer may be doped with P-type ions to form the P-type doped epitaxial layer.

具体地,所述P区应力层的材料为Si或SiGe,所述P型掺杂外延层112的材料为P型掺杂的Si或SiGe。所述P区应力层为P型器件的沟道区提供压应力作用,从而提高P型器件载流子迁移率。本实施例中,所述P型掺杂外延层112的材料为SiGe。Specifically, the material of the P-region stress layer is Si or SiGe, and the material of the P-type doped epitaxial layer 112 is P-type doped Si or SiGe. The P-region stress layer provides compressive stress for the channel region of the P-type device, thereby improving the carrier mobility of the P-type device. In this embodiment, the material of the P-type doped epitaxial layer 112 is SiGe.

结合参考图20至图22,图20是基于图18的剖面结构示意图,图21是沿第二鳍部延伸方向割线(如图5中D1D2割线所示)的剖面结构示意,图22是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,形成所述P型掺杂外延层112(如图18所示)后,在所述NMOS区域II的P区掩膜层310上形成N区掩膜侧墙320,其中,位于所述NMOS区域II的P区掩膜层310和N区掩膜侧墙320作为N区掩膜层(未标示);刻蚀位于所述NMOS区域II伪栅结构130两侧鳍部(未标示)顶部上的N区掩膜层,且还刻蚀部分厚度的NMOS区域II鳍部,在所述鳍部内形成所述N区凹槽121(如图21所示)。Referring to Figure 20 to Figure 22 in conjunction, Figure 20 is a schematic cross-sectional structure based on Figure 18, Figure 21 is a schematic cross-sectional structure along the secant in the extending direction of the second fin (as shown by D1D2 secant in Figure 5), and Figure 22 is Schematic diagram of the cross-sectional structure along the secant line perpendicular to the extending direction of the fin at the position of the sidewall (as shown by the C1C2 secant line in FIG. 5 ), after forming the P-type doped epitaxial layer 112 (as shown in FIG. 18 ), after An N-region mask spacer 320 is formed on the P-region mask layer 310 of the NMOS region II, wherein the P-region mask layer 310 and the N-region mask spacer 320 located in the NMOS region II serve as an N-region mask layer (not marked); etch the N-region mask layer on the top of the fins (not marked) on both sides of the dummy gate structure 130 of the NMOS region II, and also etch the fins of the NMOS region II with a partial thickness, in the The N-region groove 121 is formed in the fin portion (as shown in FIG. 21 ).

所述N区凹槽121为后续形成N型掺杂外延层122(如图24所示)提供空间位置。The N-region groove 121 provides a spatial location for the subsequent formation of an N-type doped epitaxial layer 122 (as shown in FIG. 24 ).

本实施例中,所述N区掩膜层位于所述第二鳍部120顶部和侧壁上、以及所述NMOS区域II伪栅结构130顶部和侧壁上,且还位于所述NMOS区域II的隔离结构101上;刻蚀部分厚度的所述第二鳍部120,在所述第二鳍部120内形成所述N区凹槽121。In this embodiment, the N-region mask layer is located on the top and sidewalls of the second fin 120 and the top and sidewalls of the dummy gate structure 130 in the NMOS region II, and is also located in the NMOS region II On the isolation structure 101 ; the second fin portion 120 is etched with a partial thickness, and the N-region groove 121 is formed in the second fin portion 120 .

本实施例中,形成所述N区掩膜侧墙320的工艺可以为化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺。本实施例中,采用原子层沉积工艺形成所述N区掩膜侧墙320。因此,所述N区掩膜侧墙320还位于所述P型掺杂外延层112上以及PMOS区域I的隔离结构101上,且还位于所述PMOS区域I的伪栅结构130(如图19所示)侧壁和顶部上。In this embodiment, the process for forming the N-region mask sidewall 320 may be a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. In this embodiment, the N-region mask spacer wall 320 is formed by an atomic layer deposition process. Therefore, the N-region mask sidewall 320 is also located on the P-type doped epitaxial layer 112 and the isolation structure 101 of the PMOS region I, and is also located on the dummy gate structure 130 of the PMOS region I (as shown in FIG. 19 shown) on the side walls and top.

所述N区掩膜侧墙320的作用包括:一方面,所述N区掩膜侧墙320与所述P区掩膜层310构成叠层结构的N区掩膜层,后续刻蚀所述NMOS区域II伪栅结构130两侧部分厚度的第二鳍部120时,以所述叠层结构的N区掩膜层作为掩膜,因此通过所述N区掩膜侧墙320可以增加后续所形成N区凹槽121(如图21所示)与沟道区的距离,有利于改善短沟道效应。The function of the N-region mask sidewall 320 includes: on the one hand, the N-region mask sidewall 320 and the P-region mask layer 310 constitute an N-region mask layer of a stacked structure, and the subsequent etching of the N-region mask layer When the second fins 120 of the partial thickness on both sides of the dummy gate structure 130 in the NMOS region II, the N-region mask layer of the stacked structure is used as a mask, so the N-region mask spacers 320 can be used to increase the subsequent Forming the distance between the groove 121 in the N region (as shown in FIG. 21 ) and the channel region is beneficial to improve the short channel effect.

有关所述N区掩膜侧墙320的材料和形成工艺可参考前述P区掩膜层310的相关描述,在此不再赘述。Regarding the material and formation process of the N-region mask sidewall 320 , reference may be made to the related description of the P-region mask layer 310 , which will not be repeated here.

因此所述N区掩膜层的材料可以为氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。本实施例中,所述N区掩膜侧墙320的材料为氮化硅。相应的,所述N区掩膜层的材料为氮化硅。Therefore, the material of the N-region mask layer may be silicon nitride, silicon nitride carbide, silicon nitride boride, silicon oxycarbide or silicon oxynitride. In this embodiment, the material of the N-region mask sidewall 320 is silicon nitride. Correspondingly, the material of the N-region mask layer is silicon nitride.

具体地,在所述第二鳍部120内形成所述N区凹槽121的步骤包括:刻蚀位于所述NMOS区域II伪栅结构130两侧第二鳍部120顶部上的N区掩膜层,其中,在刻蚀所述第二鳍部120顶部上的N区掩膜层的工艺过程中,还刻蚀位于所述NMOS区域II伪栅结构130顶部上的N区掩膜层,还刻蚀所述NMOS区域II隔离结构101上的N区掩膜层;在所述NMOS区域II伪栅结构12两侧的第二鳍部120顶部被暴露出来后,继续刻蚀部分厚度的所述第二鳍部120,在所述第二鳍部120内形成所述N区凹槽121。Specifically, the step of forming the N-region groove 121 in the second fin portion 120 includes: etching the N-region mask located on the top of the second fin portion 120 on both sides of the NMOS region II dummy gate structure 130 layer, wherein, during the process of etching the N-region mask layer on the top of the second fin portion 120, the N-region mask layer on the top of the NMOS region II dummy gate structure 130 is also etched, and Etching the N-region mask layer on the NMOS region II isolation structure 101; after the tops of the second fins 120 on both sides of the NMOS region II dummy gate structure 12 are exposed, continue to etch the part of the thickness of the The second fin portion 120 , the N-region groove 121 is formed in the second fin portion 120 .

有关形成所述N区凹槽121的刻蚀工艺可参考前述形成P区凹槽111(如图16所示)的相关描述,在此不再赘述。Regarding the etching process for forming the groove 121 in the N region, reference may be made to the related description of forming the groove 111 in the P region (as shown in FIG. 16 ), and details are not repeated here.

本实施例中,为了增加后续在所述N区凹槽121内所形成N型掺杂外延层122的体积,在刻蚀所述第二鳍部120的同时,还刻蚀位于所述第二鳍部120侧壁上的所述N区掩膜层,使得形成所述N区凹槽121后,位于所述第二鳍部120侧壁上的剩余N区掩膜层与所述第二鳍部120顶部齐平。In this embodiment, in order to increase the volume of the N-type doped epitaxial layer 122 subsequently formed in the N-region groove 121, while the second fin 120 is etched, the second fin 120 is also etched. The N-region masking layer on the sidewall of the fin 120, so that after the N-region groove 121 is formed, the remaining N-region masking layer on the sidewall of the second fin 120 and the second fin The top of portion 120 is flush.

需要说明的是,根据实际工艺需求,所述第二鳍部120的刻蚀量小于形成P区凹槽111时所述第一鳍部110的刻蚀量。It should be noted that, according to actual process requirements, the etching amount of the second fin portion 120 is smaller than the etching amount of the first fin portion 110 when forming the P-region groove 111 .

还需要说明的是,在刻蚀所述N区掩膜层之前,所述形成方法还包括:在所述PMOS区域I形成第二图形层230(如图20所示),所述第二图形层230覆盖所述P型掺杂外延层112,所述第二图形层230还覆盖所述PMOS区域I的伪栅结构130(如图19所示)。It should also be noted that, before etching the N-region mask layer, the forming method further includes: forming a second pattern layer 230 (as shown in FIG. 20 ) in the PMOS region I, and the second pattern The layer 230 covers the P-type doped epitaxial layer 112, and the second pattern layer 230 also covers the dummy gate structure 130 of the PMOS region I (as shown in FIG. 19 ).

具体地,所述第二图形层230形成于所述PMOS区域I的N区掩膜侧墙320上,所述第二图形层230可以起到保护所述PMOS区域I的作用,所述第二图形层230还可以覆盖所述NMOS区域II中不期望被刻蚀的区域。Specifically, the second pattern layer 230 is formed on the N-region mask sidewall 320 of the PMOS region I, the second pattern layer 230 can protect the PMOS region I, and the second pattern layer 230 can protect the PMOS region I. The graphic layer 230 can also cover the undesired etched area in the NMOS area II.

本实施例中,所述第二图形层230的材料为光刻胶材料。在形成所述N区凹槽121之后,采用湿法去胶或灰化工艺去除所述第二图形层230。In this embodiment, the material of the second pattern layer 230 is a photoresist material. After the N-region groove 121 is formed, the second graphic layer 230 is removed by a wet stripping or ashing process.

结合参考图22,需要说明的是,对于NMOS区域II而言,所述NMOS区域II伪栅结构130侧壁上形成有侧墙300,所述侧墙300的侧壁上形成有P区掩膜层310,所述P区掩膜层310的侧壁上形成有N区掩膜侧墙320,因此在沿所述第二鳍部120的延伸方向上,对于所述伪栅结构130同一侧的N区掩膜侧墙320、P区掩膜层310和侧墙300而言,所述N区掩膜侧墙320背向所述伪栅结构130一侧的侧壁与所述侧墙300朝向所述伪栅结构130一侧的侧壁之间的距离较大,所述距离为N区掩膜侧墙320、P区掩膜层310和侧墙300的厚度之和;所以相比PMOS区域I,在刻蚀所述NMOS区域II伪栅结构130两侧部分厚度的第二鳍部120时,所述刻蚀工艺对所述NMOS区域II侧墙300下方的隔离结构101造成刻蚀损耗的可能性较低,所述NMOS区域II侧墙300下方出现缝隙的可能性也相应较低。With reference to FIG. 22 , it should be noted that, for the NMOS region II, sidewalls 300 are formed on the sidewalls of the dummy gate structure 130 in the NMOS region II, and a P-region mask is formed on the sidewalls of the sidewalls 300 Layer 310, the sidewall of the P-region mask layer 310 is formed with N-region mask sidewalls 320, so in the extending direction along the second fin 120, for the dummy gate structure 130 on the same side For the N-region mask sidewall 320, the P-region mask layer 310, and the sidewall 300, the sidewall of the N-region mask sidewall 320 facing away from the side of the dummy gate structure 130 faces the direction of the sidewall 300. The distance between the sidewalls on one side of the dummy gate structure 130 is larger, and the distance is the sum of the thicknesses of the N-region mask sidewall 320, the P-region mask layer 310 and the thickness of the sidewall 300; so compared to the PMOS region I, when etching the second fins 120 with a partial thickness on both sides of the dummy gate structure 130 in the NMOS region II, the etching process causes etching loss to the isolation structure 101 below the spacer wall 300 in the NMOS region II The possibility is low, and the possibility of gaps appearing under the sidewall 300 of the NMOS region II is correspondingly low.

还需要说明的是,形成所述N区凹槽121后,所述形成方法还包括:采用SiCoNi工艺对所述N区凹槽121进行清洗工艺,所述SiCoNi工艺所采用的主刻蚀气体为气态氢氟酸。It should also be noted that, after forming the N-region groove 121, the forming method further includes: performing a cleaning process on the N-region groove 121 using a SiCoNi process, and the main etching gas used in the SiCoNi process is gaseous hydrofluoric acid.

所述清洗工艺既用于去除所述N区凹槽121内的杂质,还用于去除位于所述鳍部表面的自然氧化层(图未示)。The cleaning process is used not only to remove impurities in the N-region groove 121, but also to remove a natural oxide layer (not shown) on the surface of the fin.

有关所述N区凹槽121的清洗工艺可参考前述P区凹槽111(如图16所示)清洗工艺的相关描述,在此不再赘述。Regarding the cleaning process of the groove 121 in the N-region, reference may be made to the relevant description of the cleaning process of the groove 111 in the P-region (as shown in FIG. 16 ), which will not be repeated here.

结合参考图23和图24,图23是基于图20的剖面结构示意图,图24是基于图21的剖面结构示意图,在所述N区凹槽121(如图21所示)内形成N型掺杂外延层122。Referring to FIG. 23 and FIG. 24 together, FIG. 23 is a schematic cross-sectional structure based on FIG. 20, and FIG. 24 is a schematic cross-sectional structure based on FIG. heteroepitaxial layer 122.

本实施例中,采用选择性外延工艺,在所述N区凹槽121内形成N区应力层,且在形成所述N区应力层的工艺过程中,原位自掺杂N型离子以形成所述N型掺杂外延层122。在其他实施例中,还可以在所述N区凹槽内形成N区应力层后,对所述N区应力层进行N型离子掺杂以形成所述N型掺杂外延层。In this embodiment, a selective epitaxial process is used to form an N-region stress layer in the N-region groove 121, and during the process of forming the N-region stress layer, N-type ions are self-doped in situ to form The N-type doped epitaxial layer 122 . In other embodiments, after the N-region stress layer is formed in the N-region groove, N-type ion doping can be performed on the N-region stress layer to form the N-type doped epitaxial layer.

具体地,所述N区应力层的材料为Si或SiC,所述N型掺杂外延层122的材料为N型掺杂的Si或SiC。所述N区应力层为N型器件的沟道区提供拉应力作用,从而提高N型器件载流子迁移率。本实施例中,所述N型掺杂外延层122的材料为SiGe。Specifically, the material of the N-region stress layer is Si or SiC, and the material of the N-type doped epitaxial layer 122 is N-type doped Si or SiC. The N-region stress layer provides tensile stress for the channel region of the N-type device, thereby improving the carrier mobility of the N-type device. In this embodiment, the material of the N-type doped epitaxial layer 122 is SiGe.

结合参考图25和图26,图25是基于图23的剖面结构示意图,图26是分别沿第一鳍部延伸方向割线(如图5中A1A2割线所示)以及沿第二鳍部延伸方向割线(如图5中D1D2割线所示)的剖面结构示意图,形成所述掺杂外延层(未标示)后,在所述伪栅结构130露出的隔离结构101上形成层间介质层102(如图26所示),所述层间介质层102露出所述伪栅结构130顶部。Referring to Fig. 25 and Fig. 26 together, Fig. 25 is a schematic cross-sectional structure diagram based on Fig. 23, and Fig. 26 is a secant line along the extending direction of the first fin (as shown by the A1A2 secant line in Fig. 5 ) and extending along the second fin respectively. Schematic diagram of the cross-sectional structure of the direction secant (as shown by the D1D2 secant in FIG. 5 ), after forming the doped epitaxial layer (not marked), an interlayer dielectric layer is formed on the isolation structure 101 exposed by the dummy gate structure 130 102 (as shown in FIG. 26 ), the interlayer dielectric layer 102 exposes the top of the dummy gate structure 130 .

具体地,在形成所述P型掺杂外延层112(如图25所示)和N型掺杂外延层122(如图25所示)后,形成所述层间介质层102。Specifically, after forming the P-type doped epitaxial layer 112 (as shown in FIG. 25 ) and the N-type doped epitaxial layer 122 (as shown in FIG. 25 ), the interlayer dielectric layer 102 is formed.

所述层间介质层102用于实现半导体结构之间的电隔离,也用于定义后续所形成金属栅极结构的尺寸和位置。本实施例中,所述层间介质层102的材料为氧化硅。在其他实施例中,所述层间介质层的材料还可以为氮化硅、氮氧化硅或碳氮氧化硅等其他介质材料。The interlayer dielectric layer 102 is used to realize electrical isolation between semiconductor structures, and is also used to define the size and position of the subsequently formed metal gate structure. In this embodiment, the material of the interlayer dielectric layer 102 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be other dielectric materials such as silicon nitride, silicon oxynitride, or silicon oxycarbonitride.

具体地,形成所述层间介质层102的步骤包括:在所述伪栅结构130露出的隔离结构101上形成介质材料层,所述介质材料层覆盖所述伪栅结构130;通过化学机械研磨等方式去除高于所述伪栅结构130顶部的介质材料层,露出所述伪栅结构130顶部,剩余所述介质材料层作为层间介质层102。Specifically, the step of forming the interlayer dielectric layer 102 includes: forming a dielectric material layer on the isolation structure 101 exposed by the dummy gate structure 130, the dielectric material layer covering the dummy gate structure 130; The dielectric material layer higher than the top of the dummy gate structure 130 is removed in a similar manner to expose the top of the dummy gate structure 130 , and the remaining dielectric material layer is used as the interlayer dielectric layer 102 .

需要说明的是,所述伪栅结构130顶部形成有栅极掩膜210,因此形成所述层间介质层102的步骤中,去除高于所述栅极掩膜210顶部的介质材料层。本实施例中,形成所述层间介质层102后,所述层间介质层102顶部与所述栅极掩膜210顶部齐平。It should be noted that the gate mask 210 is formed on the top of the dummy gate structure 130 , therefore, in the step of forming the interlayer dielectric layer 102 , the dielectric material layer higher than the top of the gate mask 210 is removed. In this embodiment, after the interlayer dielectric layer 102 is formed, the top of the interlayer dielectric layer 102 is flush with the top of the gate mask 210 .

参考图27,图27是基于图26的剖面结构示意图,去除所述伪栅结构130(如图26所示),在所述层间介质层102内形成开口152。Referring to FIG. 27 , which is a schematic cross-sectional structure diagram based on FIG. 26 , the dummy gate structure 130 (as shown in FIG. 26 ) is removed, and an opening 152 is formed in the interlayer dielectric layer 102 .

所述开口为后续形成金属栅极结构提供空间位置。The opening provides a space for the subsequent formation of the metal gate structure.

本实施例中,去除所述伪栅结构130的步骤中,去除所述PMOS区域I的伪栅层132和伪氧化层131,形成贯穿所述PMOS区域I层间介质层102并露出所述第一鳍部110的开口152,并去除所述NMOS区域II的伪栅层132和伪氧化层131,形成贯穿所述NMOS区域II层间介质层102并露出所述第二鳍部120的开口152。In this embodiment, in the step of removing the dummy gate structure 130, the dummy gate layer 132 and the dummy oxide layer 131 in the PMOS region I are removed to form an interlayer dielectric layer 102 that penetrates the PMOS region I and exposes the first an opening 152 of the fin 110, and remove the dummy gate layer 132 and the dummy oxide layer 131 of the NMOS region II to form an opening 152 that penetrates the interlayer dielectric layer 102 of the NMOS region II and exposes the second fin 120 .

本实施例中,为了减少对所述隔离结构101的损耗,采用干法刻蚀工艺去除所述伪氧化层131。In this embodiment, in order to reduce the loss of the isolation structure 101 , the dummy oxide layer 131 is removed by a dry etching process.

需要说明的是,由前述分析可知,所述PMOS区域I侧墙300下方容易因隔离结构101损耗而出现缝隙(如图22中虚线圈所示),因此在去除所述伪氧化层131的步骤中,还可以去除所述缝隙中的残留隔离结构101材料,从而增大所述缝隙,以便于后续向所述缝隙中填充阻挡层。It should be noted that, from the foregoing analysis, it can be known that gaps (shown as dashed circles in FIG. In the process, the remaining material of the isolation structure 101 in the gap can also be removed, so as to enlarge the gap, so as to facilitate subsequent filling of the barrier layer into the gap.

结合参考图28和图29,图28是基于图27的剖面结构示意图,图29是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,在所述开口152的底部形成阻挡层350。Referring to Figure 28 and Figure 29 together, Figure 28 is a schematic cross-sectional structure based on Figure 27, and Figure 29 is a cross-sectional structure along a secant line perpendicular to the extending direction of the fin at the position of the side wall (as shown by the C1C2 secant line in Figure 5) In a schematic view, a barrier layer 350 is formed at the bottom of the opening 152 .

所述阻挡层350用于填充所述隔离结构101位置处的PMOS区域I侧墙300下方的缝隙,后续向所述开口152中填充金属层时,所述缝隙内的阻挡层350可以起到隔绝所述P型掺杂外延层112与所述金属层的作用,相应的,后续所形成金属栅极结构通过所述缝隙与所述P型掺杂外延层112发生桥接(bridge)的概率较低。The barrier layer 350 is used to fill the gap below the side wall 300 of the PMOS region I at the position of the isolation structure 101, and when the metal layer is subsequently filled into the opening 152, the barrier layer 350 in the gap can function as an isolation The effect of the P-type doped epitaxial layer 112 on the metal layer, correspondingly, the metal gate structure formed subsequently has a low probability of bridging with the P-type doped epitaxial layer 112 through the gap .

为了提高工艺兼容性,所述阻挡层350的材料可以为氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅等绝缘介质材料。本实施例中,所述缝隙由隔离结构101损耗所形成,因此所述阻挡层350的材料与所述隔离结构101的材料相同,即所述阻挡层350的材料为氧化硅。In order to improve process compatibility, the material of the barrier layer 350 may be an insulating dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride. In this embodiment, the gap is formed by the loss of the isolation structure 101 , so the material of the barrier layer 350 is the same as that of the isolation structure 101 , that is, the material of the barrier layer 350 is silicon oxide.

本实施例中,形成所述阻挡层350的工艺为原子层沉积工艺;相应的,所述阻挡层350还位于所述开口152的侧壁以及所述层间介质层102的顶部。原子层沉积工艺具有良好的台阶覆盖性(step coverage),能够较好地填充所述开口152的拐角处。如图29所示,且利用所述原子层沉积工艺的特性,所述阻挡层350还可以较好地填充所述隔离结构101位置处的PMOS区域I侧墙300下方的缝隙(如图22中的虚线圈所示)。In this embodiment, the process of forming the barrier layer 350 is an atomic layer deposition process; correspondingly, the barrier layer 350 is also located on the sidewall of the opening 152 and the top of the interlayer dielectric layer 102 . The atomic layer deposition process has good step coverage and can better fill the corners of the opening 152 . As shown in FIG. 29, and using the characteristics of the atomic layer deposition process, the barrier layer 350 can also better fill the gap under the side wall 300 of the PMOS region I at the position of the isolation structure 101 (as shown in FIG. 22 shown by the dotted circle).

需要说明的是,所述阻挡层350的厚度不宜过小,也不宜过大。如果所述阻挡层350的厚度过小,则填充所述PMOS区域I侧墙300下方缝隙的效果不明显,相应的,所述阻挡层350隔绝所述P型掺杂外延层112与金属层的效果不明显;如果所述阻挡层350的厚度过大,反而会浪费材料的浪费、工艺成本的增加。为此,本实施例中,所述阻挡层350的厚度为 It should be noted that the thickness of the barrier layer 350 should neither be too small nor too large. If the thickness of the barrier layer 350 is too small, the effect of filling the gap under the sidewall 300 of the PMOS region I is not obvious. Correspondingly, the barrier layer 350 isolates the P-type doped epitaxial layer 112 from the metal layer. The effect is not obvious; if the thickness of the barrier layer 350 is too large, it will waste materials and increase the process cost. Therefore, in this embodiment, the thickness of the barrier layer 350 is to

结合参考图30和图31,图30是基于图28的剖面结构示意图,图31是基于图29的剖面结构示意图,去除所述开口152(如图30所示)中的所述阻挡层350。Referring to FIG. 30 and FIG. 31 together, FIG. 30 is a schematic cross-sectional structure based on FIG. 28 , and FIG. 31 is a schematic cross-sectional structure based on FIG. 29 , removing the barrier layer 350 in the opening 152 (as shown in FIG. 30 ).

所述开口152用于后续形成金属栅极结构,因此采用所述阻挡层350填充所述PMOS区域I侧墙300下方的缝隙(如图22中的虚线圈所示)后,去除所述开口152中的阻挡层350。The opening 152 is used to subsequently form a metal gate structure, so the barrier layer 350 is used to fill the gap under the sidewall 300 of the PMOS region I (as shown by the dotted circle in FIG. 22 ), and the opening 152 is removed. The barrier layer 350 in.

本实施例中,去除所述开口152中的所述阻挡层350的工艺为干法刻蚀工艺。具体地,所述干法刻蚀工艺为SiCoNi工艺,所述SiCoNi工艺所采用的主刻蚀气体为气态氢氟酸。其中,具体刻蚀工艺参数可根据所述阻挡层350的厚度而定。In this embodiment, the process of removing the barrier layer 350 in the opening 152 is a dry etching process. Specifically, the dry etching process is a SiCoNi process, and the main etching gas used in the SiCoNi process is gaseous hydrofluoric acid. Wherein, specific etching process parameters may be determined according to the thickness of the barrier layer 350 .

相比湿法刻蚀工艺,干法刻蚀工艺具有较好的各向异性刻蚀特性,因此可以减少所述刻蚀工艺对所述缝隙中的阻挡层350的损耗,以避免对所述阻挡层350在所述缝隙中的填充效果造成不良影响。因此,在所述侧墙300的保护作用下,在去除所述开口152中的所述阻挡层350的步骤中,所述缝隙中的所述阻挡层350被保留。Compared with the wet etching process, the dry etching process has better anisotropic etching characteristics, so the loss of the barrier layer 350 in the gap by the etching process can be reduced to avoid damage to the barrier layer 350. The filling effect of the layer 350 in the gap has a negative effect. Therefore, under the protection of the side wall 300 , during the step of removing the barrier layer 350 in the opening 152 , the barrier layer 350 in the gap is retained.

结合参考图32和图33,图32是基于图30的剖面结构示意图,图33是基于图31的剖面结构示意图,去除所述开口152(如图30所示)中的所述阻挡层350(如图28所示)后,在所述开口152内填充金属层520,形成金属栅极结构500。Referring to FIG. 32 and FIG. 33 together, FIG. 32 is a schematic cross-sectional structure based on FIG. 30 , and FIG. 33 is a schematic cross-sectional structure based on FIG. 31 , removing the barrier layer 350 in the opening 152 (as shown in FIG. 30 ). As shown in FIG. 28 ), a metal layer 520 is filled in the opening 152 to form a metal gate structure 500 .

所述金属栅极结构500用于控制所形成半导体器件沟道的导通与截断。The metal gate structure 500 is used to control the conduction and disconnection of the channel of the formed semiconductor device.

需要说明的是,去除所述开口152中的所述阻挡层350后,在所述开口152内填充金属层520之前,所述形成方法还包括:在所述开口152的底部和侧壁上形成栅介质层(未标示),所述栅介质层还位于所述层间介质层102的顶部。具体地,所述栅介质层包括界面层(IL,Interfacial Layer)(图未示)以及位于所述界面层表面的高k栅介质层510。It should be noted that, after removing the barrier layer 350 in the opening 152 and before filling the opening 152 with the metal layer 520 , the forming method further includes: forming A gate dielectric layer (not shown), the gate dielectric layer is also located on the top of the interlayer dielectric layer 102 . Specifically, the gate dielectric layer includes an interface layer (IL, Interfacial Layer) (not shown in the figure) and a high-k gate dielectric layer 510 located on the surface of the interface layer.

所述界面层形成于所述PMOS区域I和NMOS区域II的开口152底部,所述界面层为形成所述高k栅介质层510提供良好的界面基础,从而提高所述高k栅介质层510的质量,减小所述高k栅介质层510与所述第一鳍部110以及第二鳍部120之间的界面态密度,且避免所述高k栅介质层510与所述第一鳍部110以及第二鳍部120直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer is formed at the bottom of the opening 152 of the PMOS region I and the NMOS region II, and the interface layer provides a good interface basis for forming the high-k gate dielectric layer 510, thereby improving the high-k gate dielectric layer 510 quality, reduce the interface state density between the high-k gate dielectric layer 510 and the first fin 110 and the second fin 120, and avoid the high-k gate dielectric layer 510 and the first fin Adverse effects caused by direct contact between the portion 110 and the second fin portion 120 . The material of the interface layer is silicon oxide or silicon oxynitride.

所述高k栅介质层510的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层510的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3The material of the high-k gate dielectric layer 510 is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer 510 is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .

因此形成所述金属栅极结500的步骤包括:在所述PMOS区域I和NMOS区域II的栅介质层上形成金属层520;去除高于所述层间介质层102顶部的金属层520,且还去除高于所述层间介质层102顶部的高k栅介质层510,所述PMOS区域I开口152中的剩余栅介质层和金属层520用于构成所述PMOS区域I的金属栅极结500,所述NMOS区域II开口152中的剩余栅介质层和金属层520用于构成所述NMOS区域II的金属栅极结500,且所述金属栅极结的500顶部与所述层间介质层102的顶部齐平。Therefore, the step of forming the metal gate junction 500 includes: forming a metal layer 520 on the gate dielectric layer of the PMOS region I and the NMOS region II; removing the metal layer 520 higher than the top of the interlayer dielectric layer 102, and The high-k gate dielectric layer 510 higher than the top of the interlayer dielectric layer 102 is also removed, and the remaining gate dielectric layer and metal layer 520 in the opening 152 of the PMOS region 1 are used to form the metal gate junction of the PMOS region 1 500, the remaining gate dielectric layer and metal layer 520 in the opening 152 of the NMOS region II are used to form the metal gate junction 500 of the NMOS region II, and the top of the metal gate junction 500 is connected to the interlayer dielectric The top of layer 102 is flush.

本实施例中,在所述伪栅结构130(如图16所示)两侧的第一鳍部110(如图16所示)内形成P区凹槽111(如图16所示)的工艺过程中,由于所述隔离结构101(如图17所示)暴露在刻蚀所述第一鳍部110的刻蚀工艺环境中,因此所述刻蚀工艺容易对所述伪栅结构130和第一鳍部110所露出的隔离结构101、以及所述侧墙300(如图17所示)下方的隔离结构101造成刻蚀损耗,从而导致所述侧墙300下方出现由隔离结构101损耗所产生的缝隙(如图17中的虚线圈所示);而去除所述伪栅结构130以在所述层间介质层102内形成开口152(如图27所示)后,在所述开口152中形成阻挡层350(如图28所示)的过程中,所述阻挡层350还填充所述缝隙,且在所述侧墙300的保护作用下,在去除所述开口152中的所述阻挡层350后,所述缝隙中的阻挡层350被保留;因此在所述开口152内填充金属层520(如图32所示)时,所述缝隙中的阻挡层350可以起到隔绝所述P型掺杂外延层112(如图32所示)与所述金属层520的作用,所述金属栅极结构500与所述P型掺杂外延层112发生桥接(bridge)的概率较低,即通过本发明所述方案,可以改善所述P型掺杂外延层112与金属栅极结构500发生桥接的问题,从而使半导体器件的电学性能和良率得到改善。In this embodiment, the process of forming a p-region groove 111 (as shown in FIG. 16 ) in the first fins 110 (as shown in FIG. 16 ) on both sides of the dummy gate structure 130 (as shown in FIG. 16 ) During the process, since the isolation structure 101 (as shown in FIG. 17 ) is exposed to the etching process environment for etching the first fin portion 110, the etching process is easy for the dummy gate structure 130 and the first fin portion 110. The isolation structure 101 exposed by a fin 110 and the isolation structure 101 below the sidewall 300 (as shown in FIG. 17 ) cause etching loss, resulting in the loss of the isolation structure 101 under the sidewall 300. gap (as shown by the dotted circle in FIG. 17 ); and after removing the dummy gate structure 130 to form an opening 152 in the interlayer dielectric layer 102 (as shown in FIG. During the process of forming the barrier layer 350 (as shown in FIG. 28 ), the barrier layer 350 also fills the gap, and under the protection of the side wall 300, the barrier layer in the opening 152 is removed After 350, the barrier layer 350 in the gap is retained; therefore, when the metal layer 520 is filled in the opening 152 (as shown in FIG. 32 ), the barrier layer 350 in the gap can isolate the P-type Due to the interaction between the doped epitaxial layer 112 (as shown in FIG. 32 ) and the metal layer 520, the probability of bridging between the metal gate structure 500 and the P-type doped epitaxial layer 112 is low, that is, through The solution of the present invention can solve the bridging problem between the P-type doped epitaxial layer 112 and the metal gate structure 500, thereby improving the electrical performance and yield of the semiconductor device.

结合参考图25、图28和图29,图25是垂直于鳍部延伸方向割线(如图5中B1B2割线所示)的剖面结构示意图,图28是分别沿第一鳍部延伸方向割线(如图5中A1A2割线所示)以及沿第二鳍部延伸方向割线(如图5中D1D2割线所示)的剖面结构示意图,图29是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图。相应的,本发明还提供一种半导体结构,包括:Referring to Fig. 25, Fig. 28 and Fig. 29, Fig. 25 is a schematic diagram of the cross-sectional structure perpendicular to the extending direction of the fin (as shown by the secant line B1B2 in Fig. Line (as shown by the A1A2 secant in Figure 5) and the secant along the extending direction of the second fin (as shown by the D1D2 secant in Figure 5), and Figure 29 is a schematic diagram of the cross-sectional structure at the position of the side wall along the vertical direction of the fin The schematic diagram of the cross-sectional structure of the secant line in the extension direction (as shown by the C1C2 secant line in Figure 5). Correspondingly, the present invention also provides a semiconductor structure, including:

基底,所述基底包括衬底100以及位于所述衬底100上分立的鳍部(未标示);隔离结构101,位于所述鳍部露出的衬底100上,所述隔离结构101覆盖所述鳍部的部分侧壁,且所述隔离结构101顶部低于所述鳍部顶部;位于所述隔离结构101上的层间介质层102(如图25所示),所述层间介质层102内具有露出所述鳍部和隔离结构101的开口152(如图28所示);掺杂外延层(未标示),位于所述开口152两侧的鳍部内;侧墙300,位于所述开口152的侧壁上;阻挡层350,位于所述开口152的底部。A base, the base includes a substrate 100 and a discrete fin (not shown) on the substrate 100; an isolation structure 101, located on the substrate 100 where the fin is exposed, and the isolation structure 101 covers the Part of the sidewall of the fin, and the top of the isolation structure 101 is lower than the top of the fin; the interlayer dielectric layer 102 (as shown in FIG. 25 ) located on the isolation structure 101, the interlayer dielectric layer 102 There is an opening 152 (as shown in FIG. 28 ) exposing the fin and the isolation structure 101; a doped epitaxial layer (not shown) is located in the fin on both sides of the opening 152; sidewalls 300 are located in the opening 152 on the sidewall; the barrier layer 350 is located at the bottom of the opening 152 .

所述基底用于形成鳍式场效应管,所述衬底100为形成鳍式场效应管提供工艺平台,所述鳍部用于提供鳍式场效应晶体管的沟道。The base is used to form the FinFET, the substrate 100 provides a process platform for forming the FinFET, and the fin part is used to provide a channel of the FinFET.

本实施例中,以所形成的鳍式场效应管为CMOS器件为例,所述衬底100包括用于形成P型器件的PMOS区域I、以及用于形成N型器件的NMOS区域II。在其他实施例中,所述衬底可以仅包括用于形成P型器件的PMOS区域,或者,仅包括用于形成N型器件的NMOS区域。In this embodiment, taking the formed fin field effect transistor as a CMOS device as an example, the substrate 100 includes a PMOS region I for forming a P-type device and an NMOS region II for forming an N-type device. In other embodiments, the substrate may only include a PMOS region for forming a P-type device, or only include an NMOS region for forming an N-type device.

相应的,位于所述PMOS区域I衬底100上的鳍部为第一鳍部110,位于所述NMOS区域II衬底100上的鳍部为第二鳍部120。Correspondingly, the fin located on the substrate 100 in the PMOS region I is the first fin 110 , and the fin located on the substrate 100 in the NMOS region II is the second fin 120 .

本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底、绝缘体上的锗衬底或玻璃衬底。所述衬底100的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate, a germanium-on-insulator substrate, or a silicon-on-insulator substrate. substrate or glass substrate. The material of the substrate 100 can be selected suitable for process requirements or easily integrated.

所述鳍部的材料与所述衬底100的材料相同。本实施例中,所述鳍部的材料为硅,即所述第一鳍部110和第二鳍部120的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin is the same as that of the substrate 100 . In this embodiment, the material of the fin is silicon, that is, the material of the first fin 110 and the second fin 120 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

所述隔离结构101作为半导体器件的隔离结构,用于对相邻器件起到隔离作用,还用于对相邻鳍部110起到隔离作用。本实施例中,所述隔离结构101的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 101 is used as an isolation structure of a semiconductor device, and is used for isolating adjacent devices, and is also used for isolating adjacent fins 110 . In this embodiment, the material of the isolation structure 101 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.

所述层间介质层102用于实现半导体结构之间的电隔离,也用于在半导体制造工艺过程中定义金属栅极结构的尺寸和位置。本实施例中,所述层间介质层102的材料为氧化硅。在其他实施例中,所述层间介质层的材料还可以为氮化硅、氮氧化硅或碳氮氧化硅等其他介质材料。The interlayer dielectric layer 102 is used to realize electrical isolation between semiconductor structures, and is also used to define the size and position of the metal gate structure during the semiconductor manufacturing process. In this embodiment, the material of the interlayer dielectric layer 102 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be other dielectric materials such as silicon nitride, silicon oxynitride, or silicon oxycarbonitride.

所述层间介质层内102具有开口152;其中,位于所述PMOS区域I的开口152贯穿所述PMOS区域I的层间介质层102且露出所述第一鳍部110,位于所述NMOS区域II的开口152贯穿所述NMOS区域II的层间介质层102且露出所述第二鳍部120;所述PMOS区域I的开口152为形成PMOS区域I的金属栅极结构提供空间位置,所述NMOS区域II的开口152为形成NMOS区域II的金属栅极结构提供空间位置。The interlayer dielectric layer 102 has an opening 152; wherein, the opening 152 located in the PMOS region I penetrates the interlayer dielectric layer 102 of the PMOS region I and exposes the first fin 110, and is located in the NMOS region The opening 152 of II penetrates the interlayer dielectric layer 102 of the NMOS region II and exposes the second fin 120; the opening 152 of the PMOS region I provides a space for forming the metal gate structure of the PMOS region I. The opening 152 of the NMOS region II provides a spatial location for the metal gate structure forming the NMOS region II.

所述掺杂外延层作为半导体器件的源区(source)或漏区(drain)。The doped epitaxial layer serves as a source or drain of a semiconductor device.

本实施例中,所述衬底100包括PMOS区域I和NMOS区域II,因此位于所述PMOS区域I开口152两侧的第一鳍部110内的掺杂外延层为P型掺杂外延层112,位于所述NMOS区域II开口152两侧的第二鳍部120内的掺杂外延层为N型掺杂外延层122。相应的,所述P型掺杂外延层112作为P型器件的源区或漏区,所述N型掺杂外延层122作为N型器件的源区或漏区。In this embodiment, the substrate 100 includes a PMOS region I and an NMOS region II, so the doped epitaxial layer in the first fin portion 110 located on both sides of the opening 152 of the PMOS region I is a P-type doped epitaxial layer 112 , the doped epitaxial layer in the second fin portion 120 located on both sides of the opening 152 of the NMOS region II is an N-type doped epitaxial layer 122 . Correspondingly, the P-type doped epitaxial layer 112 serves as a source region or a drain region of a P-type device, and the N-type doped epitaxial layer 122 serves as a source region or a drain region of an N-type device.

所述P型掺杂外延层112和N型掺杂外延层122的形成工艺为选择性外延工艺,因此所述P型掺杂外延层112的材料为P型掺杂的Si或SiGe,所述N型掺杂外延层122的材料为N型掺杂的Si或SiC。本实施例中,所述P型掺杂外延层112的材料为SiGe,所述N型掺杂外延层122的材料为SiP。The formation process of the P-type doped epitaxial layer 112 and the N-type doped epitaxial layer 122 is a selective epitaxial process, so the material of the P-type doped epitaxial layer 112 is P-type doped Si or SiGe, the The material of the N-type doped epitaxial layer 122 is N-type doped Si or SiC. In this embodiment, the material of the P-type doped epitaxial layer 112 is SiGe, and the material of the N-type doped epitaxial layer 122 is SiP.

因此,所述半导体结构还包括:位于所述PMOS区域I第一鳍部110侧壁上的P区掩膜层310、以及位于所述NMOS区域II第二鳍部120侧壁上的N区掩膜层(未标示)。Therefore, the semiconductor structure further includes: a P-region mask layer 310 located on the sidewall of the first fin 110 of the PMOS region I, and an N-region mask layer 310 located on the sidewall of the second fin 120 of the NMOS region II. film layer (not labeled).

在形成所述P型掺杂外延层112时,所述P区掩膜层310作为刻蚀所述第一鳍部110的刻蚀掩膜,所述P区掩膜层310还可以避免在所述第一鳍部110和第二鳍部120的侧壁上进行外延生长工艺。When forming the P-type doped epitaxial layer 112, the P-region mask layer 310 is used as an etching mask for etching the first fin portion 110, and the P-region mask layer 310 can also avoid An epitaxial growth process is performed on the sidewalls of the first fin 110 and the second fin 120 .

所述P区掩膜层310的材料可以为氮化硅(SiN)、氮碳化硅(SiCN)、氮硼化硅(SiBN)、氮碳氧化硅(SiOCN)或氮氧化硅(SiON)。所述P区掩膜层310的材料与所述鳍部的材料不同,所述P区掩膜层310的材料与所述隔离结构101的材料也不相同。本实施例中,所述P区掩膜层310的材料为氮化硅。The material of the P-region mask layer 310 may be silicon nitride (SiN), silicon carbide nitride (SiCN), silicon boride nitride (SiBN), silicon oxycarbide oxynitride (SiOCN) or silicon oxynitride (SiON). The material of the P-region mask layer 310 is different from that of the fin portion, and the material of the P-region mask layer 310 is also different from that of the isolation structure 101 . In this embodiment, the material of the P-region mask layer 310 is silicon nitride.

本实施例中,形成所述P区掩膜层310的工艺过程中,所述P区掩膜层310还形成于所述第二鳍部120侧壁上,因此所述N区掩膜层包括位于所述第二鳍部120侧壁上的P区掩膜层310以及位于所述P区掩膜层310侧壁上的N区掩膜侧墙320,且所述N区掩膜侧墙320还位于所述P型掺杂外延层112上。In this embodiment, during the process of forming the P-region mask layer 310, the P-region mask layer 310 is also formed on the sidewall of the second fin 120, so the N-region mask layer includes The P-region mask layer 310 located on the sidewall of the second fin 120 and the N-region mask sidewall 320 located on the sidewall of the P-region mask layer 310, and the N-region mask sidewall 320 It is also located on the P-type doped epitaxial layer 112 .

也就是说,所述N区掩膜层为叠层结构;在形成所述N型掺杂外延层122时,所述N区掩膜层作为刻蚀所述第二鳍部120的刻蚀掩膜,且有利于增加所述N型掺杂外延层122与沟道区的距离,从而有利于改善短沟道效应。That is to say, the N-region mask layer is a laminated structure; when forming the N-type doped epitaxial layer 122, the N-region mask layer is used as an etching mask for etching the second fin portion 120 film, and is beneficial to increase the distance between the N-type doped epitaxial layer 122 and the channel region, thereby improving the short channel effect.

因此所述N区掩膜层的材料为氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。本实施例中,所述N区掩膜侧墙320的材料为氮化硅,相应的,所述N区掩膜层的材料为氮化硅。Therefore, the material of the N-region mask layer is silicon nitride, silicon nitride carbide, silicon nitride boride, silicon oxycarbide or silicon oxynitride. In this embodiment, the material of the N-region mask sidewall 320 is silicon nitride, and correspondingly, the material of the N-region mask layer is silicon nitride.

所述侧墙300用于定义所述P型掺杂外延层112和N型掺杂外延层122的位置。The spacer 300 is used to define the positions of the P-type doped epitaxial layer 112 and the N-type doped epitaxial layer 122 .

所述侧墙300的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙300可以为单层结构或叠层结构。本实施例中,所述侧墙300为单层结构,所述侧墙300的材料为氮化硅。The material of the sidewall 300 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 300 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 300 is a single-layer structure, and the material of the sidewall 300 is silicon nitride.

需要说明的是,在半导体制造工艺过程中,一般先形成横跨所述鳍部的伪栅结构;刻蚀所述伪栅结构两侧部分厚度的鳍部,在所述伪栅结构两侧的鳍部内形成凹槽;在所述凹槽内形成所述掺杂外延层;形成所述掺杂外延层后,去除所述伪栅结构并在所述伪栅结构位置处填充金属层以形成所述金属栅极结构。It should be noted that, in the semiconductor manufacturing process, the dummy gate structure across the fin is generally formed first; forming a groove in the fin; forming the doped epitaxial layer in the groove; after forming the doped epitaxial layer, removing the dummy gate structure and filling a metal layer at the position of the dummy gate structure to form the doped epitaxial layer The metal gate structure described above.

刻蚀所述鳍部时,所述隔离结构101暴露在刻蚀工艺环境中,因此所述刻蚀工艺容易对所述伪栅结构和鳍部所露出的隔离结构、以及所述侧墙300底部的隔离结构101,所述PMOS区域I侧墙300下方的隔离结构101损耗尤其严重,从而容易导致所述PMOS区域I侧墙300下方出现由隔离结构101损耗所产生的缝隙(如图22中的虚线圈所示)。When etching the fin, the isolation structure 101 is exposed to the etching process environment, so the etching process is easy to remove the dummy gate structure, the isolation structure exposed by the fin, and the bottom of the spacer 300 The isolation structure 101, the loss of the isolation structure 101 under the sidewall 300 of the PMOS region I is particularly severe, which easily leads to the occurrence of gaps caused by the loss of the isolation structure 101 under the sidewall 300 of the PMOS region I (as shown in FIG. 22 indicated by the dotted circle).

而对于NMOS区域II而言,所述开口152侧壁上具有侧墙300,所述侧墙300的侧壁上具有P区掩膜层310,所述P区掩膜层310的侧壁上具有N区掩膜侧墙320,因此在沿所述第二鳍部120延伸方向上,对于所述开口152同一侧的N区掩膜侧墙320、P区掩膜层310和侧墙300而言,所述N区掩膜侧墙320背向所述开口152一侧的侧壁与所述开口152露出的侧墙300侧壁之间的距离较大,所述距离为N区掩膜侧墙320、P区掩膜层310和侧墙300的厚度之和;所以相比PMOS区域I,在刻蚀所述第二鳍部120时,所述刻蚀工艺对所述NMOS区域II侧墙300下方的隔离结构101造成刻蚀损耗的可能性较低,所述NMOS区域II侧墙300下方出现缝隙的可能性也相应较低。For the NMOS region II, the sidewall of the opening 152 has a sidewall 300, the sidewall of the sidewall 300 has a P-region mask layer 310, and the sidewall of the P-region mask layer 310 has a The N-region mask sidewall 320, therefore, in the extending direction along the second fin 120, for the N-region mask sidewall 320, the P-region mask layer 310 and the sidewall 300 on the same side of the opening 152 , the distance between the side wall of the N-region mask sidewall 320 facing away from the opening 152 and the sidewall of the sidewall 300 exposed by the opening 152 is relatively large, and the distance is the N-region mask sidewall 320, the sum of the thicknesses of the P-region mask layer 310 and the sidewall 300; therefore, compared to the PMOS region I, when etching the second fin 120, the etching process has a greater impact on the NMOS region II sidewall 300 The possibility of etching loss caused by the isolation structure 101 below is relatively low, and the possibility of gaps appearing under the sidewall 300 of the NMOS region II is correspondingly low.

因此在所述阻挡层350的形成过程中,所述阻挡层350能够填充所述PMOS区域I侧墙300下方的缝隙,且在所述侧墙300的保护作用下,当去除所述开口152中的所述阻挡层350时,所述缝隙中的阻挡层350被保留;而半导体的制造工艺还包括在所述开口152内填充金属层以形成金属栅极结构,因此在所述开口152内填充金属层时,所述缝隙中的阻挡层350可以起到隔绝所述P型掺杂外延层112与所述金属层的作用,所述金属栅极结构与所述P型掺杂外延层112发生桥接(bridge)的概率较低,即通过所述阻挡层350可以改善所述P型掺杂外延层112与金属栅极结构发生桥接的问题,从而使半导体器件的电学性能和良率得到改善。Therefore, during the formation process of the barrier layer 350, the barrier layer 350 can fill the gap under the sidewall 300 of the PMOS region I, and under the protection of the sidewall 300, when the opening 152 is removed When the barrier layer 350 is formed, the barrier layer 350 in the gap is retained; and the semiconductor manufacturing process also includes filling the opening 152 with a metal layer to form a metal gate structure, so filling the opening 152 When forming a metal layer, the barrier layer 350 in the gap can play a role in isolating the P-type doped epitaxial layer 112 from the metal layer, and the metal gate structure and the P-type doped epitaxial layer 112 The probability of bridging is low, that is, the problem of bridging between the P-type doped epitaxial layer 112 and the metal gate structure can be improved through the barrier layer 350 , thereby improving the electrical performance and yield of the semiconductor device.

为了提高工艺兼容性,所述阻挡层350的材料可以为氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅等绝缘介质材料。本实施例中,所述缝隙由隔离结构101损耗所形成,因此所述阻挡层350的材料与所述隔离结构101的材料相同,即所述阻挡层350的材料为氧化硅。In order to improve process compatibility, the material of the barrier layer 350 may be an insulating dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride. In this embodiment, the gap is formed by the loss of the isolation structure 101 , so the material of the barrier layer 350 is the same as that of the isolation structure 101 , that is, the material of the barrier layer 350 is silicon oxide.

本实施例中,为了使所述阻挡层350能够填充所述PMOS区域I侧墙300下方的缝隙,形成所述阻挡层350的工艺为原子层沉积工艺;因此所述阻挡层350还位于所述开口152的侧壁以及所述层间介质层102的顶部。In this embodiment, in order to enable the barrier layer 350 to fill the gap under the sidewall 300 of the PMOS region I, the process of forming the barrier layer 350 is an atomic layer deposition process; therefore, the barrier layer 350 is also located in the The sidewall of the opening 152 and the top of the interlayer dielectric layer 102 .

需要说明的是,所述阻挡层350的厚度不宜过小,也不宜过大。如果所述阻挡层350的厚度过小,则填充所述PMOS区域I侧墙300下方缝隙的效果不明显,相应的,所述阻挡层350隔绝所述P型掺杂外延层112与金属层的效果不明显;如果所述阻挡层350的厚度过大,反而会浪费材料的浪费、工艺成本的增加。为此,本实施例中,所述阻挡层350的厚度为 It should be noted that the thickness of the barrier layer 350 should neither be too small nor too large. If the thickness of the barrier layer 350 is too small, the effect of filling the gap under the sidewall 300 of the PMOS region I is not obvious. Correspondingly, the barrier layer 350 isolates the P-type doped epitaxial layer 112 from the metal layer. The effect is not obvious; if the thickness of the barrier layer 350 is too large, it will waste materials and increase the process cost. Therefore, in this embodiment, the thickness of the barrier layer 350 is to

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

1. A method of forming a semiconductor structure, comprising:
providing a base, wherein the base comprises a substrate and a discrete fin part positioned on the substrate;
forming an isolation structure on the substrate with the exposed fin portion, wherein the isolation structure covers part of the side wall of the fin portion, and the top of the isolation structure is lower than the top of the fin portion;
after the isolation structure is formed, forming a pseudo-gate structure crossing the fin part, wherein the pseudo-gate structure covers part of the top surface and the side wall surface of the fin part;
forming a side wall on the side wall of the pseudo gate structure;
after the side walls are formed, grooves are formed in the fin parts on two sides of the pseudo gate structure;
forming a doped epitaxial layer in the groove;
after the doped epitaxial layer is formed, forming an interlayer dielectric layer on the isolation structure exposed out of the pseudo gate structure, wherein the interlayer dielectric layer is exposed out of the top of the pseudo gate structure;
removing the pseudo gate structure, and forming an opening in the interlayer dielectric layer;
forming a barrier layer at the bottom of the opening;
removing the barrier layer in the opening;
and after removing the barrier layer in the opening, filling a metal layer in the opening to form a metal gate structure.
2. The method of claim 1, wherein the barrier layer is formed of a material selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride.
3. The method of forming a semiconductor structure of claim 1, wherein the barrier layer has a thickness ofTo
4. The method of forming a semiconductor structure of claim 1, wherein the process of forming the barrier layer is an atomic layer deposition process.
5. The method of claim 1, wherein the process of removing the barrier layer in the opening is a dry etching process.
6. The method of claim 1, wherein the step of forming the recess in the fin on both sides of the dummy gate structure comprises: and etching the fin parts with partial thickness at two sides of the pseudo-gate structure by adopting a dry etching process, and forming grooves in the fin parts.
7. The method for forming the semiconductor structure according to claim 6, wherein in the step of etching the fin portions at the two sides of the dummy gate structure, the isolation structure exposed by the dummy gate structure and the fin portions and the isolation structure at the bottom of the sidewall are also etched, and a gap is formed at the bottom of the sidewall;
in the step of forming a barrier layer at the bottom of the opening, the barrier layer also fills the gap;
and in the step of removing the barrier layer in the opening, the barrier layer in the gap is reserved.
8. The method of forming a semiconductor structure of claim 1, wherein after forming a recess in the fin on both sides of the dummy gate structure, before forming a doped epitaxial layer in the recess, the method further comprises: and carrying out a cleaning process on the groove.
9. The method of claim 8, wherein the cleaning process is a SiCoNi process, and wherein a main etching gas used in the SiCoNi process is gaseous hydrofluoric acid.
10. The method of forming a semiconductor structure of claim 1, wherein in the step of providing a substrate, the substrate comprises a PMOS region for forming a P-type device and an NMOS region for forming an N-type device;
the step of forming the recess and doping the epitaxial layer comprises: forming P-region grooves in the fin parts on two sides of the PMOS region pseudo-gate structure; forming a P-type doped epitaxial layer in the P region groove; forming N-region grooves in the fin parts on two sides of the NMOS region pseudo-gate structure; and forming an N-type doped epitaxial layer in the N-region groove.
11. The method of forming a semiconductor structure of claim 10, wherein forming the P-doped epitaxial layer and the N-doped epitaxial layer comprises: forming a P-region mask layer on the top and the side wall of the fin part of the PMOS region, wherein the P-region mask layer is also positioned on the top and the side wall of the fin part of the NMOS region;
etching the P-region mask layers on the tops of the fin parts on the two sides of the PMOS region pseudo-gate structure, exposing the top surfaces of the fin parts on the two sides of the PMOS region pseudo-gate structure, etching the fin parts of the PMOS region with partial thickness, and forming P-region grooves in the etched fin parts;
forming a P-type doped epitaxial layer in the P region groove;
after the P-type doped epitaxial layer is formed, forming N-region mask side walls on the P-region mask layer of the NMOS region, wherein the P-region mask layer and the N-region mask side walls located in the NMOS region serve as N-region mask layers;
etching N-region mask layers on the tops of fin parts on two sides of the NMOS region pseudo-gate structure, etching the fin parts of the NMOS region with partial thickness, and forming N-region grooves in the fin parts;
and forming an N-type doped epitaxial layer in the N-region groove.
12. The method of claim 11, wherein the P-region mask layer is made of silicon nitride, silicon carbonitride, silicon boronitride, silicon oxycarbonitride, or silicon oxynitride; the N-region mask layer is made of silicon nitride, silicon carbide nitride, silicon boride nitride, silicon oxycarbide or silicon oxynitride.
13. The method of claim 1, wherein the substrate is used to form a P-type device, and the step of forming a doped epitaxial layer in the recess is performed by using P-type doped Si or SiGe as the material of the doped epitaxial layer;
or,
the substrate is used for forming an N-type device, and in the step of forming the doped epitaxial layer in the groove, the doped epitaxial layer is made of N-type doped Si or SiC.
14. The method of claim 1, wherein after removing the barrier layer in the opening and before filling the opening with a metal layer, the method further comprises: and forming gate dielectric layers on the bottom and the side wall of the opening, wherein the gate dielectric layers comprise an interface layer and a high-k gate dielectric layer positioned on the surface of the interface layer.
15. A semiconductor structure, comprising:
the base comprises a substrate and a discrete fin part positioned on the substrate;
the isolation structure is positioned on the substrate with the exposed fin part, covers partial side walls of the fin part, and has the top lower than the top of the fin part;
the interlayer dielectric layer is positioned on the isolation structure and is internally provided with an opening for exposing the fin part and the isolation structure;
the doped epitaxial layer is positioned in the fin parts at two sides of the opening;
the side wall is positioned on the side wall of the opening;
and the barrier layer is positioned at the bottom of the opening.
16. The semiconductor structure of claim 15, wherein the material of the barrier layer is silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, or silicon oxycarbonitride.
17. The semiconductor structure of claim 15, wherein the barrier layer has a thickness ofTo
18. The semiconductor structure of claim 15, wherein the substrate is used to form a P-type device, and the material of the doped epitaxial layer is P-type doped Si or SiGe;
or,
the substrate is used for forming an N-type device, and the material of the doped epitaxial layer is N-type doped Si or SiC.
19. The semiconductor structure of claim 15, wherein the substrate comprises a PMOS region for forming a P-type device and an NMOS region for forming an N-type device;
the doped epitaxial layers in the fin parts on the two sides of the opening of the PMOS region are P-type doped epitaxial layers, and the doped epitaxial layers in the fin parts on the two sides of the opening of the NMOS region are N-type doped epitaxial layers;
the semiconductor structure further includes: the N-region mask layer is located on the side wall of the NMOS region fin portion.
20. The semiconductor structure of claim 19, wherein the P-region mask layer is made of silicon nitride, silicon carbide nitride, silicon boride nitride, silicon oxycarbide, or silicon oxynitride; the N-region mask layer is made of silicon nitride, silicon carbide nitride, silicon boride nitride, silicon oxycarbide or silicon oxynitride.
CN201710117757.2A 2017-03-01 2017-03-01 Semiconductor structure and method of forming the same Active CN108538724B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710117757.2A CN108538724B (en) 2017-03-01 2017-03-01 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710117757.2A CN108538724B (en) 2017-03-01 2017-03-01 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108538724A true CN108538724A (en) 2018-09-14
CN108538724B CN108538724B (en) 2021-12-14

Family

ID=63488500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710117757.2A Active CN108538724B (en) 2017-03-01 2017-03-01 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108538724B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312800A (en) * 2018-12-12 2020-06-19 联华电子股份有限公司 Semiconductor structure with epitaxial layer and manufacturing method thereof
CN111463173A (en) * 2019-01-18 2020-07-28 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN111599755A (en) * 2019-02-21 2020-08-28 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN111900130A (en) * 2019-05-05 2020-11-06 中芯国际集成电路制造(上海)有限公司 Method for forming a semiconductor device and semiconductor device
CN113871352A (en) * 2020-06-30 2021-12-31 中芯国际集成电路制造(上海)有限公司 Method of making a semiconductor structure
CN114188223A (en) * 2021-08-12 2022-03-15 上海华力集成电路制造有限公司 Manufacturing method of fin field effect transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514041A (en) * 2014-09-26 2016-04-20 中芯国际集成电路制造(上海)有限公司 Transistor forming method
CN105529357A (en) * 2014-10-17 2016-04-27 台湾积体电路制造股份有限公司 Methods and Structures for FinFETs
US20170025536A1 (en) * 2015-07-24 2017-01-26 Taiwan Semiconductor Manufacturing Company Semiconductor device and manufacturing method thereof
CN106373924A (en) * 2015-07-23 2017-02-01 中芯国际集成电路制造(上海)有限公司 Formation method of semiconductor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514041A (en) * 2014-09-26 2016-04-20 中芯国际集成电路制造(上海)有限公司 Transistor forming method
CN105529357A (en) * 2014-10-17 2016-04-27 台湾积体电路制造股份有限公司 Methods and Structures for FinFETs
CN106373924A (en) * 2015-07-23 2017-02-01 中芯国际集成电路制造(上海)有限公司 Formation method of semiconductor structure
US20170025536A1 (en) * 2015-07-24 2017-01-26 Taiwan Semiconductor Manufacturing Company Semiconductor device and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312800A (en) * 2018-12-12 2020-06-19 联华电子股份有限公司 Semiconductor structure with epitaxial layer and manufacturing method thereof
CN111312800B (en) * 2018-12-12 2023-03-28 联华电子股份有限公司 Semiconductor structure with epitaxial layer and manufacturing method thereof
CN111463173A (en) * 2019-01-18 2020-07-28 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN111463173B (en) * 2019-01-18 2023-04-28 中芯国际集成电路制造(上海)有限公司 Semiconductor structures and methods of forming them
CN111599755A (en) * 2019-02-21 2020-08-28 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN111599755B (en) * 2019-02-21 2023-04-25 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN111900130A (en) * 2019-05-05 2020-11-06 中芯国际集成电路制造(上海)有限公司 Method for forming a semiconductor device and semiconductor device
CN113871352A (en) * 2020-06-30 2021-12-31 中芯国际集成电路制造(上海)有限公司 Method of making a semiconductor structure
CN113871352B (en) * 2020-06-30 2024-03-08 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor structure
CN114188223A (en) * 2021-08-12 2022-03-15 上海华力集成电路制造有限公司 Manufacturing method of fin field effect transistor

Also Published As

Publication number Publication date
CN108538724B (en) 2021-12-14

Similar Documents

Publication Publication Date Title
US8900956B2 (en) Method of dual EPI process for semiconductor device
CN110277316B (en) Semiconductor structures and methods of forming them
CN108461544B (en) Semiconductor structures and methods of forming them
CN108538724B (en) Semiconductor structure and method of forming the same
CN104517901B (en) The forming method of CMOS transistor
CN111490092B (en) Semiconductor structures and methods of forming them
US11676869B2 (en) Semiconductor device and manufacturing method thereof
CN110634798A (en) Semiconductor structure and method of forming the same
CN117652014A (en) Semiconductor structure and forming method thereof
CN108389905B (en) Semiconductor structure and method of forming the same
CN112017960A (en) Semiconductor structure and forming method thereof
CN109003899B (en) Semiconductor structure and method for forming the same, and method for forming a fin field effect transistor
CN111769046A (en) Semiconductor structure and method of forming the same
CN110854194B (en) Semiconductor structure and forming method thereof
CN109087892B (en) Semiconductor structure, forming method thereof and forming method of fin field effect transistor
CN109003976B (en) Semiconductor structure and method of forming the same
CN113851535A (en) Semiconductor device and method of forming the same
CN114068704B (en) Semiconductor structures and methods of forming them
CN110875390B (en) Semiconductor structure and forming method thereof
CN115621314A (en) Semiconductor structure and forming method thereof
CN113745162B (en) Semiconductor structure and method of forming the same
CN112652578A (en) Forming method of semiconductor structure and transistor
CN112864016B (en) Semiconductor structures and methods of forming them
CN110690286B (en) Semiconductor structures and methods of forming them
CN118198001A (en) Method for forming semiconductor structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant