CN108461544B - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN108461544B CN108461544B CN201710087343.XA CN201710087343A CN108461544B CN 108461544 B CN108461544 B CN 108461544B CN 201710087343 A CN201710087343 A CN 201710087343A CN 108461544 B CN108461544 B CN 108461544B
- Authority
- CN
- China
- Prior art keywords
- forming
- dielectric layer
- layer
- fin
- gate structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 104
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 239000010410 layer Substances 0.000 claims abstract description 376
- 238000002955 isolation Methods 0.000 claims abstract description 91
- 229910052751 metal Inorganic materials 0.000 claims abstract description 78
- 239000002184 metal Substances 0.000 claims abstract description 78
- 239000000758 substrate Substances 0.000 claims abstract description 77
- 230000008569 process Effects 0.000 claims abstract description 69
- 239000011229 interlayer Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 75
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 53
- 229910052710 silicon Inorganic materials 0.000 claims description 53
- 239000010703 silicon Substances 0.000 claims description 53
- 238000005530 etching Methods 0.000 claims description 38
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 24
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 20
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 11
- 230000036961 partial effect Effects 0.000 claims description 11
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 238000001312 dry etching Methods 0.000 claims description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims 5
- 239000012495 reaction gas Substances 0.000 claims 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 13
- 229910010271 silicon carbide Inorganic materials 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 239000003989 dielectric material Substances 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/017—Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0158—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductors, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
在半导体制造中,随着超大规模集成电路的发展趋势,集成电路特征尺寸持续减小。为了适应特征尺寸的减小,MOSFET的沟道长度也相应不断缩短。然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,因此栅极对沟道的控制能力随之变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthresholdleakage)现象,即所谓的短沟道效应(SCE:short-channel effects)更容易发生。In semiconductor manufacturing, with the development trend of VLSI, the feature size of integrated circuits continues to decrease. In order to accommodate the reduction in feature size, the channel length of MOSFETs has also been shortened accordingly. However, as the channel length of the device is shortened, the distance between the source and the drain of the device is also shortened, so the control ability of the gate to the channel becomes worse, and the gate voltage pinches off the channel. The difficulty is also increasing, making the phenomenon of subthreshold leakage (subthreshold leakage), the so-called short-channel effect (SCE: short-channel effects) more likely to occur.
因此,为了更好的适应特征尺寸的减小,半导体工艺逐渐开始从平面MOSFET向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET中,栅至少可以从两侧对超薄体(鳍部)进行控制,与平面MOSFET相比,栅极对沟道的控制能力更强,能够很好的抑制短沟道效应;且FinFET相对于其他器件,与现有集成电路制造具有更好的兼容性。Therefore, in order to better adapt to the reduction of the feature size, the semiconductor process gradually begins to transition from planar MOSFETs to three-dimensional transistors with higher efficiency, such as Fin Field Effect Transistors (FinFETs). In FinFET, the gate can control the ultra-thin body (fin) from at least two sides. Compared with the planar MOSFET, the gate has stronger control ability on the channel, which can well suppress the short channel effect; and the FinFET is relatively For other devices, it has better compatibility with existing integrated circuit manufacturing.
但是,现有技术形成的半导体器件的电学性能和良率仍有待提高。However, the electrical performance and yield of semiconductor devices formed in the prior art still need to be improved.
发明内容Contents of the invention
本发明解决的问题是提供一种半导体结构及其形成方法,优化半导体器件的电学性能和良率。The problem to be solved by the present invention is to provide a semiconductor structure and its forming method to optimize the electrical performance and yield of semiconductor devices.
为解决上述问题,本发明提供一种半导体结构的形成方法,包括:提供基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;在所述鳍部露出的衬底上形成隔离结构,所述隔离结构覆盖所述鳍部的部分侧壁;形成所述隔离结构后,形成横跨所述鳍部的伪栅结构,所述伪栅结构覆盖所述鳍部的部分顶部表面和侧壁表面;在所述伪栅结构的侧壁上形成侧墙;形成所述侧墙后,在所述伪栅结构露出的隔离结构上形成第一介质层,所述第一介质层露出所述鳍部的顶部;形成所述第一介质层后,在所述伪栅结构两侧的鳍部内形成凹槽;在所述凹槽内形成掺杂外延层;形成所述掺杂外延层后,在所述伪栅结构露出的第一介质层上形成第二介质层,所述第二介质层覆盖所述伪栅结构并露出所述伪栅结构顶部,且所述第二介质层和所述第一介质层构成层间介质层;去除所述伪栅结构,在所述层间介质层内形成开口;在所述开口内填充金属层,形成金属栅极结构。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, including: providing a base, the base includes a substrate and discrete fins located on the substrate; forming a fin on the substrate where the fins are exposed an isolation structure, the isolation structure covering part of the sidewall of the fin; after forming the isolation structure, forming a dummy gate structure across the fin, the dummy gate structure covering part of the top surface of the fin and sidewall surfaces; forming sidewalls on the sidewalls of the dummy gate structure; after forming the sidewalls, forming a first dielectric layer on the isolation structure exposed by the dummy gate structure, and the first dielectric layer is exposed The top of the fin; after forming the first dielectric layer, forming grooves in the fins on both sides of the dummy gate structure; forming a doped epitaxial layer in the groove; forming the doped epitaxial layer Afterwards, a second dielectric layer is formed on the first dielectric layer exposed by the dummy gate structure, the second dielectric layer covers the dummy gate structure and exposes the top of the dummy gate structure, and the second dielectric layer and The first dielectric layer constitutes an interlayer dielectric layer; the dummy gate structure is removed to form an opening in the interlayer dielectric layer; a metal layer is filled in the opening to form a metal gate structure.
相应的,本发明还提供一种半导体结构,包括:基底,所述基底包括衬底以及位于所述衬底上分立的鳍部;隔离结构,位于所述鳍部露出的衬底上,所述隔离结构覆盖所述鳍部的部分侧壁;横跨所述鳍部的金属栅极结构,所述金属栅极结构覆盖所述鳍部的部分顶部表面和侧壁表面,所述金属栅极结构包括金属层;侧墙,位于所述金属栅极结构的侧壁上;掺杂外延层,位于所述金属栅极结构两侧的鳍部内;位于所述金属栅极结构露出的隔离结构上的层间介质层,所述层间介质层包括第一介质层、以及位于所述第一介质层上的第二介质层,所述第二介质层覆盖所述金属栅极结构且露出所述金属栅极结构顶部。Correspondingly, the present invention also provides a semiconductor structure, comprising: a base, the base includes a substrate and discrete fins located on the substrate; an isolation structure is located on the substrate where the fins are exposed, the an isolation structure covering part of the sidewall of the fin; a metal gate structure spanning the fin, the metal gate structure covering part of the top surface and sidewall surface of the fin, the metal gate structure It includes a metal layer; sidewalls located on the side walls of the metal gate structure; doped epitaxial layers located in the fins on both sides of the metal gate structure; and located on the isolation structure exposed by the metal gate structure. An interlayer dielectric layer, the interlayer dielectric layer includes a first dielectric layer and a second dielectric layer on the first dielectric layer, the second dielectric layer covers the metal gate structure and exposes the metal gate structure The top of the gate structure.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明在伪栅结构的侧壁上形成侧墙后,在所述伪栅结构露出的隔离结构上形成第一介质层,所述第一介质层露出所述鳍部的顶部。后续在所述伪栅结构两侧的鳍部内形成凹槽的工艺过程中,所述第一介质层对所述隔离结构起到保护作用,避免所述侧墙下方的隔离结构在形成所述凹槽的过程中受到损耗,从而避免在所述侧墙下方出现由隔离结构损耗所产生的缝隙;因此后续在所述第二介质层和第一介质层内的开口内填充金属层时,不会出现所述金属层通过所述缝隙与所述掺杂外延层发生桥接(bridge)的问题,即通过本发明所述方案,可以避免所述掺杂外延层与金属栅极结构发生桥接,进而使半导体器件的电学性能和良率得到改善。In the present invention, after forming sidewalls on the sidewalls of the dummy gate structure, a first dielectric layer is formed on the isolation structure exposed by the dummy gate structure, and the first dielectric layer exposes the top of the fin. During the subsequent process of forming grooves in the fins on both sides of the dummy gate structure, the first dielectric layer protects the isolation structure, preventing the isolation structure under the sidewall from forming the groove. loss in the process of slotting, so as to avoid the occurrence of gaps under the sidewalls caused by the loss of the isolation structure; therefore, when the openings in the second dielectric layer and the first dielectric layer are subsequently filled with metal layers, there will be no The problem of bridging between the metal layer and the doped epitaxial layer through the gap occurs, that is, through the solution of the present invention, the bridging between the doped epitaxial layer and the metal gate structure can be avoided, thereby making the The electrical performance and yield of semiconductor devices are improved.
可选方案中,所述第二介质层和所述第一介质层构成层间介质层,因此通过第一介质层,无需引入额外膜层以保护所述隔离结构,相应无需在形成凹槽后去除额外膜层,因此本发明所述方案可以简化工艺步骤,降低工艺成本。In an optional solution, the second dielectric layer and the first dielectric layer form an interlayer dielectric layer, so through the first dielectric layer, there is no need to introduce an additional film layer to protect the isolation structure, and accordingly there is no need to The extra film layer is removed, so the solution of the present invention can simplify the process steps and reduce the process cost.
本发明提供一种半导体结构,所述半导体结构包括位于金属栅极结构露出的隔离结构上的层间介质层,所述层间介质层包括第一介质层、以及位于所述第一介质层上的第二介质层,所述第二介质层覆盖所述金属栅极结构且露出所述金属栅极结构顶部。在半导体制造工艺过程中,一般先形成横跨鳍部的伪栅结构,在伪栅结构两侧的鳍部内形成凹槽,在所述凹槽内形成掺杂外延层之后,去除所述伪栅结构并在所述伪栅结构位置处填充金属层以形成所述金属栅极结构;本发明所述半导体结构的第一介质层用于在形成所述凹槽的工艺过程中对所述隔离结构起到保护作用,避免侧墙下方的隔离结构受到刻蚀损耗,从而避免在所述侧墙下方出现由隔离结构损耗所产生的缝隙,因此本发明所述半导体结构不会出现所述金属层通过所述缝隙与所述掺杂外延层发生桥接(bridge)的问题,相应避免了所述掺杂外延层与金属栅极结构发生桥接的问题,从而使所述半导体结构的电学性能和良率得到改善。The present invention provides a semiconductor structure, the semiconductor structure includes an interlayer dielectric layer on the isolation structure exposed by the metal gate structure, the interlayer dielectric layer includes a first dielectric layer, and is located on the first dielectric layer The second dielectric layer covers the metal gate structure and exposes the top of the metal gate structure. In the semiconductor manufacturing process, generally a dummy gate structure across the fin is formed first, grooves are formed in the fins on both sides of the dummy gate structure, and after a doped epitaxial layer is formed in the groove, the dummy gate is removed. structure and fill a metal layer at the position of the dummy gate structure to form the metal gate structure; the first dielectric layer of the semiconductor structure in the present invention is used to protect the isolation structure during the process of forming the groove It plays a protective role to prevent the isolation structure under the side wall from being etched and lost, thereby avoiding the occurrence of gaps under the side wall caused by the loss of the isolation structure, so the semiconductor structure of the present invention will not appear. The bridge between the gap and the doped epitaxial layer avoids the bridge between the doped epitaxial layer and the metal gate structure, thereby improving the electrical performance and yield of the semiconductor structure .
附图说明Description of drawings
图1和图2是一种半导体结构的形成方法中各步骤对应的结构示意图;FIG. 1 and FIG. 2 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;
图3至图24是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 24 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
具体实施方式Detailed ways
由背景技术可知,半导体器件的电学性能和良率仍有待提高。分析其原因在于:It can be seen from the background art that the electrical performance and yield of semiconductor devices still need to be improved. Analyze the reasons for this:
结合参考图1和图2,示出了一种半导体结构的形成方法中各步骤对应的结构示意图,图1是立体图,图2是基于图1在隔离结构位置处沿鳍部延伸方向割线(如图1中X1X2割线所示)的剖面结构示意图。Referring to FIG. 1 and FIG. 2 together, it shows a structural schematic diagram corresponding to each step in a method for forming a semiconductor structure. FIG. 1 is a perspective view, and FIG. 2 is based on FIG. Schematic diagram of the cross-sectional structure as shown by X1X2 secant line in Fig. 1 .
参考图1,提供基底,所述基底包括衬底10以及位于所述衬底10上分立的鳍部11;在所述鳍部11露出的衬底10上形成隔离结构12,所述隔离结构12覆盖所述鳍部11的部分侧壁;形成所述隔离结构12后,形成横跨所述鳍部11的伪栅结构13,所述伪栅结构13覆盖所述鳍部11的部分顶部表面和侧壁表面;在所述伪栅结构13的侧壁上形成侧墙14。Referring to FIG. 1 , a base is provided, the base includes a substrate 10 and discrete fins 11 located on the substrate 10; an isolation structure 12 is formed on the substrate 10 exposed by the fins 11, and the isolation structure 12 Cover part of the sidewall of the fin 11; after forming the isolation structure 12, form a dummy gate structure 13 across the fin 11, the dummy gate structure 13 covers part of the top surface of the fin 11 and Sidewall surfaces: forming sidewalls 14 on the sidewalls of the dummy gate structure 13 .
结合参考图2,形成所述侧墙14后,刻蚀所述伪栅结构13两侧的鳍部11(如图1所示),在所述鳍部11内形成凹槽(图未示);在所述凹槽内形成掺杂外延层15。Referring to FIG. 2 , after forming the sidewalls 14, the fins 11 on both sides of the dummy gate structure 13 (as shown in FIG. 1 ) are etched to form grooves (not shown) in the fins 11. ; forming a doped epitaxial layer 15 in the groove.
形成所述掺杂外延层15后,后续步骤还包括:在所述伪栅结构13露出的隔离结构12上形成层间介质层(图未示);去除所述伪栅结构13,在所述层间介质层内形成开口(图未示);在所述开口内填充金属层,形成金属栅极结构。After forming the doped epitaxial layer 15, the subsequent steps further include: forming an interlayer dielectric layer (not shown) on the isolation structure 12 exposed by the dummy gate structure 13; removing the dummy gate structure 13, An opening (not shown) is formed in the interlayer dielectric layer; a metal layer is filled in the opening to form a metal gate structure.
在刻蚀所述伪栅结构13两侧的鳍部11以形成凹槽时,所述隔离结构12暴露在刻蚀环境中,因此所述刻蚀工艺容易对所述隔离结构12造成刻蚀损耗,还容易对所述侧墙14下方(如图1中虚线圈50所示)的隔离结构12造成刻蚀损耗,从而导致在所述侧墙14下方形成缝隙(如图2中虚线圈51所示)。因此,在所述开口内填充金属层时,所述金属层除了填充所述开口之外,还填充所述缝隙;从而容易导致所述金属层通过所述缝隙与所述掺杂外延层15发生桥接(bridge),即容易导致所述掺杂外延层15与所形成金属栅极结构发生桥接,进而导致半导体器件的电学性能和良率下降。When etching the fins 11 on both sides of the dummy gate structure 13 to form grooves, the isolation structure 12 is exposed to the etching environment, so the etching process is likely to cause etching loss to the isolation structure 12 , it is also easy to cause etching loss to the isolation structure 12 below the sidewall 14 (shown by the dotted circle 50 in FIG. Show). Therefore, when the metal layer is filled in the opening, the metal layer not only fills the opening, but also fills the gap; thus it is easy to cause the metal layer to pass through the gap and the doped epitaxial layer 15. Bridging means that the doped epitaxial layer 15 is likely to be bridged with the formed metal gate structure, thereby resulting in a decrease in the electrical performance and yield of the semiconductor device.
且由于形成P型的掺杂外延层15时,刻蚀所述伪栅结构13两侧鳍部11的刻蚀量较大,相应刻蚀后剩余所述鳍部11凸出于所述隔离结构12的高度较低,所述P型的掺杂外延层15更靠近所述隔离结构12;因此当所述衬底10用于形成P型器件时,P型的掺杂外延层15与金属栅极结构发生桥接的问题更显著。Moreover, when forming the P-type doped epitaxial layer 15, the etching amount of the fins 11 on both sides of the dummy gate structure 13 is relatively large, and the remaining fins 11 protrude from the isolation structure after corresponding etching. 12 has a lower height, and the P-type doped epitaxial layer 15 is closer to the isolation structure 12; therefore, when the substrate 10 is used to form a P-type device, the P-type doped epitaxial layer 15 and the metal gate The problem of bridging in polar structures is more pronounced.
为了解决所述技术问题,本发明在伪栅结构的侧壁上形成侧墙后,在所述伪栅结构露出的隔离结构上形成第一介质层,所述第一介质层露出所述鳍部的顶部。后续在所述伪栅结构两侧的鳍部内形成凹槽的工艺过程中,所述第一介质层对所述隔离结构起到保护作用,避免所述侧墙下方的隔离结构在形成所述凹槽的过程中受到损耗,从而避免在所述侧墙下方出现由隔离结构损耗所产生的缝隙;因此后续在所述第二介质层和第一介质层内的开口内填充金属层时,不会出现所述金属层通过所述缝隙与所述掺杂外延层发生桥接(bridge)的问题,即通过本发明所述方案,可以避免所述掺杂外延层与金属栅极结构发生桥接,进而使半导体器件的电学性能和良率得到改善。In order to solve the above technical problem, the present invention forms a first dielectric layer on the isolation structure exposed by the dummy gate structure after forming sidewalls on the sidewall of the dummy gate structure, and the first dielectric layer exposes the fins the top of. During the subsequent process of forming grooves in the fins on both sides of the dummy gate structure, the first dielectric layer protects the isolation structure, preventing the isolation structure under the sidewall from forming the groove. loss in the process of slotting, so as to avoid the occurrence of gaps under the sidewalls caused by the loss of the isolation structure; therefore, when the openings in the second dielectric layer and the first dielectric layer are subsequently filled with metal layers, there will be no The problem of bridging between the metal layer and the doped epitaxial layer through the gap occurs, that is, through the solution of the present invention, the bridging between the doped epitaxial layer and the metal gate structure can be avoided, thereby making the The electrical performance and yield of semiconductor devices are improved.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图3至图24是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。3 to 24 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
参考图3,图3是立体图(仅示出两个鳍部),提供基底(未标示),所述基底包括衬底100以及位于所述衬底100上分立的鳍部110。Referring to FIG. 3 , which is a perspective view (only two fins are shown), a base (not labeled) is provided, and the base includes a substrate 100 and discrete fins 110 on the substrate 100 .
所述基底用于形成鳍式场效应管,所述衬底100为形成鳍式场效应管提供工艺平台,所述鳍部用于提供所形成鳍式场效应晶体管的沟道。本实施例中,以所形成的鳍式场效应管为CMOS器件为例,所述衬底100用于形成P型器件。在其他实施例中,所述衬底用于形成N型器件;或者,所述衬底用于形成P型器件和N型器件。The base is used to form a FinFET, the substrate 100 provides a process platform for forming a FinFET, and the fin portion is used to provide a channel of the formed FinFET. In this embodiment, taking the formed fin field effect transistor as a CMOS device as an example, the substrate 100 is used to form a P-type device. In other embodiments, the substrate is used to form an N-type device; or, the substrate is used to form a P-type device and an N-type device.
本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底、绝缘体上的锗衬底或玻璃衬底。所述衬底100的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate, a germanium-on-insulator substrate, or a silicon-on-insulator substrate. substrate or glass substrate. The material of the substrate 100 can be selected suitable for process requirements or easily integrated.
所述鳍部110的材料与所述衬底100的材料相同。本实施例中,所述鳍部110的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin portion 110 is the same as that of the substrate 100 . In this embodiment, the material of the fin portion 110 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.
具体地,形成所述衬底100和鳍部110的步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的鳍部掩膜层200;以所述鳍部掩膜层200为掩膜刻蚀所述初始衬底,形成衬底100和位于所述衬底100上的鳍部110。Specifically, the steps of forming the substrate 100 and the fins 110 include: providing an initial substrate; forming a patterned fin mask layer 200 on the surface of the initial substrate; using the fin mask layer 200 as The initial substrate is etched with a mask to form a substrate 100 and fins 110 on the substrate 100 .
本实施例中,形成所述衬底100和鳍部110后,保留位于所述鳍部110顶部的鳍部掩膜层200。所述鳍部掩膜层200的材料为氮化硅,后续在进行平坦化处理工艺时,所述鳍部掩膜层200顶部表面用于定义平坦化处理工艺的停止位置,并起到保护所述鳍部110顶部的作用。In this embodiment, after the substrate 100 and the fin 110 are formed, the fin mask layer 200 on the top of the fin 110 remains. The material of the fin mask layer 200 is silicon nitride. When the subsequent planarization process is performed, the top surface of the fin mask layer 200 is used to define the stop position of the planarization process, and to protect the The function of the top of the fin portion 110 is described.
参考图4,在所述鳍部110露出的衬底100上形成隔离结构101,所述隔离结构101覆盖所述鳍部110的部分侧壁。Referring to FIG. 4 , an isolation structure 101 is formed on the substrate 100 exposed by the fin portion 110 , and the isolation structure 101 covers part of the sidewall of the fin portion 110 .
所述隔离结构101作为半导体器件的隔离结构,用于对相邻器件起到隔离作用,还用于对相邻鳍部110起到隔离作用。本实施例中,所述隔离结构101的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 101 is used as an isolation structure of a semiconductor device, and is used for isolating adjacent devices, and is also used for isolating adjacent fins 110 . In this embodiment, the material of the isolation structure 101 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.
具体地,形成所述隔离结构101的步骤包括:在所述鳍部110露出的衬底100上填充隔离膜,所述隔离膜顶部高于所述鳍部掩膜层200(如图3所示)顶部;研磨去除高于所述鳍部掩膜层200顶部的隔离膜;回刻部分厚度的剩余隔离膜,露出所述鳍部110的顶部以及部分侧壁,形成所述隔离结构101;去除所述鳍部掩膜层200。Specifically, the step of forming the isolation structure 101 includes: filling an isolation film on the substrate 100 exposed by the fin 110, and the top of the isolation film is higher than the fin mask layer 200 (as shown in FIG. 3 ) top; grinding and removing the isolation film higher than the top of the fin mask layer 200; etching back part of the thickness of the remaining isolation film to expose the top and part of the sidewall of the fin 110 to form the isolation structure 101; The fin mask layer 200 .
结合参考图5至图7,图5是立体图,图6是图5沿垂直鳍部延伸方向割线(如图5中B1B2割线所示)的剖面结构示意图,图7是图5沿鳍部延伸方向割线(如图5中A1A2割线所示)的剖面结构示意图,形成所述隔离结构101后,形成横跨所述鳍部110的伪栅结构120,所述伪栅结构120覆盖所述鳍部110的部分顶部表面和侧壁表面。Referring to Figure 5 to Figure 7, Figure 5 is a perspective view, Figure 6 is a schematic cross-sectional structure diagram of Figure 5 along the vertical fin extension direction secant (as shown by B1B2 secant in Figure 5), and Figure 7 is a schematic diagram of Figure 5 along the fin Schematic diagram of the cross-sectional structure of the secant line in the extension direction (as shown by the A1A2 secant line in FIG. 5 ), after the isolation structure 101 is formed, a dummy gate structure 120 across the fin 110 is formed, and the dummy gate structure 120 covers all Part of the top surface and the sidewall surface of the fin portion 110.
本实施例中,采用后形成高k栅介质层后形成栅电极层(high k last metal gatelast)的工艺形成金属栅极结构,所述伪栅结构120为后续形成金属栅极结构占据空间位置。In this embodiment, the metal gate structure is formed by forming a high k last metal gate layer after forming a high k gate dielectric layer, and the dummy gate structure 120 occupies a spatial position for subsequent formation of a metal gate structure.
所述伪栅结构120为叠层结构,所述伪栅结构120包括伪氧化层121以及位于所述伪氧化层121上的伪栅层122。其中,所述伪栅层122的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述伪氧化层121的材料为氧化硅或氮氧化硅。本实施例中,所述伪氧化层121的材料为氧化硅,所述伪栅层122的材料为多晶硅。在其他实施例中,所述伪栅结构还可以为单层结构,所述伪栅结构包括伪栅层。The dummy gate structure 120 is a stack structure, and the dummy gate structure 120 includes a dummy oxide layer 121 and a dummy gate layer 122 on the dummy oxide layer 121 . Wherein, the material of the dummy gate layer 122 is polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride or amorphous carbon, and the material of the dummy oxide layer 121 is Silicon oxide or silicon oxynitride. In this embodiment, the material of the dummy oxide layer 121 is silicon oxide, and the material of the dummy gate layer 122 is polysilicon. In other embodiments, the dummy gate structure may also be a single-layer structure, and the dummy gate structure includes a dummy gate layer.
具体地,形成所述伪栅结构120的步骤包括:在所述隔离结构101上形成伪氧化层121,所述伪氧化层121横跨所述鳍部110且覆盖所述鳍部110的顶部表面和侧壁表面;在所述伪氧化层121上形成伪栅膜;在所述伪栅膜上形成栅极掩膜210;以所述栅极掩膜210为掩膜,图形化所述伪栅膜,在所述隔离结构101上形成伪栅结构120。Specifically, the step of forming the dummy gate structure 120 includes: forming a dummy oxide layer 121 on the isolation structure 101, the dummy oxide layer 121 spans the fin portion 110 and covers the top surface of the fin portion 110 and sidewall surfaces; form a dummy gate film on the dummy oxide layer 121; form a gate mask 210 on the dummy gate film; use the gate mask 210 as a mask to pattern the dummy gate film, forming a dummy gate structure 120 on the isolation structure 101 .
需要说明的是,形成所述伪栅结构120后,保留位于所述伪栅结构120顶部的栅极掩膜210。所述栅极掩膜210的材料为氮化硅,所述栅极掩膜210在后续工艺过程中用于对所述伪栅结构120顶部起到保护作用。在其他实施例中,所述栅极掩膜的材料还可以为氮氧化硅、碳化硅或氮化硼。It should be noted that after the dummy gate structure 120 is formed, the gate mask 210 on the top of the dummy gate structure 120 remains. The material of the gate mask 210 is silicon nitride, and the gate mask 210 is used to protect the top of the dummy gate structure 120 in the subsequent process. In other embodiments, the material of the gate mask may also be silicon oxynitride, silicon carbide or boron nitride.
结合参考图8至图12,图8是基于图6的剖面结构示意图,图9是基于图7的剖面结构示意图,图10是基于图8的剖面结构示意图,图11是基于图9的剖面结构示意图,图12是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,在所述伪栅结构120的侧壁上形成侧墙300(如图11所示)。With reference to Figures 8 to 12, Figure 8 is a schematic cross-sectional structure based on Figure 6, Figure 9 is a schematic cross-sectional structure based on Figure 7, Figure 10 is a schematic cross-sectional structure based on Figure 8, and Figure 11 is a schematic cross-sectional structure based on Figure 9 Schematic diagram, FIG. 12 is a schematic cross-sectional structure diagram at the position of the sidewall along the secant line perpendicular to the extending direction of the fin (as shown by the C1C2 secant line in FIG. 5 ), and a sidewall 300 is formed on the sidewall of the dummy gate structure 120 (as shown in Figure 11).
所述侧墙300用于在后续工艺中定义掺杂外延层的位置。所述侧墙300的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙300可以为单层结构或叠层结构。本实施例中,所述侧墙300为单层结构,所述侧墙300的材料为氮化硅。The sidewall 300 is used to define the position of the doped epitaxial layer in subsequent processes. The material of the sidewall 300 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 300 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 300 is a single-layer structure, and the material of the sidewall 300 is silicon nitride.
具体地,形成所述侧墙300的步骤包括:形成保形覆盖所述伪栅结构120的侧墙膜125(如图9所示);去除所述伪栅结构120顶部以及所述伪氧化层121上的所述侧墙膜125,保留位于所述伪栅结构120侧壁上的侧墙膜125,且剩余所述侧墙膜125作为所述侧墙300。Specifically, the step of forming the spacer 300 includes: forming a spacer film 125 conformally covering the dummy gate structure 120 (as shown in FIG. 9 ); removing the top of the dummy gate structure 120 and the dummy oxide layer The sidewall film 125 on 121 retains the sidewall film 125 on the sidewall of the dummy gate structure 120 , and the sidewall film 125 remains as the spacer 300 .
如图10和图11所示,本实施例中,形成所述侧墙300后,还去除所述侧墙300露出的伪氧化层121,保留所述侧墙300和伪栅层122所覆盖的伪氧化层121。As shown in FIG. 10 and FIG. 11 , in this embodiment, after the spacer 300 is formed, the dummy oxide layer 121 exposed by the sidewall 300 is removed, and the dummy oxide layer 121 covered by the sidewall 300 and the dummy gate layer 122 remains. Pseudo oxide layer 121.
需要说明的是,形成所述侧墙300后,所述形成方法还包括:以所述侧墙300为掩膜,在所述伪栅结构120两侧的鳍部110内形成源漏轻掺杂区(LDD)(图未示)。本实施例中,所述衬底100用于形成P型器件,因此所述源漏轻掺杂区的掺杂离子为P型离子。在其他实施例中,例如当所述衬底用于形成N型器件时,所述源漏轻掺杂区的掺杂离子为N型离子。It should be noted that, after the spacer 300 is formed, the forming method further includes: using the spacer 300 as a mask, forming lightly doped source and drain in the fins 110 on both sides of the dummy gate structure 120 District (LDD) (not shown). In this embodiment, the substrate 100 is used to form a P-type device, so the dopant ions in the lightly doped source and drain regions are P-type ions. In other embodiments, for example, when the substrate is used to form an N-type device, the dopant ions in the lightly doped source and drain regions are N-type ions.
结合参考图13至图15,图13是基于图10的剖面结构示意图,图14是基于图11的剖面结构示意图,图15是基于图12的剖面结构示意图,形成所述侧墙300(如图14所示)后,在所述伪栅结构120(如图14所示)露出的隔离结构101上形成第一介质层102(如图13所示),所述第一介质层102露出所述鳍部110的顶部。13 to FIG. 15 in combination, FIG. 13 is a schematic cross-sectional structure based on FIG. 10, FIG. 14 is a schematic cross-sectional structure based on FIG. 11, and FIG. 15 is a schematic cross-sectional structure based on FIG. 14), a first dielectric layer 102 (as shown in FIG. 13 ) is formed on the isolation structure 101 exposed by the dummy gate structure 120 (as shown in FIG. 14 ), and the first dielectric layer 102 exposes the the top of the fin 110 .
所述第一介质层102用于在后续刻蚀所述伪栅结构120两侧鳍部110以形成凹槽的过程中保护所述隔离结构101,避免所述隔离结构101受到刻蚀损耗,从而避免在所述侧墙300下方出现由隔离结构101损耗所产生的缝隙。此外,所述第一介质层102还作为后续所形成半导体结构的层间介质层(ILD)的一部分;相应的,通过所述第一介质层102,无需引入额外膜层以保护所述隔离结构101,相应无需在刻蚀所述鳍部110后去除额外膜层,因此还可以简化工艺步骤,降低工艺成本。The first dielectric layer 102 is used to protect the isolation structure 101 during subsequent etching of the fins 110 on both sides of the dummy gate structure 120 to form grooves, so as to prevent the isolation structure 101 from being etched, thereby The occurrence of gaps caused by the loss of the isolation structure 101 under the sidewall 300 is avoided. In addition, the first dielectric layer 102 is also used as a part of the interlayer dielectric layer (ILD) of the subsequently formed semiconductor structure; correspondingly, through the first dielectric layer 102, there is no need to introduce an additional film layer to protect the isolation structure 101, correspondingly, there is no need to remove an additional film layer after etching the fin portion 110, so the process steps can be simplified and the process cost can be reduced.
所述第一介质层102的材料为绝缘材料,例如为氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅等介质材料。本实施例中,所述第一介质层102的材料为氧化硅。The material of the first dielectric layer 102 is an insulating material, such as a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride. In this embodiment, the material of the first dielectric layer 102 is silicon oxide.
需要说明的是,所述第一介质层102的厚度不宜过小,也不宜过大。如果所述第一介质层102的厚度过小,则难以在后续的刻蚀工艺中起到保护所述隔离结构101的作用;如果所述第一介质层102的厚度过大,相应会对后续刻蚀所述鳍部110的工艺造成不良影响。为此,本实施例中,所述第一介质层102的厚度为5nm至50nm。也就是说,所述第一介质层102的顶部低于所述鳍部110的顶部;或者,所述第一介质层102的顶部与所述鳍部110的顶部齐平。It should be noted that the thickness of the first dielectric layer 102 should neither be too small nor too large. If the thickness of the first dielectric layer 102 is too small, it will be difficult to protect the isolation structure 101 in the subsequent etching process; if the thickness of the first dielectric layer 102 is too large, the subsequent The process of etching the fins 110 has adverse effects. Therefore, in this embodiment, the thickness of the first dielectric layer 102 is 5 nm to 50 nm. That is to say, the top of the first dielectric layer 102 is lower than the top of the fin portion 110 ; or, the top of the first dielectric layer 102 is flush with the top of the fin portion 110 .
本实施例中,为了增加后续所形成掺杂外延层的体积,所述第一介质层102的顶部低于后续刻蚀后剩余鳍部110的顶部。具体地,形成所述第一介质层102的步骤包括:在所述隔离结构101上形成介质膜,所述介质膜的顶部高于所述鳍部110的顶部;回刻(etch back)部分厚度的所述介质膜,剩余所述介质膜作为所述第一介质层102,且所述第一介质层102的顶部低于所述鳍部110顶部。In this embodiment, in order to increase the volume of the subsequently formed doped epitaxial layer, the top of the first dielectric layer 102 is lower than the top of the remaining fin 110 after subsequent etching. Specifically, the step of forming the first dielectric layer 102 includes: forming a dielectric film on the isolation structure 101, the top of the dielectric film is higher than the top of the fin portion 110; The remaining dielectric film is used as the first dielectric layer 102 , and the top of the first dielectric layer 102 is lower than the top of the fin portion 110 .
回刻部分厚度所述介质膜的工艺可以为干法刻蚀工艺、湿法刻蚀工艺、或者湿法刻蚀和干法刻蚀相结合的工艺。本实施例中,回刻部分厚度所述介质膜的工艺为干法刻蚀工艺,从而可以保证较好的各向异性刻蚀效果,且可以较好地控制刻蚀量。The process of etching back part of the thickness of the dielectric film may be a dry etching process, a wet etching process, or a combination of wet etching and dry etching. In this embodiment, the process of etching back part of the thickness of the dielectric film is a dry etching process, so that a better anisotropic etching effect can be ensured, and the etching amount can be better controlled.
需要说明的是,为了后续掺杂外延层的形成,本实施例中,在所述隔离结构101上形成第一介质层102之前,所述形成方法还包括:在所述鳍部110的侧壁上形成掩膜层310(如图13所示)。相应的,在沿所述衬底100表面法线的方向上,所述第一介质层102覆盖所述掩膜层310的部分侧壁。It should be noted that, for subsequent formation of the doped epitaxial layer, in this embodiment, before forming the first dielectric layer 102 on the isolation structure 101, the forming method further includes: A mask layer 310 (as shown in FIG. 13 ) is formed thereon. Correspondingly, in the direction along the normal to the surface of the substrate 100 , the first dielectric layer 102 covers part of the sidewall of the mask layer 310 .
所述掩膜层310的作用包括:后续刻蚀所述伪栅结构120两侧部分厚度的鳍部110时,以所述掩膜层310作为刻蚀掩膜,使得后续所形成的凹槽与前述所形成的源漏轻掺杂区之间具有一定距离,避免所述源漏轻掺杂区被完全刻蚀去除;并且,位于所述鳍部110侧壁上的所述掩膜层310能够起到保护所述鳍部110侧壁的作用,避免后续形成掺杂外延层时在所述鳍部110侧壁上进行外延生长工艺。The function of the mask layer 310 includes: when subsequently etching the fins 110 of partial thickness on both sides of the dummy gate structure 120, the mask layer 310 is used as an etching mask, so that the subsequently formed grooves and There is a certain distance between the source and drain lightly doped regions formed above to prevent the source and drain lightly doped regions from being completely etched away; and, the mask layer 310 located on the sidewall of the fin 110 can It plays a role of protecting the sidewall of the fin portion 110 and avoids epitaxial growth process on the sidewall of the fin portion 110 when the doped epitaxial layer is subsequently formed.
具体地,形成所述掩膜层310的步骤包括:在所述鳍部110的顶部和侧壁上形成掩膜材料(图未示);去除所述鳍部顶部上凹槽位置处的掩膜材料,保留位于所述鳍部110侧壁上的掩膜材料,且剩余所述掩膜材料作为所述掩膜层310。也就是说,形成所述掩膜层310后,位于所述鳍部110侧壁上的所述掩膜层310顶部与所述鳍部110顶部齐平。Specifically, the step of forming the mask layer 310 includes: forming a mask material (not shown) on the top and sidewalls of the fin 110; removing the mask at the groove position on the top of the fin; material, the masking material on the sidewall of the fin portion 110 is retained, and the remaining masking material is used as the masking layer 310 . That is to say, after the mask layer 310 is formed, the top of the mask layer 310 on the sidewall of the fin 110 is flush with the top of the fin 110 .
形成所述掩膜材料的工艺可以为化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺。本实施例中,采用原子层沉积工艺形成所述掩膜材料。形成所述掩膜材料的步骤中,所述掩膜材料还覆盖所述伪栅结构120和侧墙300,且还位于所述隔离结构101上。因此,去除所述鳍部110顶部上凹槽位置处掩膜材料的步骤中,还去除位于所述伪栅结构120顶部以及所述隔离结构101上的掩膜材料,露出所述栅极掩膜210和隔离结构101。相应的,所述掩膜层310还位于所述侧墙300的侧壁表面上。The process for forming the mask material may be a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. In this embodiment, the mask material is formed by an atomic layer deposition process. In the step of forming the mask material, the mask material also covers the dummy gate structure 120 and the sidewall 300 , and is also located on the isolation structure 101 . Therefore, in the step of removing the mask material at the groove position on the top of the fin portion 110, the mask material on the top of the dummy gate structure 120 and the isolation structure 101 is also removed, exposing the gate mask 210 and isolation structure 101. Correspondingly, the mask layer 310 is also located on the sidewall surface of the sidewall 300 .
所述掩膜层310的材料可以为氮化硅(SiN)、氮碳化硅(SiCN)、氮硼化硅(SiBN)、氮碳氧化硅(SiOCN)或氮氧化硅(SiON)。所述掩膜层310的材料与鳍部110的材料不同,所述掩膜层310的材料与所述隔离结构101的材料也不相同。本实施例中,所述掩膜层310的材料为氮化硅。The material of the mask layer 310 may be silicon nitride (SiN), silicon nitride carbide (SiCN), silicon boride nitride (SiBN), silicon oxycarbide oxynitride (SiOCN) or silicon oxynitride (SiON). The material of the mask layer 310 is different from that of the fin portion 110 , and the material of the mask layer 310 is also different from that of the isolation structure 101 . In this embodiment, the material of the mask layer 310 is silicon nitride.
结合参考图16和图17,图16是基于图13的剖面结构示意图,图17是基于图14的剖面结构示意图,形成所述第一介质层102(如图16所示)后,在所述伪栅结构120两侧的鳍部110内形成凹槽111。Referring to FIG. 16 and FIG. 17 in conjunction, FIG. 16 is a schematic cross-sectional structure based on FIG. 13, and FIG. 17 is a schematic cross-sectional structure based on FIG. 14. After the first dielectric layer 102 (as shown in FIG. 16) is formed, the Grooves 111 are formed in the fins 110 on both sides of the dummy gate structure 120 .
所述凹槽111为后续形成掺杂外延层提供空间位置。The groove 111 provides a spatial location for subsequent formation of a doped epitaxial layer.
具体地,采用干法刻蚀工艺刻蚀所述伪栅结构120两侧部分厚度的鳍部110,在所述鳍部110内形成凹槽111。Specifically, a dry etching process is used to etch the fin portion 110 at a partial thickness on both sides of the dummy gate structure 120 to form a groove 111 in the fin portion 110 .
本实施例中,采用各向异性刻蚀工艺刻蚀部分厚度的所述鳍部110,所述各向异性刻蚀工艺为反应离子刻蚀工艺,所述反应离子刻蚀工艺的参数包括:反应气体包括CF4、SF6和Ar,CF4流量为50sccm至100sccm,SF6流量为10sccm至100sccm,Ar流量为100sccm至300sccm,源功率为50W至1000W,偏置功率为50W至250W,腔室压强为50mTorr至200mTorr,腔室温度为20℃至90℃。In this embodiment, anisotropic etching process is used to etch part of the thickness of the fin portion 110, the anisotropic etching process is a reactive ion etching process, and the parameters of the reactive ion etching process include: reaction The gas includes CF 4 , SF 6 and Ar, the flow rate of CF 4 is 50sccm to 100sccm, the flow rate of SF 6 is 10sccm to 100sccm, the flow rate of Ar is 100sccm to 300sccm, the source power is 50W to 1000W, the bias power is 50W to 250W, the chamber The pressure is 50mTorr to 200mTorr, and the chamber temperature is 20°C to 90°C.
需要说明的是,如图16所示,本实施例中,为了增加后续在所述凹槽111内所形成掺杂外延层的体积,在刻蚀所述鳍部110的同时,还刻蚀位于所述鳍部110侧壁上的所述掩膜层310,使得形成所述凹槽111后,位于剩余所述鳍部110侧壁上的剩余掩膜层310与所述鳍部110顶部齐平。It should be noted that, as shown in FIG. 16 , in this embodiment, in order to increase the volume of the doped epitaxial layer subsequently formed in the groove 111 , while etching the fin portion 110 , the fin portion 110 is also etched. The mask layer 310 on the side wall of the fin 110 is such that after the groove 111 is formed, the remaining mask layer 310 on the side wall of the remaining fin 110 is flush with the top of the fin 110 .
还需要说明的是,刻蚀所述鳍部110时,由于所述隔离结构101上形成有所述第一介质层102,所述第一介质层102在所述刻蚀工艺过程中能够对所述隔离结构101起到保护作用,因此所述隔离结构101未受到刻蚀损耗。It should also be noted that when etching the fin portion 110, since the first dielectric layer 102 is formed on the isolation structure 101, the first dielectric layer 102 can be used for all the fins during the etching process. The isolation structure 101 plays a protective role, so the isolation structure 101 is not subject to etching loss.
此外,为了向后续形成所述掺杂外延层的工艺提供良好的界面基础,以提高掺杂外延层的形成质量,在所述伪栅结构120两侧的鳍部110内形成凹槽111后,形成掺杂外延层之前,所述形成方法还包括:对所述凹槽111进行清洗工艺。所述清洗工艺既用于去除所述凹槽111内的杂质,还用于去除位于所述鳍部110表面的自然氧化层(图未示)。In addition, in order to provide a good interface foundation for the subsequent process of forming the doped epitaxial layer, so as to improve the formation quality of the doped epitaxial layer, after the grooves 111 are formed in the fins 110 on both sides of the dummy gate structure 120, Before forming the doped epitaxial layer, the forming method further includes: performing a cleaning process on the groove 111 . The cleaning process is used not only to remove impurities in the groove 111 , but also to remove a natural oxide layer (not shown) on the surface of the fin 110 .
所述第一介质层102暴露在所述清洗工艺的环境中,且所述第一介质层102作为后续层间介质层的一部分,因此为了减小所述清洗工艺对所述第一介质层102的损耗,本实施例中,所述清洗工艺为SiCoNi工艺,所述SiCoNi工艺所采用的主刻蚀气体为气态氢氟酸。The first dielectric layer 102 is exposed to the environment of the cleaning process, and the first dielectric layer 102 is used as a part of the subsequent interlayer dielectric layer, so in order to reduce the impact of the cleaning process on the first dielectric layer 102 In this embodiment, the cleaning process is a SiCoNi process, and the main etching gas used in the SiCoNi process is gaseous hydrofluoric acid.
结合参考图18和图19,图18是基于图16的剖面结构示意图,图19是基于图17的剖面结构示意图,在所述凹槽111(如图17所示)内形成掺杂外延层130。Referring to FIG. 18 and FIG. 19 together, FIG. 18 is a schematic cross-sectional structure based on FIG. 16 , and FIG. 19 is a schematic cross-sectional structure based on FIG. 17 , forming a doped epitaxial layer 130 in the groove 111 (as shown in FIG. 17 ). .
本实施例中,采用选择性外延工艺,在所述凹槽111内形成应力层,且在形成所述应力层的工艺过程中,原位自掺杂P型离子以形成所述掺杂外延层130。在其他实施例中,还可以在所述凹槽内形成应力层后,对所述应力层进行P型离子掺杂以形成所述掺杂外延层。In this embodiment, a selective epitaxial process is used to form a stress layer in the groove 111, and during the process of forming the stress layer, in-situ self-doping of P-type ions is used to form the doped epitaxial layer 130. In other embodiments, after the stress layer is formed in the groove, the stress layer may be doped with P-type ions to form the doped epitaxial layer.
具体地,所述应力层的材料为Si或SiGe,所述掺杂外延层130的材料为P型掺杂的Si或SiGe。所述应力层为P型器件的沟道区提供压应力作用,从而提高P型器件载流子迁移率。本实施例中,所述掺杂外延层130的材料为SiGe。Specifically, the material of the stress layer is Si or SiGe, and the material of the doped epitaxial layer 130 is P-type doped Si or SiGe. The stress layer provides compressive stress for the channel region of the P-type device, thereby improving the carrier mobility of the P-type device. In this embodiment, the material of the doped epitaxial layer 130 is SiGe.
本实施例中,所述掺杂外延层130的顶部高于所述凹槽111的顶部。且由于选择性外延工艺的特性,高于所述凹槽111的掺杂外延层130侧壁表面具有向远离所述鳍部110方向突出的顶角。在其他实施例中,所述掺杂外延层顶部还可以与所述凹槽顶部齐平。In this embodiment, the top of the doped epitaxial layer 130 is higher than the top of the groove 111 . And due to the characteristics of the selective epitaxial process, the sidewall surface of the doped epitaxial layer 130 higher than the groove 111 has a vertex protruding away from the fin portion 110 . In other embodiments, the top of the doped epitaxial layer may also be flush with the top of the groove.
需要说明的是,本实施例中,以所述基底用于形成P型器件为例进行说明。在另一实施例中,例如所述基底用于形成N型器件时,在所述凹槽内形成应力层的步骤中,所述应力层的材料为Si或SiC,所述应力层为N型器件的沟道区提供拉应力作用,从而提高N型器件载流子迁移率;在形成所述应力层的工艺过程中,原位自掺杂N型离子以形成所述掺杂外延层,所述掺杂外延层的材料为N型掺杂的Si或SiC;例如所述掺杂外延层的材料为SiP。It should be noted that, in this embodiment, it is described by taking the substrate as an example for forming a P-type device. In another embodiment, for example, when the substrate is used to form an N-type device, in the step of forming a stress layer in the groove, the material of the stress layer is Si or SiC, and the stress layer is N-type The channel region of the device provides tensile stress, thereby improving the carrier mobility of the N-type device; during the process of forming the stress layer, in-situ self-doping of N-type ions to form the doped epitaxial layer, so The material of the doped epitaxial layer is N-type doped Si or SiC; for example, the material of the doped epitaxial layer is SiP.
在其他实施例中,所述衬底用于形成P型器件和N型器件时,即所述衬底包括N型区域和P型区域时,以前述凹槽内形成的掺杂外延层为P型掺杂外延层为例,则形成所述P型掺杂外延层后,所述形成方法还包括:在N型区域的鳍部顶部和侧壁、伪栅结构顶部和侧壁、以及隔离结构上形成N区掩膜层,所述N区掩膜层还位于所述P型掺杂外延层上、P型区域的鳍部顶部和侧壁、P型区域的伪栅结构顶部和侧壁、以及P型区域的隔离结构上;刻蚀位于所述N型区域伪栅结构两侧鳍部顶部上的N区掩膜层,暴露出所述N型区域伪栅结构两侧的鳍部顶部,且还刻蚀部分厚度的所述鳍部,在所述N型区域伪栅结构两侧的鳍部内形成N区凹槽;在所述N区凹槽内形成N区应力层,且在形成所述N区应力层的工艺过程中,原位自掺杂N型离子以形成所述N型掺杂外延层。所述N区应力层的材料为Si或SiC;所述N型掺杂外延层的材料为N型掺杂的Si或SiC。In other embodiments, when the substrate is used to form P-type devices and N-type devices, that is, when the substrate includes an N-type region and a P-type region, the doped epitaxial layer formed in the aforementioned groove is defined as P type doped epitaxial layer as an example, after forming the P-type doped epitaxial layer, the forming method further includes: on the top and sidewall of the fin portion of the N-type region, the top and sidewall of the dummy gate structure, and the isolation structure An N-region mask layer is formed on the N-region mask layer, and the N-region mask layer is also located on the P-type doped epitaxial layer, the top and sidewall of the fin portion of the P-type region, the top and sidewall of the dummy gate structure of the P-type region, And on the isolation structure of the P-type region; etching the N-region mask layer on the top of the fins on both sides of the dummy gate structure in the N-type region, exposing the tops of the fins on both sides of the dummy gate structure in the N-type region, And also etch the fin part with partial thickness, and form N-region grooves in the fins on both sides of the dummy gate structure in the N-type region; form an N-region stress layer in the N-region groove, and form the N-region stress layer after forming the During the process of the N-region stress layer, in-situ self-doping of N-type ions is used to form the N-type doped epitaxial layer. The material of the N-region stress layer is Si or SiC; the material of the N-type doped epitaxial layer is N-type doped Si or SiC.
结合参考图20和图21,图20是基于图18的剖面结构示意图,图21是基于图19的剖面结构示意图,形成所述掺杂外延层130后,在所述伪栅结构120(如图21所示)露出的第一介质层102(如图20所示)上形成第二介质层103(如图20所示),所述第二介质层103覆盖所述伪栅结构120并露出所述伪栅结构120顶部,且所述第二介质层103和所述第一介质层102构成层间介质层(未标示)。Referring to FIG. 20 and FIG. 21 in conjunction, FIG. 20 is a schematic cross-sectional structure based on FIG. 18, and FIG. 21 is a schematic cross-sectional structure based on FIG. 21) to form a second dielectric layer 103 (as shown in FIG. 20 ) on the exposed first dielectric layer 102 (as shown in FIG. 20 ), the second dielectric layer 103 covers the dummy gate structure 120 and exposes the The top of the dummy gate structure 120, and the second dielectric layer 103 and the first dielectric layer 102 form an interlayer dielectric layer (not shown).
本实施例中,所述第二介质层103和所述第一介质层102用于构成层间介质层(未标示),所述层间介质层用于实现半导体结构之间的电隔离,也用于定义后续所形成金属栅极结构的尺寸和位置。In this embodiment, the second dielectric layer 103 and the first dielectric layer 102 are used to form an interlayer dielectric layer (not shown), and the interlayer dielectric layer is used to realize electrical isolation between semiconductor structures, also It is used to define the size and position of the subsequently formed metal gate structure.
因此所述第二介质层103的材料为绝缘材料,例如为氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅等介质材料。本实施例中,为了提高工艺兼容性,所述第二介质层103的材料与所述第一介质层102的材料相同,即所述第二介质层103的材料为氧化硅。Therefore, the material of the second dielectric layer 103 is an insulating material, such as a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride. In this embodiment, in order to improve process compatibility, the material of the second dielectric layer 103 is the same as that of the first dielectric layer 102 , that is, the material of the second dielectric layer 103 is silicon oxide.
具体地,形成所述第二介质层103的步骤包括:在所述伪栅结构120露出的第一介质层102上形成介质材料层,所述介质材料层覆盖所述伪栅结构120;通过化学机械研磨等方式去除高于所述伪栅结构120顶部的介质材料层,露出所述伪栅结构120顶部,剩余所述介质材料层作为第二介质层103。Specifically, the step of forming the second dielectric layer 103 includes: forming a dielectric material layer on the first dielectric layer 102 exposed by the dummy gate structure 120, the dielectric material layer covering the dummy gate structure 120; The dielectric material layer higher than the top of the dummy gate structure 120 is removed by mechanical grinding or the like to expose the top of the dummy gate structure 120 , and the remaining dielectric material layer is used as the second dielectric layer 103 .
需要说明的是,所述伪栅结构120顶部形成有栅极掩膜210,因此形成所述第二介质层103的步骤中,去除高于所述栅极掩膜210顶部的介质材料层。本实施例中,形成所述第二介质层103后,所述第二介质层103顶部与所述栅极掩膜210顶部齐平。It should be noted that, the gate mask 210 is formed on the top of the dummy gate structure 120 , so in the step of forming the second dielectric layer 103 , the dielectric material layer higher than the top of the gate mask 210 is removed. In this embodiment, after the second dielectric layer 103 is formed, the top of the second dielectric layer 103 is flush with the top of the gate mask 210 .
结合参考图22至图24,图22是基于图20的剖面结构示意图,图23是基于图21的剖面结构示意图,图24是在侧墙300位置处沿垂直于鳍部110延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图,去除所述伪栅结构120(如图21所示),在所述层间介质层(未标示)内形成开口(图未示);在所述开口内填充金属层222(如图23所示),形成金属栅极结(未标示)。Referring to FIGS. 22 to 24 in conjunction, FIG. 22 is a schematic cross-sectional structure based on FIG. 20 , FIG. 23 is a schematic cross-sectional structure based on FIG. 21 , and FIG. 24 is a secant line ( In the schematic cross-sectional structure shown by the C1C2 secant in FIG. 5 ), the dummy gate structure 120 (as shown in FIG. 21 ) is removed, and an opening (not shown) is formed in the interlayer dielectric layer (not shown); A metal layer 222 (as shown in FIG. 23 ) is filled in the opening to form a metal gate junction (not shown).
所述金属栅极结用于控制所形成半导体器件沟道的导通与截断。The metal gate junction is used to control the conduction and disconnection of the channel of the formed semiconductor device.
本实施例中,去除所述伪栅结构120的步骤中,去除所述伪氧化层121和伪栅层122,所述开口贯穿所述第二介质层103(如图22所示)和第一介质层102(如图22所示)并露出所述鳍部110。In this embodiment, in the step of removing the dummy gate structure 120, the dummy oxide layer 121 and the dummy gate layer 122 are removed, and the opening penetrates through the second dielectric layer 103 (as shown in FIG. 22 ) and the first The dielectric layer 102 (as shown in FIG. 22 ) exposes the fins 110 .
需要说明的是,所述伪栅结构120顶部形成有栅极掩膜210,因此去除所述伪栅结构120之前,所述形成方法还包括:去除所述栅极掩膜210。It should be noted that a gate mask 210 is formed on the top of the dummy gate structure 120 , so before removing the dummy gate structure 120 , the forming method further includes: removing the gate mask 210 .
还需要说明的是,去除所述伪栅结构120后,在所述开口内填充金属层222之前,所述形成方法还包括:在所述开口的底部和侧壁形成栅介质层(图未示),所述栅介质层还位于所述第二介质层103的顶部。具体地,所述栅介质层包括界面层(IL,Interfacial Layer)(图未示)以及位于所述界面层表面的高k栅介质层(图未示)。It should also be noted that, after removing the dummy gate structure 120, before filling the opening with the metal layer 222, the forming method further includes: forming a gate dielectric layer (not shown in the figure) on the bottom and side walls of the opening. ), the gate dielectric layer is also located on the top of the second dielectric layer 103 . Specifically, the gate dielectric layer includes an interfacial layer (IL, Interfacial Layer) (not shown in the figure) and a high-k gate dielectric layer (not shown in the figure) located on the surface of the interface layer.
所述界面层形成于所述开口底部,所述界面层为形成所述高k栅介质层提供良好的界面基础,从而提高所述高k栅介质层的质量,减小所述高k栅介质层与所述鳍部110之间的界面态密度,且避免所述高k栅介质层与所述鳍部110直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer is formed at the bottom of the opening, and the interface layer provides a good interface basis for forming the high-k gate dielectric layer, thereby improving the quality of the high-k gate dielectric layer and reducing the The interface state density between the layer and the fin portion 110 is avoided, and the adverse effect caused by the direct contact between the high-k gate dielectric layer and the fin portion 110 is avoided. The material of the interface layer is silicon oxide or silicon oxynitride.
所述高k栅介质层的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。The material of the high-k gate dielectric layer is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .
因此形成所述金属栅极结的步骤包括:在所述栅介质层上形成金属层222;去除高于所述第二介质层103顶部的金属层222,且还去除高于所述第二介质层103顶部的栅介质层,所述开口中的剩余栅介质层和金属层222用于构成所述金属栅极结,且所述金属栅极结的顶部与所述第二介质层103的顶部齐平。Therefore, the step of forming the metal gate junction includes: forming a metal layer 222 on the gate dielectric layer; removing the metal layer 222 higher than the top of the second dielectric layer 103, and also removing The gate dielectric layer on the top of layer 103, the remaining gate dielectric layer and metal layer 222 in the opening are used to form the metal gate junction, and the top of the metal gate junction is connected to the top of the second dielectric layer 103 flush.
本实施例中,在形成所述凹槽111(如图17所示)的工艺过程中,所述第一介质层102(如图16所示)对所述隔离结构101(如图16所示)起到保护作用,避免所述侧墙300下方(如图24中的虚线框所示)的隔离结构101在形成所述凹槽111的过程中受到损耗,从而避免在所述侧墙300下方出现由隔离结构101损耗所产生的缝隙;因此在所述第二介质层103和第一介质层102内的开口内填充金属层222(如图23所示)时,不会出现所述金属层222通过所述缝隙与所述掺杂外延层130(如图23所示)发生桥接(bridge)的问题,即通过本发明所述方案,可以避免所述掺杂外延层130与金属栅极结构(未标示)发生桥接,进而使半导体器件的电学性能和良率得到改善。In this embodiment, during the process of forming the groove 111 (as shown in FIG. 17 ), the first dielectric layer 102 (as shown in FIG. 16 ) is opposed to the isolation structure 101 (as shown in FIG. 16 ). ) to protect the isolation structure 101 below the side wall 300 (as shown in the dotted line box in FIG. There is a gap generated by the loss of the isolation structure 101; therefore, when the metal layer 222 is filled in the openings in the second dielectric layer 103 and the first dielectric layer 102 (as shown in FIG. 23 ), the metal layer will not appear 222 bridges the doped epitaxial layer 130 (as shown in FIG. 23 ) through the gap, that is, through the solution of the present invention, the doped epitaxial layer 130 and the metal gate structure can be avoided (not shown) bridging occurs, thereby improving the electrical performance and yield of the semiconductor device.
继续参考图22至图24,图22是垂直于鳍部延伸方向割线(如图5中B1B2割线所示)的剖面结构示意图,图23是沿鳍部延伸方向割线(如图5中A1A2割线所示)的剖面结构示意图,图24是在侧墙位置处沿垂直于鳍部延伸方向割线(如图5中C1C2割线所示)的剖面结构示意图。相应的,本发明还提供一种半导体结构,包括:Continuing to refer to Fig. 22 to Fig. 24, Fig. 22 is a schematic cross-sectional structural diagram of a secant line perpendicular to the extending direction of the fin (as shown by the B1B2 secant line in Fig. 5), and Fig. 23 is a secant line along the extending direction of the fin portion (as shown in Fig. 5 24 is a schematic cross-sectional structure diagram along the secant line perpendicular to the fin extension direction (shown by the C1C2 secant line in FIG. 5 ) at the position of the side wall. Correspondingly, the present invention also provides a semiconductor structure, including:
基底,所述基底包括衬底100以及位于所述衬底100上分立的鳍部110;隔离结构101,位于所述鳍部110露出的衬底100上,所述隔离结构101覆盖所述鳍部110的部分侧壁;横跨所述鳍部110的金属栅极结构(未标示),所述金属栅极结构覆盖所述鳍部110的部分顶部表面和侧壁表面,所述金属栅极结构包括金属层222(如图23所示);侧墙300,位于所述金属栅极结构的侧壁上;掺杂外延层130,位于所述金属栅极结构两侧的鳍部110内;位于所述金属栅极结构露出的隔离结构101上的层间介质层(未标示),所述层间介质层包括第一介质层102(如图22所示)、以及位于所述第一介质层102上的第二介质层103(如图22所示),所述第二介质层103覆盖所述金属栅极结构且露出所述金属栅极结构顶部。a base, the base includes a substrate 100 and a discrete fin 110 located on the substrate 100; an isolation structure 101, located on the substrate 100 exposed by the fin 110, and the isolation structure 101 covers the fin Part of the sidewall of 110; a metal gate structure (not shown) across the fin 110, the metal gate structure covers part of the top surface and sidewall surface of the fin 110, the metal gate structure Including a metal layer 222 (as shown in FIG. 23 ); sidewalls 300 located on the side walls of the metal gate structure; doped epitaxial layers 130 located in the fins 110 on both sides of the metal gate structure; The interlayer dielectric layer (not shown) on the isolation structure 101 exposed by the metal gate structure, the interlayer dielectric layer includes a first dielectric layer 102 (as shown in FIG. 22 ), and a 102 on the second dielectric layer 103 (as shown in FIG. 22 ), the second dielectric layer 103 covers the metal gate structure and exposes the top of the metal gate structure.
所述基底上具有鳍式场效应管,所述衬底100为形成鳍式场效应管提供工艺平台,所述鳍部用于提供鳍式场效应晶体管的沟道。本实施例中,以所述鳍式场效应管为CMOS器件为例,所述基底具有P型器件。在其他实施例中,所述基底具有N型器件;或者,所述基底具有P型器件和N型器件。The substrate has a fin field effect transistor, the substrate 100 provides a process platform for forming the fin field effect transistor, and the fin portion is used to provide a channel of the fin field effect transistor. In this embodiment, taking the FinFET as an example as a CMOS device, the substrate has a P-type device. In other embodiments, the substrate has N-type devices; or, the substrate has P-type devices and N-type devices.
本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底、绝缘体上的锗衬底或玻璃衬底。所述衬底100的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate, a germanium-on-insulator substrate, or a silicon-on-insulator substrate. substrate or glass substrate. The material of the substrate 100 can be selected suitable for process requirements or easily integrated.
所述鳍部110的材料与所述衬底100的材料相同。本实施例中,所述鳍部110的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin portion 110 is the same as that of the substrate 100 . In this embodiment, the material of the fin portion 110 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.
所述隔离结构101作为半导体器件的隔离结构,用于对相邻器件起到隔离作用,还用于对相邻鳍部110起到隔离作用。本实施例中,所述隔离结构101的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 101 is used as an isolation structure of a semiconductor device, and is used for isolating adjacent devices, and is also used for isolating adjacent fins 110 . In this embodiment, the material of the isolation structure 101 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.
所述金属栅极结用于控制所述半导体器件沟道的导通与截断。The metal gate junction is used to control the conduction and disconnection of the channel of the semiconductor device.
所述金属栅极结构包括金属层222。本实施例中,所述金属栅极结构还包括:横跨所述鳍部110的栅介质层(图未示),所述栅介质层覆盖所述鳍部110的部分顶部表面和侧壁表面。相应的,所述金属层222位于所述栅介质层上。The metal gate structure includes a metal layer 222 . In this embodiment, the metal gate structure further includes: a gate dielectric layer (not shown) across the fin 110 , the gate dielectric layer covers part of the top surface and sidewall surface of the fin 110 . Correspondingly, the metal layer 222 is located on the gate dielectric layer.
具体地,所述栅介质层包括界面层(IL,Interfacial Layer)(图未示)以及位于所述界面层表面的高k栅介质层(图未示)。Specifically, the gate dielectric layer includes an interfacial layer (IL, Interfacial Layer) (not shown in the figure) and a high-k gate dielectric layer (not shown in the figure) located on the surface of the interface layer.
所述界面层为形成所述高k栅介质层提供良好的界面基础,从而提高所述高k栅介质层的质量,减小所述高k栅介质层与所述鳍部110之间的界面态密度,且避免所述高k栅介质层与所述鳍部110直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer provides a good interface foundation for forming the high-k gate dielectric layer, thereby improving the quality of the high-k gate dielectric layer and reducing the interface between the high-k gate dielectric layer and the fin portion 110 density of states, and avoid adverse effects caused by direct contact between the high-k gate dielectric layer and the fin portion 110 . The material of the interface layer is silicon oxide or silicon oxynitride.
所述高k栅介质层的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。The material of the high-k gate dielectric layer is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .
所述侧墙300用于定义所述掺杂外延层130的位置。所述侧墙300的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙300可以为单层结构或叠层结构。本实施例中,所述侧墙300为单层结构,所述侧墙300的材料为氮化硅。The sidewall 300 is used to define the position of the doped epitaxial layer 130 . The material of the sidewall 300 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 300 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 300 is a single-layer structure, and the material of the sidewall 300 is silicon nitride.
所述掺杂外延层130作为所述半导体结构沟道的源区或漏区。本实施例中,所述掺杂外延层130的形成工艺为选择性外延工艺,因此所述掺杂外延层130的材料为P型掺杂的Si或SiGe。本实施例中,所述掺杂外延层130的材料为SiGe。The doped epitaxial layer 130 serves as a source region or a drain region of a channel of the semiconductor structure. In this embodiment, the formation process of the doped epitaxial layer 130 is a selective epitaxial process, so the material of the doped epitaxial layer 130 is P-type doped Si or SiGe. In this embodiment, the material of the doped epitaxial layer 130 is SiGe.
本实施例中,所述掺杂外延层130的顶部高于所述鳍部110的顶部。且由于选择性外延工艺的特性,高于所述鳍部110顶部的掺杂外延层130侧壁表面具有向远离所述鳍部110方向突出的顶角。在其他实施例中,所述掺杂外延层顶部还可以与所述鳍部顶部齐平。In this embodiment, the top of the doped epitaxial layer 130 is higher than the top of the fin portion 110 . And due to the characteristics of the selective epitaxy process, the sidewall surface of the doped epitaxial layer 130 higher than the top of the fin portion 110 has an apex protruding away from the fin portion 110 . In other embodiments, the top of the doped epitaxial layer may also be flush with the top of the fin.
需要说明的是,本实施例中,以所述基底具有P型器件为例进行说明。在另一实施例中,所述基底具有N型器件时,所述掺杂外延层的材料为N型掺杂的Si或SiC;例如所述掺杂外延层的材料为SiP。It should be noted that, in this embodiment, the description is made by taking the substrate having a P-type device as an example. In another embodiment, when the substrate has an N-type device, the material of the doped epitaxial layer is N-type doped Si or SiC; for example, the material of the doped epitaxial layer is SiP.
还需要说明的是,所述半导体结构还包括:位于所述鳍部110侧壁上的掩膜层310(如图22所示)。It should also be noted that the semiconductor structure further includes: a mask layer 310 located on the sidewall of the fin 110 (as shown in FIG. 22 ).
在半导体制造工艺过程中,一般先形成横跨所述鳍部110的伪栅结构;刻蚀所述伪栅结构两侧部分厚度的鳍部110,在所述伪栅结构两侧的鳍部110内形成凹槽;在所述凹槽内形成所述掺杂外延层130;形成所述掺杂外延层130后,去除所述伪栅结构并在所述伪栅结构位置处填充金属层222以形成所述金属栅极结构。During the semiconductor manufacturing process, generally, a dummy gate structure across the fin portion 110 is first formed; the fin portion 110 with a partial thickness on both sides of the dummy gate structure is etched, and the fin portion 110 on both sides of the dummy gate structure is Form a groove in the groove; form the doped epitaxial layer 130 in the groove; after forming the doped epitaxial layer 130, remove the dummy gate structure and fill the metal layer 222 at the position of the dummy gate structure to forming the metal gate structure.
所述掩膜层310的作用包括:刻蚀所述伪栅结构两侧部分厚度的鳍部110时,所述掩膜层310作为刻蚀所述鳍部110的刻蚀掩膜;位于所述鳍部110侧壁上的所述掩膜层310还能够起到保护所述鳍部110侧壁的作用,避免形成所述掺杂外延层130时在所述鳍部110侧壁上进行外延生长工艺。本实施例中,所述掩膜层310还位于所述侧墙300的侧壁表面。The function of the mask layer 310 includes: when etching the fins 110 of partial thickness on both sides of the dummy gate structure, the mask layer 310 is used as an etching mask for etching the fins 110; The mask layer 310 on the sidewall of the fin 110 can also protect the sidewall of the fin 110 and avoid epitaxial growth on the sidewall of the fin 110 when the doped epitaxial layer 130 is formed. craft. In this embodiment, the mask layer 310 is also located on the sidewall surface of the sidewall 300 .
所述掩膜层310的材料可以为氮化硅(SiN)、氮碳化硅(SiCN)、氮硼化硅(SiBN)、氮碳氧化硅(SiOCN)或氮氧化硅(SiON)。所述掩膜层310的材料与鳍部110的材料不同,所述掩膜层310的材料与所述隔离结构101的材料也不相同。本实施例中,所述掩膜层310的材料为氮化硅。The material of the mask layer 310 may be silicon nitride (SiN), silicon nitride carbide (SiCN), silicon boride nitride (SiBN), silicon oxycarbide oxynitride (SiOCN) or silicon oxynitride (SiON). The material of the mask layer 310 is different from that of the fin portion 110 , and the material of the mask layer 310 is also different from that of the isolation structure 101 . In this embodiment, the material of the mask layer 310 is silicon nitride.
所述层间介质层用于实现半导体结构之间的电隔离,也用于定义所述金属栅极结构的尺寸和位置。因此所述层间介质层的材料为绝缘材料,例如为氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅等介质材料。The interlayer dielectric layer is used to realize electrical isolation between semiconductor structures, and is also used to define the size and position of the metal gate structure. Therefore, the material of the interlayer dielectric layer is an insulating material, such as a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon carbonitride.
本实施例中,所述第一介质层102的材料为氧化硅,且为了提高工艺兼容性,所述第二介质层103的材料与所述第一介质层102的材料相同,即所述第二介质层103的材料也为氧化硅。In this embodiment, the material of the first dielectric layer 102 is silicon oxide, and in order to improve process compatibility, the material of the second dielectric layer 103 is the same as that of the first dielectric layer 102, that is, the second dielectric layer 103 The material of the second dielectric layer 103 is also silicon oxide.
由前述分析所述,在半导体制造工艺过程中,形成所述掺杂外延层130之前,刻蚀所述伪栅结构两侧部分厚度的鳍部110,在所述伪栅结构两侧的鳍部110内形成凹槽。所述第一介质层102用于在形成所述凹槽的工艺过程中对所述隔离结构101起到保护作用,避免所述侧墙300下方(如图24中的虚线框所示)的隔离结构101受到刻蚀损耗,从而避免在所述侧墙300下方出现由隔离结构101损耗所产生的缝隙,从而可以避免出现所述金属层222通过所述缝隙与所述掺杂外延层130发生桥接(bridge)的问题,相应避免了所述掺杂外延层130与金属栅极结构发生桥接的问题,从而使所述半导体结构的电学性能和良率得到改善。此外,通过所述第一介质层102,无需引入额外膜层以保护所述隔离结构101,相应无需在形成所述凹槽后去除额外膜层,因此还可以简化工艺步骤,降低工艺成本。According to the above analysis, in the semiconductor manufacturing process, before forming the doped epitaxial layer 130, the fins 110 of the partial thickness on both sides of the dummy gate structure are etched, and the fins on both sides of the dummy gate structure Grooves are formed in 110. The first dielectric layer 102 is used to protect the isolation structure 101 during the process of forming the groove, so as to avoid the isolation under the sidewall 300 (as shown by the dashed box in FIG. 24 ). The structure 101 is subjected to etching loss, so as to avoid gaps under the spacer 300 caused by the loss of the isolation structure 101, thereby preventing the metal layer 222 from bridging with the doped epitaxial layer 130 through the gaps. The problem of bridging between the doped epitaxial layer 130 and the metal gate structure is correspondingly avoided, so that the electrical performance and yield of the semiconductor structure are improved. In addition, through the first dielectric layer 102 , there is no need to introduce an additional film layer to protect the isolation structure 101 , and accordingly there is no need to remove the additional film layer after forming the groove, so the process steps can be simplified and the process cost can be reduced.
需要说明的是,所述第一介质层102的厚度不宜过小,也不宜过大。如果所述第一介质层102的厚度过小,则难以在刻蚀所述鳍部110的工艺中起到保护所述隔离结构101的作用;如果所述第一介质层102的厚度过大,相应会对刻蚀所述鳍部110的工艺造成不良影响。为此,本实施例中,所述第一介质层102的厚度为5nm至50nm。It should be noted that the thickness of the first dielectric layer 102 should neither be too small nor too large. If the thickness of the first dielectric layer 102 is too small, it is difficult to protect the isolation structure 101 in the process of etching the fin portion 110; if the thickness of the first dielectric layer 102 is too large, Correspondingly, the process of etching the fin portion 110 will be adversely affected. Therefore, in this embodiment, the thickness of the first dielectric layer 102 is 5 nm to 50 nm.
本实施例中,所述第一介质层102的顶部低于所述鳍部110的顶部。在其他实施例中,所述第一介质层的顶部可以与所述鳍部的顶部齐平;或者,所述第一介质层的顶部还可以高于所述鳍部顶部。In this embodiment, the top of the first dielectric layer 102 is lower than the top of the fin portion 110 . In other embodiments, the top of the first dielectric layer may be flush with the top of the fin; or, the top of the first dielectric layer may be higher than the top of the fin.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710087343.XA CN108461544B (en) | 2017-02-17 | 2017-02-17 | Semiconductor structures and methods of forming them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710087343.XA CN108461544B (en) | 2017-02-17 | 2017-02-17 | Semiconductor structures and methods of forming them |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108461544A CN108461544A (en) | 2018-08-28 |
CN108461544B true CN108461544B (en) | 2019-12-31 |
Family
ID=63221594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710087343.XA Active CN108461544B (en) | 2017-02-17 | 2017-02-17 | Semiconductor structures and methods of forming them |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108461544B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900130B (en) * | 2019-05-05 | 2024-08-09 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device and semiconductor device |
CN112151376B (en) * | 2019-06-28 | 2024-03-01 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN112635324B (en) * | 2019-09-24 | 2024-08-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
US11276651B2 (en) * | 2020-05-18 | 2022-03-15 | Globalfoundries U.S. Inc. | IC product comprising a single active fin FinFET device and an electrically inactive fin stress reduction structure |
CN113764340B (en) * | 2020-06-05 | 2024-06-18 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN116504745B (en) * | 2023-06-25 | 2023-09-19 | 合肥晶合集成电路股份有限公司 | Semiconductor structure and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105304489A (en) * | 2014-07-01 | 2016-02-03 | 中芯国际集成电路制造(上海)有限公司 | Forming method of semiconductor device |
CN106206305A (en) * | 2015-05-05 | 2016-12-07 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
-
2017
- 2017-02-17 CN CN201710087343.XA patent/CN108461544B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105304489A (en) * | 2014-07-01 | 2016-02-03 | 中芯国际集成电路制造(上海)有限公司 | Forming method of semiconductor device |
CN106206305A (en) * | 2015-05-05 | 2016-12-07 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
Also Published As
Publication number | Publication date |
---|---|
CN108461544A (en) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110277316B (en) | Semiconductor structures and methods of forming them | |
US8900956B2 (en) | Method of dual EPI process for semiconductor device | |
CN108461544B (en) | Semiconductor structures and methods of forming them | |
CN108538724B (en) | Semiconductor structure and method of forming the same | |
US9865709B2 (en) | Selectively deposited spacer film for metal gate sidewall protection | |
CN110634798A (en) | Semiconductor structure and method of forming the same | |
CN111490092B (en) | Semiconductor structures and methods of forming them | |
CN110718465B (en) | Semiconductor structure and forming method thereof | |
CN117652014A (en) | Semiconductor structure and forming method thereof | |
CN108389905B (en) | Semiconductor structure and method of forming the same | |
CN109003899B (en) | Semiconductor structure and method for forming the same, and method for forming a fin field effect transistor | |
CN110854194B (en) | Semiconductor structure and forming method thereof | |
CN109087892B (en) | Semiconductor structure, forming method thereof and forming method of fin field effect transistor | |
CN109003976B (en) | Semiconductor structure and method of forming the same | |
CN111769046A (en) | Semiconductor structure and method of forming the same | |
CN106469652A (en) | Semiconductor device and forming method thereof | |
CN112017960B (en) | Semiconductor structure and forming method thereof | |
CN110875390B (en) | Semiconductor structure and forming method thereof | |
CN113851535A (en) | Semiconductor device and method of forming the same | |
CN113745162B (en) | Semiconductor structure and method of forming the same | |
CN112151381A (en) | Semiconductor structure and forming method thereof | |
CN103545366A (en) | Semiconductor device and method for manufacturing the same | |
CN110808286B (en) | Semiconductor structures and methods of forming them | |
CN111383917B (en) | Semiconductor structure and forming method thereof | |
CN114695348A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |