CN110854194B - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN110854194B CN110854194B CN201810947256.1A CN201810947256A CN110854194B CN 110854194 B CN110854194 B CN 110854194B CN 201810947256 A CN201810947256 A CN 201810947256A CN 110854194 B CN110854194 B CN 110854194B
- Authority
- CN
- China
- Prior art keywords
- gate structure
- isolation
- dummy gate
- layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体结构及其形成方法,形成方法包括:形成基底,包括衬底以及位于衬底上多个分立的鳍部;形成横跨鳍部的金属栅结构,金属栅结构覆盖鳍部的部分顶部和部分侧壁;沿鳍部的延伸方向,在相邻鳍部之间的衬底上形成隔离栅结构,隔离栅结构的材料为电介质材料。本发明在相邻鳍部之间的衬底上形成隔离栅结构,且隔离栅结构的材料为电介质材料;在半导体工艺中,隔离栅结构通常与横跨鳍部的金属栅结构在同一工艺步骤中形成,即隔离栅结构的材料通常包括金属材料,本发明通过选取电介质材料作为隔离栅结构的材料,使隔离栅结构具备绝缘特性,避免隔离栅结构与相邻鳍部发生电性连接,从而有利于提高隔离栅结构的击穿电压,进而改善器件的电学性能。
A semiconductor structure and a method for forming the same. The forming method includes: forming a substrate, including a substrate and a plurality of discrete fins located on the substrate; forming a metal gate structure across the fins, and the metal gate structure covers part of the top of the fins. and part of the sidewall; along the extension direction of the fins, an isolation gate structure is formed on the substrate between adjacent fins, and the material of the isolation gate structure is a dielectric material. The present invention forms an isolation gate structure on the substrate between adjacent fins, and the material of the isolation gate structure is a dielectric material; in the semiconductor process, the isolation gate structure is usually in the same process step as the metal gate structure across the fins. Formed in It is beneficial to increase the breakdown voltage of the isolation gate structure, thereby improving the electrical performance of the device.
Description
技术领域Technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a forming method thereof.
背景技术Background technique
随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高集成度的方向发展。晶体管作为基本半导体器件之一目前正被广泛应用。所以随着半导体器件密度和集成度的提高,平面晶体管的栅极尺寸也越来越短,传统平面晶体管对沟道电流的控制能力变弱,出现短沟道效应,引起漏电流增大,最终影响半导器件的电学性能。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing towards higher component density and higher integration. As one of the basic semiconductor devices, transistors are currently being widely used. Therefore, as the density and integration of semiconductor devices increase, the gate size of planar transistors becomes shorter and shorter. The ability of traditional planar transistors to control channel current becomes weaker, resulting in a short channel effect, causing leakage current to increase, and ultimately Affects the electrical performance of semiconductor devices.
为了更好的适应特征尺寸的减小,半导体工艺逐渐开始从平面MOSFET向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应晶体管(FinFET)。鳍式场效应晶体管的结构通常包括:凸出于衬底的鳍部以及位于所述衬底上的隔离结构(例如:浅沟槽隔离结构),所述隔离结构覆盖所述鳍部的部分侧壁,且所述隔离结构的顶部低于所述鳍部的顶部;覆盖所述鳍部部分顶部和部分侧壁的栅极结构;位于所述栅极结构两侧鳍部内的源区和漏区。In order to better adapt to the reduction of feature sizes, semiconductor processes have gradually begun to transition from planar MOSFETs to three-dimensional transistors with higher efficiency, such as fin field-effect transistors (FinFETs). The structure of a fin field effect transistor usually includes: a fin protruding from a substrate and an isolation structure (for example, a shallow trench isolation structure) located on the substrate. The isolation structure covers part of the side of the fin. wall, and the top of the isolation structure is lower than the top of the fin; a gate structure covering part of the top and part of the sidewall of the fin; source and drain regions located in the fins on both sides of the gate structure .
然而,随着半导体器件尺寸的不断缩小,相邻鳍式场效应晶体管之间的距离也随之缩小。为了防止相邻鳍式场效应晶体管出现相连(merge)的现象,现有技术引入了单扩散隔断(single diffusion break,SDB)隔离结构的制造技术。单扩散隔断隔离结构一般分布在沿鳍部的延伸方向上,通过去除部分区域的鳍部,在所述鳍部中形成一个或多个沟槽,并在所述沟槽中填充绝缘材料,从而对相邻的剩余鳍部进行隔离,进而减小相邻剩余鳍部之间的漏电流,所述单扩散隔断隔离结构还可以避免源区和漏区之间的桥接(source-drainbridge)问题。However, as the size of semiconductor devices continues to shrink, the distance between adjacent fin field effect transistors also shrinks. In order to prevent adjacent fin field effect transistors from merging, the existing technology has introduced a manufacturing technology of a single diffusion break (SDB) isolation structure. The single diffusion partition isolation structure is generally distributed along the extension direction of the fin. By removing part of the fin, one or more trenches are formed in the fin, and the trenches are filled with insulating material. The adjacent remaining fins are isolated, thereby reducing the leakage current between the adjacent remaining fins. The single diffusion partition isolation structure can also avoid the source-drainbridge problem between the source region and the drain region.
但是,在半导体结构中引入单扩散隔断隔离结构后,器件仍有性能不佳的问题。However, after the single diffusion barrier isolation structure is introduced into the semiconductor structure, the device still suffers from poor performance.
发明内容Contents of the invention
本发明解决的问题是提供一种半导体结构及其形成方法,改善器件性能。The problem solved by the present invention is to provide a semiconductor structure and a forming method thereof to improve device performance.
为解决上述问题,本发明提供一种半导体结构的形成方法,包括:形成基底,包括衬底以及位于所述衬底上多个分立的鳍部;形成横跨所述鳍部的金属栅结构,所述金属栅结构覆盖所述鳍部的部分顶部和部分侧壁;沿所述鳍部的延伸方向,在相邻所述鳍部之间的衬底上形成隔离栅结构,所述隔离栅结构的材料为电介质材料。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, which includes: forming a substrate, including a substrate and a plurality of discrete fins located on the substrate; forming a metal gate structure across the fins, The metal gate structure covers part of the top and part of the sidewall of the fin; along the extension direction of the fin, an isolation gate structure is formed on the substrate between adjacent fins, the isolation gate structure The material is a dielectric material.
相应的,本发明还提供一种半导体结构,包括:基底,包括衬底以及位于所述衬底上多个分立的鳍部;横跨所述鳍部的金属栅结构,所述金属栅结构覆盖所述鳍部的部分顶部和部分侧壁;隔离栅结构,沿所述鳍部的延伸方向,位于相邻所述鳍部之间的衬底上,所述隔离栅结构的材料为电介质材料。Correspondingly, the present invention also provides a semiconductor structure, including: a substrate, including a substrate and a plurality of discrete fins located on the substrate; a metal gate structure spanning the fins, and the metal gate structure covers Part of the top and part of the sidewall of the fin; an isolation gate structure is located on the substrate between adjacent fins along the extension direction of the fin; the material of the isolation gate structure is a dielectric material.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the existing technology, the technical solution of the present invention has the following advantages:
本发明在沿鳍部延伸方向的相邻鳍部之间的衬底上形成隔离栅结构,且所述隔离栅结构的材料为电介质材料;在半导体工艺中,隔离栅结构通常与横跨鳍部的金属栅结构在同一工艺步骤中形成,即隔离栅结构的材料通常包括金属材料,本发明通过选取电介质材料作为所述隔离栅结构的材料,使所述隔离栅结构具备绝缘特性,从而避免所述隔离栅结构与相邻鳍部发生电性连接,进而提高所述隔离栅结构的击穿电压,有利于改善器件的电学性能。The present invention forms an isolation gate structure on the substrate between adjacent fins along the extension direction of the fins, and the material of the isolation gate structure is a dielectric material; in the semiconductor process, the isolation gate structure is usually connected across the fins The metal gate structure is formed in the same process step, that is, the material of the isolation gate structure usually includes a metal material. The present invention selects a dielectric material as the material of the isolation gate structure, so that the isolation gate structure has insulating properties, thereby avoiding The isolation gate structure is electrically connected to adjacent fins, thereby increasing the breakdown voltage of the isolation gate structure, which is beneficial to improving the electrical performance of the device.
可选方案中,形成所述金属栅结构之前,所述形成方法还包括:在所述基底上形成伪栅结构,所述伪栅结构包括第一伪栅结构和第二伪栅结构,所述第一伪栅结构横跨所述鳍部且覆盖所述鳍部的部分顶部和侧壁,沿所述鳍部的延伸方向,所述第二伪栅结构位于相邻所述鳍部之间的衬底上,后续通过去除所述第一伪栅结构的方式,在所述第一伪栅结构的位置处形成金属栅结构,本发明在除所述第一伪栅结构之后,保留所述第二伪栅结构作为所述隔离栅结构,在半导体工艺中,伪栅结构的材料通常为电介质材料(例如:多晶硅),通过将所述第二伪栅结构作为隔离栅结构的方法,相应还简化了形成所述隔离栅结构的工艺步骤。In an optional solution, before forming the metal gate structure, the forming method further includes: forming a dummy gate structure on the substrate, where the dummy gate structure includes a first dummy gate structure and a second dummy gate structure, The first dummy gate structure spans the fin and covers part of the top and sidewalls of the fin. The second dummy gate structure is located between adjacent fins along the extension direction of the fin. On the substrate, a metal gate structure is subsequently formed at the position of the first dummy gate structure by removing the first dummy gate structure. After removing the first dummy gate structure, the present invention retains the third dummy gate structure. Two dummy gate structures are used as the isolation gate structure. In the semiconductor process, the material of the dummy gate structure is usually a dielectric material (for example, polysilicon). By using the second dummy gate structure as the isolation gate structure, it is also simplified accordingly. The process steps for forming the isolation gate structure are disclosed.
可选方案中,形成所述金属栅结构之前,所述形成方法还包括:在所述基底上形成伪栅结构,所述伪栅结构包括第一伪栅结构和第二伪栅结构,所述第一伪栅结构横跨所述鳍部且覆盖所述鳍部的部分顶部和侧壁,沿所述鳍部的延伸方向,所述第二伪栅结构位于相邻所述鳍部之间的衬底上,本发明在去除所述第一伪栅结构之前,去除所述第二伪栅结构,在所述层间介质层内形成沟槽,随后向所述沟槽内填充电介质材料,将所述沟槽内的电介质材料用于作为所述隔离栅结构;通过去除所述第一伪栅结构再重新填充电介质材料的方式形成所述隔离栅结构,相应提高了所述隔离栅结构的材料选择的灵活性,即可以根据实际工艺需求,选取合适的材料,因此还有利于进一步改善器件性能。In an optional solution, before forming the metal gate structure, the forming method further includes: forming a dummy gate structure on the substrate, where the dummy gate structure includes a first dummy gate structure and a second dummy gate structure, The first dummy gate structure spans the fin and covers part of the top and sidewalls of the fin. The second dummy gate structure is located between adjacent fins along the extension direction of the fin. On the substrate, before removing the first dummy gate structure, the present invention removes the second dummy gate structure, forms a trench in the interlayer dielectric layer, and then fills the trench with dielectric material. The dielectric material in the trench is used as the isolation gate structure; the isolation gate structure is formed by removing the first dummy gate structure and refilling the dielectric material, which accordingly improves the material of the isolation gate structure. The flexibility of selection means that appropriate materials can be selected according to actual process requirements, which is also conducive to further improving device performance.
附图说明Description of drawings
图1是一种半导体结构的结构示意图;Figure 1 is a schematic structural diagram of a semiconductor structure;
图2是图1所示半导体结构中,不同位置处栅极结构的击穿电压的累积分布函数图;Figure 2 is a cumulative distribution function diagram of the breakdown voltage of the gate structure at different positions in the semiconductor structure shown in Figure 1;
图3至图10是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图;3 to 10 are schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure according to an embodiment of the present invention;
图11至图14是本发明半导体结构的形成方法另一实施例中各步骤对应的结构示意图;11 to 14 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure according to another embodiment of the present invention;
图15至图16是本发明半导体结构一实施例的结构示意图。15 to 16 are schematic structural diagrams of a semiconductor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,在半导体结构中引入单扩散隔断隔离结构后,器件仍有性能不佳的问题。现结合一种半导体结构分析其性能有待提高的原因。It can be known from the background art that after the single diffusion barrier isolation structure is introduced into the semiconductor structure, the device still has the problem of poor performance. Now let’s analyze the reasons why its performance needs to be improved based on a semiconductor structure.
参考图1,示出了一种半导体结构的结构示意图。Referring to FIG. 1 , a schematic structural diagram of a semiconductor structure is shown.
所述半导体结构包括:基底(未标示),包括衬底10以及位于所述衬底10上多个分立的鳍部20,沿所述鳍部20的延伸方向为第一方向(未标示),平行于所述衬底10表面且垂直于所述第一方向的方向为第二方向(未标示),所述鳍部20在所述第一方向和第二方向呈矩阵排列;隔离结构(未标示),位于所述鳍部20露出的衬底10上,所述隔离结构包括用于实现所述第二方向鳍部20之间隔离的第一隔离层(图未示),以及用于实现所述第一方向鳍部20之间隔离的第二隔离层11,所述第二隔离层11沿所述第二方向贯穿所述第一隔离层,且所述第二隔离层用于作为SDB隔离结构;横跨所述鳍部20的金属栅结构30,所述金属栅结构30覆盖所述鳍部20的部分顶部和部分侧壁;隔离栅结构40,位于所述第二隔离层11上;侧墙35,覆盖所述金属栅结构30的侧壁和隔离栅结构40的侧壁;层间介质层12,位于所述金属栅结构30和隔离栅结构40露出的衬底10上,所述层间介质层12露出所述金属栅结构30的顶部和隔离栅结构40的顶部。The semiconductor structure includes: a substrate (not labeled), including a substrate 10 and a plurality of discrete fins 20 located on the substrate 10, and the extending direction of the fins 20 is a first direction (not labeled), The direction parallel to the surface of the substrate 10 and perpendicular to the first direction is a second direction (not labeled), and the fins 20 are arranged in a matrix in the first direction and the second direction; an isolation structure (not labeled) (labeled), located on the substrate 10 where the fins 20 are exposed, the isolation structure includes a first isolation layer (not shown) for isolating the fins 20 in the second direction, and The second isolation layer 11 is isolated between the first direction fins 20. The second isolation layer 11 penetrates the first isolation layer along the second direction, and the second isolation layer is used as an SDB. Isolation structure; a metal gate structure 30 spanning the fin 20 , the metal gate structure 30 covering part of the top and part of the sidewall of the fin 20 ; an isolation gate structure 40 located on the second isolation layer 11 ; Sidewalls 35, covering the sidewalls of the metal gate structure 30 and the sidewalls of the isolation gate structure 40; interlayer dielectric layer 12, located on the substrate 10 exposed by the metal gate structure 30 and the isolation gate structure 40, so The interlayer dielectric layer 12 exposes the top of the metal gate structure 30 and the top of the isolation gate structure 40 .
所述金属栅结构30通常采用后形成高k栅介质层后形成金属栅极(high klastmetal gate last)的方式形成,且在半导体工艺中,所述金属栅结构30通常与所述隔离栅结构40在同一工艺步骤中形成。具体地,形成所述金属栅结构30和隔离栅结构40的步骤包括:在所述衬底10上形成伪栅结构,所述伪栅结构横跨所述鳍部20且覆盖所述鳍部20的部分顶部和部分侧壁,沿所述鳍部20的延伸方向,所述伪栅结构还位于所述第二隔离层11上;在所述伪栅结构露出的衬底10上形成层间介质层12;去除所述伪栅结构,在所述层间介质层12内形成栅极开口;在所述栅极开口的底部和侧壁上形成高k栅介质层31,在形成有所述高k栅介质层31的栅极开口内填充金属材料,形成栅电极层32;其中,横跨所述鳍部20的高k栅介质层31和栅电极层32构成所述金属栅结构30,位于所述第二隔离层11上的高k栅介质层31和栅电极层32构成所述隔离栅结构40。The metal gate structure 30 is usually formed by forming a high-k gate dielectric layer and then forming a metal gate (high klast metal gate last), and in the semiconductor process, the metal gate structure 30 is usually connected to the isolation gate structure 40 formed in the same process step. Specifically, the step of forming the metal gate structure 30 and the isolation gate structure 40 includes: forming a dummy gate structure on the substrate 10 , the dummy gate structure spans the fin portion 20 and covers the fin portion 20 Part of the top and part of the sidewall, along the extension direction of the fin 20, the dummy gate structure is also located on the second isolation layer 11; an interlayer dielectric is formed on the substrate 10 where the dummy gate structure is exposed Layer 12; remove the dummy gate structure, form a gate opening in the interlayer dielectric layer 12; form a high-k gate dielectric layer 31 on the bottom and side walls of the gate opening, and form the high-k gate dielectric layer 31 on the bottom and side walls of the gate opening. The gate opening of the k-gate dielectric layer 31 is filled with metal material to form the gate electrode layer 32; wherein, the high-k gate dielectric layer 31 and the gate electrode layer 32 across the fin portion 20 constitute the metal gate structure 30, located The high-k gate dielectric layer 31 and the gate electrode layer 32 on the second isolation layer 11 constitute the isolation gate structure 40 .
此外,为了提高载流子迁移率,半导体工艺通常还采用应变硅技术(strainedsilicon),即在形成所述伪栅结构后,还包括:刻蚀所述伪栅结构两侧的鳍部20,在所述鳍部20内形成凹槽后,在所述凹槽内形成掺杂有离子的应力层,用于作为源漏掺杂层。其中,为了提高靠近所述鳍部20端部(如图1中虚线圈a所示位置处)一侧的凹槽的形貌质量,通常会增大位于所述第二隔离层11上的伪栅结构沿所述第一方向(未标示)的宽度,从而使所述侧墙35能够覆盖所述鳍部20端部位置处的部分顶部,进而使所述侧墙35起到控制凹槽形貌的作用。In addition, in order to improve carrier mobility, the semiconductor process usually uses strained silicon technology. That is, after forming the dummy gate structure, it also includes: etching the fins 20 on both sides of the dummy gate structure. After a groove is formed in the fin portion 20 , a stress layer doped with ions is formed in the groove to serve as a source and drain doping layer. Among them, in order to improve the topography quality of the groove on the side close to the end of the fin 20 (the position shown by the dotted circle a in Figure 1), the dummy area on the second isolation layer 11 is usually increased. The width of the gate structure along the first direction (not labeled) allows the sidewalls 35 to cover part of the top of the end of the fin 20 , thereby allowing the sidewalls 35 to control the shape of the groove. The role of appearance.
增大所述第二隔离层11上的伪栅结构沿所述第一方向的宽度后,沿所述第一方向,所述伪栅结构至所述鳍部20的距离相应减小,当所述伪栅结构沿所述第一方向发生偏移(shift)时,所述伪栅结构容易与所述鳍部20的端面(如图1中虚线框b所示位置处)相接触;相应的,在形成所述隔离栅结构40后,所述隔离栅结构40容易与所述鳍部20的端面发生桥接。且随着器件特征尺寸的减小,所述隔离栅结构40与所述鳍部20的端面发生桥接的概率越来越高。After increasing the width of the dummy gate structure on the second isolation layer 11 along the first direction, the distance from the dummy gate structure to the fins 20 decreases accordingly along the first direction. When the dummy gate structure is shifted along the first direction, the dummy gate structure is easily in contact with the end surface of the fin 20 (at the position shown by the dotted frame b in Figure 1); accordingly , after the isolation gate structure 40 is formed, the isolation gate structure 40 is easily bridged with the end surface of the fin 20 . And as the feature size of the device decreases, the probability of bridging between the isolation gate structure 40 and the end surface of the fin 20 becomes higher and higher.
结合参考图2,图2是图1所示半导体结构中,不同位置处栅极结构的击穿电压的累积分布函数(Cumulative Distribution Function,CDF)图,横坐标表示击穿电压(Vbd),纵坐标表示在某一击穿电压值下,所有出现小于或等于该击穿电压值的情况的概率之和,曲线41表示所述金属栅结构30的击穿电压的累积分布函数图,曲线42表示所述隔离栅结构40的击穿电压的累积分布函数图。所述隔离栅结构40的材料包括金属材料,如果所述隔离栅结构40与所述鳍部20的端面发生桥接,则容易降低所述隔离栅结构40的击穿电压。具体地,如图2所示,所述隔离栅结构40的击穿电压小于所述金属栅结构30的击穿电压。With reference to Figure 2, Figure 2 is a cumulative distribution function (CDF) diagram of the breakdown voltage of the gate structure at different positions in the semiconductor structure shown in Figure 1. The abscissa represents the breakdown voltage (Vbd), and the vertical axis represents the breakdown voltage (Vbd). The coordinates represent the sum of the probabilities of all situations that are less than or equal to the breakdown voltage value under a certain breakdown voltage value. The curve 41 represents the cumulative distribution function diagram of the breakdown voltage of the metal gate structure 30 , and the curve 42 represents Cumulative distribution function diagram of the breakdown voltage of the isolation gate structure 40 . The isolation gate structure 40 is made of a metal material. If the isolation gate structure 40 is bridged with the end surface of the fin 20 , the breakdown voltage of the isolation gate structure 40 will be easily reduced. Specifically, as shown in FIG. 2 , the breakdown voltage of the isolation gate structure 40 is smaller than the breakdown voltage of the metal gate structure 30 .
为了解决所述技术问题,本发明在沿鳍部延伸方向的相邻所述鳍部之间的衬底上形成隔离栅结构,且所述隔离栅结构的材料为电介质材料;在半导体工艺中,隔离栅结构通常与横跨鳍部的金属栅结构在同一工艺步骤中形成,即隔离栅结构的材料通常包括金属材料,本发明通过选取电介质材料作为所述隔离栅结构的材料,使所述隔离栅结构具备绝缘特性,从而避免所述隔离栅结构与相邻鳍部发生电性连接,进而提高所述隔离栅结构的击穿电压,有利于改善器件的电学性能。In order to solve the technical problem, the present invention forms an isolation gate structure on the substrate between adjacent fins along the extension direction of the fins, and the material of the isolation gate structure is a dielectric material; in the semiconductor process, The isolation gate structure is usually formed in the same process step as the metal gate structure across the fin, that is, the material of the isolation gate structure usually includes a metal material. The present invention selects a dielectric material as the material of the isolation gate structure to make the isolation The gate structure has insulating properties, thereby preventing the isolation gate structure from being electrically connected to adjacent fins, thereby increasing the breakdown voltage of the isolation gate structure, which is beneficial to improving the electrical performance of the device.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and understandable, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图3至图10是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 10 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure according to an embodiment of the present invention.
结合参考图3和图4,图3是立体图(仅示意出两个初始鳍部),图4是基于图3的立体图(仅示意出四个鳍部),形成基底(未标示),包括衬底110以及位于所述衬底110上多个分立的鳍部120(如图4所示)。Referring to Figures 3 and 4 in conjunction, Figure 3 is a perspective view (only two initial fins are shown), Figure 4 is a perspective view based on Figure 3 (only four fins are shown), forming a base (not labeled), including a lining The base 110 and a plurality of discrete fins 120 located on the substrate 110 (as shown in FIG. 4 ).
本实施例中,所述衬底110为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。In this embodiment, the substrate 110 is a silicon substrate. In other embodiments, the material of the substrate can also be other materials such as germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium. The substrate can also be a silicon substrate on an insulator or an insulator. on germanium substrates and other types of substrates.
本实施例中,所述鳍部120与所述衬底110为一体结构。在其他实施例中,所述鳍部也可以是外延生长于所述衬底上的半导体层,从而达到精确控制所述鳍部高度的目的。In this embodiment, the fin portion 120 and the substrate 110 have an integrated structure. In other embodiments, the fin portion may also be a semiconductor layer grown epitaxially on the substrate, thereby achieving the purpose of accurately controlling the height of the fin portion.
因此,本实施例中,所述鳍部120的材料与所述衬底110的材料相同,所述鳍部120的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟等适宜于形成鳍部的半导体材料,所述鳍部的材料也可以与所述衬底的材料不同。Therefore, in this embodiment, the material of the fin portion 120 is the same as the material of the substrate 110 , and the material of the fin portion 120 is silicon. In other embodiments, the material of the fins may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, or other semiconductor materials suitable for forming fins. The material of the fins may also be made of The substrates are made of different materials.
具体地,形成所述鳍部120和衬底110的步骤包括:提供初始基底;在所述初始基底上形成鳍部掩膜层150;以所述鳍部掩膜层150为掩膜,刻蚀所述初始基底,刻蚀后的剩余初始基底作为衬底110,位于所述衬底110上的凸起作为初始鳍部120a(如图3所示),所述初始鳍部120a的延伸方向为第一方向(如图3中A1A2方向所示),平行于所述衬底110表面且垂直于所述第一方向的方向为第二方向(如图3中B1B2方向所示),所述初始鳍部120a在所述第一方向和第二方向呈矩阵排列;沿所述第二方向,依次刻蚀所述鳍部掩膜层150和初始鳍部120a,在所述初始鳍部120a内形成隔离槽115(如图4所示),所述隔离槽115将所述初始鳍部120a分为多个鳍部120。Specifically, the steps of forming the fins 120 and the substrate 110 include: providing an initial substrate; forming a fin mask layer 150 on the initial substrate; using the fin mask layer 150 as a mask, etching The initial substrate, the remaining initial substrate after etching is used as the substrate 110, and the protrusions located on the substrate 110 are used as the initial fins 120a (as shown in Figure 3). The extension direction of the initial fins 120a is The first direction (shown as the A1A2 direction in Figure 3), the direction parallel to the surface of the substrate 110 and perpendicular to the first direction is the second direction (shown as the B1B2 direction in Figure 3), the initial The fins 120a are arranged in a matrix in the first direction and the second direction; along the second direction, the fin mask layer 150 and the initial fins 120a are sequentially etched to form the initial fins 120a. Isolation groove 115 (shown in FIG. 4 ), the isolation groove 115 divides the initial fin part 120a into a plurality of fin parts 120.
相应的,所述第一方向与所述鳍部120的延伸方向相平行,所述第二方向与所述鳍部的延伸方向相垂直,所述鳍部120在所述第一方向和第二方向呈矩阵排列。Correspondingly, the first direction is parallel to the extension direction of the fin portion 120 , the second direction is perpendicular to the extension direction of the fin portion, and the fin portion 120 is aligned between the first direction and the second direction. The directions are arranged in a matrix.
所述隔离槽115为单扩散隔断隔离槽(SDB isolation trench),所述隔离槽115用于为后续形成单扩散隔断隔离结构提供空间位置。本实施例中,所述隔离槽115露出所述衬底110顶部。在其他实施例中,根据实际工艺需求,在形成所述鳍部的步骤中,还刻蚀部分厚度的衬底,即所述隔离槽底部还可以位于相邻鳍部之间的衬底内。The isolation trench 115 is a single diffusion isolation trench (SDB isolation trench), and the isolation trench 115 is used to provide a spatial location for the subsequent formation of a single diffusion isolation isolation structure. In this embodiment, the isolation groove 115 exposes the top of the substrate 110 . In other embodiments, according to actual process requirements, in the step of forming the fins, a part of the thickness of the substrate is also etched, that is, the bottom of the isolation trench can also be located in the substrate between adjacent fins.
本实施例中,形成所述衬底110和鳍部120后,保留位于所述鳍部120顶部的鳍部掩膜层150。所述鳍部掩膜层150的材料为氮化硅,后续进行平坦化处理时,所述鳍部掩膜层150顶部表面用于定义所述平坦化处理的停止位置,并起到保护所述鳍部120顶部的作用。In this embodiment, after the substrate 110 and the fins 120 are formed, the fin mask layer 150 located on top of the fins 120 is retained. The material of the fin mask layer 150 is silicon nitride. When the planarization process is subsequently performed, the top surface of the fin mask layer 150 is used to define the stop position of the planarization process and protect the The function of the top of fin 120.
结合参考图5,需要说明的是,形成所述衬底110和鳍部120后,还包括:在所述鳍部120露出的衬底上形成隔离结构(未标示),所述隔离结构覆盖所述鳍部120的部分侧壁,且所述隔离结构的顶部低于所述鳍部120顶部,所述隔离结构包括用于实现所述第二方向(如图3中B1B2方向所示)鳍部120之间隔离的第一隔离层101,以及用于实现所述第一方向(如图3中A1A2方向所示)鳍部120之间隔离的第二隔离层102,且所述第二隔离层102沿所述第二方向贯穿所述第一隔离层101。With reference to FIG. 5 , it should be noted that after forming the substrate 110 and the fins 120 , it also includes: forming an isolation structure (not labeled) on the exposed substrate of the fins 120 , and the isolation structure covers all Part of the sidewall of the fin 120, and the top of the isolation structure is lower than the top of the fin 120, the isolation structure includes a fin for realizing the second direction (shown in the B1B2 direction in Figure 3) The first isolation layer 101 is used to isolate the fins 120 in the first direction (shown in the A1A2 direction in Figure 3), and the second isolation layer 102 is used to isolate the fins 120 in the first direction (shown in the A1A2 direction in Figure 3). 102 penetrates the first isolation layer 101 along the second direction.
所述第一隔离层101作为浅沟槽隔离结构(Shallow Trench Isolat1n,STI),用于对相邻器件起到隔离作用;所述第二隔离层102作为单扩散隔断隔离结构,用于减小相邻鳍部120之间的漏电流,还用于改善后续所形成的相邻源漏掺杂层之间的桥接问题。The first isolation layer 101 is a shallow trench isolation structure (Shallow Trench Isolation, STI), used to isolate adjacent devices; the second isolation layer 102 is a single diffusion isolation structure, used to reduce The leakage current between adjacent fins 120 is also used to improve the bridging problem between adjacent source and drain doped layers formed subsequently.
因此,所述第一隔离层101和第二隔离层102的材料均为绝缘材料。本实施例中,所述第一隔离层101和第二隔离层102的材料均为氧化硅。在其他实施例中,所述第一隔离层的材料还可以为氮化硅或氮氧化硅,所述第二隔离层的材料还可以为氮化硅或氮氧化硅。Therefore, the materials of the first isolation layer 101 and the second isolation layer 102 are both insulating materials. In this embodiment, the first isolation layer 101 and the second isolation layer 102 are both made of silicon oxide. In other embodiments, the material of the first isolation layer may also be silicon nitride or silicon oxynitride, and the material of the second isolation layer may also be silicon nitride or silicon oxynitride.
具体地,形成所述第一隔离层101和第二隔离层102的步骤包括:在所述鳍部120露出的衬底110上形成隔离材料层,所述隔离材料层还填充于所述隔离槽115(如图4所示)内,且所述隔离材料层覆盖所述鳍部掩膜层150顶部;对所述隔离材料层进行平坦化处理,去除高于所述鳍部掩膜层150顶部的隔离材料层;在所述平坦化处理后,对剩余隔离材料层进行回刻(etch back)处理,去除部分厚度的所述剩余隔离材料层,回刻处理后的所述剩余隔离材料层作为所述隔离结构;去除所述鳍部掩膜层150。Specifically, the step of forming the first isolation layer 101 and the second isolation layer 102 includes: forming an isolation material layer on the substrate 110 where the fin portion 120 is exposed, and the isolation material layer is also filled in the isolation trench. 115 (as shown in Figure 4), and the isolation material layer covers the top of the fin mask layer 150; perform a planarization process on the isolation material layer, and remove the layers higher than the top of the fin mask layer 150. an isolation material layer; after the planarization process, an etch back process is performed on the remaining isolation material layer to remove part of the thickness of the remaining isolation material layer, and the remaining isolation material layer after the etch back process is used as The isolation structure; remove the fin mask layer 150 .
需要说明的是,本实施例中,在所述初始鳍部120a(如图3所示)内形成所述隔离槽115(如图4所示)之后,形成所述第一隔离层101和第二隔离层102,与先在初始鳍部露出的衬底上形成第一隔离层,随后沿所述第二方向依次刻蚀所述初始鳍部和第一隔离层,再在相邻鳍部之间和剩余第一隔离层之间形成第二隔离层的方案相比,本实施例能够在同一工艺步骤中形成所述第一隔离层101和第二隔离层102,有利于降低形成所述隔离槽的刻蚀工艺难度、简化工艺步骤和降低工艺成本。It should be noted that in this embodiment, after the isolation groove 115 (shown in FIG. 4 ) is formed in the initial fin portion 120 a (shown in FIG. 3 ), the first isolation layer 101 and the first isolation layer 101 are formed. The second isolation layer 102 is to first form the first isolation layer on the substrate with the initial fins exposed, then etch the initial fins and the first isolation layer sequentially along the second direction, and then form a layer between adjacent fins. Compared with the solution of forming the second isolation layer between the remaining first isolation layers, this embodiment can form the first isolation layer 101 and the second isolation layer 102 in the same process step, which is beneficial to reducing the formation of the isolation layer. The etching process difficulty of the groove is reduced, the process steps are simplified and the process cost is reduced.
结合参考图6至图10,图6是基于图5沿鳍部延伸方向且在鳍部顶部位置处割线(如图5中C1C2割线所示)的剖面图,图7至图10是基于图6的剖面图,形成横跨所述鳍部120的金属栅结构400(如图10所示),所述金属栅结构400覆盖所述鳍部120的部分顶部和部分侧壁;沿所述第一方向(如图3中A1A2方向所示),在相邻所述鳍部120之间的衬底110上形成隔离栅结构300(如图9所示),所述隔离栅结构300的材料为电介质(dielectric)材料。With reference to Figures 6 to 10, Figure 6 is a cross-sectional view based on Figure 5 along the fin extension direction and at the secant line at the top position of the fin (as shown by the C1C2 secant line in Figure 5). Figures 7 to 10 are based on 6 , a metal gate structure 400 is formed across the fin 120 (as shown in FIG. 10 ), and the metal gate structure 400 covers part of the top and part of the sidewall of the fin 120; along the In the first direction (shown in the A1A2 direction in Figure 3), an isolation gate structure 300 (shown in Figure 9) is formed on the substrate 110 between adjacent fins 120. The material of the isolation gate structure 300 It is a dielectric material.
在半导体工艺中,隔离栅结构通常与金属栅结构在同一工艺步骤中形成,即隔离栅结构的材料通常包括金属材料。本实施例中,通过选取电介质材料作为所述隔离栅结构300的材料,使所述隔离栅结构300具备绝缘特性,避免所述隔离栅结构300与相邻鳍部120的端面(如图9中虚线框D所示位置处)发生电性连接,从而有利于提高所述隔离栅结构300的击穿电压,进而改善器件的电学性能。In semiconductor processes, the isolation gate structure is usually formed in the same process step as the metal gate structure, that is, the material of the isolation gate structure usually includes metal materials. In this embodiment, by selecting a dielectric material as the material of the isolation gate structure 300, the isolation gate structure 300 has insulating properties and avoids the end surface of the isolation gate structure 300 and the adjacent fin 120 (as shown in Figure 9 The electrical connection occurs at the position shown in the dotted box D), which is beneficial to increasing the breakdown voltage of the isolation gate structure 300, thereby improving the electrical performance of the device.
以下结合附图,对形成所述金属栅结构400和隔离栅结构300的步骤做详细说明。The steps of forming the metal gate structure 400 and the isolation gate structure 300 will be described in detail below with reference to the accompanying drawings.
参考图6,在所述基底(未标示)上形成伪栅结构(未标示),所述伪栅结构包括第一伪栅结构210和第二伪栅结构220,所述第一伪栅结构210横跨所述鳍部120且覆盖所述鳍部120的部分顶部和侧壁,沿所述第一方向(如图3中A1A2方向所示),所述第二伪栅结构220位于相邻所述鳍部120之间的衬底110上。Referring to FIG. 6 , a dummy gate structure (not labeled) is formed on the substrate (not labeled). The dummy gate structure includes a first dummy gate structure 210 and a second dummy gate structure 220 . The first dummy gate structure 210 Across the fin 120 and covering part of the top and sidewalls of the fin 120 , along the first direction (shown in the A1A2 direction in FIG. 3 ), the second dummy gate structure 220 is located adjacent to on the substrate 110 between the fins 120 .
本实施例中,采用后形成高k栅介质层后形成金属栅极(high k last metal gatelast)的方式形成所述鳍式场效应晶体管的金属栅结构,所述第一伪栅结构210用于为所述金属栅结构的形成占据空间位置;所述第二伪栅结构220用于为后续形成隔离栅结构提供工艺基础。In this embodiment, the metal gate structure of the fin field effect transistor is formed by forming a high k last metal gatelast after forming a high k gate dielectric layer. The first dummy gate structure 210 is used for It occupies a spatial position for the formation of the metal gate structure; the second dummy gate structure 220 is used to provide a process basis for the subsequent formation of the isolation gate structure.
本实施例中,为了简化形成所述第一伪栅结构210和第二伪栅结构220的工艺步骤、降低工艺成本,在同一工艺步骤中形成所述第一伪栅结构210和第二伪栅结构220,所述第一伪栅结构210和第二伪栅结构220的材料和结构相同,且所述第一伪栅结构210顶部和第二伪栅结构220顶部相齐平。In this embodiment, in order to simplify the process steps of forming the first dummy gate structure 210 and the second dummy gate structure 220 and reduce the process cost, the first dummy gate structure 210 and the second dummy gate structure are formed in the same process step. Structure 220, the first dummy gate structure 210 and the second dummy gate structure 220 have the same material and structure, and the top of the first dummy gate structure 210 and the top of the second dummy gate structure 220 are flush.
本实施例中,所述伪栅结构为单层结构,所述伪栅结构包括伪栅层。具体地,所述伪栅层的材料为多晶硅,即所述第一伪栅结构210和第二伪栅结构220的材料均为多晶硅。在其他实施例中,所述伪栅层的材料还可以为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或无定形碳等其他材料。In this embodiment, the dummy gate structure is a single-layer structure, and the dummy gate structure includes a dummy gate layer. Specifically, the material of the dummy gate layer is polysilicon, that is, the materials of the first dummy gate structure 210 and the second dummy gate structure 220 are both polysilicon. In other embodiments, the material of the dummy gate layer may also be other materials such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxynitride, or amorphous carbon.
在其他实施例中,所述伪栅结构还可以为叠层结构,所述伪栅结构相应包括伪栅氧化层以及位于所述伪栅氧化层上的伪栅层,所述伪栅氧化层的材料可以为氧化硅或氮氧化硅。In other embodiments, the dummy gate structure may also be a stacked structure. The dummy gate structure may include a dummy gate oxide layer and a dummy gate layer located on the dummy gate oxide layer. The material can be silicon oxide or silicon oxynitride.
本实施例中,以一个鳍部120上形成有一个第一伪栅结构210为例进行说明。在其他实施例中,还可以为:多个相互间隔且平行设置的第一伪栅结构横跨同一个鳍部。In this embodiment, a first dummy gate structure 210 formed on a fin 120 is used as an example for description. In other embodiments, a plurality of mutually spaced and parallel first dummy gate structures may span the same fin.
具体地,所述第一伪栅结构210沿所述第二方向(如图3中B1B2方向所示)横跨多个鳍部120,且所述第一伪栅结构210和第二伪栅结构220沿所述第二方向的长度相等,因此在相邻所述鳍部120之间的衬底110上形成所述第二伪栅结构220的步骤中,所述第二伪栅结构220覆盖所述第二隔离层102且沿所述第二方向横跨多个隔离槽115(如图4所示)。也就是说,所述第二伪栅结构220不仅覆盖相邻所述鳍部120之间的第二隔离层102,还覆盖相邻第一隔离层101之间的第二隔离层102。Specifically, the first dummy gate structure 210 spans the plurality of fins 120 along the second direction (shown in the B1B2 direction in FIG. 3), and the first dummy gate structure 210 and the second dummy gate structure The lengths of 220 along the second direction are equal, so in the step of forming the second dummy gate structure 220 on the substrate 110 between adjacent fins 120, the second dummy gate structure 220 covers all The second isolation layer 102 spans a plurality of isolation trenches 115 along the second direction (as shown in FIG. 4 ). That is to say, the second dummy gate structure 220 not only covers the second isolation layer 102 between adjacent fins 120 , but also covers the second isolation layer 102 between adjacent first isolation layers 101 .
本实施例中,采用掩膜刻蚀的方式形成所述伪栅结构。具体地,形成所述伪栅结构的步骤包括:在所述鳍部120露出的第一隔离层101(如图5所示)和第二隔离层102上形成伪栅材料层;在所述伪栅材料层上形成栅极掩膜层250;以所述栅极掩膜层250为掩膜刻蚀所述伪栅材料层,露出部分鳍部120、第一隔离层101和第二隔离层102,刻蚀后的剩余伪栅材料层作为所述伪栅结构。In this embodiment, mask etching is used to form the dummy gate structure. Specifically, the step of forming the dummy gate structure includes: forming a dummy gate material layer on the first isolation layer 101 (shown in FIG. 5 ) and the second isolation layer 102 exposed by the fin portion 120 ; A gate mask layer 250 is formed on the gate material layer; the dummy gate material layer is etched using the gate mask layer 250 as a mask to expose part of the fins 120, the first isolation layer 101 and the second isolation layer 102. , the remaining dummy gate material layer after etching serves as the dummy gate structure.
形成所述伪栅结构后,保留位于所述伪栅结构顶部的所述栅极掩膜层250。所述栅极掩膜层250的材料为氮化硅,所述栅极掩膜层250用于在后续工艺过程中对所述伪栅结构顶部起到保护作用。After the dummy gate structure is formed, the gate mask layer 250 on top of the dummy gate structure is retained. The gate mask layer 250 is made of silicon nitride, and the gate mask layer 250 is used to protect the top of the dummy gate structure during subsequent processes.
需要说明的是,形成所述伪栅结构后,还包括:在所述伪栅结构的侧壁上形成侧墙230。It should be noted that after forming the dummy gate structure, it also includes forming spacers 230 on the sidewalls of the dummy gate structure.
所述侧墙230可作为后续刻蚀工艺的刻蚀掩膜,用于定义后续源漏掺杂层的形成区域,还用于在后续工艺过程中对所述伪栅结构的侧壁起到保护作用。The sidewalls 230 can be used as an etching mask for subsequent etching processes, used to define the formation areas of subsequent source and drain doping layers, and also used to protect the sidewalls of the dummy gate structure during subsequent processes. effect.
本实施例中,所述伪栅结构顶部形成有栅极掩膜层250,因此所述侧墙230还覆盖所述栅极掩膜层250的侧壁。In this embodiment, a gate mask layer 250 is formed on the top of the dummy gate structure, so the sidewalls 230 also cover the sidewalls of the gate mask layer 250 .
所述侧墙230的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种,所述侧墙230可以为单层结构或叠层结构。本实施例中,所述侧墙230为单层结构,所述侧墙230的材料为氮化硅。The sidewall 230 may be made of one or more of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxynitride, silicon oxynitride, boron nitride and boron carbonitride. The side wall 230 may be a single-layer structure or a stacked structure. In this embodiment, the sidewall 230 has a single-layer structure, and the material of the sidewall 230 is silicon nitride.
还需要说明的是,后续制程还包括刻蚀所述第一伪栅结构210两侧的鳍部120,在所述鳍部120内形成凹槽,随后在所述凹槽内形成源漏掺杂层。沿所述第一方向(如图3中A1A2方向所示),为了提高靠近所述鳍部120端部(如图5中虚线圈K所示位置处)一侧的凹槽形貌质量,所述第一伪栅结构210沿所述第一方向的宽度大于所述第二隔离层102沿所述第一方向的宽度,从而有利于保证所述侧墙230能够覆盖所述鳍部120端部位置处的部分顶部和部分侧壁,进而使所述侧墙230起到限制凹槽形貌的作用。It should also be noted that the subsequent process also includes etching the fins 120 on both sides of the first dummy gate structure 210, forming grooves in the fins 120, and then forming source and drain doping in the grooves. layer. Along the first direction (shown as the A1A2 direction in Figure 3), in order to improve the groove topography quality on the side close to the end of the fin 120 (the position shown by the dotted circle K in Figure 5), the The width of the first dummy gate structure 210 along the first direction is greater than the width of the second isolation layer 102 along the first direction, thereby ensuring that the sidewalls 230 can cover the ends of the fins 120 Part of the top and part of the side wall at the position, thereby allowing the side wall 230 to play a role in limiting the shape of the groove.
本实施例中,形成所述侧墙230后,还包括:刻蚀所述第一伪栅结构210两侧的鳍部120,在所述鳍部120内形成凹槽(图未示);在所述凹槽内形成源漏掺杂层(图未示)。In this embodiment, after forming the spacers 230, the method further includes: etching the fins 120 on both sides of the first dummy gate structure 210, and forming grooves (not shown) in the fins 120; A source and drain doping layer (not shown) is formed in the groove.
具体地,当所形成的半导体结构为NMOS晶体管时,所述源漏掺杂层包括掺杂有N型离子的应力层,所述应力层的材料可以为Si或SiC;当所形成的半导体结构为PMOS晶体管时,所述源漏掺杂层包括掺杂有P型离子的应力层,所述应力层的材料可以为Si或SiGe。Specifically, when the formed semiconductor structure is an NMOS transistor, the source-drain doping layer includes a stress layer doped with N-type ions, and the material of the stress layer can be Si or SiC; when the formed semiconductor structure is a PMOS In the case of a transistor, the source-drain doped layer includes a stress layer doped with P-type ions, and the material of the stress layer may be Si or SiGe.
参考图7,在所述第一伪栅结构210和第二伪栅结构220露出的衬底110上形成层间介质层103,所述层间介质层103覆盖所述源漏掺杂层(图未示),所述层间介质层103露出所述第一伪栅结构210和第二伪栅结构220的顶部。Referring to FIG. 7 , an interlayer dielectric layer 103 is formed on the substrate 110 where the first dummy gate structure 210 and the second dummy gate structure 220 are exposed, and the interlayer dielectric layer 103 covers the source-drain doped layer (Fig. (not shown), the interlayer dielectric layer 103 exposes the tops of the first dummy gate structure 210 and the second dummy gate structure 220 .
所述层间介质层103用于实现相邻器件之间的电隔离,所述层间介质层103还用于定义后续金属栅结构的尺寸和位置。The interlayer dielectric layer 103 is used to achieve electrical isolation between adjacent devices, and the interlayer dielectric layer 103 is also used to define the size and position of subsequent metal gate structures.
所述层间介质层103的材料为绝缘材料。本实施例中,所述层间介质层103的材料为氧化硅。在其他实施例中,所述层间介质层的材料还可以为氮化硅或氮氧化硅等其他介质材料。The material of the interlayer dielectric layer 103 is an insulating material. In this embodiment, the material of the interlayer dielectric layer 103 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be other dielectric materials such as silicon nitride or silicon oxynitride.
具体地,形成所述层间介质层103的步骤包括:在所述第一伪栅结构210和第二伪栅结构220露出的衬底110上形成层间介质膜,所述层间介质膜覆盖所述栅极掩膜层250(如图6所示)顶部;对所述层间介质膜进行平坦化处理,去除高于所述第一伪栅结构210和第二伪栅结构220顶部的层间介质膜,保留剩余的层间介质膜作为所述层间介质层103;去除所述栅极掩膜层250。Specifically, the step of forming the interlayer dielectric layer 103 includes: forming an interlayer dielectric film on the substrate 110 exposed by the first dummy gate structure 210 and the second dummy gate structure 220, and the interlayer dielectric film covers The top of the gate mask layer 250 (as shown in FIG. 6 ); perform a planarization process on the interlayer dielectric film to remove layers higher than the top of the first dummy gate structure 210 and the second dummy gate structure 220 Interlayer dielectric film, retain the remaining interlayer dielectric film as the interlayer dielectric layer 103; remove the gate mask layer 250.
本实施例中,形成所述层间介质层103后,所述层间介质层103顶部与所述第一伪栅结构210和第二伪栅结构220的顶部齐平。In this embodiment, after the interlayer dielectric layer 103 is formed, the top of the interlayer dielectric layer 103 is flush with the tops of the first dummy gate structure 210 and the second dummy gate structure 220 .
结合参考图8和图9,去除所述第一伪栅结构210(如图8所示),在所述层间介质层103内形成栅极开口104(如图9所示)。With reference to FIGS. 8 and 9 , the first dummy gate structure 210 (shown in FIG. 8 ) is removed, and a gate opening 104 (shown in FIG. 9 ) is formed in the interlayer dielectric layer 103 .
所述栅极开口104为后续金属栅结构的形成提供空间位置。The gate opening 104 provides a spatial location for subsequent formation of the metal gate structure.
本实施例中,所述第一伪栅结构210横跨多个鳍部120且覆盖所述鳍部120的部分顶部和部分侧壁,因此形成所述栅极开口104后,所述栅极开口104相应露出所述鳍部120的部分顶部和部分侧壁,所述栅极开口104还露出部分第一隔离层101(如图5所示)。In this embodiment, the first dummy gate structure 210 spans the plurality of fins 120 and covers part of the top and part of the sidewalls of the fins 120. Therefore, after the gate opening 104 is formed, the gate opening 104 is 104 correspondingly exposes part of the top and part of the sidewall of the fin 120 , and the gate opening 104 also exposes part of the first isolation layer 101 (as shown in FIG. 5 ).
具体地,去除所述第一伪栅结构210的步骤包括:在所述层间介质层103上形成第一图形层270(如图8所示),所述第一图形层270覆盖所述第二伪栅结构220;以所述第一图形层270为掩膜,刻蚀去除所述第一伪栅结构210;刻蚀去除所述第一伪栅结构210后,去除所述第一图形层270。Specifically, the step of removing the first dummy gate structure 210 includes: forming a first graphic layer 270 on the interlayer dielectric layer 103 (as shown in FIG. 8 ), and the first graphic layer 270 covers the first graphic layer 270 . Two dummy gate structures 220; using the first pattern layer 270 as a mask, etching and removing the first dummy gate structure 210; after etching and removing the first dummy gate structure 210, remove the first pattern layer 270.
由于所述第一图形层270覆盖所述第二伪栅结构220,因此去除所述第一伪栅结构210之后,保留所述第二伪栅结构220作为所述隔离栅结构300(如图9所示)。Since the first pattern layer 270 covers the second dummy gate structure 220, after the first dummy gate structure 210 is removed, the second dummy gate structure 220 is retained as the isolation gate structure 300 (as shown in FIG. 9 shown).
本实施例中,所述第二伪栅结构220的材料为多晶硅,所述隔离栅结构300的材料相应为多晶硅。在其他实施例中,根据所述第二伪栅结构材料的选取,所述隔离栅结构的材料还可以为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或无定形碳等其他电介质材料。In this embodiment, the material of the second dummy gate structure 220 is polysilicon, and the material of the isolation gate structure 300 is correspondingly polysilicon. In other embodiments, according to the selection of the second dummy gate structure material, the material of the isolation gate structure may also be silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, or carbonitride oxynitride. Other dielectric materials such as silicon or amorphous carbon.
需要说明的是,多晶硅为电介质材料,因此通过保留所述第二伪栅结构220作为所述隔离栅结构300的方式,也能够避免所述隔离栅结构300与相邻鳍部120的端面(如图9中虚线框D所示位置处)发生电性连接。It should be noted that polysilicon is a dielectric material, so by retaining the second dummy gate structure 220 as the isolation gate structure 300 , it is also possible to avoid the end surfaces (such as Electrical connection occurs at the position shown in the dotted box D in Figure 9).
而且,所述第二伪栅结构220不仅覆盖相邻所述鳍部120之间的第二隔离层102,还覆盖相邻第一隔离层101之间的第二隔离层102,即使所述第二伪栅结构220还与所述鳍部120在第二方向(如图3中B1B2方向所示)上的端面相接触,本实施例也能避免所述隔离栅结构300与相邻鳍部120的端面发生电连接的问题。Moreover, the second dummy gate structure 220 not only covers the second isolation layer 102 between adjacent fins 120 , but also covers the second isolation layer 102 between adjacent first isolation layers 101 . The two dummy gate structures 220 are also in contact with the end surfaces of the fins 120 in the second direction (shown in the B1B2 direction in FIG. 3). This embodiment can also avoid the isolation gate structure 300 from contacting the adjacent fins 120. There is an electrical connection problem on the end face.
此外,通过保留所述第二伪栅结构220作为所述隔离栅结构300的方式,无需额外形成所述隔离栅结构300的制程,相应简化了形成所述隔离栅结构300的工艺步骤,还降低了工艺复杂度和工艺成本。In addition, by retaining the second dummy gate structure 220 as the isolation gate structure 300, there is no need for an additional process of forming the isolation gate structure 300, which accordingly simplifies the process steps of forming the isolation gate structure 300 and also reduces the cost. The process complexity and process cost are reduced.
本实施例中,所述第一图形层270的材料为光刻胶。在其他实施例中,所述第一图形层的材料还可以为硬掩膜(Hard Mask,HM)材料,例如为:TiN、SiN或SiO2。In this embodiment, the material of the first pattern layer 270 is photoresist. In other embodiments, the material of the first pattern layer may also be a hard mask (HM) material, such as: TiN, SiN or SiO 2 .
参考图10,在所述栅极开口104(如图9所示)内形成所述金属栅结构400。Referring to FIG. 10 , the metal gate structure 400 is formed within the gate opening 104 (shown in FIG. 9 ).
具体地,形成所述金属栅结构400的步骤包括:在所述栅极开口104的底部和侧壁上形成栅介质层410,所述栅介质层410横跨所述鳍部120,且覆盖所述鳍部120的部分顶部和部分侧壁,所述栅介质层410还覆盖所述栅极开口104露出的第一隔离层101(如图5所示);在所述栅介质层410上形成栅电极层420,且所述栅电极层420填充于所述栅极开口104内。Specifically, the step of forming the metal gate structure 400 includes: forming a gate dielectric layer 410 on the bottom and sidewalls of the gate opening 104 , the gate dielectric layer 410 spanning the fins 120 and covering all the gate openings 104 . Part of the top and part of the sidewall of the fin 120, the gate dielectric layer 410 also covers the first isolation layer 101 exposed by the gate opening 104 (as shown in FIG. 5); formed on the gate dielectric layer 410 The gate electrode layer 420 is filled in the gate opening 104 .
需要说明的是,本实施例中,保留所述第二伪栅结构220作为所述隔离栅结构300,且所述金属栅结构400形成于所述第一伪栅结构210(如图8所示)的位置处,因此形成所述金属栅结构400后,所述金属栅结构400顶部与所述隔离栅结构300顶部齐平。It should be noted that in this embodiment, the second dummy gate structure 220 is retained as the isolation gate structure 300, and the metal gate structure 400 is formed on the first dummy gate structure 210 (as shown in FIG. 8 ) position, therefore after the metal gate structure 400 is formed, the top of the metal gate structure 400 is flush with the top of the isolation gate structure 300 .
所述栅介质层410的材料为高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。本实施例中,所述栅介质层410的材料为HfO2。在其他实施例中,所述栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The material of the gate dielectric layer 410 is a high-k dielectric material. Among them, high-k dielectric materials refer to dielectric materials whose relative dielectric constant is greater than the relative dielectric constant of silicon oxide. In this embodiment, the material of the gate dielectric layer 410 is HfO 2 . In other embodiments, the material of the gate dielectric layer can also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 , etc.
本实施例中,所述栅电极层420的材料为W。在其他实施例中,所述栅电极层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the gate electrode layer 420 is W. In other embodiments, the material of the gate electrode layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti, etc.
图11至图14是本发明半导体结构的形成方法另一实施例中各步骤对应的结构示意图。11 to 14 are schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure according to another embodiment of the present invention.
本实施例与前述实施例的相同之处,在此不再赘述。本实施例与前述实施例的不同之处在于:通过去除第二伪栅结构620(如图11所示)的方式,在所述第二伪栅结构620的位置处形成隔离栅结构700(如图13所示)。The similarities between this embodiment and the previous embodiment will not be described again here. The difference between this embodiment and the previous embodiment is that by removing the second dummy gate structure 620 (as shown in FIG. 11 ), an isolation gate structure 700 (such as As shown in Figure 13).
具体地,所述形成方法包括:Specifically, the forming method includes:
结合参考图11和图12,在第一伪栅结构610和第二伪栅结构620(如图11所示)露出的衬底510上形成层间介质层503后,去除所述第二伪栅结构620,在所述层间介质层503内形成沟槽613(如图12所示)。With reference to FIGS. 11 and 12 , after the interlayer dielectric layer 503 is formed on the exposed substrate 510 of the first dummy gate structure 610 and the second dummy gate structure 620 (shown in FIG. 11 ), the second dummy gate is removed. Structure 620 forms a trench 613 in the interlayer dielectric layer 503 (as shown in FIG. 12 ).
所述沟槽613用于为后续形成隔离栅结构提供空间位置。The trench 613 is used to provide a spatial location for subsequent formation of the isolation gate structure.
具体地,去除所述第二伪栅结构620的步骤包括:在所述层间介质层503上形成第二图形层660,所述第二图形层660覆盖所述第一伪栅结构610;以所述第二图形层660为掩膜,刻蚀去除所述第二伪栅结构620;刻蚀去除所述第二伪栅结构620后,去除所述第二图形层660。Specifically, the step of removing the second dummy gate structure 620 includes: forming a second graphic layer 660 on the interlayer dielectric layer 503, the second graphic layer 660 covering the first dummy gate structure 610; The second graphic layer 660 is a mask, and the second dummy gate structure 620 is removed by etching. After the second dummy gate structure 620 is removed by etching, the second graphic layer 660 is removed.
本实施例中,形成所述第二伪栅结构620后,所述第二伪栅结构620覆盖所述第二隔离层502,因此形成所述沟槽613后,所述沟槽613露出所述第二隔离层502。In this embodiment, after the second dummy gate structure 620 is formed, the second dummy gate structure 620 covers the second isolation layer 502. Therefore, after the trench 613 is formed, the trench 613 exposes the second isolation layer 502. Second isolation layer 502.
本实施例中,采用干法刻蚀工艺,刻蚀去除所述第二伪栅结构620。通过采用干法刻蚀工艺,有利于提高刻蚀去除所述第二伪栅结构620的效率,而且干法刻蚀工艺具有各向异性的刻蚀特性,相应也有利于减小所述干法刻蚀工艺对其他膜层或结构的影响,例如:与所述第二伪栅结构620相邻的第一伪栅结构610或鳍部520。In this embodiment, a dry etching process is used to remove the second dummy gate structure 620 . By using a dry etching process, it is beneficial to improve the efficiency of etching to remove the second dummy gate structure 620, and the dry etching process has anisotropic etching characteristics, which is also beneficial to reducing the dry etching process. The impact of the etching process on other film layers or structures, such as the first dummy gate structure 610 or the fin portion 520 adjacent to the second dummy gate structure 620 .
本实施例中,所述第二图形层660的材料为光刻胶。在其他实施例中,所述第二图形层的材料还可以为硬掩膜材料,例如为:TiN、SiN或SiO2。In this embodiment, the material of the second pattern layer 660 is photoresist. In other embodiments, the material of the second pattern layer may also be a hard mask material, such as TiN, SiN or SiO 2 .
参考图13,去除所述第二伪栅结构620(如图11所示)后,向所述沟槽613(如图12所示)内填充电介质材料,所述沟槽613内的电介质材料用于作为所述隔离栅结构700。Referring to Figure 13, after removing the second dummy gate structure 620 (shown in Figure 11), the trench 613 (shown in Figure 12) is filled with dielectric material. The dielectric material in the trench 613 is as the isolation gate structure 700 .
本实施例中,所述隔离栅结构700的材料为氮化硅。氮化硅具有较好的绝缘性,而且多晶硅和氮化硅的刻蚀选择比较高,在后续去除所述第一伪栅结构610时,可以采用无掩膜刻蚀的方式,有利于简化去除所述第一伪栅结构610的工艺步骤。In this embodiment, the material of the isolation gate structure 700 is silicon nitride. Silicon nitride has good insulation properties, and the etching selectivity of polysilicon and silicon nitride is relatively high. When the first dummy gate structure 610 is subsequently removed, maskless etching can be used, which is conducive to simplifying the removal. Process steps of the first dummy gate structure 610 .
在其他实施例中,所述隔离栅结构的材料还可以为多晶硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅、碳氮化硅硼、碳氧化硅、无定形碳、低k介质材料或超低k介质材料。其中,低k介质材料指相对介电常数大于或等于2.6、小于或等于3.9的介质材料,超低k介质材料指相对介电常数小于2.6的介质材料。In other embodiments, the material of the isolation gate structure can also be polysilicon, silicon oxide, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxynitride, boron silicon nitride, silicon oxycarbon, amorphous Carbon, low-k dielectric materials or ultra-low-k dielectric materials. Among them, low-k dielectric materials refer to dielectric materials with a relative dielectric constant greater than or equal to 2.6 and less than or equal to 3.9, and ultra-low-k dielectric materials refer to dielectric materials with a relative dielectric constant less than 2.6.
具体地,形成所述隔离栅结构700的步骤包括:向所述沟槽613内填充电介质材料,所述电介质材料还覆盖所述层间介质层503顶部;对所述电介质材料进行平坦化处理,去除高于所述层间介质层503顶部的电介质材料,保留所述沟槽613内的电介质材料作为所述隔离栅结构700,所述隔离栅结构700顶部与所述第一伪栅结构610顶部相齐平。Specifically, the steps of forming the isolation gate structure 700 include: filling the trench 613 with dielectric material, and the dielectric material also covers the top of the interlayer dielectric layer 503; performing planarization processing on the dielectric material, The dielectric material higher than the top of the interlayer dielectric layer 503 is removed, and the dielectric material in the trench 613 is retained as the isolation gate structure 700 . The top of the isolation gate structure 700 and the top of the first dummy gate structure 610 are flush with each other.
去除高于所述层间介质层503顶部的电介质材料后,使得剩余电介质材料露出所述第一伪栅结构610顶部,从而为后续去除所述第一伪栅结构610提供工艺基础。After removing the dielectric material higher than the top of the interlayer dielectric layer 503, the remaining dielectric material exposes the top of the first dummy gate structure 610, thereby providing a process basis for subsequent removal of the first dummy gate structure 610.
本实施例中,向所述沟槽613内填充电介质材料的工艺为化学气相沉积工艺,从而使得电介质材料在所述沟槽613中具有良好的填充效果。In this embodiment, the process of filling the dielectric material into the trench 613 is a chemical vapor deposition process, so that the dielectric material has a good filling effect in the trench 613 .
需要说明的是,本实施例中,通过先去除所述第二伪栅结构620(如图11所示)以形成所述沟槽613,再在所述沟槽613内形成所述隔离栅结构700的方式,有利于提高所述隔离栅结构700的材料选择的灵活性,即可以根据实际工艺需求,选取合适的材料,因此还有利于使器件性能满足实际工艺需求。It should be noted that in this embodiment, the trench 613 is formed by first removing the second dummy gate structure 620 (as shown in FIG. 11 ), and then forming the isolation gate structure in the trench 613 700 is conducive to improving the flexibility of material selection for the isolation gate structure 700, that is, appropriate materials can be selected according to actual process requirements, so it is also conducive to making the device performance meet actual process requirements.
参考图14,形成所述隔离栅结构700后,去除所述第一伪栅结构610(如图13所示),在所述层间介质层503内形成栅极开口(图未示);在所述栅极开口内形成金属栅结构800。Referring to Figure 14, after forming the isolation gate structure 700, the first dummy gate structure 610 (shown in Figure 13) is removed, and a gate opening (not shown) is formed in the interlayer dielectric layer 503; A metal gate structure 800 is formed in the gate opening.
本实施例中,所述金属栅结构800包括栅介质层810以及位于所述栅介质层810上的栅电极层820。In this embodiment, the metal gate structure 800 includes a gate dielectric layer 810 and a gate electrode layer 820 located on the gate dielectric layer 810 .
对所述栅极开口和金属栅结构800的具体描述,可参考前述实施例中的相应描述,在此不再赘述。For the specific description of the gate opening and the metal gate structure 800, reference may be made to the corresponding descriptions in the previous embodiments, which will not be described again here.
需要说明的是,本实施例中,所述隔离栅结构700顶部与所述第一伪栅结构610顶部相齐平,且所述金属栅结构800形成于所述第一伪栅结构610的位置处,因此形成所述金属栅结构800后,所述金属栅结构800顶部与所述隔离栅结构700顶部齐平。It should be noted that in this embodiment, the top of the isolation gate structure 700 is flush with the top of the first dummy gate structure 610, and the metal gate structure 800 is formed at the position of the first dummy gate structure 610. , so after the metal gate structure 800 is formed, the top of the metal gate structure 800 is flush with the top of the isolation gate structure 700 .
还需要说明的是,本实施例中,所述第一伪栅结构610的材料和所述隔离栅结构700的材料具有较高的刻蚀选择比,去除所述第一伪栅结构610的工艺对所述隔离栅结构700的损耗很小,因此在去除所述第一伪栅结构610的工艺过程中,无需形成覆盖所述隔离栅结构700的掩膜层(例如光刻胶层),从而可以避免额外工艺成本和时间的浪费。It should also be noted that in this embodiment, the material of the first dummy gate structure 610 and the material of the isolation gate structure 700 have a high etching selectivity ratio. The process of removing the first dummy gate structure 610 The loss to the isolation gate structure 700 is very small. Therefore, during the process of removing the first dummy gate structure 610, there is no need to form a mask layer (such as a photoresist layer) covering the isolation gate structure 700. Therefore, Additional process costs and time waste can be avoided.
在其他实施例中,为了进一步对所述隔离栅结构进行保护,在去除所述第一伪栅结构之前,也可以形成覆盖所述隔离栅结构的掩膜层。In other embodiments, in order to further protect the isolation gate structure, before removing the first dummy gate structure, a mask layer covering the isolation gate structure may also be formed.
对本实施例所述形成方法的具体描述,可参考前述实施例中的相应描述,本实施例不再赘述。For the specific description of the forming method in this embodiment, reference may be made to the corresponding descriptions in the foregoing embodiments, which will not be described again in this embodiment.
相应的,本发明还提供一种半导体结构。结合参考图15和图16,示出了本发明半导体结构一实施例的结构示意图,图15是立体图(仅示意出衬底、鳍部和隔离结构),图16是基于图15沿鳍部延伸方向且在鳍部顶部位置处割线(如图15中E1E2割线所示)的剖面图。Correspondingly, the present invention also provides a semiconductor structure. With reference to Figures 15 and 16, a schematic structural diagram of an embodiment of the semiconductor structure of the present invention is shown. Figure 15 is a perspective view (only illustrating the substrate, fins and isolation structure). Figure 16 is based on Figure 15 and extends along the fins. direction and the secant line at the top position of the fin (shown as the E1E2 secant line in Figure 15).
所述半导体结构包括:基底(未标示),包括衬底910以及位于所述衬底910上多个分立的鳍部920;横跨所述鳍部920的金属栅结构930(如图16所示),所述金属栅结构930覆盖所述鳍部920的部分顶部和部分侧壁;隔离栅结构950(如图16所示),沿所述鳍部920的延伸方向,位于相邻所述鳍部920之间的衬底910上,所述隔离栅结构950的材料为电介质材料。The semiconductor structure includes: a substrate (not labeled), including a substrate 910 and a plurality of discrete fins 920 located on the substrate 910; a metal gate structure 930 spanning the fins 920 (as shown in Figure 16 ), the metal gate structure 930 covers part of the top and part of the sidewall of the fin 920; the isolation gate structure 950 (as shown in FIG. 16) is located adjacent to the fin along the extension direction of the fin 920. On the substrate 910 between the portions 920, the material of the isolation gate structure 950 is a dielectric material.
本实施例中,所述衬底910为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。In this embodiment, the substrate 910 is a silicon substrate. In other embodiments, the material of the substrate can also be other materials such as germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium. The substrate can also be a silicon substrate on an insulator or an insulator. on germanium substrates and other types of substrates.
本实施例中,所述鳍部920与所述衬底910为一体结构。在其他实施例中,所述鳍部也可以是外延生长于所述衬底上的半导体层,从而达到精确控制所述鳍部高度的目的。In this embodiment, the fin 920 and the substrate 910 have an integrated structure. In other embodiments, the fin portion may also be a semiconductor layer grown epitaxially on the substrate, thereby achieving the purpose of accurately controlling the height of the fin portion.
因此,本实施例中,所述鳍部920的材料与所述衬底910的材料相同,所述鳍部920的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟等适宜于形成鳍部的半导体材料,所述鳍部的材料也可以与所述衬底的材料不同。Therefore, in this embodiment, the material of the fin portion 920 is the same as the material of the substrate 910 , and the material of the fin portion 920 is silicon. In other embodiments, the material of the fins may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, or other semiconductor materials suitable for forming fins. The material of the fins may also be made of The substrates are made of different materials.
本实施例中,所述鳍部920的延伸方向为第一方向(如图15中F1F2方向所示),平行于所述衬底910表面且垂直于所述第一方向的为第二方向(如图15中G1G2方向所示),所述鳍部920在所述第一方向和第二方向呈矩阵排列。In this embodiment, the extension direction of the fin 920 is the first direction (shown as the F1F2 direction in Figure 15), and the extension direction parallel to the surface of the substrate 910 and perpendicular to the first direction is the second direction ( As shown in the G1G2 direction in Figure 15), the fins 920 are arranged in a matrix in the first direction and the second direction.
需要说明的是,所述半导体结构包括:隔离结构(未标示),位于所述鳍部920露出的衬底910上,所述隔离结构覆盖所述鳍部920的部分侧壁,且所述隔离结构的顶部低于所述鳍部920的顶部。It should be noted that the semiconductor structure includes: an isolation structure (not labeled) located on the substrate 910 where the fin 920 is exposed, the isolation structure covers part of the sidewall of the fin 920, and the isolation The top of the structure is lower than the top of the fin 920 .
本实施例中,所述隔离结构包括用于实现所述第二方向鳍部920之间隔离的第一隔离层901(如图15所示),以及用于实现所述第一方向鳍部920之间隔离的第二隔离层902(如图15所示),且所述第二隔离层902沿所述第二方向贯穿所述第一隔离层901。In this embodiment, the isolation structure includes a first isolation layer 901 (as shown in FIG. 15 ) for realizing isolation between the second direction fins 920, and a first isolation layer 901 for realizing the isolation between the first direction fins 920. There is a second isolation layer 902 (as shown in FIG. 15 ) isolated between them, and the second isolation layer 902 penetrates the first isolation layer 901 along the second direction.
所述第一隔离层901作为浅沟槽隔离结构,用于对相邻器件起到隔离作用;所述第二隔离层902作为单扩散隔断隔离结构,用于减小相邻鳍部920之间的漏电流,还用于改善相邻源漏掺杂层之间的桥接问题。The first isolation layer 901 serves as a shallow trench isolation structure for isolating adjacent devices; the second isolation layer 902 serves as a single diffusion isolation structure for reducing the distance between adjacent fins 920 The leakage current is also used to improve the bridging problem between adjacent source and drain doped layers.
因此,所述第一隔离层901和第二隔离层902的材料均为绝缘材料。本实施例中,所述第一隔离层901和第二隔离层902的材料均为氧化硅。在其他实施例中,所述第一隔离层的材料还可以为氮化硅或氮氧化硅,所述第二隔离层的材料还可以为氮化硅或氮氧化硅。Therefore, the materials of the first isolation layer 901 and the second isolation layer 902 are both insulating materials. In this embodiment, the first isolation layer 901 and the second isolation layer 902 are both made of silicon oxide. In other embodiments, the material of the first isolation layer may also be silicon nitride or silicon oxynitride, and the material of the second isolation layer may also be silicon nitride or silicon oxynitride.
本实施例中,所述金属栅结构930包括栅介质层931(如图16所示)以及位于所述栅介质层931上的栅电极层932(如图16所示)。In this embodiment, the metal gate structure 930 includes a gate dielectric layer 931 (as shown in FIG. 16 ) and a gate electrode layer 932 (as shown in FIG. 16 ) located on the gate dielectric layer 931 .
本实施例中,所述金属栅结构930沿所述第二方向横跨多个鳍部920,且为了便于图示,以一个鳍部920上形成有一个金属栅结构930为例进行说明。在其他实施例中,还可以为:多个相互间隔且平行设置的金属栅结构横跨同一个鳍部。In this embodiment, the metal gate structure 930 spans a plurality of fins 920 along the second direction, and for ease of illustration, an example in which one metal gate structure 930 is formed on one fin 920 will be described. In other embodiments, a plurality of mutually spaced and parallel metal gate structures may span the same fin.
相应的,所述栅介质层931横跨所述鳍部920,且覆盖所述鳍部920的部分顶部和部分侧壁,所述栅介质层931还覆盖部分第一隔离层901。Correspondingly, the gate dielectric layer 931 spans the fin portion 920 and covers part of the top and part of the sidewalls of the fin part 920 . The gate dielectric layer 931 also covers part of the first isolation layer 901 .
所述栅介质层931的材料为高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。本实施例中,所述栅介质层931的材料为HfO2。在其他实施例中,所述栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The gate dielectric layer 931 is made of a high-k dielectric material. Among them, high-k dielectric materials refer to dielectric materials whose relative dielectric constant is greater than the relative dielectric constant of silicon oxide. In this embodiment, the material of the gate dielectric layer 931 is HfO 2 . In other embodiments, the material of the gate dielectric layer can also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO or Al 2 O 3 , etc.
本实施例中,所述栅电极层932的材料为W。在其他实施例中,所述栅电极层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the gate electrode layer 932 is W. In other embodiments, the material of the gate electrode layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti, etc.
需要说明的是,所述半导体结构还包括:侧墙940,位于所述金属栅结构930的侧壁上,且还位于隔离栅结构950的侧壁上;源漏掺杂层(图未示),位于所述金属栅结构930两侧的鳍部920内。It should be noted that the semiconductor structure also includes: spacers 940, located on the sidewalls of the metal gate structure 930 and also on the sidewalls of the isolation gate structure 950; source and drain doped layers (not shown) , located in the fins 920 on both sides of the metal gate structure 930 .
在所述半导体结构的形成过程中,所述侧墙940用于定义所述源漏掺杂层的形成区域,且还用于对所述金属栅结构930和隔离栅结构950的侧壁起到保护作用。During the formation process of the semiconductor structure, the sidewalls 940 are used to define the formation area of the source and drain doped layers, and are also used to play a role in the sidewalls of the metal gate structure 930 and the isolation gate structure 950 . Protective effects.
所述侧墙940的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种,所述侧墙940可以为单层结构或叠层结构。本实施例中,所述侧墙940为单层结构,所述侧墙940的材料为氮化硅。The sidewall 940 may be made of one or more of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxynitride, silicon oxynitride, boron nitride and boron carbonitride. The side wall 940 may be a single-layer structure or a stacked structure. In this embodiment, the sidewall 940 has a single-layer structure, and the material of the sidewall 940 is silicon nitride.
当所形成的半导体结构为NMOS晶体管时,所述源漏掺杂层包括掺杂有N型离子的应力层,所述应力层的材料可以为Si或SiC;当所形成的半导体结构为PMOS晶体管时,所述源漏掺杂层包括掺杂有P型离子的应力层,所述应力层的材料可以为Si或SiGe。When the formed semiconductor structure is an NMOS transistor, the source-drain doping layer includes a stress layer doped with N-type ions, and the material of the stress layer may be Si or SiC; when the formed semiconductor structure is a PMOS transistor, The source and drain doped layer includes a stress layer doped with P-type ions, and the material of the stress layer may be Si or SiGe.
沿所述第一方向,所述隔离栅结构950位于相邻所述鳍部920之间的衬底910上,且所述隔离栅结构950的材料为电介质材料。Along the first direction, the isolation gate structure 950 is located on the substrate 910 between adjacent fins 920 , and the material of the isolation gate structure 950 is a dielectric material.
本实施例中,所述隔离栅结构950覆盖所述第二隔离层902且沿所述第二方向延伸。也就是说,所述隔离栅结构950覆盖相邻所述鳍部920之间的第二隔离层902,还覆盖相邻第一隔离层901之间的第二隔离层902。In this embodiment, the isolation gate structure 950 covers the second isolation layer 902 and extends along the second direction. That is to say, the isolation gate structure 950 covers the second isolation layer 902 between adjacent fins 920 and also covers the second isolation layer 902 between adjacent first isolation layers 901 .
需要说明的是,所述源漏掺杂层通常位于所述鳍部920内的凹槽中,沿所述第一方向,为了提高靠近所述鳍部920端部(如图15中虚线圈L所示位置处)一侧的凹槽形貌质量,所述隔离栅结构950沿所述第一方向的宽度大于所述第二隔离层902沿所述第一方向的宽度,从而有利于保证所述侧墙940能够覆盖所述鳍部920端部位置处的部分顶部和部分侧壁,进而使所述侧墙940起到限制凹槽形貌的作用。It should be noted that the source-drain doping layer is usually located in a groove in the fin 920. Along the first direction, in order to increase the area close to the end of the fin 920 (dashed circle L in Figure 15 (the position shown)), the width of the isolation gate structure 950 along the first direction is greater than the width of the second isolation layer 902 along the first direction, thereby ensuring that the The side walls 940 can cover part of the top and part of the side walls at the ends of the fins 920, so that the side walls 940 can limit the shape of the groove.
本实施例中,通过选取电介质材料作为所述隔离栅结构950的材料,使所述隔离栅结构950具备绝缘特性,从而避免所述隔离栅结构950与相邻鳍部920的端面(如图16中虚线框H所示位置处)发生电性连接,进而提高所述隔离栅结构950的击穿电压,有利于改善器件的电学性能。In this embodiment, by selecting a dielectric material as the material of the isolation gate structure 950, the isolation gate structure 950 has insulating properties, thereby avoiding the end surfaces of the isolation gate structure 950 and adjacent fins 920 (as shown in Figure 16 The electrical connection occurs at the position shown in the middle dotted box H), thereby increasing the breakdown voltage of the isolation gate structure 950, which is beneficial to improving the electrical performance of the device.
还需要说明的是,所述金属栅结构930采用后形成高k栅介质层后形成栅电极层(high k last metal gate last)的方式所形成,因此在所述半导体结构的形成过程中,通常包括形成伪栅结构(dummy gate)的制程,且所述伪栅结构包括第一伪栅结构和第二伪栅结构,所述第一伪栅结构横跨所述鳍部920且覆盖所述鳍部920的部分顶部和侧壁,沿所述第一方向,所述第二伪栅结构位于相邻所述鳍部920之间的衬底910上,所述第一伪栅结构顶部和第二伪栅结构顶部相齐平。本实施例中,在所述半导体结构的形成过程中,在所述第一伪栅结构的位置处形成所述金属栅结构930,且保留所述第二伪栅结构作为所述隔离栅结构950,因此,所述隔离栅结构950顶部与所述金属栅结构930顶部相齐平。It should also be noted that the metal gate structure 930 is formed by forming a high k gate dielectric layer and then forming a gate electrode layer (high k last metal gate last). Therefore, during the formation process of the semiconductor structure, usually including a process of forming a dummy gate structure (dummy gate), and the dummy gate structure includes a first dummy gate structure and a second dummy gate structure, the first dummy gate structure spans the fin portion 920 and covers the fin Part of the top and sidewalls of the fin portion 920, along the first direction, the second dummy gate structure is located on the substrate 910 between adjacent fin portions 920, the top of the first dummy gate structure and the second dummy gate structure The top of the pseudo-gate structure is flush. In this embodiment, during the formation process of the semiconductor structure, the metal gate structure 930 is formed at the position of the first dummy gate structure, and the second dummy gate structure is retained as the isolation gate structure 950 , therefore, the top of the isolation gate structure 950 is flush with the top of the metal gate structure 930 .
通过保留所述第二伪栅结构作为所述隔离栅结构950的方式,无需额外形成所述隔离栅结构950的制程,相应简化了形成所述半导体结构的工艺步骤,还降低了工艺复杂度和工艺成本。By retaining the second dummy gate structure as the isolation gate structure 950, there is no need for an additional process of forming the isolation gate structure 950, which accordingly simplifies the process steps of forming the semiconductor structure, and also reduces process complexity and Process costs.
由于伪栅结构的材料通常为多晶硅,因此本实施例中,所述隔离栅结构950的材料为多晶硅。多晶硅为电介质材料,通过选取多晶硅材料,也能够避免所述隔离栅结构950与相邻鳍部920的端面发生电性连接。Since the material of the dummy gate structure is usually polysilicon, in this embodiment, the material of the isolation gate structure 950 is polysilicon. Polysilicon is a dielectric material. By selecting the polysilicon material, electrical connection between the isolation gate structure 950 and the end surface of the adjacent fin 920 can also be avoided.
在另一些实施例中,根据所述伪栅结构材料的选取,所述隔离栅结构的材料还可以为氮化硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅、碳氮化硅硼、碳氧化硅或无定形碳等其他电介质材料。In other embodiments, according to the selection of the material of the dummy gate structure, the material of the isolation gate structure can also be silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, silicon carbonitride, silicon nitride oxycarbon. , silicon boron nitride, silicon oxycarbide or amorphous carbon and other dielectric materials.
在其他实施例中,在所述半导体结构的形成过程中,也可以通过去除第二伪栅结构的方式,在所述第二伪栅结构的位置处形成所述隔离栅结构,从而提高所述隔离栅结构的材料选择的灵活性。相应的,所述隔离栅结构的材料还可以为低k介质材料或超低k介质材料。In other embodiments, during the formation process of the semiconductor structure, the isolation gate structure may also be formed at the position of the second dummy gate structure by removing the second dummy gate structure, thereby improving the Flexibility in material selection for isolation barrier structures. Correspondingly, the material of the isolation gate structure may also be a low-k dielectric material or an ultra-low-k dielectric material.
所述半导体结构可以采用前述第一实施例所述的形成方法所形成,也可以采用前述第二实施例所述的形成方法所形成,还可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed by the formation method described in the first embodiment, the formation method described in the second embodiment, or other formation methods. For the specific description of the semiconductor structure described in this embodiment, reference may be made to the corresponding description in the foregoing embodiments, which will not be described again in this embodiment.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed as above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be subject to the scope defined by the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810947256.1A CN110854194B (en) | 2018-08-20 | 2018-08-20 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810947256.1A CN110854194B (en) | 2018-08-20 | 2018-08-20 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110854194A CN110854194A (en) | 2020-02-28 |
CN110854194B true CN110854194B (en) | 2023-12-12 |
Family
ID=69595148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810947256.1A Active CN110854194B (en) | 2018-08-20 | 2018-08-20 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110854194B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113539958B (en) * | 2020-04-17 | 2024-11-15 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method for forming the same |
CN113394109A (en) * | 2021-05-31 | 2021-09-14 | 上海华力集成电路制造有限公司 | Manufacturing method of first-cut SDB FinFET |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106206687A (en) * | 2015-05-29 | 2016-12-07 | 台湾积体电路制造股份有限公司 | The structure of semiconductor device structure and forming method |
CN108010884A (en) * | 2016-11-01 | 2018-05-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130023B2 (en) * | 2012-06-05 | 2015-09-08 | Kabushiki Kaisha Toshiba | Isolated insulating gate structure |
-
2018
- 2018-08-20 CN CN201810947256.1A patent/CN110854194B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106206687A (en) * | 2015-05-29 | 2016-12-07 | 台湾积体电路制造股份有限公司 | The structure of semiconductor device structure and forming method |
CN108010884A (en) * | 2016-11-01 | 2018-05-08 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110854194A (en) | 2020-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112309860B (en) | Semiconductor structures and methods of forming them | |
CN110277316B (en) | Semiconductor structures and methods of forming them | |
CN110828541A (en) | Semiconductor structure and method of forming the same | |
CN108538724B (en) | Semiconductor structure and method of forming the same | |
CN110634798A (en) | Semiconductor structure and method of forming the same | |
CN112151380B (en) | Semiconductor structure and forming method thereof | |
TW202131389A (en) | Semiconductor structure and method forming the same | |
CN110571193A (en) | Method for manufacturing single diffusion barrier structure and method for manufacturing semiconductor device | |
CN111490092B (en) | Semiconductor structures and methods of forming them | |
CN111554578B (en) | Semiconductor structure and forming method thereof | |
CN110854194B (en) | Semiconductor structure and forming method thereof | |
CN114078769A (en) | Semiconductor structure and forming method thereof | |
US20230395432A1 (en) | P-Type Semiconductor Devices With Different Threshold Voltages And Methods Of Forming The Same | |
CN114068706B (en) | Semiconductor structure and forming method thereof | |
CN111863710B (en) | Semiconductor structures and methods of forming them | |
CN117059573A (en) | Method for forming semiconductor structure | |
CN112017960B (en) | Semiconductor structure and forming method thereof | |
CN110875390B (en) | Semiconductor structure and forming method thereof | |
CN115116948A (en) | Method of forming a semiconductor structure | |
CN113838802A (en) | Semiconductor structure and method of forming the same | |
CN112151381A (en) | Semiconductor structure and forming method thereof | |
CN112951725B (en) | Semiconductor structure and forming method thereof | |
CN112151378B (en) | Semiconductor structure and forming method thereof | |
US20230387261A1 (en) | Semiconductor device and manufacturing method thereof | |
CN110690286B (en) | Semiconductor structures and methods of forming them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |